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We investigate the generation rate of quantum gravity induced entanglement of masses (QGEM) in
setups with multiple quantum massive particles, among which only the gravity interaction due to the
Newton potential is taken into account. When the distance between any two adjacent Stern-Gerlach devices
is fixed, we consider all the possible configurations of the setup with the same number of particles. In
particular, we systemically analyze the case of particle number n ¼ 4 and find that the prism setup with a
massive particle at the center is the most efficient setup for the entanglement generation. This result can be
extended to a system with multiple particles up to seven, where the entanglement efficiency is also
enhanced in comparison with the setup with fewer particles. This work provides the strategy to construct
the quantum gravity induced entanglement of masses setup with the best generation rate of entanglement.
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I. INTRODUCTION

Whether the nature of gravity is quantum or classical,
one of the most fundamental problems, has been debated
for decades [1–3]. A lot of considerations suggest that the
nature of gravity should be quantum, and thus various
theoretical frameworks as the candidates for the theory of
quantum gravity have extensively been investigated [4–6].
They predict quantum gravity would exhibit some char-
acteristic behavior in contrast to the other known quantum
interactions. In addition, various possible effects of quan-
tum gravity have been explored at the phenomenological
level as well. Unfortunately, until now no such effects have
been observed in experiments, due to the weakness of
gravity. As a result, testing the nature of gravity by
experiments with novel ideas becomes an urgent mission
in modern physics. For a recent review we refer to [7].
Recently, a novel strategy has been proposed in [8,9] to

test the quantum nature of gravity just at the low energy
level. By virtue of local operations and classical commu-
nication (LOCC), they design a setup with two Stern-
Gerlach (SG) devices in which two massive particles in
superposition states of position may be entangled by
Newton gravity potential. LOCC claims that classical force
cannot generate quantum entanglement between two par-
ticles. If initially two massive particles without entangle-
ment become entangled in the final states after passing
through the Stern-Gerlach device, then it means the gravity

which serves as the unique medium between them must be
quantum, even though the gravity is weak enough to be
described well by Newtonian potential. The quantum
gravity induced entanglement of masses (QGEM) experi-
ment indeed has opened a new window for testing the
quantum effect of gravity. There are also some relevant
discussions on low energy effects of quantum gravity, such
as testing the superposition states of spacetime from a
quantum geometry point of view [10] and the discreteness
of time [11], testing gravity induced reduction of quantum
states [12], exploring the quantum nature of the Newtonian
potential [13–15], testing the nonlocality of quantum
gravity [16] as well as detecting the quantum gravity
effects by non-Gaussianity [17]. Some other relevant work
on this theme can be found in [18–21].
Currently, in order to make the entanglement easier to be

observed, one central issue on the QGEM experiment itself
is to improve the setup such that the entanglement between
massive particles could be generated with the best effi-
ciency. To guarantee that the entanglement between differ-
ent particle states is strong enough to be observed within
the time regime that the superposition of states could
remain, theoretically the phase difference of states should
become large as soon as possible during the evolution. The
specific parameter estimation has been performed in [8],
where it requires that the mass of the matter wave reaches at
least 10−14 kg, and the interaction duration of two matter
waves should keep above 2.5 s. That is to say, under these
conditions, the generated phase difference would be large
enough to verify the existence of the entanglement between
two particles. However, reaching such parameter regimes is
still a big challenge in a lab. Therefore, theoretically one is
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urged to present novel schemes to improve the QGEM
setup so as to loosen the constraints on experiment
parameters and make the experiment easier to implement.
In this route, one key issue is to reduce the time duration for
generating observable entanglement. With this success then
one may weaken the bound for the mass of the particles
which would make the experiment more practical. Such
efforts have been made in [22,23], where more different
setups of experiment are designed to improve the original
QGEM setup.
In the original QGEM setup, two SG devices are placed

in linearly adjacent positions, as illustrated in Fig. 1. Later
in [22] a configuration is considered with two SG devices
which are placed in a parallel way, see Fig. 2. This article
shows that the parallel setup is more efficient to generate
entanglement than the linear one. The setup of two SG
devices with different angles is investigated sequently in
[24]. Furthermore, various configurations in the QGEM
setup with three massive particles are considered in [23]. It
is shown that the three-qubit system usually generates

entanglement more efficiently than the two-qubit system
and behaves better in resisting decoherence. In particular,
among all three-qubit cases the configuration with SG
devices placed in parallel is still the most efficient setup.
Therefore, the three-qubit setup with SG devices in parallel
is the most efficient setup to generate entanglement by
now.1 Inspired by the above work, we intend to consider
whether one could continually improve the entanglement
generation rate by adding the number of particles n, and
specially whether the configuration with SG devices in
parallel remains to be the best setup with the most efficient
generation rate of entanglement, as in cases of n ¼ 2 and
n ¼ 3. In this paper we systemically analyze the case of
n ¼ 4 and find that the setup with SG devices in the form of
triangular prism with a center is the most efficient one
among all the possible configurations with n ¼ 4.
Furthermore, we argue that this result can be extended
to a system with multiple particles up to seven, where the
entanglement efficiency is also enhanced in comparison
with the setup with fewer particles.
We arrange our paper as follows. In next section, we will

briefly review the QGEM experiment proposal with three-
qubit particles, focusing on the improvement of entangle-
ment generation. In Sec. III, we will consider the system
with four-qubit particles in detail and show that the
configuration in the form of a triangular prism with a
central particle is the most efficient setup to generate
entanglement. We will also extend this setup up to n ¼
7 and compare the generation rate of entanglement for
different setups. Our summary and conclusions are given in
the last section, with some remarks on its novelty and
plausibility. Some details on the computation of entangle-
ment are given in the Appendixes.

II. THE SETUP WITH THREE
MASSIVE PARTICLES

In this section we will first present the logic line for the
computation of entanglement entropy between one speci-
fied particle with the other particles in a system composed
of n particles, which is the base for witnessing gravity
induced entanglement in the QGEM experiment. We will
also briefly review the setup with three massive particles
and consider all the possible configurations when the
parameters are fixed, among which three configurations
have previously been considered in Ref. [23].
Let us consider a system composed of n massive

particles interacting with gravity due to Newtonian

FIG. 1. Above the dashed line is the plot of the original QGEM
experiment setup, while below the dashed line is the plot of a
simplified sketch without time direction: Two particles, A and B,
are placed in the linearly nearby positions, and each particle is
prepared in the superposition of two approximately coordinate
eigenstates j0i and j1i. As different quantum states of these two
particles will induce different gravitational potential, it will
generate nontrivial phase differences for states during the
evolution of this system and eventually it will generate observable
entanglement between two particles when the time of evolution is
sufficiently long.

(a) (b)

FIG. 2. (a) The original setup of QGEM in a linear manner.
(b) The improved setup of QGEM in a parallel manner.

1The amount of entanglement is measured by the entanglement
entropy and compared for all the devices with the same experiment
parameters, namely, the same distance between two splits of matter
wave for each particle, and the sameminimal distance between any
twomatter waves associated with particles. Moreover, the minimal
distance is required to avoid the Casimir force [25].
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potential, each of which can be viewed as a qubit with two
eigenstates of spin, namely, j0i and j1i. Now we set the
initial state of the system as

jψðt ¼ 0Þi ¼ ⊗
n

i¼1

1ffiffiffi
2

p ðj0ii þ j1iiÞ: ð1Þ

Next we consider the evolution of the system under the
Hamiltonian which is given by

Ĥ ¼
X

1≤i<j≤n
V̂ij; ð2Þ

where V̂ij is the gravitational potential between the ith
particle and the jth particle, and

V̂ij ¼ −Gm2

0
BBB@

1=Rðj0ii; j0jiÞ; 0 0 0

0 1=Rðj0ii; j1jiÞ; 0 0

0 0 1=Rðj1ii; j0jiÞ; 0

0 0 0 1=Rðj1ii; j1jiÞ

1
CCCA; ð3Þ

where Rðjaii; jbjiÞ represents the distance between the ith
particle in the jaii state and the jth particle in the jbji state,
and ai; bj ¼ 0 or 1.
Then, under the action of the time evolution operator, it

is straightforward to obtain the state at time t as

jψðtÞi ¼ e−
i
ℏĤtjψð0Þi ¼

�
1ffiffiffi
2

p
�

n X
i1;…;in¼0;1

e−
i
ℏϕi1…in tji1…ini;

ð4Þ

where the phase ϕ is determined by the Newtonian
potential as

ϕi1…in ¼ −
X

1≤j<k≤n

Gm2

Rðjiji; jikiÞ
: ð5Þ

For various configurations under consideration, we present
the specific expressions for Rðjiji; jikiÞ in Appendix A.
Given the quantum state, the entanglement entropy

between particle i and the other particles is given by

Si ¼ SðρiÞ ¼ −Tr ðρi ln ρiÞ ¼ −
X
j

λj ln λj ð6Þ

where ρi ¼ Tr1;…;î;…;nðρÞ is the reduced density matrix of
the particle i, and λj are the eigenvalues of ρi.
Next we consider the setup with three massive particles

and their possible configurations. First of all, we fix the
parameters for all the configurations within the feasible
range as discussed in [8]. We choose the mass of each
particle to be m ¼ 10−14kg. We keep the distance between
two channels of each SG device (which correspond to state
j0ii and j1ii, respectively) to be Δx ¼ 250 μm, and the
minimal distance between any two adjacent SG devices to
be dmin ¼ 200 μm. That is to say, m, Δx, and dmin are

the same in numerical analysis for all configurations.
For n ¼ 3, it turns out that there are five typical configu-
rations, as illustrated in Fig. 3, of which three configura-
tions, (a), (b), and (c), have previously been considered in
Ref. [23], which may be called as the linear, the parallel,
and the star setups, respectively. It is pointed out in
Ref. [23] that the second particle in the parallel setup
has the highest rate of entanglement generation, which
reaches the observable criteria at 2.5 seconds, followed by
the star setup, and then the linear setup. As a matter of fact
we may construct two other configurations, as illustrated in
(d) and (e).2 We call them the polygon setup and the prism
setup, respectively. In Fig. 4, we demonstrate the highest
generation rate of the entanglement for all the five
configurations. For the linear and parallel setups, the
particle in the middle has the highest rate of entanglement
generation. This is because this particle has a smaller
average distance to the other particles and therefore has a
stronger interaction with the other particles. For the star, the
polygon and the prism setup, because of the symmetry, we
just need to calculate the entropy for S1. From this figure,
we notice that the linear and star setup have the slowest
generation rate of entanglement, while the polygon setup is
slightly faster, and both the parallel and prism setup have
the highest rate. This is not surprising since the middle
particle in parallel setup experiences the same Newtonian
potential as any particle in prism setup.
As a summary, in both cases of n ¼ 2 and n ¼ 3, the

parallel setup exhibits the largest rate of entanglement
generation in comparison with the other setups with the
same number of particles. We are wondering if this would
be true when the number of particles increases, and if the
entanglement efficiency is enhanced in comparison with

2We ignore the impact of the gravity due to the Earth on all the
particles.
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the setup with fewer particles. We will investigate these
issues in the next section.

III. THE SETUP WITH FOUR AND
MORE MASSIVE PARTICLES

In this section we first consider the generation rate of
entanglement for four massive particles in detail, and then
generalize it to cases with more massive particles.

First of all, for a system with four massive particles, all
the configurations we considered in previous section can be
extended, as illustrated in Figs. 5(a)–5(e).3

(a)

(d) (e)

(b) (c)

FIG. 3. Different QGEM setups with three massive particles. Each solid line represents a particle, which is in a superposition of j0i and
j1i. The ith particle is in a superposition of j0ii and j1i1. Δx as well as dmin has the same value in all setups. (a) Linear setup, (b) parallel
setup, (c) star setup, (d) polygon setup, and (e) prism setup.

FIG. 4. The evolution of entanglement entropy in different setups with three massive particles. The curve marked as “S2 n ¼ 3 linear”
represents the entanglement entropy of the second particle in the linear setup with three particles [Fig. 3(a)]. Other curves have similar
meanings. Notice that the line of S2 in parallel setup overlaps with the line of S1 in prism setup. And the line of S2 in linear setup almost
overlaps with the line of S1 in star setup.

3To prepare the geometrical setups (c), (d), (f), and (g) in
practice, one probably should be cautious to arrange the setup to
generate the appropriate gradient fields for each particle, as she/he
needs to set the gradient fields in different directions for different
particles. While for other setups we just need set homologous
gradient fields in one direction.
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Furthermore, for the star, polygon, and prism setups, we
may also obtain a new configuration by inputting the fourth
particle at the center of the setup, respectively, as illustrated
in Figs. 5(f), 5(g), and 5(h), where the SG device of the
fourth particle is perpendicular to the plane formed by SG
devices of the other three particles in (f) and (g), while in
(h) the SG device of the fourth particle is parallel to the
prism. Totally, one obtains eight possible configurations for
the QGEM setup for four massive particles.
Now we are concerned with the generation rate of the

entanglement in these different configurations. Again, we
only need to consider S2 for the linear and parallel setup
since it exhibits the most efficient rate among all the
particles, and consider S1 for the star, polygon, and prism
setups due to the symmetry of the configuration. For the
setups with a central particle, namely, (f), (g) and (h) in
Fig. 5, we only need to consider the central particle which
has the minimal average distance and thus exhibits the
highest entanglement generation rate among all the massive
particles. We denote the entanglement entropy of the
central particle as S0. We perform the numerical analysis
and illustrate the results for the highest generation rate in
each configuration in Fig. 6.

Most importantly, from Fig. 6 it is clear to see that the
central particle in the setup of triangular prism (h) exhibits
the largest generation rate of entanglement among all the
configurations, since it has the minimal distance to all the
other three particles. Second, the prism setup is better than
the parallel setup when n ¼ 4, although both setups have
the same entanglement generation rate in the case of
n ¼ 3. In addition, for the polygon setup with central
particle (g), S0 is always zero due to the symmetry of
the setup. We present the proof of this statement in
Appendix B.
The above numerical results are consistent with what we

expect. As we mentioned above, in the parallel setup of
n ¼ 4, the fourth particle is farther away from the second
particle, so the gravitational interaction between the fourth
particle and the second one becomes weak, contributing
little to the entanglement entropy. On the other hand, in the
prism setup, the average distance between particles is
smaller than that in the parallel setup, thus the generation
rate of entanglement is improved more efficiently when
adding particles. In particular, if we add a particle at the
center of the prism, the average distance between this
particle and all the other particles is the smallest, thus

(a)

(c)

(f) (g) (h)

(d) (e)

(b)

FIG. 5. Different QGEM setups with four massive particles. The setups (a)–(e) are a direct extension of Figs. 3(a)–3(e), while setups
(f), (g), and (h) are obtained by adding a central particle to Figs. 3(c), 3(d), and 3(e).
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FIG. 6. The evolution of the entanglement entropy in different setups when n ¼ 4. The curve marked as “S0 n ¼ 3þ 1 star with
center” represents the entanglement entropy of the particle at the center of the star setup with four particles [Fig. 5(f)]. Other curves have
similar meanings.

(a)

(c) (d)

(b)

FIG. 7. The prism setup with a central particle for n ¼ 4, 5, 6, 7. (a) n ¼ 4 prism with center setup, (b) n ¼ 5 prism with center setup,
(c) n ¼ 6 prism with center setup, and (d) n ¼ 7 prism with center setup.
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exhibiting the largest generation rate of entanglement
entropy.
Inspired by the above analysis on n ¼ 4, next we intend to

generalize it by considering setups with more particles and
expect that the prism setup with a central particle will exhibit
the maximal generation rate of entanglement. We depict the
prism configuration for n ¼ 4, 5, 6, 7 in Fig. 7. We find that
these configurations with a central particle always exhibit
the highest generation rate of entanglement among all the
possible configurations with the same number of particles.
More importantly, we find that this rate increases dramati-
cally as the number of particles increases, as illustrated in
Fig. 8. In contrast, one finds that for other configurations the
generation rate is barely improved when the number of
particles increases. For instance we show the rate of the
parallel setup with a different number of particles in Fig. 8 as
well. The rate is almost saturated since the increased particles
are far from the observed particle such that their effects may
be negligible.
Based on the above investigation, we conclude that for

n > 3 the prism setup with a central particle exhibits the
maximal generation rate of entanglement and this rate can
be improved by increasing the number of particles up to
n ¼ 7. When the number of particles is larger than seven,
then the distance between the central particle and other
particles would not be the minimal one, but larger than the
distance between any two neighboring particles surround-
ing the central particle. We will not consider these cases
from the actual situation of the experiment.

IV. CONCLUSION AND DISCUSSION

With the goal of constructing the setup with the most
efficient rate of entanglement generation due to the gravity

interaction, we have investigated new QGEM setups with
the number of massive particles n > 3. For n ¼ 4, we have
found that the particle at the center of the prism setup
exhibits the most efficient entanglement behavior since it
has the most pairs of neighboring particles. This situation is
in contrast to the cases of n ¼ 2 and n ¼ 3 which have
previously been studied in literature. For n ¼ 2 and n ¼ 3,
the parallel setup exhibits the best entanglement behavior
in comparison with other setups. Furthermore, we have
extended this strategy to the setups with more particles up
to n ¼ 7, where the prism setup with center is always the
best one for entanglement generation since the distance
between the central particle with other particles remains the
minimal among all the distances between any two particles.
We have found that the efficiency for entanglement gen-
eration can also be considerably improved with the increase
of the number of particles, in contrast with what happens in
the parallel setup, where the generation rate becomes
saturated after n > 4. This work has provided the strategy
to construct the QGEM setup with the best generation rate
of entanglement. To guarantee that these new proposed
setups may be implemented in experiments, we give some
remarks on the relevant properties of these setups.
(1) The optimization of parameters. As an improve-

ment of the original QGEM setup, the prism setup
with the center proposed in this paper could
generate entanglement more rapidly so it may be
helpful to loosen the constraints for the mass of the
particles as well as the time of the coherence
preserving, which are the key parameters for real
lab experiment. For instance, when t ¼ 2.5s, the
entanglement entropy of the central particle of
n ¼ 3 in parallel setup (which exhibits the most

FIG. 8. The time evolution of entanglement entropy in parallel setup and prism setup with a central particle when n ¼ 4, 5, 6, 7. Note
that the generation rate of entanglement in prism setups increases with the number of particles dramatically, while all the four curves
representing the evolution of entanglement entropy in parallel setups almost overlap.
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efficient generation rate of entanglement in n ¼ 3)
reaches S ¼ 0.18, which is enough to detect the
entanglement [18,27], while the entanglement en-
tropy of the central particle in the n ¼ 4 prism setup
with center may reach the same value just in about
t ¼ 2.1s. Moreover, the entanglement entropy of
the central particle in the n ¼ 7 prism setup with the
center reaches S ¼ 0.18 just in about t ¼ 1.5s,
which is approximately half of 2.5s. Alternatively,
if the time of the coherence preserving remains to
be five seconds, then one could loosen the require-
ment of the mass of the matter wave from 10−14kg
to a smaller quantity, which would make the
experiment easier.

(2) Decoherence. Decoherence is an important issue that
should be taken into account seriously in such
QGEM experiments. While following the analysis
on decoherence in [23], it is more likely that the
setup with more particles is better resilient to
decoherence. Hence, the decoherence effects should
not be an obstacle to prevent us from adding more
particles in the QGEM setup.

(3) Entanglement witness. In the prism setup with the
center, with the increase of the generation efficiency
of entanglement, one has to pay a price to have more
time consumption for measuring quantum states.
That is to say, the setup with more massive particles
would cost more time to measure the quantum states

to compute the entanglement in experiment [23].
Anyway, this may not be an unconquerable obstacle,
and we expect it might be improved by some new
entanglement witness prescription as discussed
in [26].
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APPENDIX A: DISTANCE OF
DIFFERENT SETUPS

In this appendix we present the expressions for the
distance between two massive particles in various setups.
For the linear setup, if the jth particle lies in the jiji state,
and the k particle is in the jiki state, then the distance
between these two particles is denoted as Rðjiji; jiki;
dmin;ΔxÞ, which is given by

RðlinearÞðjiji; jiki; dmin;ΔxÞ ¼ ðk − jÞðdmin þ ΔxÞ þ ðik − ijÞΔx; ðA1Þ

where we assume that j < k, without loss of generality.
For the parallel setup, R is

RðparallelÞðjiji; jiki; dmin;ΔxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðk − jÞdmin�2 þ ½ðik − ijÞΔx�2

q
: ðA2Þ

For the star setup, R is

RðstarÞðjiji; jiki; dmin;ΔxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 − 2ab cos

�
ðk − jÞ 2π

n

�s
; ðA3Þ

where a ¼ dmin
2 sinðπnÞ þ ijΔx and b ¼ dmin

2 sinðπnÞ þ ikΔx.
For the star setup with a central particle, the central particle is regarded as the 0th particle, and R is given by

Rðstar with centerÞðji0i; jiki; dmin;ΔxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdmin þ ikΔxÞ2 þ ði0ΔxÞ2

q
; ðA4Þ

Rðstar with centerÞðjiji; jiki; dmin;ΔxÞ ¼ RðstarÞ
�
jiji; jiki; 2dmin sin

π

n
;Δx

�
; ðA5Þ

where j, k ≥ 1.
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For the polygon setup, R is

RðpolygonÞðjiji; jiki; dmin;ΔxÞ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1 − cos

�
2π

n
ðk − jÞ þ 2ðik − ijÞθ

��s
; ðA6Þ

where θ ¼ arcsin Δx
2l and l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2minþ2dminΔx cosðπnÞþΔx2

4sin2ðπnÞ

r
.

And for the polygon setup with a central particle, R is

Rðpolygon with centerÞðji0i; jiki;dmin;ΔxÞ ¼ l; ðA7Þ

Rðpolygon with centerÞðjiji; jiki; dmin;ΔxÞ ¼ RðpolygonÞðjiji; jiki;dmin;ΔxÞ: ðA8Þ

For the prism setup, R is

RðprismÞðjiji; jiki; dmin;ΔxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dmin

sinððk − jÞ πnÞ
sin π

n

�
2

þ ½ðij − ikÞΔx�2
s

; ðA9Þ

And for the prism setup with a central particle, R is

Rðprism with centerÞðji0i; jiki; dmin;ΔxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ½ði0 − ikÞΔx�2

q
; ðA10Þ

Rðprism with centerÞðjiji; jiki; dmin;ΔxÞ ¼ RðprismÞ
�
jiji; jiki; 2dmin sin

π

n
;Δx

�
: ðA11Þ

APPENDIX B: THE PROOF OF S0 = 0 FOR THE POLYGON SETUP WITH A CENTRAL PARTICLE

The state is given by

jψðtÞi ¼ N
X
i0…in

e−
i
ℏϕi0…in tji0…ini

¼ N
X
i1…in

ðe− i
ℏϕ0;i1…in tj0; i1…ini þ e−

i
ℏϕ1;i1…in tj1; i1…iniÞ;

where N is a normalization factor, and N ¼ ð 1ffiffi
2

p Þn. Note that Rðj00i; jikiÞ is the same for all jiki, thus we have

ϕ0;i1…in ¼ −Gm2

�Xn
k¼1

1

Rðj00i; jikiÞ
þ

X
1≤j<k≤n

1

Rðjiji; jikiÞ
�

¼ −Gm2

�
n

dmin
þ

X
1≤j<k≤n

1

Rðjiji; jikiÞ
�

¼ C1 þ ϕi1…in :

And also ϕ1;i1…in ¼ C2 þ ϕi1…in . Then

jψðtÞi ¼ Nðe− i
ℏC1tj0i þ e−

i
ℏC1tj1iÞ ⊗

�X
i1…in

e−
i
ℏϕi1…in tji1…ini

�

¼ jϕðtÞi ⊗
�X

i1…in

e−
i
ℏϕi1…in tji1…ini

�
:

Therefore, ρ0 ¼ Tr1…nðjψðtÞihψðtÞjÞ ¼ jϕðtÞihϕðtÞj is a pure state, and Sðρ0Þ ¼ 0.
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