
Trajectory of a massive localized wave function
in a curved spacetime geometry

Qasem Exirifard * and Ebrahim Karimi †

Nexus for Quantum Technologies, University of Ottawa,
25 Templeton street, Ottawa, Ontario, K1N 6N5 Canada

(Received 4 August 2022; accepted 8 March 2023; published 28 March 2023)

Propagation of a localized wave function of a massive scalar field is investigated in its rest frame.
The complete orthogonal Hermite-Gauss basis is presented, and the Gouy phase and Rayleigh scale notions
are adapted. The leading and subleading gravitational corrections to a localized quantum wave function
propagating in a generally curved spacetime geometry are calculated within the Fermi coordinates around
the timelike geodesic of its rest frame, and cross-talk coefficients among the modes are derived. It is
observed that spherically symmetric modes propagate along the geodesic. However, nonspherical modes
are found to experience a mode-dependent residual quantum force at the subleading order. It is shown that
the residual force does not generate an escape velocity for in-falling wave functions but leads to a mode-
dependent deflection angle for the scattered ones.
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I. INTRODUCTION

The advancement of exchanging quantum information
over long distances [1–5] and the efforts to establish a
quantum network in space [6,7] have stemmed various
studies to calculate the general relativistic corrections to the
photon’s wave function around the Earth or in a general
background [8–14] and viability of quantum communica-
tion across interstellar distances is reported [15]. In
particular, the authors of this manuscript utilize Fermi
coordinates [16] adapted to null geodesics [17] and report
technologically measurable quantities beyond the light ray
approximation [18,19]. Since these studies have considered
the propagation of a wave function of massless particles
along a null geodesic, one may ponder how a wave function
of a massive particle propagates in a general curved
spacetime geometry. The gravitational corrections for an
electron bound to a stationary or nonstationary hydrogen
atom in a curved spacetime geometry have been inves-
tigated [20–26]. However, the advancement of the struc-
tured quantum matter waves [27–29] encourages
examining the general relativistic corrections for a wave
function of a freely propagating massive particle. We notice
that the effects of constant Newtonian gravity are studied
in [30]. Here, we calculate the interaction between the
Riemann tensor with the wave function of a localized
massive field freely propagating along an arbitrary timelike
geodesic in a general curved spacetime geometry.

The paper is organized as follows: Section II considers a
localized wave function of a massive scalar field propa-
gating in the flat Minkowski spacetime geometry. It
generalizes the concept of a rest frame of a particle to a
rest frame of a wave function, and defines the rest frame
of a wave function as the frame wherein the expectation
value of the linear momentum vanishes. Section III studies
the Klein-Gordon equation for a massive particle in the
rest frame of the wave function. It considers the low
energy modes and approximates the Klein-Gordon equa-
tion to the Schrodinger equation in (3þ 1)-dimensions.
Section III A reviews how to find a complete basis for the
localized solutions of the Schrodinger equation in (1þ 1)-
dimensions, and adapts the notion of the Gouy phase [31]
and Rayleigh scale. Section III B presents the elegant
Hermite basis, and Section III C reviews the standard
Hermite modes and their properties. Section III D presents
the standard Hermite-Gaussian modes in (3þ 1)-
dimensions as a complete orthogonal basis for the localized
wave function of a massive particle.
Section IV considers a localized wave function of a

massive particle propagating in a general curved spacetime
geometry. It utilizes the Fermi coordinates adapted to the
timelike geodesic of the rest frame of the wave function up
to the cubic order in terms of transverse directions [32,33].
The equation for the interaction between the curvature of
the spacetime geometry is obtained. The interaction intro-
duces a cross-talk between different modes and induces a
distortion which is encoded in the operator Q presented
in (118). The distortion operator at the quadratic and cubic
orders are calculated in (117) and (145) and expressed in
terms of the Riemann tensor and its covariant derivative
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evaluated and integrated over the timelike geodesic of the
rest frame. Section IVA 2 utilizes Newton’s Lex Secunda to
define the residual net force acting on the wave function Ψ
given by the time rate of the change of its average linear
momentum. It reports that the residual net force vanishes at
the level of quadratic corrections. Section IV B shows that
the net residual force generally does not vanish at the order
of the cubic corrections for a general wave function. The
net residual force vanishes for spherical symmetric wave
functions, so they follow the timelike geodesic of their rest
frame. Nonspherically symmetric wave functions are found
to experience a net residual force, and their mean trajectory
deviates from the geodesic.
Section V studies the Schwarzschild black hole [34] as

an example of curved spacetime geometry. Section VA
calculates the net residual force for a localized wave
function of a massive particle radially falling inside the
black hole. It shows that though the force is not vanishing,
as long as the width of the wave function on and outside
the event horizon remains negligible compared to the
Schwarzschild radius, the residual force does generate an
escape velocity. Section VA shows the effect of the residual
force on the trajectory of a wave function deflected by the
black hole. It reveals that different modes are deflected by
an angle that depends on the mode number. Section VI
concludes that the computed dependency of the deflection
of the mode number in the solar system is too small to be
measured by available technologies. However, the finding
that the trajectories of localized quantum wave functions
deviate from geodesics may be counted as evidence
supporting the idea that gravity should not be treated as
a geometrical force in the quantum realm.

II. REST FRAME OF A WAVE FUNCTION

We consider φðt; z1; z2; z3Þ as a free complex-valued
scalar field in the flat (3þ 1)-dimensional spacetime where
the length of line element in the spacetime is given by:

ds2 ¼ ημνdzμdzν ¼ −c2dt2 þ dzidzi; ð1Þ

where μ; ν ∈ f0; 1; 2; 3g, i ∈ f1; 2; 3g, ημν represents the
components of the Minkowski metric, c is the light speed,
dz0 ¼ ct, t represents time and zi represent space, and if a
single index appears twice in a term, then summation is
performed over that index.
The action for φ is given by:

S½φ� ¼ −
Z

d4z

�
ημν∂zμφ∂zνφ

� þ ℏ2m2

c2
φφ�

�
; ð2Þ

where φ ¼ φðzi; tÞ, φ� is the complex conjugate of φ, ημν is
the inverse of the metric, ∂zμ ¼ ∂

∂zμ, d
4z ¼ dz0dz1dz2dz3,

and m is the mass while ℏ represents the reduced Planck
constant. Requiring that the functional variation of the

action with respect to φ vanishes, generates the equation of
motion of φ:

δS½φ�
δφ

¼ 0 →

�
□ −

ℏ2m2

c2

�
φðt; ziÞ ¼ 0; ð3Þ

where □ ¼ −∂20 þ ∂
2
i . In natural units wherein ℏ ¼ c ¼ 1,

the equation of motion is simplified to:

ð−∂2t þ ∂
2
i −m2Þφðt; ziÞ ¼ 0: ð4Þ

While negative energy solutions and quantum field theory
aspects can become relevant in curved spacetime, we
emphasize that in the regime under consideration, the
energy density and curvature of spacetime are sufficiently
small that any potential effects of these solutions are
expected to be negligible. Moreover, the specific physical
processes we are considering do not involve significant
particle production. Therefore, we only consider positive
energy solutions to the equation of motion, which can be
presented as follows:

φðt; ziÞ ¼
Z

d3p

ð2πÞ32 Aðp⃗Þe
ipμzμ ; ð5Þ

where pμ ¼ ðEp⃗; p⃗Þ, pμzμ ¼ −Ep⃗tþ pizi, and

Ep⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

1 þ p2
2 þ p2

3

q
: ð6Þ

We choose φ to be normalized, i.e.,

1 ¼
Z

d3zjφj2 ¼
Z

d3pjAðp⃗Þj2: ð7Þ

So jAðp⃗Þj2 can be interpreted as the probability for the
particle to have momentum p⃗. We refer to t; zi as the
coordinates in the lab. The average momentum in the lab is
given by:

p⃗lab ¼ hp⃗ilab ¼
Z

d3pjAðp⃗Þj2p⃗: ð8Þ

Without loss of generality, coordinates can be chosen such
that momentum aligns with the positive direction of z3:

p⃗lab ¼ ð0; 0; plabÞ; ð9Þ

with plab > 0. Let us consider a boost with velocity of
v ¼ ðv1; v2; v3Þ, which is given by the following Lorentz
transformation:
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Λμ
ν ¼

0
BBBBBB@

γ −γv1 −γv2 −γv3

−γv1
ðγ−1Þv2

1

v2 þ 1
ðγ−1Þv1v2

v2
ðγ−1Þv1v3

v2

−γv2
ðγ−1Þv1v2

v2
ðγ−1Þv2

2

v2 þ 1
ðγ−1Þv2v3

v2

−γv3
ðγ−1Þv1v3

v2
ðγ−1Þv2v3

v2
ðγ−1Þv2

3

v2 þ 1

1
CCCCCCA
;

ð10Þ

where γ is the boost factor, γ ¼ 1ffiffiffiffiffiffiffiffi
1−v2

p , and v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22 þ v23

p
. We represent the new coordinates by

xμ ¼ ðτ; x1; x2; x3Þ:

xμ ¼ Λμ
νzν: ð11Þ

The Fourier transformation of φðτ; xiÞ is given by:

φðτ; xiÞ ¼
Z

d3q

ð2πÞ32 Ãðq⃗Þe
iqμx

μ
; ð12Þ

where q⃗ is the momentum in the x-frame and Ãðq⃗Þ is the
amplitude for momentum q⃗. Since φ is scalar, its value in
the x-frame is given by φðτ; xiÞ ¼ φðt; ziÞ which implies:

Ãðq⃗Þ ¼ ∂ðp1;…; pDÞ
∂ðq1;…; qDÞ

Aðp⃗Þ; ð13Þ

where ∂ðp1;…;pDÞ
∂ðq1;…;qDÞ is the Jacobian determinate. It can be

simplified to:

∂ðp1;…; pDÞ
∂ðq1;…; qDÞ

¼ Ep⃗

γðEp⃗ − p:vÞ ; ð14Þ

where p:v ¼Pi pivi, γ ¼ 1ffiffiffiffiffiffiffiffiffi
1−jvj2

p is the boost factor where

v⃗ is the velocity of frame x with respect to the frame of z,
and Ep⃗ is given in Eq. (6). The average of momentum in the
x frame is defined by:

hqμix ¼
Z

d3qjÃðq⃗Þj2qμ; ð15Þ

which is equal to:

hqμix ¼
Λμ

ν

γ

�
Ep⃗pν

Ep⃗ − p:v

�
lab
: ð16Þ

Here, subscript x stands for the expectation value in the x
frame. We define the rest frame of a wave function as a
frame wherein the expectation values of the linear momen-
tum vanishes:

hq1irest ¼ hq2irest ¼ hq3irest ¼ 0; ð17Þ

where the subscript of rest stands for the rest frame.
Substituting Eq. (16) in Eq. (17) provides three equations
that can be solved to find v⃗ ¼ ðv1; v2; v3Þ. In (1þ 1)
dimensions, we can prove that for any differentiable
Aðp⃗Þ, there always exists one solution that satisfies
jv⃗j < 1. We conjecture that for any infinitely differentiable
Aðp⃗Þ, Eq. (17) admits only one solution for v⃗ that satisfies
jv⃗j < 1. We call this unique solution as the rest frame of the
wave function.
As an example, let us consider a simple Gaussian profile

for AðpÞ with the variance of σ around hp⃗ilab ¼ ð0; 0; p̄Þ:

Aðp⃗Þ ¼ 1

π
3
4σ

3
2

exp

�
−
p2
1 þ p2

2 þ ðp3 − p̄Þ2
σ2

�
: ð18Þ

The symmetric distribution of the wave function in the z1

and z2 plane implies that the velocity of the rest frame
holds:

v1 ¼ v2 ¼ 0: ð19Þ

Then the equation for v3 can be simplified to:

v3

�
m2 þ p2

1 þ p2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
1 þ p2

2 þ p2
3

p
− p3v3

�
lab

¼ p̄: ð20Þ

This equation cannot be solved in an exact analytic form.
However, when σ is small, i.e., (σ2 ≪ p̄2 þm2), the
perturbative solution can be found:

v3 ¼
p̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p̄2
p �

1 −
ðm2 þ 2p̄2Þ
4ðm2 þ p̄2Þ2 σ

2 þ � � �
�
: ð21Þ

The above expression shows that the rest frame velocity not
only depends on the average momentum but is a function
of the internal structure of the wave function as it
depends on σ.

III. WAVE FUNCTION IN THE REST FRAME

We would like to study the field’s configuration repre-
senting a localized wave function. We choose the rest frame
of the localized wave function. We show the coordinates in
the rest frame by ðτ; xiÞ, where τ stands for the proper time
in the rest frame. The wave function satisfies the Klein-
Gordon equation:

ð□ −m2Þφðτ; xiÞ ¼ 0: ð22Þ

Now let the field φ be expressed in terms of the complex-
valued scalar field φ̃, as:

φðx; τÞ ¼ e−imτφ̃ðx; τÞ: ð23Þ

The equation of motion for φ̃ can be simplified to:

TRAJECTORY OF A MASSIVE LOCALIZED WAVE FUNCTION … PHYS. REV. D 107, 064059 (2023)

064059-3



−∂2τ φ̃þ 2im∂τφ̃ ¼ −∂2i φ̃: ð24Þ

We restrict our study to low-energy field configurations
wherein the second derivative of τ on left-hand side of the
above equation can be neglected:

2im∂τφ̃ ≈ −∂2i φ̃: ð25Þ

The equation of motion for φ̃ in our study, therefore, can be
approximated to:

i∂τφ̃þ 1

2m
∂
2
i φ̃ ¼ 0; ð26Þ

which is the Schrödinger equation for a particle with mass
m in (3þ 1)-dimensions.

A. Localized solutions in (1 + 1)-dimensions

To find a general localized solution for a wave function,
we first consider the Schrödinger equation for a particle
with mass m in (1þ 1)-dimensions of τ and x:

i∂τφ̃þ 1

2m
∂
2
xφ̃ ¼ 0: ð27Þ

Let it be emphasized that x is a variable defined only for the
purpose of presenting the position in 1þ 1 dimensions.
Equation (27) is a linear homogeneous partial differential
equation. We assume that boundary conditions are linear
and homogeneous too. This allows us to utilize the
technique of separation of variables to solve Eq. (27).
The technique of separation of variables tries to find a
complete basis for the on-shell field configurations. We
look for solutions in the form of:

φ̃ðx; τÞ ¼ φðxfðτÞÞgðτÞ; ð28Þ

where φ and (f, g) are analytic. Substituting Eq. (28) in
Eq. (27) yields:

φ00ðyÞ þ α̃yφ0ðyÞ þ β̃φðyÞ ¼ 0; ð29Þ

where φ0ðyÞ≡ dφ
dy, φ

00ðyÞ≡ d2φ
ðdyÞ2, and

y≡ xfðτÞ; ð30Þ

α̃≡ 2imf0

f3
; ð31Þ

β̃≡ 2img0

f2g
; ð32Þ

where f0 ≡ df
dτ and g0 ≡ dg

dτ. Notice that α̃, β̃ and y are
variables defined within this section to concisely present
the solution to (27). The technique of separation of

variables demands that α̃ and β̃ should be constant. For
a constant α̃, Eq. (31) can be solved to find f, which is
given by,

fðτÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
iτα̃þ c1

r
; ð33Þ

where c1 is the constant of integration. Parity operator in x
(x → −x) maps the positive sign of fðτÞ to its negative
value. So without loss of generality, we can set:

fðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
iτα̃þ c1

r
: ð34Þ

Equation (33) can be substituted in Eq. (32), and thus g can
be found as,

gðτÞ ¼ ðiτα̃þ c1Þ−
β̃
2α̃c2; ð35Þ

where c2 is the constant of integration. For constant α̃ and
β̃, Eq. (29) can be utilized to find φðzÞ:

e
α̃y2

2 φðyÞ ¼ C1Hβ̃−α̃
α̃

� ffiffiffĩ
α

2

r
y

�
þ C21F1

�
−
β̃ − α̃

2α̃
;
1

2
;
α̃y2

2

�
;

ð36Þ

where C1 and C2 are constants of integration, Hβ̃−α̃
α̃

is the

Hermite polynomial of degree β̃−α̃
α̃ , and 1F1 is the

Kummer’s (confluent hypergeometric) function.
Kummer’s function admits an irregular singular point at
y ¼ ∞. We look for regular solutions at y ¼ ∞, and thus,
we set C2 ¼ 0, and obtain:

φðyÞ ¼ C1e−
α̃y2

2 Hβ̃−α̃
α̃

 ffiffiffĩ
α

2

r
y

!
: ð37Þ

Notice that the technique of separation of variables aims to
find a complete basis for all field configurations. The

Hermite polynomials for non-negative integer values of β̃−α̃α̃
in (37) leads to a complete basis which in optics is known
as the Hermite Gaussian basis. In order to generate this
basis, we set:

β̃ ¼ ðnþ 1Þα̃; ð38Þ

where n ∈ f0g ∪ N. The finiteness of
R∞
−∞ dxjφ̃j2

demands α̃ > 0.

B. Elegant Hermite basis

It is convenient to define w0 ¼ ð2c1αmÞ
1
2, and consider that

w0 is a non-negative real number, and set
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τR ¼ 1

2
mw2

0; ð39Þ

w̄ ¼ w0

�
1þ iτ

τR

�1
2

: ð40Þ

Then, express φ̃ðx; τÞ in terms of w0, τR, and w̄:

φ̃nðx; τÞ ¼ Cnw̄−ðnþ1ÞHn

�
x
w̄

�
exp

�
−
x2

w̄2

�
; ð41Þ

where the index n on the left-hand side shows that it is
the wave function for mode n, the constants of c2C1 are
abbreviated to the constant Cn. Notice that we are using a
compact notation, and indeed, w̄ is complex and is a function
of τ. w0 defines the width of the wave function at τ ¼ 0, and
jw̄j represents the width of wave function at τ. In analogy
with optics, we refer to τR as the Rayleigh time. Thewidth of
the wave function doubles at τ ¼ τR: jjw̄ðτRÞjj ¼ 2w0.
We require that φ̃n to be normalized:

Z
dxφ̃nφ̃

�
n ¼ 1; ð42Þ

which is satisfied for:

Cn ¼
�
2Γð2nÞ
2nΓðnÞ

ffiffiffi
π

2

r �−1
2

w
nþ1

2

0 ; ð43Þ

where Γ represents the Gamma function: ΓðnÞ ¼ ðn − 1Þ!.
To summarize, the normalized mode n is given by:

hxjn̄i¼ φ̃n¼
1ffiffiffiffiffiffi
w0

p
�
2Γð2nÞ
2nΓðnÞ

ffiffiffi
π

2

r �−1
2

�
w0

w̄

�
nþ1

Hn

�
x
w̄

�
e−

x2

w̄2 ;

ð44Þ

where the bar sign over n is used in hxjn̄i to highlight
that it represents the nth “elegant mode.” In fact, Eq. (44)
is known as the elegant basis of Hermite-Gaussian
modes [35].

C. Standard Hermite basis

The elegant basis is not orthogonal. The elegant Hermite
modes provide a nonorthogonal complete basis for the
physical Hilbert space. The nonorthogonality can be
checked by looking at the inner products of the first few
modes:

j0̄i j1̄i j2̄i j3̄i j4̄i j5̄i � � �
h0̄j 1 0 − 1ffiffi

3
p 0

ffiffiffiffi
3
35

q
0 � � �

h1̄j 0 1 0 −
ffiffi
3
5

q
0

ffiffiffiffi
5
21

q
� � �

h2̄j − 1ffiffi
3

p 0 1 0 −
ffiffi
5
7

q
0 � � �

h3̄j 0 −
ffiffi
3
5

q
0 1 0 −

ffiffi
7

p
3

� � �
h4̄j

ffiffiffiffi
3
35

q
0 −

ffiffi
5
7

q
0 1 0 � � �

h5̄j 0
ffiffiffiffi
5
21

q
0 −

ffiffi
7

p
3

0 1 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

ð45Þ

In the above table, the element in row hīj and column jj̄i
represents hījj̄i. The phase and amplitude are not easily
readable in the elegant notation too. It is easier to work with
a standard orthogonal basis wherein the phase and ampli-
tude of field are easily readable [36]. The standard modes
can be obtained by constructing a normal basis that we shall
represent by jni from the elegant basis:

j0i ¼ j0̄i; ð46Þ

j1i ¼ j1̄i; ð47Þ

j2i ¼ 1ffiffiffi
2

p j0̄i þ
ffiffiffi
3

2

r
j2̄i; ð48Þ

j3i ¼
ffiffiffi
2

5

r
j3̄i −

ffiffiffi
3

5

r
j1̄i; ð49Þ

j4i ¼ 1

2

ffiffiffi
3

2

r
j0̄i þ 3ffiffiffi

2
p j2̄i þ 1

2

ffiffiffiffiffi
35

2

r
j4̄i; ð50Þ

j5i ¼
ffiffiffiffiffi
5

21

r
j1̄i − 2

3

ffiffiffiffiffi
10

7

r
j3̄i þ 2

3

ffiffiffi
2

7

r
j5̄i;

..

.

ð51Þ

The standard modes can also be directly represented in
terms of the Hermite functions. The standard basis defines:

τR ¼ 1

2
mw2

0; ð52Þ

w ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
τ

τR

�
2

s
: ð53Þ

Note that we are using a compact notation: w is real, and
is a function of τ, and τR is the Rayleigh time. The width
doubles at τ ¼ τR: wðτRÞ ¼ 2w0. The standard basis
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defines ψ as the Gouy phase [31]:

ψn ¼ −
�
nþ 1

2

�
arctan

�
τ

τR

�
; ð54Þ

which is a function τ. The nth Hermite-Gaussian mode
in the standard basis with an initial width of w0 is then
given by:

hxjniw0
¼
�
1

2π

�1
4 2

−nþ1
2ffiffiffiffiffiffiffiffi
n!w

p Hn

� ffiffiffi
2

p
x

w

�

× exp

�
−
x2

w2
þ ix2τ
w2τR

þ iψn

�
: ð55Þ

In the remainder of this section, we drop the subscript
of w0 for the sake of simplicity, but we shall recover it in
the next section. The standard Hermite modes provide a
complete orthogonal basis for the physical Hilbert space:

X∞
n¼0

jnihnj ¼ 1; ð56Þ

hmjni ¼ δmn; ð57Þ

where δmn represents the Kronecker delta, and hmjni ¼R
∞
−∞ dxhmjxihxjni, and hmjxi is the complex conjugate
of hxjmi.
The density plot of the first six modes is provided in

Fig. 1. We observe that hxjni in the spacetime continuum is
always composed of nþ 1 strips. The phase of mode n can
be reexpressed by:

argðhxjniÞ ¼ aðτÞ
�
x2

w0

�
þ ψnðτÞ; ð58Þ

aðτÞ ¼ τ=τR
ð1þ τ=τRÞ2

: ð59Þ

Figure 2 depicts aðτÞ and ψnðτÞ versus τ.
The completeness of the standard Hermite basis implies

that the wave function of the particle in its rest frame,
as given in (23) and (41), can be written by:

φðx; τÞ ¼ e−imτ
X∞
n¼0

dnhxjni; ð60Þ

where dn are some constant complex numbers. So, let us first
look at some physical properties of each mode. The

(a) (b) (c)

(d) (e) (f)

FIG. 1. Plot density of the density of probability for the first six modes: (a) n ¼ 0, (b) n ¼ 1, (c) n ¼ 2, (e) n ¼ 3, (f) n ¼ 4,
and (g) n ¼ 5. The color shows jhxjnij2. The horizontal axis represents the proper time divided by the Rayleigh time given in Eq. (52).
The perpendicular axis shows the position divided by the initial width.
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expectationvalue of the kinetic energy ofmoden is given by:

En ¼ −
1

2m
hnj∂2xjni ¼

1

mw2
0

�
nþ 1

2

�
: ð61Þ

The energy eigenvalues match that of a harmonic oscillator
with frequency ω ¼ 1

mw2
0

. It also holds:

hnjx2jni ¼ 2nþ 1

4
w2; ð62Þ

hnjp2jni ¼ 2nþ 1

w2
0

; ð63Þ

wherew is thewidth of thewave function at the proper time τ
defined in (53). Also, notice that it holds:

hnjx2jmi ¼ w2

w2
0

hnjx2jmi
����
τ¼0

: ð64Þ

The expectation values of the squared of position and
momentum, therefore, satisfy:

hnjp2jnihnjx2jni ¼ ð2nþ 1Þ2
4

�
1þ τ2

τ2R

�
; ð65Þ

where τR is the Rayleigh time given in Eq. (52). Recalling
that hnjpjni ¼ hnjxjni ¼ 0, we see that the zero mode
saturates the uncertainty principle at τ ¼ 0. Also, notice
that for any m, n and any arbitrary integer number of α̃:

hnjxα̃jmi ¼
�
w
w0

�
α̃

eiðψn−ψmÞhnjxα̃jmijτ¼0;

hnjpα̃jmi ¼ eiðψn−ψmÞhnjpα̃jmijτ¼0; ð66Þ

where w is the width at time τ defined in Eq. (53), w0 is the
initial width, and ψn and ψm are the Gouy phase for mode n
andm defined in Eq. (54). To calculate the right-hand side of
Eq. (66), one can define a new variable of y by:

ỹ ¼
ffiffiffi
2

p x
w0

; ð67Þ

hỹjni ¼
��

∂x
∂y

�1
2hxjni

�����
τ¼0

; ð68Þ

then hỹjni satisfies: Z
dỹjhỹjnij2 ¼ 1; ð69Þ

�
−
1

2
∂
2
ỹ þ

1

2
ỹ2
�
hỹjni ¼

�
nþ 1

2

�
hỹjni; ð70Þ

which can be perceived as the Hamiltonian of a simple
harmonic oscillator with m ¼ ω ¼ 1. We can define the
ladder operators of [37]:

a† ¼ −∂ỹ þ ỹffiffiffi
2

p ; ð71Þ

a ¼ ∂ỹ þ ỹffiffiffi
2

p ; ð72Þ

that satisfy ½a; a†� ¼ 1 to alter the mode number:

a†jni ¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1i; ð73Þ

ajnþ 1i ¼ ffiffiffi
n

p jni: ð74Þ

which are useful to obtain the sandwichofx orpbetween two
modes on the right-hand side of Eq. (66) by utilizing:

x ¼ w0

2
ðaþ a†Þ; ð75Þ

p ¼ iða† − aÞ
w0

: ð76Þ

In the following we would like to estimate the systematic
error in ignoring second derivative of τ in (25), let us
multiply both sides of (25) with φ̃�

n and integrate it over x
from x ¼ −∞;∞:

hnjði∂τÞ2jni þ 2mhnji∂τjni ≈ 2mhnji∂τjni: ð77Þ

The systematic error in this approximation is given by

ErrorðnÞ ¼ hnjH2jni
hnjH2jni þ 2mhnjHjni ; ð78Þ

FIG. 2. Phase of the standard Hermite mode n, hxjni, can be
expressed by arghxjni ¼ aðτÞðx2w2

0

Þ þ ψnðτÞ where w0 is the initial

width, ψn is the Gouy phase for mode n defined in Eq. (54), and
aðτÞ is defined in Eq. (59). Note that τR is the Rayleigh time
defined in (52).
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where i∂τ ¼ H is utilized and H ¼ − 1
2m ∂

2
x represents the

Hamiltonian. Using the explicit form of hxjni yields:

hnjHjni ¼ En; ð79Þ

hnjH2jni ¼ 6n2 þ 6nþ 3

4m2w4
0

; ð80Þ

which can be utilized to write:

1

ErrorðnÞ ¼ 1þ 4m2w2
0

3

�
1 −

n2

n2 þ nþ 1
2

�
: ð81Þ

Any experiment or measurement is performed with a
certain precision. The systematic error should be always
smaller than the precision, represented by pr:

ErrorðnÞ < pr; ð82Þ

The precision is a very small positive real number: pr ≪ 1.
So (81) can be rewritten by:

n2

n2 þ nþ 1
2

< 1 −
3

4m2w2
0

�
1

pr

�
: ð83Þ

For any given precision and initial width, the right-hand
side of the above inequality is smaller than 1, but the limit
of n → ∞ of the right-hand side is 1. This proves that for
any given width and precision, there exists an upper bound
on n where the systematic error becomes larger than the
precision of the experiment. Assuming that the upper
bound is large, it can be shown that:

n < nub; ð84Þ

nub ¼
4

3
prm2w2

0; ð85Þ

The upper bound of nub is where the relativistic corrections
in the rest frame of the particle become important. We
assume thatmw0 is very large, and the precision is such that
1 ≪ nub, and we consider only modes of n ≪ nub. We,
therefore, consistently ignore the relativistic corrections to
the Schrödinger equation in the rest frame of the wave
function.

D. Localized solutions in (3 + 1)-dimensions

Equation (55) can be utilized to write hx1jn1iw01
,

hx2jn2iw02
, and hx3jn3iw03

respectively as the n1, n2 and
n3 Hermite mode for ðx1; τÞ, ðx2; τÞ, and ðx3; τÞ coordinates
with the initial width of w01, w02 and w03. They satisfy:

−i∂τhxijniiw0i
¼ 1

2m
∂
2
xihxijniiw0i

; ð86Þ

where i ∈ f1; 2; 3g. Let us define:

hx⃗jn⃗iw⃗0
¼
Y3
i¼1

hxijniiw0i
; ð87Þ

where x⃗ ¼ ðx1; x2; x3Þ, n⃗ ¼ ðn1; n2; n3Þ, and w⃗0 ¼
ðw01; w02; w03Þ, respectively. Then, hx⃗jn⃗iw⃗0

satisfies the
Schrödinger equation in (3þ 1)-dimensions:

i∂τhx⃗jn⃗iw⃗0
¼ −

∇2

2m
hx⃗jn⃗iw⃗0

; ð88Þ

where:

∇2 ¼
X3
i¼1

�
∂

∂xi

�
2

: ð89Þ

Notice that w⃗0 represent the initial width for x1, x2 and x3
coordinates. For any choices of w⃗0, hx⃗jn⃗iw⃗0

provides a
complete orthogonal basis for localized solutions of the
Schrödinger equation in (3þ 1)-dimensions. Here, we
choose the same initial width of w0 for all the coordinates
and set:

w0 ¼ w01 ¼ w02 ¼ w03: ð90Þ

For the sake of simplicity, we also drop subscript w⃗0. So the
completeness of the basis can be succinctly expressed in
Dirac notation: X

n⃗

jn⃗ihn⃗j ¼ 1; ð91Þ

hn⃗jm⃗i ¼ δn⃗;m⃗; ð92Þ

where:

δn⃗;m⃗ ¼
Y3
i¼1

δni;mi
: ð93Þ

We define the zero state or the ground state by 0⃗ ¼ ð0; 0; 0Þ,
and represent it by j0i ¼ j0⃗i. We call the state jn⃗i as the
excitation with number n1, n2, and n3 in respectively the
directions of x1, x2, and x3.
Any localized solution to the Schrödinger equation can

be represented by:

jφ̃i ¼
X
n⃗

cn⃗jn⃗i; ð94Þ

where jn⃗i represents the localized Hermite mode of n⃗, and
cn⃗ are complex constant numbers identified by the initial
conditions. Recall that we are working in the rest frame of
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the wave function, so the expectation of the linear momen-
tum must vanish:

hφ̃jp⃗jφ̃i ¼ 0: ð95Þ

We further can choose the origin of the coordinates by
demanding:

hφ̃jx⃗jφ̃i ¼ 0: ð96Þ

Let us call n⃗ and m⃗ as two immediate neighbors if
jn1−m1j¼1 or jn2−m2j¼1 or jn3 −m3j ¼ 1. Utilizing
2xHnðxÞ ¼ Hnþ1ðxÞ þ 2nHn−1ðxÞ or by direct calculation,
it can be proven that (95) and (96) hold true when cn⃗
vanishes for at least one of any immediate neighbors.

IV. GENERALLY CURVED SPACETIME
GEOMETRY

Fermi coordinates can be utilized to represent the
spacetime geometry in the vicinity of a classical observable
in the rest frame of its localized wave function. We consider
that the observable moves on a timelike geodesic. The
expansion of Fermi coordinates adapted to the timelike
geodesic γ, up to the quadratic transverse directions, are
given byManasse andMisner [32]. The expansion up to the
fourth order is given in [33]. To reproduce this expansion,
we first introduce ε as a small dummy parameter to
systematically track the perturbation. At the end of the
perturbative calculation, we set ε ¼ 1. In the expansion
given in [33], we scale the transverse direction by the factor
of ε. We present the expansion to the line element up to the
third order by:

ds2 ¼ ð0Þds2 þ ð2Þds2ε2 þ ð3Þds2ε3 þOðε4Þ; ð97Þ

Notice that we have used the left upper script of ðnÞ to
represent the nth order correction to the line element. And
notice that by definition, there is no perturbation at the
linear order of ε, because by definition, the first derivative
of the metric in the Fermi coordinates evaluated along the
central geodesic vanishes. The explicit corrections up the
third order are given by:

ð0Þds2 ¼ −ðdx0Þ2 þ
X3
i¼1

ðdxiÞ2; ð98Þ

ð2Þds2 ¼ −R0l0mxlxmðdx0Þ2 −
4

3
R0limxlxmdx0dxi

−
1

3
Riljmxlxmdxidxj; ð99Þ

ð3Þds2 ¼ −
1

3
R0l0m;nxlxmxnðdx0Þ2 −

1

2
R0lim;nxlxmxndx0dxi

−
1

6
Riljm;nxlxmxndxidxj; ð100Þ

where Rμαβν represents the components of the Riemann
tensor computed along the timelike geodesics,Rμαβν;γ ¼ ∇γ

represents components of the covariant derivative of the
Riemann tensor computed along the timelike geodesics,
x0 is the proper time of the observable, and xi are the
spatial transverse directions to the timelike geodesic.
Notice that Manasse and Misner’s work [32] with a
nonstandard sign convention for the Riemann tensor:
ðManasse-MisnerÞRν

μ
ρσ ¼ ðMTWÞRμ

ν ρσ , where ðMTWÞRμ
ν ρσ is the

standard sign convention in GR textbook by Misner,
Thorne, and Wheeler [38] which is the most widely used
sign convention nowadays. The standard sign convention is
utilized in Eq. (97). Also notice that dx0dxi in line 4 of
Eq. (45) in [33] is missing an overall factor of 2 that is
included in Eq. (97).
The line element evaluated at xa ¼ 0 coincides with that

of Minkowski spacetime geometry:

ds2jxa¼0 ¼ ð0Þds2: ð101Þ

We call the timelike geodesic defined by xa ¼ 0 as the
central timelike geodesic.

A. Residual Newtonian gravity
in the quadratic order corrections

To define quantum mechanics in a generally curved
spacetime geometry, we follow the approach of Ref. [26],
and in this section, we adopt its outcome that the leading
correction to the Schrödinger equation in the flat spacetime
geometry is given by:

i∂0Ψ ¼
�
−
∇2

2m
þ ε2

m
2
R0a0bxaxb

�
ΨþOðε3Þ; ð102Þ

where ∇2 is defined in (89), while the vacuum expectation
of any observable Ô coincides with that of the flat
spacetime geometry:

hÔi ¼
Z

d3xΨ�ÔΨ; ð103Þ

Notice that we are considering low energy wave functions
that can be expanded in terms of finite number of the
Gaussian Hermite modes given in (55), and as these modes
are exponentially localized around xa ¼ 0 with width much
smaller than the curvature of the spacetime geometry, the
boundary of integration in (103) can be consistently
extended to infinity. Note that ð1

2
R0a0bxaxbÞ which appears

in Eq. (102) is the residual Newtonian potential and is equal
to 1þg00

2
—here, g00 is the zero-zero component of the metric

presented in Eq. (97). Reference [26] has proven that the
wave function can be scaled such that Eq. (103) holds, and
the contribution of the rest of the components of the metric
can be neglected at the leading order. We write a

TRAJECTORY OF A MASSIVE LOCALIZED WAVE FUNCTION … PHYS. REV. D 107, 064059 (2023)

064059-9



perturbative expansion for the wave function:

Ψ ¼ Ψð0Þ þ ε2Ψð2Þ þOðε3Þ; ð104Þ

which can be substituted into Eq. (102):

�
i∂0 þ

∇2

2m

�
Ψð0Þ ¼ 0; ð105Þ

�
i∂0 þ

∇2

2m

�
Ψð2Þ ¼ m

2
R0a0bxaxbΨð0Þ; ð106Þ

where R0a0b is a function of x0 ¼ τ, and τ is the proper
time. We would like to solve Eq. (106) for any Ψð0Þ that
satisfies Eq. (105). We choose the boundary condition of:

Ψð2Þjτ¼0 ¼ 0: ð107Þ

In analogy with [18], let us first define:

1RabðτÞ ¼
Z

τ

0

dτ̃R0a0bðτ̃Þ;

2RabðτÞ ¼
Z

τ

0

dτ̃1Rabðτ̃Þ;

3RabðτÞ ¼
Z

τ

0

dτ̃2Rabðτ̃Þ; ð108Þ

which are symmetric in their indices, and they vanish at
τ ¼ 0. We refer to Eq. (108) as R2 functions. The Einstein
equation of motion for the background spacetime geometry
in the vacuum implies that the Ricci tensor vanishes. Some
components of the Ricci tensor evaluated on the central
timelike geodesic are given by:

0 ¼ R00 ¼ δabR0a0b; ð109Þ

0 ¼ R0c ¼ δabR0acb; ð110Þ

which implies nRabδ
ab ¼ 0 for n ∈ f1; 2; 3g. Let us

expand Ψð2Þ:

Ψð2Þ ¼ 1Ψð2Þ þ m
2i

1RabxaxbΨð0Þ; ð111Þ

where 1Ψð2Þ is a general function of τ and xa. Substituting
Eq. (111) into Eq. (106) yields:

�
i∂0 þ

∇2

2m

�
1Ψð2Þ ¼ i1Rabxa∂bΨð0Þ: ð112Þ

Now let 1Ψð2Þ be expressed by:

1Ψð2Þ ¼ 2Ψð2Þ þ 2Rabxa∂bΨð0Þ; ð113Þ

where 2Ψð2Þ is a general function of τ and xa. Employing
Eq. (113) in Eq. (112) yields:

�
i∂0 þ

∇2

2m

�
2Ψð2Þ ¼ −

1

m
2Rab∂

a
∂
bΨð0Þ; ð114Þ

which is solved by:

2Ψð2Þ ¼ i
m

3Rab∂
a
∂
bΨð0Þ: ð115Þ

Thus, from Eqs. (111), (113), and (115), Ψð2Þ is given by:

Ψð2Þ ¼
�
m
2i

1Rabxaxb þ 2Rabxa∂b þ
i
m

3Rab∂
a
∂
b

�
Ψð0Þ;

ð116Þ

which is a solution to Eq. (106) for any Ψð0Þ that solves
(105), and satisfies the boundary condition chosen in (107).
It is more convenient to define the following Hermitian
operators:

Qð2Þ ¼ −
m
2

1Rabxaxb þ 2Rabxapb −
1

m
3Rabpapb; ð117Þ

where pa ¼ −i∂a represents the momentum. In the Dirac
notation, one can write:

jΨi ¼ exp ðiQÞjΨð0Þi; ð118Þ

Q ¼ ε2Qð2Þ þ ε3Qð3Þ þ � � � : ð119Þ

It can be easily seen that the norm is left intact by the ε
perturbation:

hΨjΨi ¼ hΨð0ÞjΨð0Þi þOðε3Þ; ð120Þ
which is due to the fact thatQð2Þ is Hermitian:Qð2Þ ¼ Qð2Þ†.

1. Cross-talk coefficients

Consider the case that jΨð0Þi coincides with a Hermite
mode at τ ¼ 0: jΨð0Þi ¼ jn⃗i, where jn⃗i is defined in
Eq. (87). The wave function in the proper time τ is given
by jΨi ¼ exp ðiε2Qð2ÞÞjn⃗i. The state jΨi, per se, can be
expressed in terms of the Hermite modes: jΨi ¼P

m⃗ Cm⃗;n⃗jm⃗i. We refer toCm⃗;n⃗ as the cross-talk coefficients.
They encode the change of one mode to another one. At the
linear order perturbation, they are given by

Cm⃗;n⃗ ¼ δm⃗;n⃗ −
im
2

1Rabhm⃗jxaxbjn⃗i þ i2Rabhm⃗jxapbjn⃗i

−
i
m

3Rabhm⃗jpapbjn⃗i; ð121Þ

where we set ε ¼ 1. Due to the properties of the standard
Hermite modes reviewed in Eq. (66), the cross-talk
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coefficients can be further simplified to:

Cm⃗;n⃗ ¼ δm⃗;n⃗ −
imw2

2w2
0

1Rabeiðψn−ψmÞhm⃗jxaxbjn⃗ijτ¼0

þ iw
w0

eiðψn−ψmÞ2Rabhm⃗jxapbjn⃗ijτ¼0

−
i
m
eiðψn−ψmÞ3Rabhm⃗jpapbjn⃗ijτ¼0; ð122Þ

where Eq. (93) is employed, the expectation value of all
values (“moments”) is calculated at τ ¼ 0, w represents the
width at the proper time τ as written in Eq. (53), w0 is the
initial width, and ψn and ψm are Gouy phases given in
Eq. (54), respectively. Note that the cross-talk coefficients
are a function of the proper time. The dependency on the
time is given by the coefficients on the right-hand side
of Eq. (122).

2. Residual net force

Newton’s Lex Secunda can be utilized to define the net
force acting on the wave function Ψ as the time rate of the
change of its average linear momentum:

F⃗ ¼ ∂τhΨjp⃗jΨi: ð123Þ

We can employ Eq. (118) and write:

F⃗ ¼ ∂τhΨð0Þje−iQp⃗eiQjΨð0Þi; ð124Þ

where it also assumed that Q ¼ Q†. Utilizing the ε

expansion series for Q yields a perturbative series for F⃗:

F⃗ ¼ 0þ ε2F⃗ð2Þ þ ε3F⃗ð3Þ þOðε4Þ: ð125Þ
There exists no force acting on the wave function at the zero
and linear orders since a free propagating wave function
experiences no force in the flat spacetime geometry, and the ε
correction vanishes at the linear order. We can use Eq. (118)
to write the component of the linear correction to net force:

Fð2Þ
a ¼ i∂τhψ ð0Þj½pa;Qð2Þ�jψ ð0Þi; ð126Þ

Fð3Þ
a ¼ i∂τhψ ð0Þj½pa;Qð3Þ�jψ ð0Þi; ð127Þ

Recalling the quantum commutation relations between
position and linear momentum:

½xa; xb� ¼ 0; ð128Þ

½pa; pb� ¼ 0; ð129Þ

½xa; pb� ¼ iδab; ð130Þ

and utilising (117), the net force at the second order is
simplified to:

Fð2Þ
a ¼ ∂τhψ ð0Þjð−m1Rabxb þ 2RabpbÞjψ ð0Þi; ð131Þ

where Eqs. (95) and (96) can be used to conclude:

F⃗ð2Þ ¼ 0: ð132Þ

This proves that, at the dominant term in the second order
level perturbation, the interaction of the curvature of space-
time geometry and the wave function generates no net force
acting on an arbitrary freely falling localized wave function.
In this order of perturbation, the minor terms generate no net
force in the vacuum since they are quadratic in xa. This
demonstrates that the Einstein equivalence principle holds
for a quantum mechanical system in a nonuniform gravita-
tional field up to the leading gravitational correction.
When one goes beyond the leading correction, the Qð3Þ

operator in Eq. (118) is not guaranteed to remain as a
polynomial of second degree in xa, so the expectation value
of its communication with pa will no longer be guaranteed
to be vanished by Eqs. (95) and (96), and the residual force
at the third order is not expected to vanish.

B. Residual Newtonian gravity
at the cubic order corrections

We notice that the zero-zero component of the metric in
Eq. (97) is given by:

g00 ¼ −1 − R0l0mxlxmε2 −
1

3
R0l0m;nxlxmxnε3 þOðε4Þ:

ð133Þ

A particle with mass m that moves with a slow velocity in
this geometry experiences an effective Newtonian potential
given by:

VN ¼ −
g00 þ 1

2
: ð134Þ

The Schrödinger equation for the wave function of this
particle then follows:

i∂τΨ ¼
�
−
∇2

2m
þmVN

�
Ψ; ð135Þ

and the expectation values are observable and given by
Eq. (103). Using Eq. (133), we have,

i∂τΨ ¼ −
∇2

2m
Ψþ ε2

m
2
R0a0bxaxbΨ

þ ε3
m
6
R0a0b;cxaxbxcΨþOðε4Þ: ð136Þ
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At the leading order, Eq. (136) is in agreement with
Eq. (102), which has been derived in [26] by studying
quantum field theory in a general curved spacetime
geometry. We directly have checked that taking into
account the sub-leading corrections in the quantum field
theory for a massive scalar field in a general curved
spacetime geometry leads to Eq. (136).
We would like to solve Eq. (136) in a perturbative

fashion. Thus, we extend the perturbative series for Ψ
presented in Eq. (104) to ε3:

Ψ ¼ Ψð0Þ þ ε2Ψð2Þ þ ε3Ψð3Þ þOðε4Þ: ð137Þ

Note that Ψð0Þ satisfies Eq. (105) and Ψð2Þ is expressed in
Eq. (116). Employing Eq. (137) into Eq. (136) yields:

�
i∂0 þ

∇2

2m

�
Ψð3Þ ¼ m

6
R0a0b;cxaxbxcΨð0Þ: ð138Þ

We would like to solve Eq. (138) for any Ψð0Þ that satisfies
Eq. (105). We choose the following boundary condition
on Ψð3Þ:

Ψð3Þjτ¼0 ¼ 0: ð139Þ

We would like to find part of the correction to the wave
function that may generate a nonzero residual force at the
order of ε3. To this aim, we first define the following
quantities:

1RabcðτÞ ¼
Z

τ

o
dτ̃R0ða0b;cÞðτ̃Þ;

2RabcðτÞ ¼
Z

τ

o
dτ̃1Rabcðτ̃Þ;

3RabcðτÞ ¼
Z

τ

o
dτ̃2Rabcðτ̃Þ;

4RabcðτÞ ¼
Z

τ

o
dτ̃3Rabcðτ̃Þ; ð140Þ

where R0ða0b;cÞ ¼ 1
3
ðR0a0b;c þ R0a0c;b þ R0c0b;aÞ is sym-

metric under any permutation of a, b, and c. We refer to
the above quantities asR3 functions. Notice that nRabc is a
function of the Riemann tensor evaluated and integrated
over the central timelike geodesic, is symmetric under
permutation of their indices, and vanishes at τ ¼ 0.
Equations (109) and (110) imply that on the central

geodesic, we have,

0 ¼ R00;c ¼ δabR0a0b;c;

0 ¼ R0c;0 ¼ δabR0acb;0: ð141Þ

The second Bianchi identity evaluated on the central
timelike geodesic and contracted by δab implies:

δabðR0a0c;b þ R0acb;c þ R0ab0;cÞ ¼ 0 → δabR0a0c;b ¼ 0;

ð142Þ
where in its second line, Eqs. (141) are used. Utilizing
Eqs. (141) and (142) results in:

δabnRabc ¼ 0; ð143Þ

where n ∈ f1;…; 4g and the Einstein summation over
repeated indices is considered.
The solution of Eq. (138) with the imposed boundary

condition in Eq. (139) is given by:

Ψð3Þ ¼ iQð3ÞΨð0Þ; ð144Þ

where:

Qð3Þ ¼ −
m
6

1Rabcxaxbxc þ
1

2
2Rabcxaxbpc

−
1

m
3Rabcxapbpc þ 1

m2
4Rabcpapbpc: ð145Þ

Note that, from Eq. (143), Qð3Þ is Hermitian, i.e., Qð3Þ ¼
Q†ð3Þ. In other words, only the symmetric products of xa

and pb contribute toQð3Þ. The commutator appearing in the
residual force then is given by:

i½pa;Qð3Þ� ¼ −
m1Rabcxbxc

2
þ 1

2
2Rabcðxbpc þ pcxbÞ

−
3Rabcpbpc

m
; ð146Þ

which can be employed in Eq. (127) to calculate the
residual force at the cubic order’s correction.
Let us first consider spherical modes. In the standard

Hermite basis presented in Eq. (91), only those with the
same excitation numbers for all directions are spherical.
So any initially spherical state can be written as,

jSð0Þi ¼
X∞
n¼0

cnjnsi; ð147Þ

where ns ¼ ðn; n; nÞ, and cn are expansion coefficients,
and jnsi is the corresponding Hermite mode. The residual
force for a spherical state vanishes due to Eq. (143). So
initially, spherical states do not experience any force at the
cubic order in the transverse direction and keep moving
along the central timelike geodesic.
Any nonspherical state, however, generally feels a force.

To calculate the force for a general state, we notice that
Eqs. (95) and (96) imply:
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hΨð0ÞjxaxbjΨð0Þi¼ hΨð0ÞjxapbjΨð0Þi
¼ hΨð0ÞjpapbjΨð0Þi¼0; ∀ a≠b: ð148Þ

In the following, we would like to calculate the force
exerted on the standard Hermite mode jΨð0Þi ¼ jn⃗i, where
n⃗ ¼ ðn1; n2; n3Þ while na represents the mode’s number in
xa’s direction. Thus, we first substitute Eq. (146) in
Eq. (127) and rewrite the force at the cubic order’s
correction by:

Fð3Þ
a ðn⃗Þ ¼ 1Fð3Þ

a þ 2Fð3Þ
a þ 3Fð3Þ

a ; ð149aÞ

where

1Fð3Þ
a ¼ −

τR
w2
0

∂τð1Rabchn⃗jxbxcjn⃗iÞ; ð149bÞ

2Fð3Þ
a ¼ 1

2
∂τð2Rabchn⃗jðxbpc þ pcxbÞjn⃗iÞ; ð149cÞ

3Fð3Þ
a ¼ −

w2
0

2τR
∂τð3Rabchn⃗jpbpcjn⃗iÞ; ð149dÞ

where m in (146) is substituted with 2τR
w2
0

. Employing

Eq. (148) and the exact form of jn⃗i yield:

hn⃗jxbxcjn⃗i ¼ 2nb þ 1

4
w2δbc; ð150Þ

1

2
hn⃗jðxbpc þ pcxbÞjn⃗i ¼ ð2nb þ 1Þτ

2τR
δbc; ð151Þ

hn⃗jpbpcjn⃗i ¼ 2nb þ 1

w2
0

δbc; ð152Þ

where τR is the Rayleigh proper time presented in Eq. (52).
The force exerted on jn⃗i, then, is simplified to:

Fð3Þ
a ¼ Fabcnbδbc; ð153Þ

where summation over b and c are understood, and:

Fabc ¼ −
τ2R þ τ2

2τR
R0ða0b;cÞ: ð154Þ

We observe that only R0ða0b;cÞ contributes to the residual
force at the cubic order’s correction. The integration of
R0ða0b;cÞ over the geodesic that is encoded in the R3

functions do not contribute to the residual force. The
residual force at the cubic order’s correction remains
local because the force does not depend on the history of
the wave function. At the subsubleading order, the square

of Ψð2Þ contributes to the equation of motion for Ψð4Þ.
Since Ψð4Þ depends on the history of the wave function
by the R2 functions defined in Eq. (108), we expect
that the residual force depends on the history of the
wave function at the order of ε4. However, performing
the calculation at order ε4 is beyond the scope of the
current work.

V. SCHWARZSCHILD SPACETIME
GEOMETRY

The line element of the Schwarzschild black hole [34],
which also describes the spacetime geometry outside a
spherically stationary mass distribution with net massM in
the standard spherical coordinates, is given by:

ds2 ¼ −
�
1 −

rs
r

�
dt2 þ dr2

ð1 − rs
r Þ

þ r2dΩ2; ð155Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2 and rs ¼ 2GM, G is the
Newton gravitational constant, and rs is called the
Schwarzschild radius. We choose the unit of length such
that rs ¼ 1.
Let us now consider geodesics in the Schwarzschild

geometry. Due to the spherically symmetry, without loss of
generality, we can choose the equatorial plane, i.e.:

θ ¼ π

2
;

_θ ¼ 0; ð156Þ

to describe any given geodesic at all times. The cyclic
variables of φ and t lead to invariant quantities:

∂L
∂φ

¼ 0 → r2 _φ ¼ l; ð157Þ

∂L
∂t

¼ 0 →

�
1 −

1

r

�
_t ¼ E: ð158Þ

The Lagrangian being independent of τ implies that the
Hamiltonian exhibits time invariance. Additionally, since
the Lagrangian has a quadratic form, the Hamiltonian can
be equated to the Lagrangian. Consequently, we can
establish the following:

L ¼ −
�
1 −

1

r

�
_t2 þ _r2

1 − 1
r

þ r2 _φ2 ¼ −1: ð159Þ

The nonzero components of the first covariant derivative
of the Riemann tensor evaluated on the geodesic (θ ¼ π

2
)

are given by:
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Rtθtθ;r ¼ Rtφtφ;r ¼ Rθtrt;θ ¼ Rφtrt;φ ¼ −
3ðr − 1Þ
2r3

;

Rrθrθ;r ¼ Rrφrφ;r ¼
3

2rðr − 1Þ ; Rtrtr;r ¼
3

r4
;

Rθφθφ;r ¼ 2Rφθφr;θ ¼ 2Rφθθr;φ ¼ −3: ð160Þ

We assume that in the far past, the laboratory was located at
asymptotic infinity and was moving toward a black hole
with a finite nonzero angular momentum per unit mass.
Therefore, the laboratory’s timelike geodesic can be
described by a finite parameter l while l is not equal to
zero. We further assume that the absolute value of the
velocity of the lab at the asymptotic infinity is v, and the lab
is radially falling into the black hole. Equation (157) then
implies that the lab velocity is radial at the asymptotic
infinity since r _φ vanishes at the asymptotic infinity. So it
holds that,

_rjr¼∞ ¼ −γv; _tjr¼∞ ¼ γ; ð161Þ
where γ is the boost factor: γ ¼ 1ffiffiffiffiffiffiffiffi

1−v2
p . Equation (158), then,

implies E ¼ γ and yields _t ¼ γr
r−1. Equation (159) results:

_r2 ¼ γ2 −
�
1þ l2

r2

��
1 −

1

r

�
: ð162Þ

To calculate the components of the first derivative of the
metric in the Fermi coordinates from (160), we use
the tensorial property of the covariant derivative of the
Riemann tensor. Assuming that the components of the
covariant derivative of the Riemann tensor in the general
coordinates xμ is given by Rμνλη;γ, the components of the
covariant derivative of the Riemann tensor in the coordi-
nates yμ

0
is given by:

Rμ0ν0λ0η0;γ0 ¼
∂xμ

∂yμ
0
∂xν

∂yν
0
∂xλ

∂yλ
0
∂xη

∂yη
0
∂xγ

∂yγ
0 Rμνλη;γ; ð163Þ

where Rμ0ν0λ0η0;γ0 represents the components of the covariant
derivative of the Riemann tensor in yμ

0
coordinates. The

components of the covariant derivative of the Riemann
tensor in the standard spherical coordinates are given in
(160). We utilize [26]) to write the partial derivative of the
standard spherical coordinates with respect to the Fermi
coordinates:

∂r
∂x0

¼ −γ tanh α cos β;
∂r
∂x1

¼ γ cos β;
∂r
∂x2

¼ −
γ sin β

cosh α
;

∂φ

∂x0
¼ −

sinh α sin β

r
;

∂φ

∂x1
¼ cosh α sin β

r
;

∂φ

∂x2
¼ cos β

r
;

∂t
∂x0

¼ cosh2α
γ

;
∂t
∂x1

¼ −
sinh 2α

2γ
;

∂θ

∂x3
¼ 1

r
: ð164Þ

Here, α and β are defined by:

cosh α ¼ γ

ffiffiffiffiffiffiffiffiffiffi
r

r − 1

r
; sinh α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2α − 1

p
;

sin β ¼ l
r sinh α

; cos β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2β

q
: ð165Þ

To succinctly express the nonzero components of R0ða0b;cÞ
which appear in the force and in Eq. (140), we first define
variable χ by:

χ ¼ sin β

ðr − 1Þ cosh α
¼ l

r

�
γ2 − 1þ 1

r

�
−1
2

; ð166Þ

and notice:

R0ð101;1Þ þ R0ð202∶1Þ þ R0ð303;1Þ ¼ 0;

R0ð101;2Þ þ R0ð202∶2Þ þ R0ð303;2Þ ¼ 0: ð167Þ

The independent nonzero components of R0ðb0b;cÞ then are
given by:

R0ð101;1Þ ¼
3γ cos βð5 cos2β − 3Þ

2r4
;

R0ð303;1Þ ¼ −
γ cos βð5l2 þ 3r2Þ

2r6
;

R0ð303;2Þ ¼
3γ3χ

2r3

�
4 −

3ðr − 1Þ
rγ2

�
;

R0ð202;2Þ ¼
3γ3χ

2r3

�
5cos2β − 3þ r − 1

rγ2

�
: ð168Þ

We have directly calculated and checked that all compo-
nents of R0ða0b;cÞ remain finite on and outside the event
horizon. Note thatR0ða0b;3Þ ¼ 0; therefore, no residual force
exists in the direction of x3. So at this level, the plane of the
trajectory of the localized quantum wave remains intact.

A. Radially falling localized wave function

In order to consistently describe the physics of a
localized wave function/wave packet in the presence of a
Schwarzschild black hole, we consider that:
(1) In the rest frame of the black hole, the energy

associated to the wave function is much smaller than
the mass of black hole.

(2) The width of the wave packet is always smaller than
the curvature of the spacetime geometry.

(3) The central geodesic of the rest frame of the wave
function is described by a timelike geodesic with
parameters of l and γ where l is defined in Eq. (157)
and γ is the boost factor with respect to the black
hole at the asymptotic infinity.
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(4) The initial width of the wave packet at distance a
from the black hole is given by w0.

In this section, we assume that the central geodesic of
the wave packet is radially falling and is associated to γ ¼ 1
in (161). The central radial geodesic, therefore, is charac-
terized by:

l ¼ β ¼ 0;

γ ¼ 1: ð169Þ

The Fermi coordinates then coincide to x̂1 ¼ r̂, x̂2 ¼ φ̂
and x̂3 ¼ θ̂ [26]. Equation (162) can be solved to find the
proper time that the wave packet needs to reach the
Schwarzschild radius/event horizon:

τs ¼
2

3

�
a

3
2 − 1

�
: ð170Þ

We assume that a is much larger than 1, so the width of the
wave packet at the event horizon can be approximate
by:ws ¼ 4a3=2

3mw0
− 4

3mw0
þOða−3=2Þ. The consistency of our

approach requires that the width of the wave packet remains
smaller than the curvature of the spacetime geometry. We
utilize the Kretschmann invariant to estimate the curvature
of the spacetime geometry: RμναβRμναβ ¼ 12

r6
. We require

the width of the wave packet on the event horizon to be
much smaller than the square root of the inverse of the
Kretschmann invariant:�

a
rs

�3
2

≪
ffiffiffi
3

p

8

w0

λc
; ð171Þ

Notice that symbol λc represents the Compton wavelength
associated with a particle of mass m. It is defined as
λc ¼ ℏc

m , where ℏ is the reduced Planck constant and c is the
speed of light. In addition, the Schwarzschild radius rs is
explicitly shown too. If we apply (171) to the wave packets
of the protons in the boundary of the Milky Way, we see
that only the ones with an initial width larger than 20 meters
may fall into Sagittarius A�. We assume that (171) is
satisfied. Furthermore, for sake of simplicity we consider
the initial standard Hermite mode jn⃗i with an initial width
of w0:

jΨijτ¼0 ¼ jn⃗i: ð172Þ
We utilize (118) to represent the wave function at τ > 0:

jΨi ¼ expðiQÞjn⃗i; ð173Þ
where Q encodes the evolution of the wave function due to
its interaction with the Riemann tensor, the ε expansion
series for Q is provided in Eq. (119). Fig. 3 depicts the
wave packet at r ¼ a, and a later time at a general r. We are
interested in calculating the residual force, which is

presented in Eqs. (153) and (154). The nonzero compo-
nents of R0ða0b;cÞ provided in Eq. (168) for Eq. (169) are
simplified to:

R0ð101;1Þ ¼ −2R0ð202;1Þ ¼ −2R0ð303;1Þ ¼
3

r4
; ð174Þ

which implies that nonzero coefficients of Fabc introduced
in Eq. (154) hold:

F221 ¼ F331 ¼ −
1

2
F111: ð175Þ

This means that the residual force exists only in the direction
ofx1 that coincideswith the r’s direction.Utilizing (153), one
can calculate the force exerted on the state jn⃗i:

Fð3Þ
1 ¼ F111

�
n1 −

n2 þ n3
2

�
; ð176Þ

where

FIG. 3. A localized wave function at r ¼ a and τ ¼ 0, which
coincides with a Hermite-Gaussian mode jn⃗iwith initial width of
w0, freely falls into the Schwarzschild black hole on a radial
geodesic. As the wave function freely falls into the black hole, it
gets distorted due to its interaction with the Riemann tensor
around the geodesic. The quantum operator Q gives the dis-
tortion, which has a systematic expansion series as presented in
Eq. (119). The leading and subleading corrections to Q are
presented in Eqs. (117) and (145). Applying Newton’s Lex
Secunda on the distorted wave function yields a residual force
as shown in Eq. (123). The residual force is radial for the radial
fall into the Schwarzschild black hole. It vanishes at the leading
order and its value at sub-leading level is computed in Eq. (176).
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F111 ¼ −
3ðτ2R þ τ2Þ
2τRr4

: ð177Þ

τ is a function of r, as is explicitly expressed in Eq. (170). The
divergence at r ¼ 0 is due to the singularity of the
Schwarzschild metric at r ¼ 0. It can also be shown that
when the width of the wave function outside the event
horizon remains much smaller than the Schwarzschild
radius, the impulse of the residual force does not generate
an escape velocity for the infalling wave functions, and the
radially infalling wave function falls into the event horizon.

B. Slight deflection by a black hole

We assume that the wave function’s trajectory (the
central geodesic) always remains far away from the black
hole. So we can assume 1 ≪ r. We, therefore, approximate
Eq. (162) to:

_r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 −

�
1þ l2

r2

�s
: ð178Þ

which vanishes at the minimum distance of the wave
function to the black hole. So the minimum distance
between the trajectory of central geodesic to the black
hole is given by,

a ¼ lffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p : ð179Þ

We consider that the wave function is localized around
r ¼ a at τ ¼ 0 and moves away from the black hole, and
coincides with the Hermite mode jni with the initial width
of w0. So, Eq. (178) results in:

_r ¼

8>><
>>:

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ l2

r2

q
; τ ≤ 0ffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ l2

r2

q
; 0 ≤ τ

ð180Þ

So it yields:

τ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − a2

γ2 − 1

s
: ð181Þ

The large r limit of Eq. (168) holds:

R0ð101;2Þ ¼
að−9γ2 þ 3Þ

r5
; ð182Þ

R0ð202;2Þ ¼
3að2γ2 þ 1Þ

2r5
; ð183Þ

R0ð303;2Þ ¼
3að4γ2 − 3Þ

2r5
: ð184Þ

To succinctly express the residual force, consider:

q ¼ −3n1 þ n2 þ 2n3; ð185Þ

p ¼ 2n1 þ n2 − 3n3: ð186Þ

Then, the second component of the residual force given in
Eq. (153) simplifies to:

Fð3Þ
2 ¼ 3a

4r5τR
ð2qγ2 þ pÞðτ2 þ τ2RÞ: ð187Þ

The momentum that the residual force generates is given by
its impulse:

hp2i ¼
Z

∞

0

dτFð3Þ
2 ;

¼ −
ða2 þ 2ðγ2 − 1Þτ2RÞðpþ 2γ2qÞ

2a3ðγ2 − 1Þ3=2τR
: ð188Þ

where ∞ in the boundary of the integration is due to
approximating a ≫ 1. The residual force causes an extra
deflection in the scattering of the wave function that can be
approximated by:

Δφ ¼ hp2i
γmv

: ð189Þ

We observe that the deflection that is caused by the residual
force is a function of n1, n2 and n3. Notice that v is the

FIG. 4. A particle in mode of jn⃗i with initial width of w0 is
produced at distance r ¼ a and τ ¼ 0 in the Schwarzschild
geometry. The classical trajectory of the particle is given by a
timelike geodesic along where the speed of the particle at the
asymptotic infinity is v with the boost factor of γ ¼ 1ffiffiffiffiffiffiffiffi

1−v2
p , and a

is the minimum distance of the particle to the black hole on the
trajectory. Due to the interaction of the wave function with the
Riemann tensor around the timelike geodesic, the asymptotic
trajectory of the mode n⃗ makes the angle Δφ with the classical
trajectory. Δφ is calculated in Eq. (189).
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velocity of the rest frame (at the asymptotic infinity) with
respect to the black hole. Therefore, v can be arbitrary
large. One may wish to consider the large γ limit of (189) in
order to possibly gain some insights on the deflection of a
spatially structured photon by a black hole:

lim
γ→∞

Δφ ¼ −
qw2

0

a3
: ð190Þ

Considering that the light deflection in Einstein theory of
gravity is proportional to the inverse of a, besides the fact
that w0 should be much smaller than a, it casts a shadow of
despair on the prospect of measuring (190) by the available
technologies. The precision of the Eötvös experiment near
Earth is also not sensitive to the predicted displacement due
to different internal quantum structures [39].

VI. CONCLUSIONS

Propagation of a localized wave function of a massive
particle been studied in the flat and curved spacetime
geometry. The notion of a rest frame is extended for a
localized wave function in Sec. II. The low energy modes in
the rest frame of the wave function have been studied, and
complete orthogonal basis of the standard Hermite-
Gaussian modes has been adapted in Sec. III. We have
utilized the Fermi coordinates adapted to the timelike
geodesic of the rest frame and have calculated the leading
and subleading general relativistic corrections to a general,
localized wave function in Sec. IV. It has been shown that
as a localized wave function freely propagates in a curved
spacetime geometry, it interacts with the curvature of the
spacetime geometry around the geodesic. This interaction
leads to the distortion operator Q defined in (118). The
quadratic and cubic order corrections to the distortion
operator have been calculated in (117) and (145). It has
been shown that the distortion operator is a function of the
Riemann tensor, and its covariant derivative is evaluated
and integrated over the timelike geodesic of the rest frame.
Section IVA 2 has employed Newton’s Lex Secunda in

order to define the residual net force acting on the wave

function Ψ as the time rate of the change of its average
linear momentum. It has been shown that the residual net
force vanishes at the level of quadratic corrections.
However, it does not vanish at the order of the cubic
corrections for a general wave function, as shown in IV B.
It has been proved that spherical symmetric wave functions
follow the timelike geodesic of the rest frame. However,
nonspherically symmetric wave functions have been shown
to experience a net residual force and deviate from the
timelike geodesic of the rest frame.
The example of the Schwarzschild spacetime geometry

has been studied in Sec. V. The residual force has been
computed for radial fall into the black hole in Sec. VA and a
slight deflection from the black hole in Sec. V B. It has been
shown that the residual force does not generate an escape
velocity for the in-falling particle. However, the residual
force for the scattered wave functions leads to a mode-
dependent deflection angle where the dependency is in (189)
as depicted in Fig. 4. Let us highlight that the dependency to
the mode numbers resembles angular deviations in optics
where different localized modes [40] are observed to move
along different paths in the nonhomogeneous medium. Here,
we are reporting the displacement of a localized massive
scalar from its expected timelike geodesic. The computed
dependency of the deflection in the Solar system turns to
be very small to be measured by available technologies.
Nonetheless, the finding that trajectories of localized wave
functions deviate from geodesics can be counted as evidence
supporting the idea that gravity should not be treated as a
geometrical force in the quantum realm.
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