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In 2007, Pretorius and Khurana [Black hole mergers and unstable circular orbits, Classical Quantum
Gravity 24, S83 (2007).] did “speculate that at threshold [at a critical impact parameter], all of the kinetic
energy of the system [two ultrarelativistic black holes] is converted to gravitational waves, which can be an
arbitrarily large fraction of the total energy.” However, in 2012, Sperhake et al. [Universality, Maximum
Radiation and Absorption in High-Energy Collisions of Black Holes with Spin, Phys. Rev. Lett. 111,
041101 (2013).] performed numerical calculations that led them to the contrary conclusion: “An
extrapolation of our results to the limit γ → ∞ suggests that about half of the center-of-mass energy
of the system can be emitted in gravitational radiation, while the rest must be converted into rest-mass and
spin energy.” Here I present arguments against this latter conclusion and in support of the earlier
speculation that for sufficiently large γ, all but an arbitrarily small fraction of the total energy can be
radiated away as gravitational waves.

DOI: 10.1103/PhysRevD.107.064057

I. INTRODUCTION

LIGO and Virgo have had enormous success in detecting
the gravitational waves from astrophysical inspiraling black
holes that coalesce to form a larger black hole [1–28]. In
these cases the black holes have been inspiraling long
before their gravitational wave emission is strong enough to
be detected by LIGO and Virgo, so that well before the final
coalescence, the two black holes are moving with non-
relativistic velocities v ≪ c relative to each other and are
gravitationally bound to each other.
Astrophysically, it seems that it would be very rare (and

not yet observed) for two black holes or other macroscopic
objects to approach at relativistic velocities v ∼ c before
coalescing. However, it is an interesting question what
would happen if this occurred. Indeed, there has been an
enormous amount of work [29–116] calculating what
happens for compact objects approaching each other at
arbitrary relative velocities in 4-dimensional spacetime (not
including considerable additional work that has also been
done in higher dimensions that I shall not discuss here).
Much of this work has shown essentially that if the
Schwarzschild radius corresponding to the total center-
of-momentum (COM) energy E, that is, RS ¼ 2GE=c4 ¼
2E (where here and henceforth I shall use units with
G ¼ c ¼ 1), is much larger than the sum R of the
maximum intrinsic linear sizes of the two objects, then
the composition of each object does not matter significantly

for how much gravitational wave energy ΔE is emitted,
which, for fixed total COM energy E instead depends
almost entirely on the impact parameter b≡ J=p≡ βE,
where J is the total angular momentum in the COM and p
is the magnitude of the initial spatial momentum of each
object in the COM (equal magnitudes but opposite direc-
tions, since the total spatial momentum is zero in the
COM). Here

β≡ b
E
≡ J

pE
≈
2J
E2

¼ 8J
R2
S

ð1Þ

is a dimensionless measure of the impact parameter (not to
be confused with v=c). The approximation of the last two
terms occurs in the limit that the COM energy E is much
greater than the sum M ¼ m1 þm2 of the rest masses m1

and m2 of the two objects, so that then p ≈ E=2, giving
b ≈ 2J=E. (Note that I am not using M for the total ADM
mass of the spacetime as many others do, but rather E.)
For fixed E ≫ M and RS ¼ 2E ≫ R, there is at least one

critical impact parameter bc ¼ βcE ¼ βcRS=2 (with βc
some dimensionless number of the order of unity, which
Shibata, Okawa, and Yamamoto [68] have estimated to be
about 2.5=v), that should be independent of E, say with
value bc ≈ 2.5E, in the limit E=M → ∞ and RS=R → ∞,
such that for impact parameter b infinitesimally on one side
of bc, the two objects will, at least eventually, form a single
black hole, but for b infinitesimally on the other side of bc,
the two objects will scatter separately to infinity (though
leaving open the possibility that either of the objects might*profdonpage@gmail.com
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separately become a black hole even if it were not one
originally, or that both might become black holes that
never merge).
It is perhaps simplest to assume that for fixed E ≫ M

and RS ¼ 2E ≫ R, there is a unique critical impact
parameter bc such that for all smaller impact parameters,
b < bc, the two objects eventually merge and form a single
black hole, but for all larger impact parameters, b > bc, the
two objects scatter separately to infinity. However, near the
end of this paper I shall discuss the possibility that this
might not be true, and that there might instead be a larger
odd number of critical impact parameters bc. Counting with
positive integers n, with n ¼ 1 for the smallest critical
impact parameter bc ¼ bc;1 (so that at all lower values of b,
that is for all 0 ≤ b < bc;1, a single black hole forms), each
odd critical impact parameter, bc;2n−1, has, for b infinitesi-
mally smaller than bc;2n−1, the two objects merging to form
a single black hole and has, for b infinitesimally larger than
bc;2n−1, the two objects scattering separately to infinity.
Conversely, each even critical impact parameter (if any
such exist), bc;2n, has, for b infinitesimally smaller than
bc;2n, the two objects scattering separately to infinity and
has, for b infinitesimally larger than bc;2n, the two objects
merging to form a single black hole.
In the following, when I discuss the impact parameter bc,

if in fact there are more than one, I shall mean by bc the
particular critical impact parameter at which the largest
fraction f of the fixed total energy E is emitted into
gravitational waves of energy ΔE ¼ fE. Similarly, βc ≡
bc=E will denote the dimensionless quantity analogous to
that particular critical impact parameter.
When b is much smaller than bc ¼ βcE, it appears that

the fraction f of the initial COM energy E that is radiated
into gravitational waves of energy ΔE ¼ fE is signifi-
cantly less than unity (approximately 0.14� 0.03 for a
head-on collision, b ¼ 0, when E ≫ M [67]), and it seems
that increasing b increases f ¼ ΔE=E. On the other hand,
when b is much larger than bc ¼ βcE, the two objects have
a small scattering angle and also do not emit a large fraction
of their energy into gravitational radiation, and ΔE, the
amount radiated, goes down with increasing b as the
scattering angle also decreases. Therefore, there should
be some value in between for b, say bm ¼ βmE, at which
the maximum fraction f ¼ ΔE=E, say fm, of the total
COM energy E (which is to be kept fixed when b is varied)
is emitted as gravitational wave energy ΔE. If there are in
fact more than one critical impact parameters, it also seems
possible that f does not decrease monotonically from fm as
b is moved in either direction away from bm, so that there
may be more than one local maximum for f (perhaps one
for each odd critical impact parameter bc;2n−1), but I am
taking fm to be the global maximum for f. It seems
plausible that bm would be close to the critical impact
parameter bc (so βm is close to βc), especially in the limit
E=M → ∞ and RS=R → ∞, but here I shall not assume
that this needs to be true.

Now Conjecture 1, a slight generalization of the 2007
speculation of Pretorius and Khurana [61] to an arbitrary
pair of initial objects of finite size, is that in the limit γ ≡
E=M → ∞ and RS=R → ∞, fm → 1.
Slightly stronger is Conjecture 2, that at the critical

impact parameter bc that has the largest f ¼ ΔE=E for
finite E=M and finite RS=R, when one takes the limit γ ≡
E=M → ∞ and RS=R → ∞, f ¼ ΔE=E at this γ-dependent
bc approaches 1.
However, in 2012 Sperhake, Berti, Cardoso, and

Pretorius (SBCP) [81] performed numerical calculations
that led them to the contrary conclusion: “An extrapolation
of our results to the limit γ → ∞ suggests that about half of
the center-of-mass energy of the system can be emitted in
gravitational radiation, while the rest must be converted
into rest-mass and spin energy.”
Here I wish to revisit the question of what fraction f ¼

ΔE=E of the initial COM energy E can be emitted in
gravitational wave energy ΔE in the limit that γ ≡ E=M is
taken to infinity. Despite the numerical evidence presented
by [81], I shall argue that it seems to be more plausible that
f can be made arbitrarily near 1 by taking γ to infinity while
fine tuning the impact parameter b appropriately.

II. ULTRARELATIVISTIC COLLISIONS OF
BLACK HOLES

My arguments should generalize to apply for any pair of
objects with total linear size R and with M the sum of their
rest masses (here not the total ADM mass of the spacetime,
which is what I shall denote by the total energy E), when
one separately boosts the two objects so that the center-of-
momentum (COM) energy E is much greater than both R
and M (in units with G ¼ c ¼ 1). However, for simplicity
and concreteness let me assume that the two objects are
initially Schwarzschild (nonrotating) black holes having
positive rest masses m1 and m2, with M ¼ m1 þm2 and
R ¼ 2m1 þ 2m2 ¼ 2M if one uses the Schwarzschild
radius of each black hole as its linear size.
Then the critical impact parameter that gives the largest

f ¼ ΔE=E out of all critical impact parameters (if there are
more than one) should be

bc ¼ bcðm1; m2; EÞ ¼ β2ðm1=E;m2=EÞE; ð2Þ

with the dimensionless function β2ðm1=E;m2=EÞ, a sym-
metric function of its two dimensionless arguments,
going to a constant, which I shall call β0, in the limit that
m1=E → 0 and m2=E → 0 (which is implied by the single
limit M=E → 0):

β0 ≡ lim
M=E→0

bc
E
: ð3Þ

For impact parameter b just infinitesimally larger than
this particular critical impact parameter bc, the two black
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holes (each initially much smaller than the impact param-
eter, since their Schwarzschild radii, 2m1 and 2m2, are
much smaller than bc ∼ E, leaving out the dimensionless
factor β2ðm1=E;m2=EÞ that is expected to be of the order of
unity) do not merge into a larger black hole. On the other
hand, for impact parameter b just infinitesimally smaller
than the critical impact parameter bc, the two black holes
would merge into a larger black hole.
In this example, there are four independent quantities

that with G ¼ c ¼ 1 have the dimension of mass or length
or time, namely m1, m2, E, and b, and hence there are three
independent dimensionless ratios, namely m1=E, m2=E,
and b=E. At the critical impact parameter bc given by
Eq. (2), there are only two independent dimensionless
ratios, namely m1=E and m2=E.
It is also interesting to restrict to an even simpler model

in which each initially Schwarzschild black hole has the
same mass, m1 ¼ m2 ¼ M=2, so that then there are only
three independent quantities that have the dimension of
mass or length or time, namelyM, E, and b, and hence there
are only two independent dimensionless ratios, namely γ ≡
E=M and β≡ b=E (here not equal to v=c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=γ2

p
).

At the particular critical impact parameter bc that gives the
maximum f ¼ ΔE=E out of all critical impact parameters
if there are more than one, which now has the form

bc ¼ bcðM=2;M=2; EÞ ¼ β1ðγÞE; ð4Þ

there is only one independent dimensionless ratio, namely
γ ≡ E=M. The fraction f ¼ ΔE=E of the initial energy E
that is radiated into gravitational waves with energy ΔE at
the critical impact parameter would then be a function only
of γ, and the question under dispute is how fðγÞ depends on
γ in the limit that γ is taken to infinity.

III. QUALITATIVE ARGUMENT FOR
ULTRARELATIVISTIC SCATTERING NEAR

THE CRITICAL IMPACT PARAMETER

Here I shall restrict to the simplest model, with two
initially incoming Schwarzschild black holes, each of mass
M=2, which in the COM have opposite spatial momenta
each of magnitude p ¼ ðM=2Þγv with equal gamma-
factors, γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, so that the total energy in the

COM frame is E ¼ Mγ, and with total angular momentum
J ¼ bp with impact parameter b ¼ J=p ¼ 2J=ðEvÞ that is
near the critical impact parameter bc ¼ β1ðγÞE with the
maximum f ¼ ΔE=E (out of all critical impact parameters,
if there are more than one, not out of all possible values of
the impact parameter b). I shall describe the picture
Pretorius and Khurana [61] painted and then argue that
it seems generally qualitatively correct, despite the oppos-
ing arguments of Sperhake, Berti, Cardoso, and Pretorius
(SBCP) [81].

In particular, the idea is that near the critical impact
parameter bc ¼ β1ðγÞE, the two black holes, each of size
much smaller than the critical impact parameter bc when
γ ¼ E=M ≫ 1 as I shall always assume, spiral inward
while radiating away almost all their initial energy, until
they coalesce at the center to form a black hole that on a
logarithmic scale has a mass closer to the original total rest
mass M than to the initial COM energy E ¼ Mγ. At each
time t that is measured by a static observer in the COM
frame at radial infinity, let rðtÞ be some measure of the
distance of each black hole from the center of momentum,
such as the proper distance along a spacelike geodesic from
the center of momentum that at this center is orthogonal to
the worldline of the center of momentum.
With the black holes orbiting around the COM at very

nearly the speed of light, one would expect, in analogy with
the quadrupole formula, that the sum of the rest masses and
kinetic energies of the black holes, which I shall call Eh
(not including the gravitational potential energy, which
would be expected to be much smaller than Eh for the
ultrarelativistic motion, and not including the gravitational
radiation energy EGW ≈ E − Eh, which would carry away
significant amounts of energy to cause Eh to decrease)
would decrease at a rate per time that would be roughly
proportional to ðEh=rÞ2, assuming that the shape of the
orbit is nearly a self-similar equiangular spiral. Dividing
this radiation power outflow from the two black holes by
the negative radial velocity vr ¼ dr=dt, which would be
expected to have a magnitude 1–2 orders of magnitude
smaller than unity but still be of the general order of unity
(i.e., not having any strong dependence on γ when γ ≫ 1),
and including an unknown numerical factor of α, one gets
(here initially ignoring the effect of the absorption of
gravitational waves by the black holes)

dEh

dr
∼
1

α

E2
h

r2
; ð5Þ

which leads to a solution that asymptotically, as r decreases
far below the original impact parameter b, has the form
Eh ∼ αr for the total rest mass plus kinetic energy of the
two black holes.
Sperhake, Berti, Cardoso, and Pretorius [81] argue that,

even in the limit γ → ∞, a significant fraction of the kinetic
energy of the two black holes is not radiated away but falls
into the black holes to increase their sizes significantly.
Here I shall argue that the fraction of the total energy that
falls into the black holes plausibly goes to zero in the limit
that one takes γ to infinity, so long as at each γ one chooses
the impact parameter b to be near the critical impact
parameter bc giving the largest f ¼ ΔE=E out of all critical
impact parameters (if there are more than one).
Alternatively, one could choose b to be near bm, the value
of b that maximizes f without restricting to critical impact
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parameters, though I would expect bm to be near bc for each
value of γ, at least for γ ≫ 1.
The argument is that during most of the inspiral, when

most of the energy is radiated into gravitational waves, the
black holes, initially each of mass m ¼ M=2 ¼ E=ð2γÞ ≪
bc ∼ E and hence each of Schwarzschild radii 2m ¼ M ¼
E=γ, are so much smaller than the region of linear size
∼r ∼ Eh where the gravitational wave energy is localized
near the black hole orbits before it flows outward, that only
a tiny fraction of this energy will be absorbed by the
black holes.
Let me make a crude model to estimate the order of

magnitude of the fraction F≡ 1 − f of the initial total
COM energy E that is absorbed by the black holes, as a
function of γ ¼ E=M when it is large, and when b is
sufficiently close to either bc or to bm for that γ. Each black
hole of rest mass m has an effective cross section for
absorbing gravitational radiation that is m2 multiplied by
some dimensionless number (depending on the frequency
spectrum of the gravitational radiation in the frame of the
black hole and which is 27π for gravitational radiation of
wavelength very short compared with the Schwarzschild
radius 2m of the black hole when it is nonrotating, which is
the geometric optics limit in which null geodesics fall into a
Schwarzschild black hole when they have impact parameter
b <

ffiffiffiffiffi
27

p
m [117,118]). Therefore, the rate of gravitational

wave energy absorbed by each black hole is some dimen-
sionless number multiplying m2ρ, where ρ is the energy
density of the gravitational waves at the location of the
black hole. One can crudely approximate ρ to be the energy
in gravitational waves within the distance r of the COM
origin that is the distance each black hole is from that origin at
the time t of absorption, divided by the volume ∼4πr3=3
inside that region. Since the gravitational wave energy is
produced at a rate ≈ − dEh=dt ∼ dEh=dr and is flowing
generally outward with an effective radial velocity near the
speed of light (c ¼ 1), the energy within the distance r of the
COM origin is of the order of rdEh=dr, giving an effective
gravitational wave energy density ρ ∼ ðrdEh=drÞ=r3 ¼
ð1=r2ÞdEh=dr, dropping factors of the order of unity such
as 4π=3 and various velocities in units of the speed of light.
For the total rate of the increase of Eh, the time-

dependent sum of the rest masses plus kinetic energies
of the two black holes, if we now add the positive
contribution of the absorption of gravitational waves to
the negative contribution from the emission of the gravi-
tational waves, and divide by the negative vr ¼ dr=dt, we
get, as an improvement over Eq. (5),

dEh

dr
∼
1

α

E2
h

r2
− δ

m2

r2
dEh

dr
; ð6Þ

where I have introduced a second unknown dimensionless
factor δ to take into account the unknown factors of the
order of unity that were dropped in the previous paragraph.
Of course, Eq. (6) can readily be rearranged to give

dEh

dr
∼
�
1þ δ

m2

r2

�−1 1

α

E2
h

r2
: ð7Þ

Next, we need to get an approximate differential equa-
tion for how m, the rest mass of each black hole, evolves as
r decreases. If each black hole were absorbing radiation
whose center-of-momentum energy were at rest in the
COM frame (i.e., if there were no energy flux in that
frame), the mass would increase at a rate that is γh ≡
ð1=2ÞEh=m times the rate of its energy increase from the
absorption of gravitational waves that was approximated
above by −ðm2=r2ÞðdEh=dtÞ, so then

dm
dt

∼ −
1

2

Eh

m
m2

r2
dEh

dt
: ð8Þ

Replacing the factor of 1=2 by a third unknown dimension-
less factor of ϵ to take into account the uncertainty in the
mean effective velocity of the gravitational waves,
rearranging Eq. (8), and combining it with Eq. (7) gives

r
m
dm
dr

∼ −ϵ
Eh

r
dEh

dr
∼ −

�
1þ δ

m2

r2

�−1 ϵ

α

E3
h

r3
: ð9Þ

One can then combine Eqs. (7) and (9) to get the rate at
which the logarithm of m increases when the logarithm of
Eh decreases:

d ln m
d ln Eh

≡ Eh

m
dm
dEh

∼ −ϵ
E2
h

r2
: ð10Þ

One can see from Eq. (7) that when δm2=r2 ≪ 1, as r
decreases with time as the black holes spiral closer together,
say with initial conditions Eh ∼ E at r ∼ r0,

Eh ∼
αr

1þ αr=E − r=r0
; ð11Þ

so that as r drops far below r0 and E, Eh approaches αr.
Therefore, during this stage of the evolution, when Eh ∼ αr,
Eq. (10) gives

d ln m
d ln Eh

∼ −ϵα2; ð12Þ

so

m
m0

∼
�
Eh

E

�
−α2ϵ

∼
�
αr
E

�
−α2ϵ

; ð13Þ

where m0 ¼ M=2 ¼ E=ð2γÞ is the initial rest mass of each
black hole (with the sum of the two initial black hole rest
masses being 2m0 ¼ M ¼ E=γ), and where the initial value
ofEh, the total restmass plus kinetic energies of the twoblack
holes, is the constant total COM energy E ¼ γM ¼ 2γm0,
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and where the initial value of r at the beginning of inspiral is
r0 ∼ b ∼ E, assuming b ∼ bc ¼ βE with β ∼ βc ∼ 1.
The black holes will merge when m ∼ r, so that then

1 ∼
m
r
¼ m0

1

r
m
m0

∼
E
2γ

α

Eh

�
Eh

E

�
−α2ϵ

¼ α

2γ

�
Eh

E

�
−1−α2ϵ

:

ð14Þ

Therefore, one gets that the fraction F of the initial total
COM energy R that is not radiated into gravitational waves
is approximately

F≡ 1 − f ∼
Eh

E
∼
�
α

2γ

� 1

1þα2ϵ ∼
�
α

2γ

�
p
; ð15Þ

with exponent

p ∼
1

1þ α2ϵ
: ð16Þ

Therefore, for large γ ≡ E=M ¼ E=ð2m0Þ, F ¼ 1 − f goes
to zero as a positive power of 1=γ, though without
numerical calculations the exponent, p ∼ 1=ð1þ α2ϵÞ,
which lies in the range between 0 and 1, apparently cannot
be predicted precisely.
The numerical prefactor of the power of 1=γ, here

crudely estimated to be ðα=2Þp, would also be expected
to have relatively small corrections from ignoring nonzero
values of δ and E=r0 − α and from also ignoring various
departures from the power-law relations assumed above.
However, in any case the evidence seems strong that the
fraction of energy radiated away goes to zero as a positive
power of 1=γ when γ is taken to infinity, with the exponent
apparently being positive but less than one.

IV. POSSIBLE REASONS FOR THE CONTRARY
CONCLUSION OF SPERHAKE, BERTI,

CARDOSO, AND PRETORIUS

Now I wish to examine some of the possible reasons for
the contrary conclusion of Sperhake, Berti, Cardoso, and
Pretorius [81], “An extrapolation of our results to the limit
γ → ∞ suggests that about half of the center-of-mass
energy of the system can be emitted in gravitational
radiation, while the rest must be converted into rest-mass
and spin energy.”
First, the numerical data SBCP used only went up to

γ ¼ 2.49, which is somewhat large compared with unity,
but hardly large enough to form definite conclusions about
what happens when γ is taken to infinity. For example,
Sperhake, Cardoso, Pretorius, Berti, and González [67]
found that a good fit to their head-on collision data of the
fraction, which I am hereby labeling f0ðγÞ ¼ ΔE=E, of the
gravitational wave energy radiated, ΔE, out of the total
energy, E, for impact parameter b ¼ 0 as a function of

γ ≡ E=M (with myM and E, not theirM which is the total
ADMmass that is my E, and not their Ewhich is myΔE) is
given by the zero frequency limit (ZFL) formula [38], the
right-hand side of Eq. (3) in [67], with the energy cutoff for
the ZFL evaluated as E∞ ¼ 0.14� 0.03, say E∞ ¼ 0.14
for the numerical values below, so that Eq. (3) in [67] can
be written as

f0ðγÞ ¼ 0.14

�
1þ 1

2γ2
−
ð4γ2 − 1Þ lnðγ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
Þ

2γ3
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
�

¼ 0.14

�
3 − v2

2
− ð1 − v2Þð3þ v2Þ 1

4v
ln
1þ v
1 − v

�

¼ 0.14
X∞
n¼2

8ðn − 1Þv2n
ð2n − 3Þð2n − 1Þð2nþ 1Þ

¼ 0.14

�
8

15
v4 þ 16

105
v6 þ 8

105
v8 þ 32

693
v10

þ 40

1287
v12 þ 16

715
v14 þ � � �

�
: ð17Þ

For γ ¼ 2.49, this formula gives a fraction f0ð2.49Þ ¼
0.077 that is only 55% as large as the γ → ∞ limit of 0.14,
which does not seem sufficient for obtaining firm con-
clusions about the γ → ∞ limit.
Second, SBCP [81] fit to a formula that, as 1=γ → 0,

approaches a constant with a deviation proportional to 1=γ,
rather than to ð1=γÞp with the smaller exponent p ¼
1=ð1þ α2ϵÞ that my analysis gives. Therefore, it is perhaps
not surprising that they did not see the slower decrease of
1 − f ¼ ðE − ΔEÞ=E to zero for γ → ∞.
In particular, SBCP fit their numerical estimates for what

I am calling fðγÞ ¼ ΔE=E, the fraction of the total energy
E radiated as gravitational waves of energy ΔE at the
γ-dependent critical impact parameter b ¼ bc ¼ βcE, with
the following formula for what I shall label as fSBCPðγÞ, in
terms of the fraction f0ðγÞ at b ¼ 0:

fSBCPðγÞ ¼
f0ðγÞ

RSBCPðγÞ
; RSBCPðγÞ ¼ 0.34ð1 − 1=γÞ:

ð18Þ

Let me compare different fits to the data given for
initially nonrotating black holes in Table I of [81] for
fðγÞ ¼ ΔE=E, which is the product of what is labeled in
Table I as K=M ¼ ðγ − 1Þ=γ and what is labeled as Erad=K,
with their Erad being the same as my ΔE, the total
gravitational wave energy radiated. These data for fðγÞ
are (here retaining all 6 digits from multiplying the 3-digit
values of K=M and Erad=K in Table I, leaving rounding to
fewer digits until later)
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fð1.22Þ ¼ 0.160921; fð1.88Þ ¼ 0.298116;

fð2.49Þ ¼ 0.343252: ð19Þ

More relevant for my arguments that fðγÞ → 1 as γ → ∞
are the values for

FðγÞ≡ 1 − fðγÞ ¼ Mf=E

¼ ðfinal rest massMfÞ=ðtotal energyEÞ; ð20Þ

where Mf is the final mass of the black hole that forms for
impact parameter b infinitesimally below the critical impact
parameter bc. Table I of [81] then implies

Fð1.22Þ ¼ 0.839079; Fð1.88Þ ¼ 0.701884;

Fð2.49Þ ¼ 0.656748: ð21Þ

The SBCP fitting function fSBCPðγÞ of Eqs. (17) and (18)
then gives what I call

FSBCPðγÞ ¼ 1 −
0.14=0.34
ð1 − 1=γÞ

×

�
1þ 1

2γ2
−
ð4γ2 − 1Þ ln ðγ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
Þ

2γ3
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
�
;

ð22Þ

with values

FSBCPð1.22Þ ¼ 0.854 ¼ 1.018Fð1.22Þ;
FSBCPð1.88Þ ¼ 0.676 ¼ 0.963Fð1.88Þ;
FSBCPð2.49Þ ¼ 0.620 ¼ 0.944Fð2.49Þ; ð23Þ

which have an rms error relative to the numerical values of
FðγÞ of about 4.0%.
However, since my Eq. (15) for the asymptotic behavior

of FðγÞ has two unknown parameters, α and ϵ (ignoring
weak dependencies on the other unknown dimensionless
parameters such as δ and E=r0 − α), for a fair comparison I
should replace the one-parameter SBCP fitting function
fSBCPðγÞ ¼ f0ðγÞ=RSBCPðγÞ, having its one fitted constant
0.34 in RSBCPðγÞ ¼ 0.34ð1 − 1=γÞ, with a two-parameter
fitting function f2ðγÞ ¼ f0ðγÞ=R2ðγÞ with R2ðγÞ ¼
a − b=γ, having two fitting parameters, a and b. Then a
least-squares fit to the numerical data for fðγÞ given in
Eq. (19) yields a ¼ 0.389 and b ¼ 0.406 after rounding to
3 digits, and hence

F2ðγÞ ¼ 1−
f0ðγÞ

ð0.389− 0.406=γÞ
¼ 1−

0.14
ð0.389− 0.406=γÞ

×

�
1þ 1

2γ2
−
ð4γ2 − 1Þ ln ðγþ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
Þ

2γ3
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
�
: ð24Þ

This fit gives

F2ð1.22Þ ¼ 0.8408 ¼ 1.0021Fð1.22Þ;
F2ð1.88Þ ¼ 0.7018 ¼ 0.9999Fð1.88Þ;
F2ð2.49Þ ¼ 0.6577 ¼ 1.0014Fð2.49Þ; ð25Þ

which have an rms error relative to the numerical values of
FðγÞ of only about 0.14%, a remarkably good fit, but
perhaps the extreme excellency of this fit is somewhat
spurious because of the numerical uncertainties of the
values of FðγÞ given in Eq. (21) derived from the SBCP
Table I of [81].
In contrast to these fits that have 1=γ appearing linearly

in RSBCPðγÞ and R2ðγÞ (though there is a term asymptoti-
cally going as ðln γÞ=γ2 in f0ðγÞ given by Eq. (17) from the
right-hand side of the ZFL Eq. (3) of [67] that originally
came from Eq. (2.20) of [38]), the derivation in Sec. III
above of the large-γ asymptotic form given by Eq. (15)
suggests a fit by FpðγÞ ¼ Aγ−p with two parameters, p ∼
1=ð1þ α2ϵÞ and A ∼ ðα=2Þp. Then a least-squares fit of the
three numerical values of lnFðγÞ by lnA − p ln γ gives, to
three digits each, A ¼ 0.892 and p ¼ 0.343 ¼ ð0.7Þ3, or

FpðγÞ ¼ 0.892γ−0.343: ð26Þ

This fit gives α ∼ 1.44, ϵ ∼ 0.93 (though I would not
assign much precision to these estimated values, because of
the uncertainty of the extrapolation to γ ≫ 1).
Then FpðγÞ ¼ 0.892γ−0.343 gives

Fpð1.22Þ ¼ 0.833 ¼ 0.993Fð1.22Þ;
Fpð1.88Þ ¼ 0.718 ¼ 1.023Fð1.88Þ;
Fpð2.49Þ ¼ 0.652 ¼ 0.993Fð2.49Þ; ð27Þ

which has an rms relative error of about 1.46%, a bit over
10 times the rms relative error of F2ðγÞ. However, since the
numerical error of the data for FðγÞ in Eq. (21) is likely to
be a few percent, it seems that both formulas fit the three
data points of Eq. (21) quite well. Certainly Eq. (26) for
FpðγÞ looks simpler than Eq. (24) for F2ðγÞ, and appears
even simpler than Eq. (22) for FSBCPðγÞ that does not fit
quite so well, though since the complication arises mostly
from the complexity of Eq. (17) for f0ðγÞ, the fraction of
energy radiated in a head-on collision, which is theoreti-
cally determined by the zero frequency limit of [38] with
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only the one free parameter E∞ from the frequency cutoff,
there is actually only one free parameter that is fit to the data
in Eq. (22), namely the fraction 0.14=0.34 ¼ 7=17 ≈ 0.412.
The main point is that Eq. (15) has the theoretical

justification given in Sec. III, as an approximate asymptotic
formula for large γ ¼ E=M ¼ ðtotal energyÞ=ðrest massÞ,
whereas the factors of 1 − 1=γ and 0.389 − 0.406=γ in
Eqs. (22) and (24) appear to be rather ad hoc. And even if
Eq. (15) is not quite the correct asymptotic form for the
fraction of energy not radiated when γ ≫ 1, the fact that
during most of the evolution the black holes are expected to
be much smaller than their separations very strongly
suggests that they cannot absorb a large fraction of the
initial energy.
A third possible reason for the disputed conclusion of

Sperhake, Berti, Cardoso, and Pretorius [81], that F ¼
1 − f ¼ ðE − ΔEÞ=E remains bounded below by a positive
number when γ is taken to infinity, is that the 2007 results
of Pretorius and Khurana [61] suggest that f ¼ ΔE=E, the
fraction of the initial total energy E going into the energy
ΔE, is a very sensitive function of the impact parameter b
when it is near the critical impact parameter bc. Therefore,
it might be the case that for the crucial data SBCP
calculated at γ ¼ 2.49, which was done with impact
parameter b ¼ 2.749E (in my notation; they use M for
the total ADMmass that I call E), might not have been near
enough to the impact parameter bm ¼ βmE that would
maximize the fraction f ¼ ΔE=E going into gravitational
waves at that value of γ ¼ E=M (where myM is the sum of
the initial two rest masses of the black holes).
An observation supporting the hypothesis that with the

limited computational resources available, SBCP were not
able to tune the impact parameter close enough to the value
bm that would give the maximum energy radiated to
correctly evaluate what that maximum is for each γ, is
the fact that Fig. 1 of [81] shows that the example they
calculated for their maximum γ, γ ¼ 2.49, does not have
the black hole separation decreasing monotonically before
they reach their minimum separation and then move apart. I
would expect that at b ¼ bm, and also at b ¼ bc, the critical
impact parameter that maximizes f ¼ ΔE=E out of all
critical impact parameters, the separation between the two
black holes would decrease monotonically until the black
holes merge. Therefore, Fig. 1 seems to be evidence that
SBCP were not able to tune the impact parameter suffi-
ciently precisely to obtain the maximum fraction f of
energy radiated. Of course, this is not a criticism of their
heroic effort to learn what they could at as large a value of γ
that was feasible with their calculational resources, but it
does suggest that even more resources will be needed to
find numerical evidence convincingly suggesting whether
or not the final black hole (if the impact parameter b is
infinitesimally smaller than the critical impact parameter
bc ¼ βcE for fixed total energy E that maximizes
f ¼ ΔE=E at that E) can have a mass Mf such that
Mf=E → 0 as M=E → 0.

Actually, the “zoom-whirl” behavior of the two black
holes SBCP calculated for γ ≡ E=M ¼ 2.49 (giving
v ≈ 0.9158) and impact parameter b ¼ 2.755E ≈
1.009Eð2.5=vÞ (incidentally fitting very closely to the
estimate of Shibata, Okawa, and Yamamoto [68] that
bc ≈ 2.5E=v) suggests to me that perhaps that value of b
SBCP used is closer to a critical dimensionless impact
parameter that is different from the one that maximizes f ¼
ΔE=E and which I would expect would lead to something
close to an equiangular spiral in which the separation of the
two black holes decreases monotonically until they merge
(if b is infinitesimally below the bc that maximizes f). So
far the data gives me only a weak hint of the possibility that
there may be more than one critical impact parameter, and
that the fraction f ¼ ΔE=E of energy radiated into gravi-
tational waves might not have a single local maximum as a
function of γ ¼ E=M. However, it would be very interest-
ing to explore this intriguing possibility.
I might initially guess that the numberN of local maxima

of f might grow approximately linearly with γ, and that the
number of critical impact parameters might be 2N − 1 (say
if there is one local maximum of f for each odd-numbered
critical impact parameter). This would suggest that for
fixed total energy E ≫ M and fixed initial total rest mass
M ¼ E=γ, although the global maximum for f would occur
for b ¼ βmE ∼ E, fðbÞ might have some oscillatory struc-
ture with a period of the order of δb ∼M ¼ E=γ. On the
other hand, this would give a range for all 2N − 1 critical
impact parameters of Δb ∼ Nδb ∼ E, whereas I would
expect the ratio of the range of the oscillatory behavior
to the value of bm (with bm giving the global maximum for
f for the fixed values of E and M) to decrease as γ is
increased, so perhaps the typical period of the oscillations,
say δb, goes as bm ∼ E multiplied by a power of 1=γ ¼
M=E that is larger than one, so that δb becomes far smaller
than M for large γ. Or, perhaps the number N of local
maxima of f might increase slower than linearly with γ, so
that the typical period of the oscillations, δb, could remain
of the order of M but the range, Δb ∼ Nδb, could become
much smaller than bm for large γ. In any case, it would be
very interesting to see what the behavior of fðγÞ is as a
function of γ ¼ E=M when it becomes large, and to check
whether it exhibits any oscillations, giving more than one
local maximum.
Perhaps when the computational resources become

available for making many more calculations at slightly
different impact parameters for the same γ, and ideally also
for larger γ, it might become more apparent whether or not
the fraction F of the total energy that does not get radiated
does approach zero as γ is increased indefinitely with β≡
b=E tuned to the γ-dependent value βmðγÞ that maximizes
the fraction f ¼ 1 − F of the total energy that is radiated for
each γ ¼ E=M.
Another argument for FðγÞ → 0 as γ → ∞ is that in the

limit 1=γ ¼ 0 at fixed total energy E, the rest mass of each
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black hole, M=2 ¼ E=ð2γÞ, goes to zero, so initially one
has two incoming Aichelburg-Sexl metrics [37], corre-
sponding to the gravitational fields of two classical mass-
less point particles. In this case there are, at least initially,
no black holes to absorb any of the energy, so when SBCP
argue [81] that “absorption sets an upper bound on the
maximum energy that can be radiated,” it would seem that
no absorption would occur in the M ¼ 0 limit, since there
are no black holes to absorb the energy (until the two
massless particles form a single black hole).
One weakness of this last argument is that it might occur

that in the Aichelburg-Sexl limit, as massless particle A
collides with the gravitational shock wave of massless
particle B, the gravitational shock wave field of A might
focus the gravitational shock wave field of B to form a
black hole separate from a black hole that might form from
the field of B focusing the shock wave of A. Thus perhaps
two black holes might form that conceivably each could
have its rest mass be a fraction of the total energy that is
bounded below by a positive number. In this case that
positive number would give a lower bound on the ratio
Mf=E for the final black hole that forms with impact
parameter b slightly below the critical impact parameter bc.
This conceptual possibility raises the question of

whether these possible two distinct holes each engulf the
corresponding massless particle, which might limit the
number of black holes that form to that pair, or whether
the two holes that might form from the focusing of the
gravitational shock wave of one massless particle by the
shock wave of the other might form behind the massless
particles rather than engulfing them. This latter possibility
raises the question of whether the gravitational fields of the
two persisting massless particles might focus to produce
even more pairs of black holes. Although I am rather
skeptical that the gravitational fields of the two massless
particles can form even one pair of black holes that persist
before merging to form one final black hole (if b < bc) or
eventually flying apart (if b > bc), if two black holes can
form without engulfing the massless particles, it would
seem conceivable that an arbitrarily large number of pairs
of black holes could form from suitable tuning of β ¼ b=E,
and even that an arbitrarily large number could survive the
encounter rather than merging if b < bc.
However, the more plausible possibility for 1=γ ¼

M=E ¼ 0 seems to be that the two massless particles that
are the source of the original pair of Aichelburg-Sexl
metrics cannot form separate black holes but only a single
black hole if they merge. In this case, there are never any
separate black holes to absorb any of the radiation, and it
seems most plausible that by fine tuning the ratio β ¼ b=E
of the impact parameter b to the total energy E to the critical
value β0, all of the energy would be radiated away before
the two particles merge and disappear at a naked singularity

corresponding to a final single black hole in the limit that its
mass goes to zero.
An anonymous referee suggested that “a third logical

possibility exists whereby, at the critical impact parameter, a
vanishingly smallmass black-hole forms from the collapse of
a vanishingly small amount of radiation while the remaining
(i.e., 100%) of the energy reaches infinity but is shared
between radiation and the two colliding particles. Only at a
smaller impact parameter the colliding particles will be
swallowed by the collapse but, by then, a finite fraction of
the energywill remain in the collapsing region(s). In this case
a 100% efficiency will never be reached.”
Although this also seems logically possible, I would find

it more surprising than the possibility that all but a
vanishingly small fraction of the initial energy can be
radiated as gravitational waves in the limit that γ ¼ E=M is
taken to infinity with the impact parameter suitably tuned at
each finite γ as one takes this limit.

V. CONCLUSIONS

In this paper I have given arguments that the 2007
conjecture of Pretorius and Khurana [61] is essentially
correct, that all but an arbitrarily small fraction of the total
energy E of ultrarelativistic objects of original total rest
massM can be converted to gravitational waves ifM=E can
be taken small enough. (I do not argue that all of the kinetic
energy can be converted, since the final total rest mass Mf

could be larger than M, but only that as M=E is taken to
zero, Mf=E also approaches zero with the proper fine
tuning of the impact parameter.) The argument for two
original black holes with M=E ≪ 1 is that during most of
the gravitational wave emission, the black holes are so
much smaller than the region where most of the gravita-
tional wave energy is located that they can absorb only a
tiny fraction of it, with this fraction going to zero asM=E is
taken to zero.
Contrary arguments in 2012 by Sperhake, Berti,

Cardoso, and Pretorius do not seem sufficient to refute
this argument, since (1) they could only calculate the
emission near the critical impact parameter for γ ≤ 2.49,
(2) they used a rather ad hoc fitting function that does not
agree with the theoretical expectations put forward in this
paper, and (3) they do not seem to have been able to tune
the impact parameter close enough to the critical value to
get a convincingly good estimate of the maximum fraction
of energy that could be emitted for their finite values
of E=M.
I had posted on the arXiv a previous version of my

conjecture that by suitably tuning the impact parameter, in
the limit that the total energy of two colliding small objects
is taken to infinity, all but an infinitesimally small fraction
can be radiated as gravitational waves [119], before
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I learned that Pretorius and Khurana [61] had earlier made
essentially the same conjecture and that Sperhake, Berti,
Cardoso, and Pretorius [81] had presented numerical
evidence against that conjecture. That earlier paper of
mine does give a lot of details not included in the present
paper about the conjectured limiting case of an asymptoti-
cally self-similar solution with a homothetic Killing vector,
so after the present paper is published, I plan to revise that
earlier paper in light of this present one and resubmit it also
for publication.
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