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The stability of a class of electrically charged fluid spheres under radial perturbations is studied in this
work. Among these spheres there are regular stars, overcharged tension stars, regular black holes,
quasiblack holes, and quasinonblack holes, all of which have a Reissner-Nordström exterior. We formulate
the dynamical perturbed equations by following the Chandrasekhar approach and investigate the stability
against radial perturbations through numerical methods. It is found that (i) under certain conditions that
depend on the adiabatic index of the radial perturbation, there are stable charged stars and stable tension
stars; (ii) also depending on the adiabatic index there are stable regular black holes; (iii) quasiblack hole
configurations formed by, e.g., charging regular pressure stars or by discharging regular tension stars, can
be stable against radial perturbations for reasonable values of the adiabatic index; and (iv) quasinonblack
holes are unstable against radial perturbations.
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I. INTRODUCTION

Solutions representing stars in general relativity are
exceedingly important as they can test general relativity
itself in conditions where the gravitational field is very
strong. Besides the gravitational field and matter one can
put some charge and electromagnetic fields into the
solutions, which allows the stars to be more compact.
An electrically charged spherically symmetric solution was
given by Guilfoyle [1] by first, giving a generalized ansatz
of Weyl in which a relation between the metric functions
and the electric potential is assumed, see Ref. [2] for
generalized Weyl’s ansätze, second, providing an electric
version of the constant density condition of the
Schwarzschild interior solution, and third, using the junc-
tion conditions, performing a smooth matching to an
electrovacuum Reissner-Nordström spacetime. Other elec-
tric stars, like Bonnor stars where charged density equals
energy density have been found [3]. One of the main
aspects to seek in these solutions is to test for their
compactness, since then full general relativistic effects
arise. There are bounds on the compactness of stars, in
the case of electrically charged stars these bounds were
found in [4] yielding a generalization of the Buchdahl
bound for neutral general relativistic stars. Interestingly, it

has been shown that the most compact stars provided in
Guilfoyle’s solution saturate this bound [5]. Now, the most
drastic situation for a compact configuration is a quasiblack
hole,which is a star on theverge of becoming a black hole but
never being one. Quasiblack holes have been found in [6] for
stars with matter in which the charged density equals the
energy density, which have been in turn compared with their
gravitational magnetic monopole analogues [7], have had
their generic properties studied [8,9], and have also been
discovered to exist in the most compact stars of Guilfoyle’s
solution [10]; a review on these objects is in [11].
Solutions representing black holes in general relativity

are likewise extraordinarily important as they can also test
general relativity itself in conditions where the gravitational
field has indeed the highest intensity. In general relativity,
static vacuum solutions are the Schwarzschild black hole
which has an event horizon and a singularity, and the
electrically charged Reissner-Nordström black hole which
has Cauchy and event horizons and a singularity. Regular
black holes, i.e., black holes without singularities, can be
built in general relativity in several ways and from several
types of matter, for instance regular black holes with
phantom matter were found in [12], and the matter energy
conditions for regular black holes were studied in [13].
Moreover, a particular class of regular black holes with a
de Sitter core and a massless electric coat at the matter
boundary was found in [14,15], a quasinormal mode
analysis of regular black holes was performed in [16],
regular black holes with electric charge and a phantom
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matter core were found in [17], and a stability analysis of a
class of regular black holes was done in [18]. Now, the
most mild situation for a regular black hole is a quasi-
nonblack hole, which is a regular black hole on the verge
of becoming a star but never being one. Quasinonblack
holes have been found in [19].
All these configurations, namely, stars, regular black

holes, quasiblack holes, and quasinonblack holes were
discovered to exist [20] within Guilfoyle’s solution. By
studying the full parameter space of this solution, which

can be put in the form q2

R2 ×
r0
R, where q is the total electric

charge, r0 is the radius of the object, and R is a constant
with the dimension of length related to the effective energy
density, it was shown in [20] that there are many different
types of compact objects such as Schwarzschild and
Reissner-Nordström black holes, Schwarzschild stars cor-
responding to the Schwarzschild interior solution, electri-
cally charged stars, Bonnor stars, tension charged stars,
regular charged black holes with a phantom and a de Sitter
core, quasiblack holes, quasinonblack holes, among other
singular compact objects. Interesting to note that all these
configurations also exist in another exact solution of
electrically charged static thin shells [19].
The stability of a solution is always an important issue, and

here it is no exception; it is important to perform a stability
analysis on the whole set of solutions uncovered from
Guilfoyle’s initial solution [20]. To make the analysis one
can use the method developed by Chandrasekhar [21] that
can be extended to electrically charged objects as has been
done in some works. Stettner [22] considered the effect of a
charged surface distribution on the stability of a spherically
symmetric fluid with constant energy density and found that
such a model is more stable than the corresponding
uncharged configuration. Omote and Sato [23] developed
the perturbation equations to arbitrary charged fluid distri-
butions and showed explicitly that Bonnor stars are neutrally
stable. Glazer [24,25] also worked with arbitrary charged
fluid distributions, confirmed the stable neutrality of Bonnor
stars, and showed that stability of a homogeneous configu-
ration increases by adding electric charge. De Felice and
collaborators [26] stipulated a power law for the electric
charged function and Anninos and Rothman [27] further
considered a hyperbolic tangent function to give a stability
analysis of concrete examples. Posada and Chirenti [28]
studied the radial stability of ultra compact Schwarzschild
stars beyond the Buchdahl limit.
The aim of this work is to do a stability analysis of the

Schwarzschild stars, electrically charged stars, Bonnor stars,
tension charged stars, regular charged black holes with a
phantom core, regular charged black holes with a de Sitter
core, quasiblack holes, and quasinonblack holes, contained
in Guilfoyle’s solution. The stability analysis is done against
small radial adiabatic perturbations, and since radial oscil-
lations of the solutions do not generate gravitational waves,
the analysis is reduced to an eigenvalue problem, where the
oscillation frequencies are essentially the eigenvalues of the

perturbation equation. Themethods employed here stem and
are adapted from all the works on perturbation analysis of
electrically charged stars that we mentioned. A remark
should perhaps be made at this point. The stability analysis
performed is only a stability of the matter interior solution
against radial perturbations taking into account the boundary
conditions at the junction to the exterior. This means, that if
for a certain interior solution stability against radial pertur-
bations follows, it is possible that other types of perturba-
tions, like nonspherical perturbations, scalar, vector, and
tensorial linear perturbations, and also generic nonlinear
perturbations, might give rise to instabilities. On the other
hand, if for a given interior solution instability against radial
perturbations follows, then the solution is certainly unstable.
In addition, some of the solutions displayed by us have a
Reissner-Nordström exterior which is outside its own gravi-
tational radius; other solutions also displayed have a
Reissner-Nordström exterior which is outside its own
Cauchy horizon radius. A stability analysis for the electro-
vacuum exterior region is not performed, but it is known that
a Reissner-Nordström exterior region outside its own gravi-
tational radius is stable against any type of perturbation,
which includes radial perturbations, while a Reissner-
Nordström exterior region containing a Cauchy horizon
might be unstable to all sorts of perturbations. So, for full
stability one has to take into account all possible sources of
perturbations that might arise in the full solution, namely, in
the interior and in the exterior regions. In brief, the upshot is
that stability of the solution against radial perturbations is a
necessary but not a sufficient condition for the solution to be
stable. Our stability analysis is concerned with radial
perturbations of the interior solution alone. When we refer
to a solution being stable or unstable, although itmight not be
explicitly stated, it is to mean specifically that the solution is
stable or unstable against this type of radial perturbations
studied. In summary, we perform a radial stability perturba-
tion analysis to a great variety of different objects that span a
range going from different sorts of star solutions to different
sorts of black hole solutions.
The present work is organized as follows. In Sec. II the

basic equations describing a spherically symmetric electri-
cally charged fluid are presented, a perturbation analysis due
to radial oscillations of the configurations is thoroughly
given with the displaying of the master perturbation
equation, and in addition the numerical methods used to
analyze this master perturbation equation are stated. In
Sec. III we describe all the electrically charged solutions,
namely, Schwarzschild and Reissner-Nordström black holes,
Schwarzschild stars, electrically charged stars, Bonnor stars,
tension charged stars, regular charged black holes with a
phantom core, regular charged black holes with a de Sitter
core, quasiblack holes, quasinonblack holes, among other
singular compact objects, which are contained in Guilfoyle’s
solution. In Sec. IV we study carefully and thoroughly the
stability of all the interesting solutions against adiabatic
radial perturbations, in particular the stability of quasiblack
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hole and quasinonblack hole configurations. In Sec. V we
conclude. In the Appendices A–E we perform some calcu-
lations and give some results that are used in the main text.

II. CHARGED FLUID SPACETIMES,
PERTURBATION EQUATIONS IN STATIC

SPHERICAL GEOMETRIES,
AND NUMERICAL SCHEMES

A. Basic equations

The spacetimes and the matter we consider are
described by the Einstein-Maxwell equations with electri-
cally charged matter, namely,

Gμν ¼ 8πTμν; ð1Þ

∇νFμν ¼ 4πJμ; ð2Þ

where Greek indices range from 0 to 3, 0 corresponding to a
timelike coordinate t, and 1,2,3 to spatial coordinates, Gμν

is the Einstein tensor, Tμν is the energy-momentum tensor,
∇μ represents the covariant derivative, Fμν is the Faraday-
Maxwell electromagnetic tensor, and Jμ is the charge
current density. The Einstein tensor Gμν is a function of
the metric gμν and its first two derivatives, and since it is a
long expression we do not write it explicitly. The energy-
momentum tensor Tμν has two contributions, one contri-
bution from the matter distribution denoted byMμν and the
other contribution from the electromagnetic field denoted
by Eμν, so that

Tμν ¼ Mμν þ Eμν: ð3Þ

The contribution from the matter is

Mμν ¼ ðρþ pÞuμuν þ pgμν; ð4Þ

i.e., it is a perfect fluid contribution, with ρ being the fluid
matter energy density, p being the isotropic fluid pressure,
and uμ being the fluid’s four-velocity. The contribution
from the electromagnetic fluid Eμν is

Eμν ¼
1

4π

�
Fγ
μFνγ −

1

4
gμνFγβFγβ

�
: ð5Þ

The Faraday-Maxwell tensor Fμν is defined in terms of a
vector potential Aμ by

Fμν ¼ ∇μAν −∇νAμ: ð6Þ

In turn this implies that Fμν obeys the internal Maxwell
equations F½μν;ρ� ¼ 0, with all the three indices being
antisymmetrized. For a charged fluid, the current density
is expressed as

Jμ ¼ ρeuμ; ð7Þ

with ρe standing for the electric charge density. The
constant of gravitation and the speed of light are set to
one. Note that the system of equations given in Eqs. (1)–(7)
is consistent, see Appendix A.

B. General spherical equations

We consider a static and spherically symmetric space-
time with line element in Schwarzschild coordinates
ðt; r; θ;φÞ given by

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2dΩ2; ð8Þ

where the metric potentials BðrÞ and AðrÞ depend only
upon the radial coordinate r, and dΩ2 ¼ dθ2 þ sin2 θdφ2

is the line element over the unit sphere. The matter is
composed of an isotropic electrically charged perfect fluid
with energy density ρðrÞ, pressure pðrÞ, electric charge
density ρeðrÞ, and velocity flow uμðrÞ, with

uμ ¼ −B−1
2ðrÞδμt ; ð9Þ

where δνμ stands for the Kronecker delta. The electromag-
netic field is described by the vector potential AμðrÞ
written as

Aμ ¼ −ϕðrÞδtμ; ð10Þ

where ϕðrÞ is the scalar electric potential.
The Einstein-Maxwell equations given by Eqs. (1) and (2),

together with Eqs. (3)–(7) and the corresponding definitions,
yield a set of three differential equations. A combination of
the components tt and rr of these equations provides two
equations, namely,

A0ðrÞ
AðrÞ þ

B0ðrÞ
BðrÞ ¼ 8πrAðrÞðρðrÞ þ pðrÞÞ; ð11Þ

�
r

AðrÞ
�0

¼ 1 − 8πr2
�
ρðrÞ þQ2ðrÞ

8πr4

�
; ð12Þ

where a prime denotes derivative with respect to the radial
coordinate r. In analogy to theReissner-Nordström spacetime
metric one often writes the metric function AðrÞ as
1

AðrÞ ¼ 1 − 2MðrÞ
r þ Q2ðrÞ

r2 , where M is the mass function, i.e.,

the mass inside a surface of radius r, and QðrÞ is the electric
charge function, i.e., the electric charge inside a surface
of radius r. In this case, instead of Eq. (12) one has

M0ðrÞ ¼ 4πr2ðρðrÞ þ Q2ðrÞ
8πr4 Þ þ 1

2
ðQ2ðrÞ

r Þ0, which integrates to

MðrÞ ¼ R r0 4πr2ðρðrÞ þ Q2ðrÞ
8πr4 Þdrþ

Q2ðrÞ
2r . The electric charge

function QðrÞ obeys Q0ðrÞ ¼ 4πρer2
ffiffiffiffiffiffiffiffiffi
AðrÞp

which can be
integrated to QðrÞ ¼ 4π

R
r
0 ρer

2
ffiffiffiffiffiffiffiffiffi
AðrÞp

dr. One can thus
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trade ρeðrÞ with QðrÞ and vice versa, noting that here and
throughout we prefer to use QðrÞ. The third Einstein-
Maxwell equation could be taken as its θθ component, but
it is more useful to take it from the contracted Bianchi
identities, or equivalently the energy-momentum conserva-
tion equation, ∇μTμν ¼ 0, which gives

2p0ðrÞ þ B0ðrÞ
BðrÞ ðρðrÞ þ pðrÞÞ −QðrÞQ0ðrÞ

2πr4
¼ 0: ð13Þ

The electric charge inside a surface within radius r, QðrÞ, is
given by the only nontrivial Maxwell equation, i.e.,

QðrÞ ¼ r2ϕ0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞp : ð14Þ

The present problem is then formulated in terms of four
equations, Eqs. (11)–(14), for six functions, namely, AðrÞ,
BðrÞ, ρðrÞ, pðrÞ, ϕðrÞ, and QðrÞ. Thus, to solve the system
two further relations for the functions must be given.

C. Radial perturbations of the fluid configurations

1. Lagrangian and Eulerian perturbations

We now derive the equations governing small perturba-
tions in a static spherically symmetric general relativistic
spacetime coupled to an electrically charged perfect fluid.
The equations of motion for the perturbations are important
as they allow the calculation of the normal modes of
oscillation and their frequencies, and thus enable to find
stability criteria for the equilibrium static configurations.We
use the method developed by Chandrasekhar for radial
perturbations in stellar equilibrium configurations in general
relativity and adapt it to electrically charged fluid spacetimes.
One can consider that at the radius r the physical

quantity fðr; tÞ suffers a Eulerian change, denoted by
δfðr; tÞ, so that

fðr; tÞ ¼ fiðrÞ þ δfðr; tÞ; ð15Þ

where fiðrÞ is the initial value of f, i.e., the value of f in
the static unperturbed equilibrium configuration. There is
another possible description for the perturbations. Any
fluid element at r is displaced to rþ ξðr; tÞ in the perturbed
state with ξ being the Lagrangian displacement of the fluid
element. This Lagrangian displacement quantity ξ connects
the fluid element in the unperturbed configuration to the
corresponding element in the perturbed configuration, and
in order for the displacement ξ to be a perturbation, it has to
be small, so one imposes jξj ≪ r. Due to this displacement,
any physical quantity fðr; tÞ has a Lagrangian change
Δfðr; tÞwhen measured by an observer that moves with the
perturbation, so that

fðrþ ξ; tÞ ¼ fiðrÞ þ Δfðr; tÞ: ð16Þ

This Lagrangian change is called Lie dragging of the quantity
f in general relativity. Comparing Eqs. (15) and (16), the
Eulerian perturbations δfðr; tÞ and the Lagrangian perturba-
tions Δfðr; tÞ are related in first order by

Δfðr; tÞ ¼ f0iðrÞξðr; tÞ þ δfðr; tÞ; ð17Þ

since in Eq. (16) one can write fðrþ ξ; tÞ as a first order
expansion in ξðr; tÞ, namely, fðrþ ξ; tÞ ¼ fðr; tÞ þ
f0iðrÞξðr; tÞ, where again a prime means derivative with
respect to r.

2. The perturbation equations

Now we consider general radial perturbations in equi-
librium charged fluid spacetimes, i.e., we consider pertur-
bations in the quantities BðrÞ, AðrÞ, ρðrÞ, pðrÞ, ϕðrÞ, and
QðrÞ, which were presented in the preceding section and
are by assumption solutions of the Einstein-Maxwell
equations. Since we are considering radial displacements
alone, there is a small nonzero radial fluid flow that causes
the spacetime metric and fluid variables to depend on time
maintaining its spherical symmetry. Thus, the Eulerian
perturbations can be written as

Bðr; tÞ ¼ BiðrÞ þ δBðr; tÞ;
Aðr; tÞ ¼ AiðrÞ þ δAðr; tÞ;
ρðr; tÞ ¼ ρiðrÞ þ δρðr; tÞ;
pðr; tÞ ¼ piðrÞ þ δpðr; tÞ;
ϕðr; tÞ ¼ ϕiðrÞ þ δϕðr; tÞ;
Qðr; tÞ ¼ QiðrÞ þ δQðr; tÞ; ð18Þ

where again the subscript i denotes the initial value of the
corresponding quantity. Due to the perturbation, the fluid’s
four-velocity acquires a radial component and can be
expressed in the form uμ ¼ ðut; ur; 0; 0Þ, where ut ¼ dt

dτ

and ur ¼ dr
dτ, τ being the proper time of the fluid element.

Thus, the components ut and ur are given up to first order by

ut ¼ B
−1
2

i

�
1 −

δB
2Bi

�
; ur ¼ _ξB

−1
2

i ; ð19Þ

where a dot indicates partial derivative with respect to the
coordinates t, and so the radial velocity _ξ≡ ∂ξ

∂t is the time
variation of the displacement of a fluid element relative to its
equilibrium position.
The combination of the tt and rr components of

the Einstein equations given in Eqs. (11) and (12) when
perturbed yield the following two equations which link the
perturbations δA, δB, δρ, δp, and δQ,

8πr2δρþ 2QiδQ
r2

−
�
rδA
A2
i

�0
¼ 0; ð20Þ
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8πr2δp −
2QiδQ
r2

þ δA
A2
i
−

r
Ai

��
δB
Bi

�0
−
B0
i

Bi

δA
Ai

�
¼ 0: ð21Þ

The other Einstein equation, i.e., ∇μTμν ¼ 0 given in
Eq. (13), when perturbed gives the following equation

Ai

Bi
ðρi þ piÞ̈ξþ δp0 þ ðρi þ piÞ

�
δB
2Bi

�0

þ ðδρþ δpÞ B0
i

2Bi
−
Q0

iδQ
4πr4

−
QiδQ0

4πr4
¼ 0: ð22Þ

The rt component of the Einstein equation, which in the
static case is devoid of content, when perturbed yields

8πðρi þ piÞAi
_ξþ ðδAÞ_

rAi
¼ 0: ð23Þ

We still need to deal with the perturbed quantities introduced
into the Maxwell equations. The perturbed Maxwell equa-
tions furnish now two differential equations for the perturbed
electromagnetic potential δϕ and for the perturbed electric
charge δQ. One of the perturbed equations is found by
perturbing the static equation given in Eq. (14), the other
equation is the r component in the Maxwell equations. After
some manipulation, the two equations imply in

δQþQ0
iξ ¼ 0: ð24Þ

We have six unknowns, namely, δA, δB, δρ, δp, δQ, and ξ,
and five equations, Eqs. (20)–(24). Thus, we still need a
relation, which is going to be a relation between the
perturbed pressure and the perturbed density. The new
natural equation is to impose the condition that the matter
is perturbed adiabatically, and so one has

γ ¼ ρi þ pi

pi

Δp
Δρ

; ð25Þ

where γ is the adiabatic index, and Δρ and Δp are the
Lagrangian perturbations of the energy density and the
pressure, respectively. So, Eqs. (20)–(25) form the set of
equations that will give a differential equation for ξ.
We have now to manipulate Eqs. (20)–(25) to obtain a set

of equations in useful form. The result is the following set
of six equations, see Appendix B,

δA ¼ −Ai

�
A0
i

Ai
þ B0

i

Bi

�
ξ; ð26Þ

�
δB
Bi

�0
¼ 8πAið2rp0

i − ðρi þ piÞÞξ

þ 8πAirδp −
2AiQiQ0

iξ

r3
; ð27Þ

δρ ¼ −ρ0iξ − ðρi þ piÞ
B

1
2

i

r2

�
r2B

−1
2

i ξ
�0
; ð28Þ

δp ¼ −p0
iξ − γ

piB
1
2

i

r2

�
r2B

−1
2

i ξ
�0
; ð29Þ

Ai

Bi
ðρi þ piÞ̈ξþ δp0 þ ðρi þ piÞ

�
δB
2Bi

�0

þ ðδρþ δpÞ B0
i

2Bi
−
Q0

iδQ
4πr4

−
QiδQ0

4πr4
¼ 0; ð30Þ

δQ ¼ −Q0
iξ: ð31Þ

So there are six equations for six unknowns.

3. Pulsation equation, boundary conditions, and stability
criteria for the equilibrium configuration

For the analysis of the stability or instability of the
equilibrium state of the fluid configurations, the equation of
motion given in Eq. (30) governing the perturbations in ξ
can be rewritten in a more useful form taking into account
δA in Eq. (26), δB in Eq. (27), δρ in Eq. (28), δp in Eq. (29),
and δQ in Eq. (31), where all quantities are expressed in
terms of ξ and the unperturbed variables. Considering that
all perturbations have a harmonic time dependence of
the form eiωt, where ω is the oscillation frequency, then
Eq. (30) together with all other equations becomes�
γ
p
r2
B

3
2A

1
2

�
r2B−1

2ξ

�0�0

−
�
8πAðρþ pÞ

�
pþ Q2

8πr4

�
−

1

ðρþ pÞ
�
QQ0

4πr4
− p0

�
2

þ 4

r
p0 − ω2ðρþ pÞA

B

�
BA

1
2ξ ¼ 0; ð32Þ

where we have dropped the subscript i which is irrelevant
from now onward. This is the modified Chandrasekhar
radial pulsation equation [21] with the inclusion of electric
charge. It serves to study the radial stability of the system.
This pulsation equation, Eq. (32), has also been found
in [22–27], although [26] has a term in Q00 incorrect.
One still needs to provide boundary conditions for

Eq. (32). One boundary condition is given at the origin
r ¼ 0, namely,

ξðr ¼ 0Þ ¼ 0; ð33Þ

which means that the fluid does not have radial motion at
the center. In fact ξðr ¼ 0Þ only needs to be finite but
we adopt without loss of generality Eq. (33). The other
boundary condition is given at the surface of the star r0,
namely, Δpðr ¼ r0Þ ¼ 0, specifically, the Lagrangian
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perturbation of the pressure is zero, which means that the
pressure does not change when the boundary is moved, it
indeed continues to be zero. In other words, this condition
expresses the fact that a fluid element located at the surface of
the unperturbed configuration is displaced to the perturbed
surface. Now, ΔpðrÞ can be taken directly from its Eulerian
perturbation δpðrÞ using Δp ¼ δpþ p0

iξ, which together

with Eq. (29) yields Δp ¼ −γ pB
1
2

r2 ðr2B−1
2ξÞ0 and this can

then be evaluated at r0 so that Δpðr ¼ r0Þ ¼ 0. This then
means that

ðr2B−1
2ξÞ0ðr ¼ r0Þ ¼ 0; ð34Þ

which is the second boundary condition.
The criteria for stability can now be established.

Equation (32), together with the boundary conditions
Eqs. (33) and (34), is an ω2 eigenvalue problem. Then,
if ω2 > 0 the system oscillates and it is stable, if ω2 ¼ 0
then the system stays static and there is neutral stability, and
if ω2 < 0 the system expands or collapses exponentially
and is unstable. We now turn to the formal implementation
of these stability criteria.

4. The pulsation equation in a convenient
Sturm-Liouville form

To implement the stability analysis and understand the
various possibilities related to stability or instability it is
important to rewrite Eq. (32) in a convenient Sturm-
Liouville (SL) form. Thus, appropriate manipulation of
Eq. (32) leads to the following second order ordinary
homogeneous differential equation,

FðrÞζ00ðrÞþGðrÞζ0ðrÞþ ½HðrÞþω2WðrÞ�ζðrÞ ¼ 0; ð35Þ

where

ζðrÞ ¼ r2B−1
2ξðrÞ; ð36Þ

and the coefficients FðrÞ, GðrÞ, HðrÞ, and WðrÞ are
given by

FðrÞ ¼ γpB
3
2A

1
2

r2
; ð37Þ

GðrÞ ¼ dFðrÞ
dr

; ð38Þ

HðrÞ ¼ B
3
2A

1
2

r2

�
1

ðρþ pÞ
�
QQ0

4πr4
− p0

�
2

−
4p0

r
− 8πAðρþ pÞ

�
pþ Q2

8πr4

��
; ð39Þ

WðrÞ ¼ ðρþ pÞB1
2A

3
2

r2
: ð40Þ

The boundary conditions given in Eqs. (33) and (34)
are now

ζðr ¼ 0Þ ¼ 0; ð41Þ

and

ζ0ðr ¼ r0Þ ¼ 0; ð42Þ

respectively. Depending on whether F is positive or
negative and whether W is positive or negative one can
state various theorems that indicate the stability character
of the solution, see Appendix C for the details concerning
the theorems.

5. Importance of the adiabatic index

The coefficient γ is defined in Eq. (25) and is an
important quantity for the stability analysis of compact
objects undergoing adiabatic perturbations, see indeed the
pulsation equation given by Eq. (32) or Eq. (35).
For a classical ideal gas the adiabatic index γ is of the

order of unity. It may assume very large values in the case
of liquids, and in the case of noncompressible fluids γ can
be taken as equal to infinity. The adiabatic index can be a
function of the energy density and pressure so that when
these change within the fluid the adiabatic index can also
change. For the study of radial perturbations on static and
spherically symmetric configurations, such as stars, pos-
itive constant values for γ, γ > 0, are assumed throughout
the configurations, a procedure we follow here. For a fluid
supported by tension, i.e., negative pressure, one has that ΔpΔρ
is negative and so from the definition of γ one has that it is
negative, γ < 0. Situations with negative γ will appear in
our analysis.

6. Numerical methods

In order to solve the perturbation equation, being an
eigenvalue SL problem, we use numerical methods,
namely, the shooting method, borrowing analysis and
results from [29–34], and the Chebyshev finite difference
method, borrowing analysis and results from [35–39]. For a
detailed analysis of these methods see Appendix D.

III. ELECTRICALLY CHARGED SPHERES:
GUILFOYLE’S SOLUTION

A. The analytical solutions

Now we turn to the specific electrically charged space-
times containing charged fluids that we will analyze.
The interior region solution, for which the radius is

interior to the boundary radius r0, r ≤ r0, is composed of an
electrically charged fluid. We have seen that in order to
find solutions for an electrically charged fluid there are
four equations, Eqs. (11)–(14), for six functions, namely,
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AðrÞ, BðrÞ, ρðrÞ, pðrÞ, ϕðrÞ, and QðrÞ, and so to solve
the system two further relations for the functions must
be given. Guilfoyle [1] gave two further relations with
physical content and mathematical motivation that make the
whole set of six equations self contained. The first relation is
an assumption with respect to the effective energy density

defined as ρðrÞ þ Q2ðrÞ
8πr4 , and one assumes that a generalized

Schwarzschild condition is obeyed, namely

8πρðrÞ þQ2ðrÞ
r4

¼ 3

R2
; ð43Þ

where R is a new constant parameter. The additional relation
is the assumption that the metric potential BðrÞ and the
electric potential ϕðrÞ are related through a generalizedWeyl
condition, namely

BðrÞ ¼ aϕ2ðrÞ; ð44Þ
where a is an arbitrary constant that we call the Guilfoyle
parameter. With Eqs. (11)–(14), and these two new equa-
tions, Eqs. (43) and (44), there is a closed system of
equations for the six unknowns AðrÞ, BðrÞ, ρðrÞ, pðrÞ,
ϕðrÞ, and QðrÞ that can be solved exactly. The interior
region solution is then given by explicit forms for the
functions AðrÞ, BðrÞ, ρðrÞ, pðrÞ, ϕðrÞ, and QðrÞ. The
metric function AðrÞ is given by

AðrÞ ¼
�
1 −

r2

R2

�−1
: ð45Þ

The metric function BðrÞ is given by

BðrÞ ¼
�ð2 − aÞ2

a2
F2ðrÞ

� a
a−2
; ð46Þ

where FðrÞ is defined as FðrÞ ¼ k0
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

R2

q
− k1, and

the integration constants k0 and k1 are found using
the junction conditions for a smooth matching to
an exterior Reissner-Nordström spacetime. They are

given by k0 ¼ R2

r2
0

ðmr0 −
q2

r2
0

Þð1 − r2
0

R2Þ−
1
a, and k1 ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

0

R2

q
×

½1 − a
2−a

r2
0

R2 ðmr0 −
q2

r2
0

Þ−1�, with m and q being the spacetime

mass and electric charge of the exterior Reissner-Nordström
spacetime, respectively. The perfect fluid quantities, namely
the energy density and the pressure, are

8πρðrÞ ¼ 3

R2
−

a
ð2 − aÞ2

k20
R4

r2

F2ðrÞ ; ð47Þ

8πpðrÞ ¼ −
1

R2
þ a
ð2 − aÞ2

k20
R4

r2

F2ðrÞ þ
2a

2 − a
k0
R2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

R2

q
FðrÞ ;

ð48Þ

respectively. The electric potential can be obtained from

the relation ϕðrÞ ¼ ϵ
ffiffiffiffiffiffiffi
BðrÞ
a

q
, see Eq. (44), where ϵ ¼ �1,

and so is given by

ϕðrÞ ¼ ϵffiffiffi
a

p
�ð2 − aÞ2

a2
F2ðrÞ

� a
2ða−2Þ

: ð49Þ

The electric charge density ρeðrÞ can be written as

4πρeðrÞ ¼ k0
R2

QðrÞ
rFðrÞ

�
1þ 3R2FðrÞ

k0r2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

R2

q �
where QðrÞ is

given by

QðrÞ ¼ ϵ
ffiffiffi
a

p
2 − a

k0
R2

r3

FðrÞ : ð50Þ

If one prefers to work with the mass MðrÞ already defined

and given by MðrÞ ¼ R r0 4πr2ðρðrÞ þ Q2ðrÞ
8πr4 Þdrþ

Q2ðrÞ
2r , then

one obtains MðrÞ ¼ r3

2R2 þ a
2ð2−aÞ2

k2
0

R4
r5

F2ðrÞ. We stick to AðrÞ
given in Eq. (45) instead of MðrÞ.
The exterior region solution, i.e., the region outside the

distribution of the electrically charged fluid, with r ≥ r0, is
empty of matter, it is a vacuum solution, and so the solution
of the Einstein-Maxwell equations is given by the Reissner-
Nordström solution,

AðrÞ ¼
�
1 −

2m
r

þ q2

r2

�−1
; ð51Þ

BðrÞ ¼ 1

AðrÞ ¼ 1 −
2m
r

þ q2

r2
; ð52Þ

with ρðrÞ ¼ 0, pðrÞ ¼ 0, such that m is a constant defining
the mass of the exterior spacetime, and

ϕðrÞ ¼ q
r
−

q
r0

þ ϵffiffiffi
a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r20
R2

r
; ð53Þ

with ρeðrÞ ¼ 0, such that q is a constant defining the total
electric charge, and the constant of integration was adjusted
such that the electric potential is a continuous function
through the boundary r ¼ r0. This exterior spacetime has
two important intrinsic radii, namely, the gravitational
and the Cauchy radii, which are given in terms of m
and q through the relations rþ ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
and

r− ¼ m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
, respectively. These radii are real,

and so physically relevant, when q < m, i.e., for under-
charged exterior spacetimes, and when q ¼ m, i.e., for
extremal, also called extreme, exterior spacetimes. The
radii rþ and r− are imaginary, and so of no interest, when
q > m, i.e., for overcharged exterior spacetimes. Moreover,
in q ≤ m cases, when r0 ≥ rþ one has that rþ is simply the
gravitational radius, whereas when r0 < rþ one has that rþ
is also an event horizon radius. In the samemanner in q ≤ m
cases, when r0 ≥ r− one has that r− is simply the Cauchy
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radius, whereas when r0 < r− one has that r− is also a
Cauchy horizon radius.
At the interface, in between the interior and the exterior

regions, there is a smooth boundary. By imposing smooth
boundary conditions of metric functions AðrÞ and BðrÞ at
the surface r ¼ r0, one obtains a relation between m, q, r0,
and R, and another relation between a, q, r0, and R. These
relations are given by

m ¼ r0
2

�
r20
R2

þ q2

r20

�
; ð54Þ

a ¼ r20
4q2

�
r20
R2

−
q2

r20

�
2
�
1 −

r20
R2

�−1
: ð55Þ

Thus, there are only three free parameters in the model.
These are chosen to be r0, q2, and R. The other important
parameters of the model are then written in terms of these
three (see [20]).

B. Plethora of the solutions: Stars, regular black holes,
quasiblack holes, and quasinonblack holes

The full spectrum of Guilfoyle’s solution was found
in [20]. Drawing on that work, we show in Fig. 1 the
relevant regions in the space of the solutions defined by

the parameters q2

R2 ×
r0
R, i.e., the space defined by the electric

charge q and the radius of the configuration r0, both

quantities in units of the radius R. The abscissa q2

R2 runs from
zero to infinity, and the ordinate r0

R possesses the remarkable

feature that it has a finite range, 0 ≤ r0
R ≤ 1, and so all the

possible configurations are displayed within this range.
Recall that R is an intrinsic radius, defined as the square
root of the inverse of the effective energy density. This
means that by giving R as the unit of measure, a move
along the configurations in the space of the solutions in
the figure can be seen as a change of the parameters q and
r0 in relation to R, and so in relation to the defined
constant effective energy density. To emphasize this point
we refer to the figure, and note that moving vertically in it
along r0

R can be interpreted as increasing the radius of the
configurations for the given fixed effective energy den-
sity, and in doing so, the mass also increases, up to the
point where either a singular configuration appears or an
event horizon and consequently a black hole appears in
the space of solutions. This way of seeing stars, namely,
constant density and with the radius of the configuration
increasing, was the way envisaged by Michell and
Laplace when they discussed dark stars two hundred
and fifty years ago. Nowadays, the discussion hinges
often instead on the quotient r0

rþ
, and so by decreasing r0

maintaining the gravitational radius rþ constant, one gets
a sequence of ever more compact objects. But here, in our
context, r0

rþ
has drawbacks. One is that there are cases in

which rþ does not exist, and another is that there are cases
where, although rþ exists, r0 is less than the Cauchy
horizon radius r−, so clearly outside the scope of r0

rþ
.

Definitely, R is a universal gauge for the full spectrum of
the solutions and so the quotient r0

R that we use is the
perfect parameter to deal with.
The regions, lines, and points described below are

referred to Fig. 1, and when required one refers to
Fig. 2, which is a blow up of a specific region of Fig. 1.
The figures will be important in the understanding of the
stability analysis. We will start the description with the

vertical axis q2

R2 ¼ 0 and then move counterclockwise, as
faithfully as possible, along the regions, lines, and points,
up to the very starting vertical axis.

Line q2

R2 ¼ 0 is the vertical axis and corresponds to the
interior Schwarzschild solutions, i.e., Schwarzschild stars.
These are solutions for a zero electrically charged incom-
pressible perfect fluid in static spherically symmetric
spacetimes. The lower endpoint in the limit, r0

R ¼ 0, gives
the Minkowski spacetime. This is a line of interest for the
stability problem.
Point B represents the Buchdahl bound, for which

r0 ¼ 9
4
m, i.e., r0 ¼ 9

8
rþ, and also obeys q2

R2 ¼ 0, and for
which the uncharged stars present an infinite central
pressure. This is a point of interest for the stability problem,
as a limiting point.
Region (a) contains normal stars, i.e., regular under-

charged stars, so m2 > q2, with positive energy density
ρðrÞ > 0, positive pressure pðrÞ > 0, and positive enthalpy

FIG. 1. All electrically charged solutions in a q2

R2 ×
r0
R space. The

regions, lines, and points shown in the plot are explained in detail
in the text. White regions consist of regular solutions and gray
regions consist of singular solutions.
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hðrÞ, hðrÞ ¼ ρðrÞ þ pðrÞ > 0. This is a region of interest
for the stability problem.

LineC0 obeys the equation aðr0R ; q
2

R2Þ ¼ 1. The pressure of
all objects on this line is zero, and they are all extremal
charged objects made of extremal matter. An extremal
charged object is an object that has mass m equal to charge
q,m2 ¼ q2, so rþ ¼ r−, and on the lineC0 each object obeys
r0 ≥ rþ ¼ r−. By extremal matter it is meant matter for
which the energy density is equal to the charge density,
ρðrÞ ¼ ρeðrÞ. On this line C0, the solutions are regular and
are called Bonnor stars. This is a line of interest for the
stability problem.
Region (b) contains regular overcharged stars, som2 < q2.

These are all tension stars for which ρðrÞ > 0 and pðrÞ < 0,
and that also satisfy the positive enthalpy condition
hðrÞ ¼ ρðrÞ þ pðrÞ > 0. This is a region of interest for
the stability problem.
Point Q from the left is extraordinarily interesting. It

represents quasiblack holes, which we abbreviate as
QBHs from now onward, and these obey r0

R ¼ 1 and
q2

R2 ¼ 1. It is a degenerated point since at Q there exist
many solutions with different physical and geometrical
properties which depend on the path followed to
approach Q. The solution may be a pressure quasiblack
hole if the point is reached from region (a), a pressureless
quasiblack hole if the point is reached by following the
line C0, or a tension quasiblack hole, if the point Q is
reached from region (b). We study below in detail these
quasiblack hole limits. This is a point of high interest for
the stability problem, as a limiting point, indeed, to find
the stability character of this point from the left is one of
the main motivations of the whole work.

Line C1 obeys the equation aðr0R ; q
2

R2Þ ¼ 0. It contains
singular objects. This is a line of no interest for the stability
problem.
Region (c) contains singular overcharged objects, so

m2 < q2. These are weird objects having the curvature
scalars and the fluid quantities diverging at some radius
inside the matter distribution. This is a region of no interest
for the stability problem.

Line C2 obeys the equation aðr0R ; q
2

R2Þ ¼ 1. The pressure
of all objects on this line is zero, and they are all charged
singular extremal black holes, i.e., black holes with
m2 ¼ q2, so r− ¼ rþ, and such that r0 < r− ¼ rþ. On
this line, the solutions are singular as the energy density and
the charge density, which obey ρðrÞ ¼ ρeðrÞ, diverge at

r ¼ 0. This line C2 has an elbow at q
2

R2 ¼ 27
16
¼ 1.6875. Line

C0 together with line C2 form a closed curved in the

parameter with equation aðr0R ; q
2

R2Þ ¼ 1. This is a line of
interest for the stability problem as it is a division line to
regular black holes.
Line r0

R ¼ r−
R ¼ 0 is the horizontal axis. It is a limiting line

on which some of the quantities such as the mass diverge.
The solutions belonging to this line are not compact
objects, in fact they correspond to Kasner spacetimes.
This is a line of no special interest for the stability problem.

Point S is the origin of the two axis; it obeys q2

R2 ¼ 0 and
r0
R ¼ 0. It represents different spacetimes depending on
the path followed to get there. For instance, it gives the
Schwarzschild black hole if the limit is taken by choosing

the ratio q2

r0
as a fixed finite number. This point is of no

special interest for the stability analysis.
Region (d1) contains regular black holes with a

central core of charged phantom matter for which hðrÞ ¼
ρðrÞ þ pðrÞ < 0 up to the boundary radius r0 with the
radius of the object r0 being inside the Cauchy horizon, i.e.,
r0 < r− ¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
. The energy density ρðrÞ is

negative for a range of the radial coordinate r inside the
matter core, while the pressure pðrÞ is negative everywhere
in the matter region. Regular black holes are always
interesting, so despite this negativity of the energy density,
they count as interesting solutions. This is a region of
interest for the stability problem.
Line C31 is drawn from two conditions, the first is that

hðr0Þ ¼ ρðr0Þ ¼ 0, which in turn implies q2

R2 ¼ 3r4
0

R4 , and the
second is that it verifies that hðrÞ has finite negative values
for all r inside the region of matter distribution. A segment
of this line separates region (d1) from region (d2), the
other segment of this line separates region (d1) from region
(e1). This latter segment coincides with a segment of the
line C32. This conjoint segment will then be called C31C32.
This is a line of interest for the stability problem.
Region (d2) contains regular black holes with a central

core of charged phantom matter for which the enthalpy

FIG. 2. A blow up of the previous figure to show region (e2).
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hðrÞ ¼ ρðrÞ þ pðrÞ < 0 close to the center and changes
sign toward the surface at radius r0, with r0 being inside the
Cauchy horizon, i.e., r0 < r− ¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
, so that all

the matter is fully inside the Cauchy horizon. The energy
density is positive and finite at the center, changes to
negative values at some r < r0 and changes back to positive
values close to the surface. This kind of configurations was
not separated in [20] where region (d) is now the region
(d1) plus the region (d2). It turns out that the sign change of
the enthalpy inside the matter core turns the region (d2)
different from region (d1) regarding the stability analysis.
This region is a region of interest for the stability problem.
Line C32 is drawn by the condition that the solution has

ρðrÞ ¼ 0 for some r inside the matter distribution region
and ρðrÞ ≥ 0 for all r. A segment of this line separates
region (d2) from region (e1), the other segment of this line
separates region (d1) from region (e1). This is a line of
interest for the stability problem.
Region (e1) contains regular black holes with charged

phantom matter for which hðrÞ ¼ ρðrÞ þ pðrÞ > 0 from
some radius r up to the boundary radius r0 with the radius
of the object r0 being inside the Cauchy horizon, i.e.,
r0 < r− ¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
, so that all the matter is fully

inside the Cauchy horizon. In this region the energy density
is positive, ρðrÞ > 0, for all 0 ≤ r ≤ r0. Regular black holes
are always interesting, and these having positive energy
density are certainly interesting solutions. This is a region
of interest for the stability problem.
LineC33 is drawn by using the condition that the solution

has vanishing central enthalpy density, i.e., hðr ¼ 0Þ ¼
ρðr ¼ 0Þ þ pðr ¼ 0Þ ¼ 0, and it also happens that the
configurations on this curve have an enthalpy density
hðrÞ ¼ ρðrÞ þ pðrÞwhich is positive for all r in the interval
0 < r ≤ r0. This line is not explicitly shown in [20]. Line
C33 separates region (e1) from region (e2), and is shown in
Fig. 2 which is a blow up of this zone of Fig. 1. This is a line
of interest for the stability problem.
Region (e2) contains regular black holes with a central

core of charged matter for which hðrÞ ¼ ρðrÞ þ pðrÞ > 0
up to the boundary radius r0, with r0 being inside the
Cauchy horizon, i.e., r0 < r− ¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
, so that the

all the matter is fully inside the Cauchy horizon. This
region has positive energy ρðrÞ > 0 and negative pressure
pðrÞ < 0. This kind of configurations was not shown
in [20] where region (e) is the region (e1) plus the region
(e2). It turns out that regarding the stability analysis the
kind of configurations in (e1) needs to be treated separately
from objects of region (e2). The region (e2) is shown in
Fig. 2 which is a blow up of this zone of Fig. 1. This is a
region of interest for the stability problem.
Line r0

R ¼ r−
R ¼ 1 is the semi-infinite line with r0

R ¼ 1 and

1 < q2

R2 < ∞ in Fig. 1. On this line, the object has a
boundary surface r0 of the matter that coincides with the
de Sitter horizon of the inner metric and with the inner

horizon of the Reissner-Nordström exterior metric, the
matching being on a lightlike surface. There are two

distinguished points on this line, the point Q at q2

R2 ¼ 1,

and the point D at q2

R2 ¼ 3, both containing configurations
with special properties. The segment of this line in the

interval 1 < q2

R2 < 3 is the top boundary of region (e2), and

the q2

R2 > 3 line is part of the top boundary of region (d1). On
this line, the metric coefficient BðrÞ takes the simple form

BðrÞ ¼ 1
4
ðq2R2 − 1Þ2ð1 − r2

R2Þ. After a time reparametrization

of the form 1
4
ðq2R2 − 1Þ2dt2 → dt2 the metric potentials turn

into a de Sitter metric, i.e., BðrÞ ¼ A−1ðrÞ ¼ ð1 − r2

R2Þ. In
the interior region, i.e., for 0 ≤ r

R < r0
R, the energy density

and pressure for the configurations in this line are given by
8πρðrÞ ¼ 3

R2 and 8πpðrÞ ¼ − 3
R2, so that the equation of

state is a de Sitter one, ρ ¼ −p, and with the charge density
tending to a Dirac delta function centered at the boundary
surface r ¼ r0. At the boundary r0, where here
r0 ¼ r− ¼ R, the energy density jumps from the value

8πρðrÞ ¼ 3
R2 to the value 8πρðr0Þ ¼ 3

R2 − q2

R4, and the pres-
sure jumps from the value 8πpðrÞ ¼ − 3

R2 to zero value,
8πpðr0Þ ¼ 0. Therefore, the enthalpy is zero throughout
the matter region, ρðrÞ þ pðrÞ ¼ 0, except at the boundary
surface, since there generically the energy density is non-
zero, ρðr0Þ ≠ 0, and the pressure is zero, pðr0Þ ¼ 0. There

is an exception: at the point q2

R2 ¼ 3, point D, the energy
density is zero, ρðr0Þ ¼ 0, and since the pressure is also
zero, the enthalpy is zero, so that the enthalpy is zero
throughout the matter region up to and including the
boundary r0, making point D a special point. This is a
line of interest for the stability problem.
Point D is a special and very interesting point. It

represents a regular de Sitter black hole with an electric
charge coat at the boundary. This boundary is a lightlike
surface at r0 ¼ r−. The interior solution is pure de Sitter.
For 0 ≤ r

R < r0
R, the energy density is given by 8πρðrÞ ¼ 3

R2

and the pressure by 8πpðrÞ ¼ − 3
R2, so that ρþ p ¼ 0, i.e.,

a cosmological constant equation of state is verified in this
region. For r

R ¼ r0
R, i.e., r ¼ r0, the energy density is given

by 8πρðr0Þ ¼ 0 and the pressure by 8πpðrÞ ¼ 0, so that
obviously ρþ p ¼ 0 in this surface, a feature that does not
happen for the other black holes on the line r0 ¼ r− ¼ R.
Thus, from the interior up to the boundary itself, the
enthalpy is zero, ρþ p ¼ 0. This solution is one of the
regular black holes found in [14]. Point D has physical
interest in itself and surely is of interest for the stability
problem.
Point Q from the right is also extraordinarily interesting.

It represents quasinonblack holes, which we abbreviate as
QNBHs from now onward. It is degenerated since there
exist many solutions with different physical and geomet-

rical properties for the same parameters, r0R ¼ 1 and q2

R2 ¼ 1,
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depending on the path followed from the right to approach
that point. The solutions have different characteristics
depending if point Q is reached from regions (d2), (e1),
or (e2). All these differences will be reflected in the stability
analysis. We study in detail below the QNBH limits.
Point Q from the right is a point of high interest for the
stability problem, as a limiting point.
Line r0

R ¼ rþ
R ¼ 1 is the segment of the line r0

R ¼ 1 with

the electric charge in the interval 0 < q2

R2 < 1. It contains
singular objects. This is a line of no special interest for the
stability problem.
Region (f) contains singular undercharged solutions, so

m2 > q2. These are all objects for which the energy density
and the pressure diverge at some r inside the matter
distribution. This is a region of no interest for the stability
problem.
Line C4 is the Buchdahl-Andréasson bound line char-

acterized by the central pressure of any object lying on this
line being infinite. One of the endpoints of this line is point
B, the Buchdahl bound point. This is a line of interest for
the stability problem, as a limiting line.
The description ends here, as the next line would be the

vertical axis that we have already described.

C. The quasiblack hole and quasinonblack hole limits

1. The five distinct quasiblack holes
and quasinonblack holes

As pointed out in [10], the solutions we are treating
admit QBHs. This happens when the mass m approaches
the electric charge q, m2 → q2, and the boundary radius r0
approaches the gravitational radius rþ, r0 → rþ, or equiv-
alently q2

R2 → 1 and r0
R → 1, so that one reaches the point Q

of Fig. 1. As also pointed out in [20], the point Q is a
degenerate point which represents several different kinds of
objects. However, one has to distinguish when Q is
approached from the left, which can give rise to QBHs,
from when Q is approached from the right, which can give
rise to QNBHS. QNBHs have their own properties distinct
from the properties of QBHs, as found in [19].
QBHs are obtained by compressing starlike configura-

tions with radius r0 quasistatically to the gravitational
radius rþ, r0 → rþ. In this limiting process one arrives at
point Q from the left, i.e., from the region of the parameter

space for which q2

R2 < 1, and also leads to r0 → rþ → r−.
The result is a starlike configuration on the verge of being a
charged extremalReissner-Nordströmblack hole, but instead
becoming a charged extremal Reissner-Nordström QBH.
QNBHs are obtained by decompressing regular black

hole configurations for which the radius r0 is smaller than
the inner radius r−, r0 < r−, up to the radius r−, r0 → r−. In
this limiting process one arrives at point Q from the right,
i.e., from the region of the parameter space for which
q2

R2 > 1, and leads to r0 → r− → rþ. The result is a regular

black hole on the verge of not being a charged regular
extremal Reissner-Nordström black hole, but instead
becoming a charged extremal Reissner-Nordström QNBH.
From the analysis of the liming procedure on the several

different classes of regular objects just performed, one finds
conclusively that QBH and QNBH configurations may be
obtained. This can also be confirmed by direct inspection of
Fig. 1. We now enumerate and describe the five types that
are obtained in the limiting procedure, with three types
being QBHs and two types being QNBHs.
(i) QBHs from regular undercharged pressure stars: These

arise from region (a), with the parameter a in the range 1 <
a < 8 approximately, below the line C4 and above the line
C0 in Fig. 1. TheseQBHs form fromdistributions of charged
matter for which the electric repulsion is less than the
gravitational attraction and there is matter pressure, p > 0.
The resulting objects are pressure QBHs, with m2 ¼ q2.
They are nonsingular, no curvature invariant diverges for the
whole spacetime. In the figure this case corresponds to
taking the limit to the pointQ from region (a), which means

a > 1 and q2

R2 <
r4
0

R4 ≤ 1 with the equality holding just at Q.
These configurations satisfy all the energy conditions and
the causality condition as long as 1 < a < 4

3
. This type of

QBHs has been investigated in detail in [10].
(ii) QBHs from extremal charged dust stars: These arise

from line C0 in Fig. 1 and have a ¼ 1, which means
q2

R2 ¼ r2
0

R2

�
2 − r2

0

R2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

0

R2

q �
. These configurations follow

from distributions of extremal charged dust, for which the
electric repulsion counterpoises the gravitational attraction
and there is no matter pressure, p ¼ 0. The resulting
objects are extremal QBHs, with m2 ¼ q2. They are non-
singular, no curvature invariant diverges for the whole
spacetime. In the figure, this case corresponds to taking the
limit to the point Q along the curve C0. This type of QBHs
has been investigated in [6], see also [3].
(iii) QBHs from overcharged tension stars: These arise

from region (b), with 0 < a < 1 and q2

R2 <
r4
0

R4, between lines
C0 and C1 in Fig. 1. These configurations follow from
distributions of charged matter, for which the electric
repulsion is greater than the gravitational attraction and
there is matter tension, p < 0. The resulting objects are
tension QBHs, with m2 ¼ q2. They are nonsingular, no
curvature invariant diverges for the whole spacetime. This
type of QBHs has been investigated in [10].
(iv) QNBHs from regular phantom black holes: These

arise from regions (d2) and (e1), with 1 < a < 4, and
q2

R2 ≥ 1, in Fig. 1. These configurations follow from regular
electrically charged black holes, for which the matter is
phantom, i.e., ρþ p < 0 everywhere. The resulting objects
are regular phantom QNBHs, with m2 ¼ q2. In the figure
this case corresponds to taking the limit to the pointQ from
regions (d2) and (e1). This type of QNBHs has not been
investigated, see Ref. [19] for an example of QNBHs.
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(v) QNBHs from regular normal black holes: These arise
from region (e2), with a > 4 approximately in Fig. 2 which
is a blow up of Fig. 1 to see this region. These configu-
rations follow from regular electrically charged regular
black holes, for which the matter is normal, i.e., ρþ p > 0
everywhere, with the pressure being negative. The resulting
objects are regular tension QNBHs, withm2 ¼ q2. In Fig. 2
this case corresponds to taking the limit to the pointQ from
region (e2). This type of QNBHs has not been investigated,
see Ref. [19] for an example of QNBHs.

2. Taking the limits to obtain quasiblack holes and
quasinonblack holes

The Guilfoyle parameter a, which by Eq. (55) is a

function of q2

R2 and r0
R, is not well defined in the limit to

the point Q. In fact, the parameter a may assume any value
there, depending on the path followed in the parameter space

to reach that point. To see this we write q2

R2 ¼ ð1� 2
ffiffiffi
ε

p Þ r4
0

R4

and
r2
0

R2 ¼ 1 − δ, where ε and δ are small non-negative
parameters. Upon substituting these expansions into
Eq. (55) one gets a ¼ ε

δ up to the correct order. Thus,

clearly, in the limits ε → 0 and δ → 0 the parameter aðq2R2 ;
r0
RÞ

is not a well defined function. It follows that, by para-

metrizing the problem in terms of q2

R2 and
r0
R , it is difficult to

keep control of the values of a during numerical calculations
when approaching the point Q. This control is necessary to
analyze the stability conditions of the QBH and QNBH
limits within each region of Fig. 1 near the point Q.
In order to avoid such a lack of control, we should

choose a particular relation between ε and δ, ε ¼ εðδÞ, and
in doing so a specific path has been chosen in the parameter
space. This is equivalent to choosing a specific relation

between the two independent parameters q2

R2 and r0
R, and

concomitantly considering a as a free parameter, as it was

done in [10]. To follow this rationale, we need to write q2

R2 as
a function of a and r0

R, which can be done by means of
Eq. (55). To proceed, we write

r20
R2

¼ 1 − δ; ð56Þ

with δ being a small positive number and with Eq. (56)
being valid in first order in δ, i.e., in a region close to the
point Q. With this assumption, the leading terms in the

expression for q2

R2 obtained from Eq. (55) may be written as
q2

R2 ¼ 1� 2
ffiffiffiffiffi
aδ

p þ 2ða − 1Þδ, or equivalently q2

R2 ¼ ½1�
2
ffiffiffiffiffi
aδ

p þ ð2a − 1Þδ� r20R2. Since δ is small and arbitrary, for
finite a we may write aδ≡ ε, i.e., Eq. (55) together with
Eq. (56) leads to

q2

R2
¼
h
1� 2

ffiffiffi
ε

p þ ð2a − 1Þ ε
a

i r20
R2

; ð57Þ

where ε is a small non-negative parameter given in terms of
a and δ by

ε ¼ aδ: ð58Þ

This relation means that the point Q is approached by
following straight lines in the parameter space, with the
� signs indicating if one reaches that point from the right
side or from the left side. Since each constant a defines a
curve in the parameter space, and all the curves for different
values of a reach the point Q, the parameter a is the
appropriate parameter to be used as a free parameter for the
present analysis. Hence, from now on we choose as free

parameters a and r0
R, instead of q2

R2 and r0
R , with intervals

0 < a < ∞ and 0 ≤ r0
R ≤ 1. Moreover, on one hand, the

minus sign in Eq. (57) indicates paths approaching the

point Q from the left, i.e., with q2

R2 < 1, which contains star
configurations in regions (a) and (b), and other singular
objects in regions (c) and (f). In this case, the limits ε → 0
and δ → 0 take the radius of the object under consideration,
be it a star or a singular configuration, to the limit of the
gravitational radius, i.e., almost to a black hole which is
the QBH limit [6]. On the other hand, the plus sign in
Eq. (57) indicates paths approaching the point Q from the

right, i.e., with q2

R2 > 1, which corresponds to other singular
objects in the region (c), and black hole configurations in
the regions (d2), (e1), and (e2). In this case, the limits ε → 0
and δ → 0 take the boundary matter in region (c) to the
limit of the gravitational radius, i.e., almost to a black hole
which is the QBH limit [6], and take the boundary matter in
the regions (d2), (e1), and (e2) to the Cauchy horizon radius
which is equal to the event horizon radius, i.e., to the
QNBH limit [19]. Then, we rewrite the relevant equations
of the model in terms of a and r0

R up to the first order in ε
and, at the end, take the limit r0R → 1 − δ

2
, with δ related to ε

through Eq. (58). For instance, one finds that, at the lowest
orders in ε, Eq. (54) implies in m

r0
¼ 1� ffiffiffi

ε
p þ ða − 1Þ ε

a

which, together with Eq. (57), gives m2

q2 ¼ 1þ a−1
a ε. Notice

then that one gets m2

q2 < 1 for 0 < a < 1 as expected, and
m2

q2 ≥ 1 for a ≥ 1 as also expected. Using the same pro-

cedure one also finds that the constants k0 and k1 that
appear in the expressions for the metric functions, matter
functions, and electric functions are k0 ¼ ∓a

1
aε

a−2
2a , and

k1 ¼ �
ffiffi
a

p
k0

2−a ¼ − a
aþ2
2a

2−a ε
a−2
2a . All equalities are approximate

equalities, correct up to the first order in the expansion.
We now find the expressions for the metric potentials, the

matter functions, the electric potential, and the electric
charge, when the configurations approach the QBH or the
QNBH limits. Taking the expansions given in Eqs. (56)–(58)
and the approximations for k0 and k1 presented in the last
paragraph into the corresponding equations for the metric
potentials, Eqs. (45)–(46), we find
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AðrÞ ¼
�
1 −

r2

r20

�
1 −

ε

a

��−1
; ð59Þ

BðrÞ ¼
 
1 ∓ 2 − affiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

r20

s ! 2a
a−2 ε

a
; ð60Þ

where we have written R, m, and q in terms of a, r0, and ε.
All equalities are valid up to first order. Now, taking the
expansions given in Eqs. (56)–(58) into the corresponding
equations for the fluid quantities, namely, the energy density
and the pressure, Eqs. (47)–(48), one finds

8πρðrÞ ¼ 3

r20
−
r2

r40

 
2 − affiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

r20

s
∓ 1

!−2

; ð61Þ

8πpðrÞ ¼ −
1

r20
þ r2

r40

 
2− affiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

r2

r20

s
∓ 1

!−2

þ 2
ffiffiffi
a

p
r20

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

r2

r20

s  
2− affiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

r2

r20

s
∓ 1

!−1

: ð62Þ

These are the zeroth order approximations for ρðrÞ and pðrÞ
in which r2

0

R2 ¼ 1 and, as a consequence, m2 ¼ q2 ¼ r20.
Taking the expansions into the corresponding equation

for the electric potential of the interior region, Eq. (49), one
finds

ϕðrÞ ¼ ϵ

 
1 ∓ 2 − affiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

r20

s ! a
a−2 ffiffiffi

ε
p
a

: ð63Þ

Taking the expansions given in Eqs. (56)–(58) into the
corresponding equation for the electric charge of the
interior region, Eq. (50), one finds

QðrÞ ¼ ϵr3

r20

 
2 − affiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

r20

s
∓ 1

!−1

; ð64Þ

that is also a zeroth order approximation such that r0 ¼ R.
Similarly, the approximated expressions of all quantities

related to the exterior solution are obtained. The corre-
sponding limits for the metric potentials of the exterior
region solution, with r ≥ r0, can be obtained. The potential
AðrÞ in Eq. (51) is then

AðrÞ ¼
��

1 −
r0
r
½1� ffiffiffi

ε
p �
�

2

−
r0
r

�
2 −

r0
r

�
a − 1

a
ε

�
−1
;

ð65Þ

and the potential BðrÞ ¼ 1
AðrÞ in Eq. (52) is then

BðrÞ ¼
�
1 −

r0
r
½1� ffiffiffi

ε
p �
�

2

−
r0
r

�
2 −

r0
r

�
a − 1

a
ε: ð66Þ

Taking the expansions into the corresponding equation
for the electric potential of the exterior region, Eq. (53),
one finds

ϕðrÞ ¼ ϵ

�
r0
r
− 1

�
ð1� ffiffiffi

ε
p Þ þ ϵ

ffiffiffi
ε

p
a

; ð67Þ

where the integration constant has been adjusted so that the
function in (67) equals the function for the interior electric
potential given in (63) at the boundary.
The approximate relations given in this section hold for

both QBH and QNBH cases, with the lower sign in � or∓
holding for QBH configurations while the upper sign holds
for QNBH configurations. QBHs occur for a > 1 with
q2

R2 ¼ 1–2
ffiffiffi
ε

p
and for 0 < a ≤ 1 with q2

R2 ¼ 1–2
ffiffiffi
ε

p
. QNBHs

occur for a > 1 with q2

R2 ¼ 1þ 2
ffiffiffi
ε

p
. The relations given in

Eqs. (61), (62), and (64) are the zeroth order approxima-
tions in

ffiffiffi
ε

p
. The other relations are first order approxima-

tions in
ffiffiffi
ε

p
.

D. Summary of the plethora of solutions

Within the electrically charged spherically symmetric
solutions presented here, there are many solutions of
interest, either because they may represent actual objects
within the physical universe, or they have in themselves
interesting physical features, like a rich causal behavior,
relevant matter characteristics, or some other important
aspect. Almost all these solutions have a core of electrically
charged matter and a Reissner-Nordström exterior, exclud-
ing some degenerate cases that we have mentioned.
A sketch of all solutions that naturally appeared within

the class studied is given in Table I. A concise description
of these solutions is now given. With respect to objects that
can be classified as stars, i.e., star solutions, there is a list
that we should refer to. There are the interior Schwarzschild
solutions, i.e., Schwarzschild stars, the first member of this
family being a black hole, and the last member of the family
being the Schwarzschild star saturating the Buchdahl
bound. There are also uncharged singular star solutions.
There are undercharged stars, the last members of this
family are stars saturating the Buchdahl-Andréasson
bound. There are also undercharged singular star solutions.
There are extremal charged objects, e.g., the Bonnor stars,
the exterior being an extremal Reissner-Nordström space-
time. There are tension overcharged stars. There are QBHs
that appear in distinct forms, namely, pressure QBHs,
pressureless QBHs, and tension QBHs. There are also
singular overcharged objects and singular extremal charged
objects. There are Kasner-like objects, which are highly
singular. With respect to objects that can be classified as
regular black holes there is the following list. There are
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regular black holes with negative energy densities, regular
black holes with a central core of charged phantom matter,
regular tension black holes with positive enthalpy density,
and there is a regular de Sitter black hole with an electric
charge coat at the boundary. There are QNBHs. There is
also a number of nonregular black holes. All these different
solutions are found within the class of the Guilfoyle
solution presented above.
The stability of an object and of a solution is an

important feature that it must possess in order to be
considered of relevance in the set of natural objects.
Thus, we now turn to the stability problem of these objects.

IV. STABILITY ANALYSIS OF THE ELECTRIC
CHARGED SPHERES: RESULTS FOR REGULAR
STARS, REGULAR BLACK HOLES, QUASIBLACK

HOLES, AND QUASINONBLACK HOLES

A. The stability of regular stars

1. Zero electric charged stars: q2

R2 = 0,
i.e., Schwarzschild stars

The Schwarzschild star solutions, composed of a
Schwarzschild interior and a Schwarzschild exterior vac-

uum solution, are given by q2

R2 ¼ 0 with variable r0
R.

The expressions for the metric potentials, the fluid
quantities, and the electric quantities, are obtainable
from Guilfoyle’s solution, see Ref. [20]. In Fig. 1 these
Schwarzschild stars correspond to the vertical axis.
In this case, the energy density and the pressure are

positive functions everywhere inside the matter. Thus,
one finds that the enthalpy hðrÞ ¼ ρðrÞ þ pðrÞ > 0 and,
as a consequence, assuming that the adiabatic index obeys
γ > 0, the coefficients FðrÞ and WðrÞ that appear in
Eq. (35) are both positive functions, and so in the SL
problem this leads to the case (A) of the theorem given in
Appendix C. Therefore, stable solutions to radial pertur-
bations are found for positive adiabatic indices such that
γ > γcr, where γcr is the critical value, the minimum value
of γ for which the solution is stable, (see [21]). We note
here, in passing, that for numerical analysis the frequencyω
is normalized as ωR. From this section onward, including
all the figures dealing with stability, we drop R to simplify
notation.
In Fig. 3 we show the numerical results for the critical

adiabatic index γcr as a function of the normalized radius of

the star r0
R for zero electric charge, q

2

R2 ¼ 0. The vertical axis
bounds the plot on the left. The vertical dotted line on the
right in the plot is the Buchdahl bound [4], see also [5],
which is represented by point B in Fig. 1. In the plot there is

TABLE I. The plethora of solutions.

Configurations Features Location in the parameter space

Schwarzschild stars Uncharged, regular Line q2

R2 ¼ 0, 0 < r0
R < 2

ffiffi
2

p
3

Buchdahl limit Singular Schwarzschild star Point B: q2

R2 ¼ 0, r0
R ¼ 2

ffiffi
2

p
3

Undercharged stars Regular, q2 < m2 Region (a)
Buchdahl-Andréasson limit Singular undercharged star Line C4

Undercharged stars Singular, q2 < m2 Region (f)

Extremal charged stars Regular, q2 ¼ m2 Line C0

Overcharged tension stars Regular, q2 > m2, −1 < p
ρ < 0 Region (b)

Overcharged tension stars Singular, q2 > m2 Line C1 and region (c)
Extremal charged stars Singular, q2 ¼ m2 Line C2

Regular phantom black holes q2 < m2, phantom matter: p
ρ < −1 Regions (d1) and (d2), and line C31

Regular phantom black holes q2 < m2, phantom matter: −1 < p
ρ < 0, ρ < 0 Region (e1) and line C32

Regular tension black holes q2 < m2, −1 < p
ρ < 0, ρ > 0 Region (e2)

Regular de Sitter black hole q2 < m2, p
ρ ¼ −1, ρ > 0 Point D: q2

R2 ¼ 3, r0
R ¼ 1

Regular pressure quasiblack holes q2 ¼ m2, regular pressure core: p
ρ > 0 Point Q from region (a)

Singular quasiblack holes q2 ¼ m2, singular pressure core: p
ρ > 0 Point Q from region (f) and line C4

Regular quasiblack holes q2 ¼ m2, regular pressureless core: p
ρ ¼ 0 Point Q from line C0

Regular tension quasiblack holes q2 ¼ m2, regular tension core: −1 < p
ρ < 0 Point Q from region (b)

Singular quasiblack holes q2 ¼ m2, singular tension core: −1 < p
ρ < 0 Point Q from line C1 and region (c)

Singular quasiblack holes q2 ¼ m2, singular pressureless core: p
ρ ¼ 0 Point Q from line C2

Regular quasinonblack holes q2 ¼ m2, phantom matter: p
ρ < −1 Point Q from region (d2)

Regular quasinonblack holes q2 < m2, phantom matter: −1 < p
ρ < 0, ρ < 0 Point Q from region (e1) and line C32

Regular tension quasinonblack holes q2 < m2, −1 < p
ρ < 0, ρ > 0 Point Q from region (e2)

Kasner spacetimes Line r0
R ¼ 0, q2

R2 > 0
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the white region that represents the range of the parameter r0R
where regular Schwarzschild stars are found, and the light
gray region that contains Schwarzschild stars that are
singular. The solid line drawn is for the vanishing funda-
mental oscillation frequency squared, i.e., for ω2

0 ¼ 0,
which means that ω2

0 changes sign across this curve. All
configurations represented by points located above the
ω2
0 ¼ 0 line are stable stars, i.e., all ω2

n are positive, all
configurations represented by points located below the
ω2
0 ¼ 0 line are unstable stars. The solid line starts at r0R ¼ 0

and extends to point B, the Buchdahl limit, given by
r0
R ¼ 2

ffiffi
2

p
3

¼ 0.943, where this last equality is approximate,
and where γcr diverges. Let us comment in more detail on
these configurations and their stability. The limit r0R ¼ 0 for
zero charge stars means that there is no star. Indeed, for R
fixed, taking the limit of r0 going to zero means that the
mass of the stars goes to zero sufficiently fast so that in the
r0 ¼ 0 limit there is no mass and so no star. But since R is
fixed, and so the effective density is fixed, although there
is no mass, no star, and no gravity, there is a fluid, and this
means that the spacetime is that of a fluid composed of test
fluid elements in Minkowski spacetime. In this case to be
stable the lowest γcr is the γcr for a fluid in the laboratory,
with no gravity, and it is γcr ¼ 4

3
¼ 1.33, where this last

equality is approximate. It is worth noting that such an
interpretation can be given only after the stability analysis
is made, because only then it is possible to understand
that in this limit there is a test fluid in a Minkowski
spacetime rather than pure empty Minkowski spacetime. At
the other end of the plot, at the point B in Fig. 1, i.e., for
r0
R ¼ 2

ffiffi
2

p
3

¼ 0.943, where this latter value is an approximate
value, it can be taken to mean that for some R fixed, and

since R is the inverse of the effective density, for some
fixed effective density, there is a sufficiently high r0 that
makes the star relatively large but compact. It is indeed a
Schwarzschild star at the Buchdahl limit. In this case to be
stable a very high γcr is necessary, and at the Buchdahl limit
γcr has to be infinite to provide a stable star against radial
perturbations. Since in this picture we are fixing R and so
the effective density of the star, it is the way of considering
a compact star as Michell and Laplace have done, namely,
the density of the star is given and fixed, the star has
relatively large mass and large radius, but is in all measures
compact.
In Fig. 4 we show the numerical results for the critical

adiabatic index γcr as a function of the normalized radius r0
rþ

for zero electric charge, namely, q2

R2 ¼ 0. It is interesting to
show this new plot of γcr as a function of

r0
rþ
as some features

are highlighted and complementary to the plot of Fig. 3,
noting that r0

rþ
and r0

R are convertible from one to the other.

The vertical dotted line on the left in the plot is the
Buchdahl bound [4], see also [5], which is repre-
sented by point B in Fig. 1. On the right the plot extends
to infinity. In the plot there is the light gray region that
contains singular Schwarzschild stars, and the white region
that represents the range of parameter r0

rþ
where regular

Schwarzschild stars are found. The solid line drawn is for
the vanishing fundamental oscillation frequency squared,
i.e., for ω2

0 ¼ 0, which means that ω2
0 changes sign across

such a curve. All configurations represented by points
located above the ω2

0 ¼ 0 line are stable stars, i.e., all ω2
n are

positive, all configurations represented by points located

FIG. 3. Stability of zero charge stars, i.e., Schwarzschild stars.
These stars are on the vertical line q2

R2 ¼ 0 of Fig. 1. The critical
adiabatic index γcr, which gives the γ for which ω2

0 ¼ 0, is shown
as a function of the radius r0

R. The region above the line is stable to
radial perturbations, the region below the line is unstable. It is
seen that γcr starts at 43, and as the star gets more compact the γcr
gets higher and higher. The light gray region corresponds to stars
that are not regular and are beyond the Buchdahl limit.

FIG. 4. Stability of zero charge stars, i.e., Schwarzschild stars.
These stars are on the vertical line q2

R2 ¼ 0 of Fig. 1. The critical
adiabatic index γcr, which gives the γ for which ω2

0 ¼ 0, is shown
as a function of the radius r0

rþ
. The region above the line is stable

against radial perturbations, the region below the line is unstable.
It is seen that for a Schwarzschild star at the Buchdahl limit γcr is
unlimited and then decreases up to 4

3
. The light gray region

corresponds to stars that are not regular and are beyond the
Buchdahl limit.
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below the ω2
0 ¼ 0 line are unstable stars. The solid line

starts at r0rþ ¼ 9
8
that corresponds to the Buchdahl bound, and

extends to r0
rþ
infinitely large. Let us comment in more detail

on these configurations and their stability. The limit r0
rþ

¼ 9
8

means that the radius of the star is very compact, indeed it is
a Schwarzschild star at the Buchdahl limit, almost at the
r0 ¼ rþ QBH limit. In this case to be stable a very high γcr
is necessary, and at the Buchdahl limit γcr has to be infinite
to provide a stable star against radial perturbations. Since in
this picture we are fixing rþ, and so the spacetime mass, it
is the way of considering a compact star as it is nowadays
usually done, as for instance in the work of Chandrasekhar
[21]. With the parameter r0

rþ
one gets the compactness of the

star immediately. At the other end, for r0
rþ
indefinitely large,

one has that the radius of the star is very large compared
with rþ and so the star is highly disperse. In the limit that r0
is infinite there is a fluid made of test fluid elements in a
Minkowski background. In this case to be stable the lowest
γcr is the γcr for a fluid in the laboratory, with no gravity,
and it is γcr ¼ 4

3
¼ 1.33, where this last equality is approxi-

mate. Again, this interpretation can be given only after the
stability analysis is made, because only then it is possible to
understand that in this limit there is a test fluid in a
Minkowski spacetime rather than pure empty Minkowski
spacetime.
In Table II we give details of the numerical results for the

stability of the Schwarzschild stars, i.e., zero charged stars.
The behavior of γcr as a function of the radius r0

R and r0
rþ
,

for q2

R2 ¼ 0, is displayed. The values of the critical adiabatic
index γcr are obtained from the shooting and the pseudo-
spectral methods, and are in agreement to each other up
to six decimal places. Our results are in good agreement
with the values of the critical adiabatic index γch calculated
in [21] (see the fourth column of the table) and are in very
good agreement with the values of the critical adiabatic
index γpc calculated in [28] (see the fifth column of the

table). Note, however, that there is a difference between the
critical γch calculated by Chandrasekhar [21] and the
critical γpc calculated in [28] and by us as r0

R approaches

from below r0
R ¼ 2

ffiffi
2

p
3

¼ 0.943, with the latter number
being approximate, and as r0

rþ
approaches from above

r0
rþ

¼ 9
8
¼ 1.125, i.e., the Buchdahl point B in Fig. 1.

This difference may be explained by the fact that the trial
functions used by Chandrasekhar do not approximate the
true eigenfunctions in the limit of large r0

R [28].

2. Undercharged pressure stars: 0 < q2 < m2

Undercharged pressure stars are stars with 0 < q2 < m2

and also obey 0 < q2

R2 < 1. These configurations belong to
region (a) between lines C0 and C4 in Fig. 1.
In this case, the energy density and the pressure are

positive functions everywhere inside the matter. Thus,
one finds hðrÞ ¼ ρðrÞ þ pðrÞ > 0 and, as a consequence,
assuming γ > 0 the coefficients FðrÞ and WðrÞ that appear
in Eq. (35) are both positive functions, and so in the SL
problem this leads to the case (A) of the theorem given in
Appendix C. Therefore, similarly to the case of the zero
charged Schwarzschild stars, stable solutions to radial
perturbations are found for positive adiabatic indices such
that γ > γcr.
In Fig. 5 we show the numerical results for the critical

adiabatic index γcr as a function of the radius r0
R for four

values of the electric charge, namely, q2

R2 ¼ 0.1, q2

R2 ¼ 0.3,
q2

R2 ¼ 0.6, and q2

R2 ¼ 0.8, as indicated in the figure. In each
plot the light gray region on the left side contains solutions
that are overcharged stars and so require a different
analysis. The white region represents the range of the
parameter r0

R where regular undercharged stars are found.
The vertical dotted line on the right side of each of the four
plots indicates the Buchdahl-Andréasson bound [4], see
also [5], which is represented by the curve C4 in Fig. 1. The
light gray region on the right side contains solutions for
singular undercharged stars, i.e., undercharged configura-
tions with higher radii, namely, the ones whose values of r0

R
are on or above the curve C4, i.e., in the region (f) in Fig. 1.
Since they are singular undercharged star solutions they
are of little interest in general and in particular for the
stability analysis. The solid curved line in each of the four
plots is for the vanishing fundamental oscillation frequency
squared, i.e., for ω2

0 ¼ 0, which means that ω2
0 changes sign

across such a curve. All configurations represented by
points located above the ω2

0 ¼ 0 line are stable stars, i.e., all
ω2
n are positive, all configurations represented by points

located below the ω2
0 ¼ 0 line are unstable stars. Each solid

curved line starts at some radius r0
R that corresponds to a

point just outside the curve C0 with a relatively low γcr and
extends to some point r0

R on the curve C4 at the Buchdahl-
Andréasson bound where γcr diverges. For instance, the

TABLE II. The critical adiabatic index γcr for the radial

perturbations of zero charged stars, q2

R2 ¼ 0, i.e., Schwarzschild
stars, with different radii r0

R and r0
rþ
. For not so large r0

R, our

results are in good agreement with the values γch found by
Chandrasekhar [21] for various values of the parameter
0.00 < r0

R < 0.819, and for all r0R our results are in good agreement
with the values γpc found in [28]. These zero charged stars are in

the vertical axis q2

R2 ¼ 0 of Fig. 1.

r0
R

r0
rþ

γcr γchð1Þ [21] γpc [28]

0.342 8.549 1.39406 1.3940 1.394010
0.500 4.000 1.48957 1.4890 1.489546
0.707 2.000 1.84347 1.8375 1.843456
0.819 1.490 2.55434 2.5204 2.554324
0.907 1.217 6.12566 5.5802 6.125634
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range of radii r0
R corresponding to regular undercharged

stars for the case q2

R2 ¼ 0.3 is from r0
R ¼ 0.915703 to

r0
R ¼ 0.979269, where the numbers are approximate values,
as can be confirmed from the top right panel of Fig. 5.
Note that, for a fixed finite adiabatic index γ, the under-
charged pressure stars are stable configurations against
radial perturbations for a relatively small star radius, i.e.,
small r0

R which, since R is a constant with the meaning of
inverse effective energy density, means a normal star far
from the Buchdahl-Andréasson bound and so far from
forming a horizon. At the Buchdahl-Andréasson bound,
these stars are unstable as they need an infinite γcr.
In Fig. 6 we show the numerical results for the critical

adiabatic index γcr but now as a function of the radius r0
rþ
,

instead of r0
R . The radius

r0
rþ
helps in a better understanding

of the compactness of the star, i.e., in the relation between
the star radius r0 and its gravitational radius rþ, which is
now the quantity kept constant, rather than R. The critical
adiabatic index γcr is shown for the same four values of

the electric charge, namely, q2

R2 ¼ 0.1, q2

R2 ¼ 0.3, q2

R2 ¼ 0.6,

and q2

R2 ¼ 0.8, as indicated in the figure. In each plot, the
light gray region on the left side contains solutions for
singular undercharged stars, i.e., undercharged configu-
rations with small radii, namely, configurations for which
the values of r0

rþ
are on or above the curve C4 in the region

(f) of Fig. 1, and since they represent singular solutions,
they are of little interest. The vertical dotted line in the left
side of each of the four plots indicates the Buchdahl-
Andréasson bound [4], see also [5], which is represented
by the curve C4 in Fig. 1. The white region represents the
range of the parameter r0

rþ
where regular undercharged

stars are found. The light gray region on the right side
contains solutions that are overcharged stars, which
require a different analysis. The solid curved line in each
of the four plots is for the vanishing fundamental
oscillation frequency squared, i.e., for ω2

0 ¼ 0, which
means that ω2

0 changes sign across such a curve. All
configurations represented by points located above the

FIG. 5. Stability of regular undercharged pressure stars.
These stars are stars with 0 < q2 < m2, also obey 0 < q2

R2 < 1,
and belong to region (a) between lines C0 and C4 in Fig. 1. The
critical adiabatic index γcr for four values of the electric charge

parameter q2

R2 ¼ 0.1, q
2

R2 ¼ 0.3, q
2

R2 ¼ 0.6, and q2

R2 ¼ 0.8, is shown as
a function of the radius r0

R . In each of the four plots, the line starts
at a minimum radius r0

R which corresponds to a value γcr at some
point on the curve C0, and extends to relatively large values as r0

R
grows and approaches the line C4. The light gray region on the
left side of each plot corresponds to stars that are not under-
charged, and the light gray region on the right side of each plot
corresponds to stars that are not regular and are beyond the
Buchdahl-Andréasson limit.

FIG. 6. Stability of regular undercharged pressure stars. These
stars are stars with 0 < q2 < m2 and also obey 0 < q2

R2 < 1 and
belong to region (a) between lines C0 and C4 in Fig. 1. The
critical adiabatic index γcr for four values of the electric charge

parameter q2

R2 ¼ 0.1, q
2

R2 ¼ 0.3, q
2

R2 ¼ 0.6, and q2

R2 ¼ 0.8, is shown as
a function of the radius r0

rþ
. In each of the four plots, the line starts

on the right at some radius r0
rþ
on the line C4 which corresponds to

the Buchdahl-Andréasson bound and where γcr diverges, and
extends to some r0

rþ
on the line C0 and where γcr has some positive

given value. The light gray region on the left side of each plot
corresponds to stars that are not regular and are beyond the
Buchdahl-Andréasson limit, and the light gray region on the right
side of each plot corresponds to stars that are not undercharged.
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ω2
0 ¼ 0 line are stable stars, i.e., all ω2

n are positive, all
configurations represented by points located below the
ω2
0 ¼ 0 line are unstable stars. The solid curved line starts

from the left at the curve C4 at the Buchdahl-Andréasson
bound where the stars are very compact and γcr diverges
and extends to the right at some minimum for relatively
large r0

rþ
, that corresponds to a point on the curve C0 where

the stars are no longer undercharged. Stability of stars
with r0

rþ
approaching the curve C4, i.e., approaching the

Buchdahl-Andréasson bound, occurs just for arbitrarily
large values of the adiabatic index. For a fixed adiabatic
index, the undercharged pressure stars are stable con-
figurations against radial perturbations for relatively large
radius, i.e., large r0

rþ
.

In Table III we give details of the numerical results for
the stability of an undercharged star. The behavior of γcr as

a function of the radius r0
R and r0

rþ
, for q2

R2 ¼ 0.3, is displayed.

The values of the critical adiabatic index γcr are obtained
from the shooting and the pseudospectral methods, and are
in agreement to each other up to six decimal places. We
have calculated the zero mode frequencies squared ω2

0 and

the first mode frequencies squared ω2
1 for these q2

R2 ¼ 0.3
stars with γ ¼ 4. We find that a star with r0

R ¼ 0.933863 and
so r0

rþ
¼ 1.3012 has ω2

0 ¼ 2.34262 × 10−3, ω2
1 ¼ 0.541388,

and γcr ¼ 3.86695, so γ ¼ 4 being above γcr this star is
stable under radial perturbations, while a star with r0

R ¼
0.942943 and so r0

rþ
¼ 1.23458 has ω2

0 ¼ −0.01355012,
ω2
1 ¼ 0.628574, and γcr ¼ 4.70936, so γ ¼ 4 being below

γcr this star is unstable. The solutions for these under-
charged pressure stars having radii extending from approx-
imately r0

R ¼ 0.915703 to approximately r0
R ¼ 0.979269,

in the γ ¼ 4 adiabatic index case have ω2
0 positive in the

range 0.915703 ≤ r0
R ≤ 0.942943, where the values given

are approximate values, and ω2
0 negative in the range

0.942943 ≤ r0
R ≤ 0.979269, where the values given are

approximate values, as it can be seen in more detail in
Appendix E.

Undercharged stars that are singular are stars with
q2 < m2 and also are above the Buchdahl-Andréasson
curve C4. These configurations belong to region (f), the
region between the horizontal line r0 ¼ rþ ¼ R and the
line C4 in Fig. 1. They are of no interest for the stability
problem since the curvature scalars and the fluid quantities
diverge at some radius inside the matter distribution.

3. Extremal charged dust stars

Extremal charged dust stars or Bonnor stars [3] are
configurations that have charge density equal to mass
density, ρe ¼ ρ, the pressure is zero, obey q2 ¼ m2 and

also obey 0 < q2

R2 < 1. These configurations are on the line
C0 in Fig. 1.
In this case, the energy density is positive and since

the pressure is zero everywhere inside the matter one has
hðrÞ ¼ ρðrÞ þ pðrÞ > 0. We can analyze the stability in
this case directly, without having to resort to the theorem in
Appendix C. Indeed, from Eqs. (35)–(40) one finds that
since ρe ¼ ρ and p ¼ 0, one has FðrÞ ¼ 0, GðrÞ ¼ 0, and
HðrÞ ¼ 0, and so Eq. (35) reduces to ω2WðrÞζðrÞ ¼ 0, i.e.,

ω2ρðrÞA3
2ðrÞξðrÞ ¼ 0; ð68Þ

where we have used Eqs. (35) and (36). One can find
Eq. (68) directly from Eq. (32). For generic ρðrÞ, AðrÞ,
and ξðrÞ, the solution is

ω2 ¼ 0: ð69Þ

Thus, extremal charged dust stars have a neutral stability
against radial perturbations. If displaced in a spherically
symmetric way they stay put or increase or decrease
their radius homothetically and uniformly. An extremal
charged dust star by itself neither expands nor collapses.
Note, however, that for a nongeneric AðrÞ, namely,
AðrÞ ¼ 0, for some r, then ω2 can have any value; we
return to this case later.
Numerically, the behavior of this type of solutions

against small radial perturbations can be displayed through
the region (a) when the parameters of the stars in that region
are very close to the line C0. With an adiabatic index γ ¼ 4

and q2

R2 ¼ 0.3 in the region (a), the frequencies are very close
to zero for r0

R ¼ 0.915704, i.e., near the line C0, see also
Appendix E. This implies that along the line C0, the square
frequencies for the fundamental and the first excited modes
are very close to zero or vanish as Eq. (69) implies. This
case has also been worked out in [23,24].

4. Overcharged tension stars

Overcharged regular tension stars are stars with m2 < q2

and also obey q2

R2 < 1. These configurations belong to
region (b), the region between lines C0 and C1 in Fig. 1.

TABLE III. The critical adiabatic index γcr for the radial

perturbations of undercharged stars with q2

R2 ¼ 0.3 and for various
values of the parameter r0

R and the compactness ratio r0
rþ
. These

undercharged stars are in the region (a) of Fig. 1.

r0
R

r0
rþ

γcr

0.915704 1.66855 2.95794
0.924784 1.39611 3.32947
0.933863 1.30128 3.86695
0.942943 1.23458 4.70936
0.952022 1.18179 6.20193
0.961102 1.13763 9.47855
0.970181 1.09943 21.1295
0.979261 1.06562 440359
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In this case, the energy density is positive and the
pressure is negative, and is therefore a tension. The
enthalpy density hðrÞ ¼ ρðrÞ þ pðrÞ is always greater than
zero and, as a consequence, the functionWðrÞ that appears
in Eq. (35) is positive. However, the sign of the function
FðrÞ depends on the product γpðrÞ. Therefore, if γ is
assumed to be positive, the SL problem falls into the case
(B) of the theorem summarized in Appendix C. The
corresponding theorem implies that for a positive function
WðrÞ and a negative function FðrÞ, the sequence of
eigenvalues is bounded from above, with fundamental
frequency ω2

0 being the largest among all of them, i.e.,
� � � < ω2

2 < ω2
1 < ω2

0 < ∞. Hence, if the restriction γ >
γcr > 0 is fulfilled, ω2

0 will be positive but the largest
excited modes would have negative square frequencies and
the configurations will be unstable against radial perturba-
tions; see Appendix E for more details. Let us give physical
arguments for the instability of these configurations when
one considers γ positive. Equation (25) can be cast as
Δp ¼ c2sΔρ, where c2s is the sound speed squared defined
as c2s ¼ γp

ρþp. In the interior region of tension stars the
conditions p < 0 and ρþ p > 0 hold, implying that for
γ > 0 one has c2s ¼ Δp

Δρ < 0, which means that when the
density increases the tension increases and conversely
when the density decreases the tension decreases. Then,
when perturbing the system, if the fluid is compressed, and
so the density increases, so also the tension grows, favoring
the system to get even more compressed in a runaway
process. Conversely, when perturbing the system, if the
fluid is expanded, and so the density decreases, so also the
tension diminishes, favoring the system to get even more
expanded in a runaway process. This implies that, once
started, the perturbed configuration never stops its process
of compression or expansion, indicating an instability of
the system. Another way of seeing this is that for γ > 0, the
sound speed squared obeys c2s < 0, the sound speed is
imaginary, and so there is no propagation of the perturba-
tion and no possibility for stability. This leads to the
conclusion that for tension stars, i.e., stars supported by
negative pressure, one should assume that the radial
perturbations are governed by a negative γ, and ask whether
there are stable configurations for overcharged tension stars
when γ < 0 or not. If the adiabatic index γ is negative, the
coefficients FðrÞ andWðrÞ that appear in Eq. (35) are both
positive functions, and so in the SL problem this leads to
the case (A) of the theorem given in Appendix C. In this
case the stable solutions are found for negative adiabatic
index such that γ < γcr, where negative γcr is the critical,
i.e., maximum negative number, value of γ, or in terms
of absolute value which makes things clearer, one has
jγj > jγcrj for stability. Let us give physical arguments for
the possible stability of these configurations when one
considers γ negative. Equation (25), as we have already
seen, can be cast as Δp ¼ c2sΔρ, where c2s is the sound

speed squared defined as c2s ¼ γp
ρþp. In the interior region

of tension stars the conditions p < 0 and ρþ p > 0 hold,
implying that for γ < 0 one has c2s > 0. Moreover, now if
the density increases the tension decreases, and conversely
if the density decreases the tension increases. Then, when
perturbing the system radially, if the fluid is compressed,
and so the density increases, so the tension diminishes
favoring the system to get less compressed in a possible
stable process. Conversely, when perturbing the system
radially, if the fluid is expanded, and so the density
decreases, so the tension grows, favoring the system to
get less expanded in a possible stable process. This implies
that, once started, the perturbed configuration can return to
the original configuration, the process of compression and
expansion can be halted, indicating stability of the system.
Another way of seeing this is that for γ < 0, the sound
speed squared obeys c2s > 0, the sound speed is real, and
so there is propagation of the perturbation and possibility
for stability.
In Fig. 7, we show the numerical results for the critical

adiabatic index γcr, negative here, as a function of the radius

FIG. 7. Stability of regular overcharged tension stars. These
stars are stars with m2 < q2 and also obey 0 < q2

R2 < 1 and belong
to region (b) between lines C0 and C1 in Fig. 1. The critical
adiabatic index γcr for four values of the electric charge parameter
q2

R2 ¼ 0.06, q2

R2 ¼ 0.32, q2

R2 ¼ 0.60, and q2

R2 ¼ 0.82, is shown as a
function of the radius r0

R. In each of the four plots, the line starts at
a minimum radius r0

R which corresponds to a negative value γcr at
some point on the curve C1, and extends to some negative value
as r0

R grows and approaches the line C0. The light gray region on
the left side of each plot corresponds to stars that are overcharged
and singular, beyond the curve C1, and the light gray region on
the right side of each plot corresponds to stars that are not
overcharged, beyond the curve C0.
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r0
R for four values of q2

R2, namely, q2

R2 ¼ 0.06, q2

R2 ¼ 0.32,
q2

R2 ¼ 0.60, and q2

R2 ¼ 0.82, i.e., for overcharged stars. In each
plot, the light gray region on the left side is for solutions
that are singular overcharged stars, i.e., stars beyond the
curve C1 of Fig. 1. The white region represents the range of
the parameter r0

R where regular overcharged stars are found.
The light gray region on the right side contains solutions
that are not overcharged, i.e., stars beyond the curve C0,
and do not belong here. The solid curved line in each of
the four plots is for the vanishing fundamental oscillation
frequency squared, i.e., for ω2

0 ¼ 0, which means that ω2
0

changes sign across such a curve. All configurations
represented by points located below the ω2

0 ¼ 0 line are
stable stars, i.e., all ω2

n are positive, and all configurations
represented by points located above the ω2

0 ¼ 0 line are
unstable stars. Each solid curved line starts at some radius r0

R
that corresponds to a point on the curve C1 and corresponds
to the first nonsingular overcharged stars on the curve,
and extends to some point r0

R on the curve C0 where the
solutions have charge density equal to mass density. Along
the solid line, from left to right as r0

R increases, the stars get
more mass, and so need less tension to support the interior
against expansion. For overcharged stars there is no
gravitational radius rþ and it means there is no possibility
of interchanging r0

R with r0
rþ
. One could think in plotting the

critical adiabatic index γcr as a function of
r0
m instead, where

m is the spacetime mass, but there is no gain in it clearly,
the only difference would be a reverse of the sign in the
slope of the curve.
In Table IV we give details of the numerical results

for the stability of overcharged stars. The behavior of γcr
as a function of the radius r0

R for q2

R2 ¼ 0.6, is displayed.
The values of the critical adiabatic index γcr are obtained
from the shooting and pseudospectral methods, and are in
agreement to each other to six decimal places. We have
calculated the zero mode frequencies squared ω2

0 and the

first mode frequencies squared ω2
1 for these q2

R2 ¼ 0.6 stars

with γ ¼ −0.06. We find that for a star with r0
R ¼ 0.936112

one has ω2
0 ¼ −1.69590 × 10−3, and jγcrj ¼ 0.0623795, so

jγj ¼ 0.06 being below jγcrj means that this star is unstable
against radial perturbations, while for a star with r0

R ¼
0.950112 one has ω2

0 ¼ 5.03598 × 10−3, ω2
1 ¼ 0.0529323,

and jγcrj ¼ 0.0483227, so jγj ¼ 0.06 being above jγcrj
means that this star is stable. The solutions for these
overcharged tension stars having radii extending from
approximately r0

R ¼ 0.880113 to approximately r0
R ¼

0.978111 in the γ ¼ −0.06 adiabatic index case, have ω2
0

negative approximately in the range 0.880113 ≤ r0
R ≤

0.938387, and ω2
0 positive approximately in the range

0.938387 ≤ r0
R ≤ 0.978111. Thus, stars with larger r0

R, i.e.,
overcharged stars with more mass and less electric charge,
and thus less tension, are stable to radial perturbations.
Moreover, for r0

R close to the line C0 in the region (b) of
Fig. 1, one has that the corresponding stars tend to
electrically charged dust stars with m2 ¼ q2, the tension
on these tension stars being very small. One finds numeri-
cally that ω2

0 as well as all other higher tones tend to zero
and so in the limit these stars are neutrally stable, as we
have discussed in the undercharged case and have found the
exact stability solutions in the charge density equal energy
density case. Some more detail is given in Appendix E. An
interesting case needing further investigation occurs when
r0
R → 1 and q2

R2 → 1 for the solutions in the region (b)
(see below).
Overcharged stars that are singular are stars with

m2 < q2 and also obey q2

R2 < 27
16
¼ 1.6875. These configu-

rations belong to region (c), the region between lines C1

and C2 in Fig. 1. They are of no interest for the stability
problem since the curvature scalars and the fluid quantities
diverge at some radius inside the matter distribution.

B. The stability of regular black holes

1. Regular black holes with negative energy densities

Regular black holes with negative energy densities are
also phantom regular black holes with no singularities, for

which the electric charge obeys q2

R2 > 0, and the radius r0 is
inside the Cauchy horizon, r0 < r−. These configurations
belong to region (d1), i.e., to the right of lines C2 and below
the line C31 plus C31C32 in Fig. 1.
In this case, the energy density ρðrÞ is negative for a

range of the radial coordinate r inside the matter and
the pressure pðrÞ is always negative. The enthalpy density
hðrÞ ¼ ρðrÞ þ pðrÞ is everywhere less than zero, and as a
consequence, assuming γ > 0 the coefficients FðrÞ and
WðrÞ that appear in Eq. (35) are both positive functions,
and so in the SL problem this leads to the case (A) of the
theorem given in Appendix C. Therefore stable solutions to
radial perturbations of these regular black holes are found
for positive adiabatic indices such that γ > γcr.

TABLE IV. The critical adiabatic index γcr for the radial

perturbations of overcharged stars with q2

R2 ¼ 0.6 and for various
values of the parameter r0

R. These overcharged stars are in the
region (b) of Fig. 1.

r0
R γcr

0.880113 −0.125874
0.894113 −0.113132
0.908113 −0.0952036
0.922113 −0.0779790
0.936112 −0.0623795
0.950112 −0.0483227
0.964112 −0.0352687
0.978111 −0.0220528
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In Fig. 8, we show the numerical results for the critical
adiabatic index γcr as a function of the radius r0

R for four

values of the electric charge, namely, q2

R2 ¼ 0.1, q2

R2 ¼ 0.6,
q2

R2 ¼ 1.1, and q2

R2 ¼ 1.6875, as indicated in the figure, with

the value q2

R2 ¼ 27
16
¼ 1.6875 being the value of the elbow in

curve C2 of Fig. 1. In each plot the left part is the axis
r0
R ¼ 0. The white region represents the range of the
parameter r0

R where regular black holes are found. The
light gray region on the right side of each plot contains
solutions of singular charged stars, i.e., overcharged con-
figurations with higher radii, namely, the ones whose
values of r0

R are on or above the curve C2 of mass equal
to charge, i.e., in the region (c) in Fig. 1, and so are of no
interest. The solid curved line in each of the four plots is for
the vanishing fundamental oscillation frequency squared,
i.e., for ω2

0 ¼ 0, which means that ω2
0 changes sign across

such a curve. All configurations represented by points

located above theω2
0 ¼ 0 line are stable regular black holes,

i.e., all ω2
n are positive, all configurations represented by

points located below the ω2
0 ¼ 0 line are unstable regular

black holes. Each solid curved line starts just above r0
R ¼ 0

and extends to some point r0R on the curve C2. One sees that
the critical adiabatic index γcr on each line of the four

different q2

R2, starts at approximately the same value for r0
R,

which incidentally is very small, and then decreases for
larger r0

R. One can make some further remarks for all the
four plots with the numbers given meaning approximate
rather than exact numbers. In each of the four plots the
critical adiabatic index decreases to a minimum value close
to γcr ¼ 0.66 for relatively large r0

R, and then grows again,
although only a little not visible in the plots, to approx-
imately γcr ¼ 0.6667 when r0

R approaches the line C2, i.e.,
the line m2 ¼ q2. For a fixed adiabatic index γ above about
γcr ¼ 3.5, all regular black holes are stable to radial
perturbations. In each of the four plots, the line starts
immediately after r0

R ¼ 0 for some γcr and decreases up to
some radius r0

R where it starts to grow again slightly. We
have not been able to give a heuristic explanation for the
reason of this change of stability in each of the four plots.
For fixed adiabatic index γ in the range γ < 0.6 all regular
black holes are unstable. In the limit r0

R ¼ 0, the mass
diverges, the metric turns into a Kasner metric, and the
stability problem set here does not apply.
In Table V, we give details of the numerical results for

the stability of regular black holes with negative energy
densities. The behavior of γcr as a function of the radius r0

R,

for q2

R2 ¼ 27
16
¼ 1.6875, is displayed. The values of the critical

adiabatic index γcr are obtained from the shooting and the
pseudospectral methods, and are in agreement to each other
up to six decimal places. We have calculated the zero mode
frequencies squared ω2

0 and the first mode frequencies

squared ω2
1 for these q2

R2 ¼ 27
16

regular black holes with
negative energy densities for the adiabatic index γ ¼ 4.

FIG. 8. Stability of regular black holes with negative energy
density. These regular black holes belong to region (d1) to the

right of line C2 and to the left of the vertical line
q2

R2 ¼ 27
16
¼ 1.6875

in Fig. 1. The critical adiabatic index γcr for four values of the

electric charge parameter q2

R2 ¼ 0.1, q2

R2 ¼ 0.6, q2

R2 ¼ 1.1, and
q2

R2 ¼ 27
16
¼ 1.6875, is shown as a function of the radius r0

R. In
each of the four plots, the line starts just above r0

R ¼ 0 for some γcr
and extends to some value as r0

R grows and approaches the line C2.
In each of the four plots, the adiabatic index γcr decreases up to
some radius r0

R where, although not discernible in the plots, it
starts to grow again slightly, the reason for this behavior being not
clear. The light gray region on the right side of each plot
corresponds to objects beyond the curve C2, that are overcharged
and singular, and are not black hole configurations.

TABLE V. The critical adiabatic index γcr for the radial
perturbations of regular black holes with negative energy den-

sities with q2

R2 ¼ 27
16
¼ 1.6875 and for various values of the

parameter r0
R. These regular black holes are in the left part of

region (d1) of Fig. 1.

r0
R γcr

0.0186989 2.59470
0.139572 1.30905
0.260445 0.916685
0.381318 0.766649
0.502191 0.701179
0.623064 0.670727
0.743937 0.659659
0.864810 0.666663
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We find that all these regular black holes are stable, all
eigenfrequencies squared are positive. The solutions for
these regular black holes have radii extending from above
r0
R ¼ 0 to approximately r0

R ¼ 0.866025. Note that as r0
R

increases the value of γcr decreases up to approximately
r0
R ¼ 0.66 where it increases again. All this can be seen in
more detail in Appendix E.
In Fig. 9, we show the numerical results for the critical

adiabatic index γcr as a function of the radius r0
R for four

values of the electric charge, namely, q2

R2 ¼ 1.8, q2

R2 ¼ 2.4,
q2

R2 ¼ 2.7, and q2

R2 ¼ 3.0, as indicated in the figure. In each
plot the left part is the axis r0

R ¼ 0. The white region
represents the range of the parameter r0R where regular black
holes are found. The light gray region on the right side

contains solutions that do not belong here. These solutions
correspond to different regular black holes, namely, the
ones whose values of r0

R are on or above the curve C31 plus
C31C32, i.e., in the regions (d2), (e1), and (e2) in Fig. 1,
with (e2) only appearing explicitly in Fig. 2. The solid
curved line in each of the four plots is for the vanishing
fundamental oscillation frequency squared, i.e., for ω2

0 ¼ 0,
which means that ω2

0 changes sign across such a curve. All
configurations represented by points located above the
ω2
0 ¼ 0 line are stable regular black holes, i.e., all ω2

n are
positive, all configurations represented by points located
below the ω2

0 ¼ 0 line are unstable regular black holes.
Each solid curved line starts just above r0

R ¼ 0 and extends
to some point r0

R on the curve C31 plus C31C32. The four

plots fall within the range q2

R2 > 27
16
, so are to the right of the

elbow in curve C2. In all the four cases, for a fixed adiabatic
index γ above about γcr ¼ 3.5, all regular black holes are
stable against radial perturbations. For a fixed adiabatic
index γ below about γcr ¼ 3.5, there are stable regular black
holes for r0

R greater than some value. For small r0
R the

behavior of γcr is practically the same for each of the four
plots. For large r0

R the decrease in γcr is very rapid, abrupt in
some cases, when the radius r0

R approaches the curve C31

plus C31C32. In the case
q2

R2 ¼ 3.0 and in the limit r0R ¼ 1, the
critical adiabatic index indeed vanishes, and the regular
black hole is stable independently of the γ, it is absolutely
stable to these perturbations. This is because this case is of a
regular black hole made of an interior which is purely de
Sitter up to the boundary which is at the Cauchy horizon
radius, r0 ¼ r−, where, in turn, there is a massless electric
coat [14], and as it is known the de Sitter solution is stable.
In Table VI, we give details of the numerical results for

the stability of regular black holes with negative energy
densities. The behavior of γcr as a function of the radius r0

R,

for q2

R2 ¼ 3, is displayed. The values of the critical adiabatic
index γcr are obtained from the shooting and the pseudo-
spectral methods, and are in agreement with each other up
to six decimal places. The solutions for these regular black
holes have radii extending from above r0

R ¼ 0 to r0
R ¼ 1.FIG. 9. Stability of regular black holes with negative energy

density, continuation from the previous figure. These regular
black holes belong to region (d1) to the right of the vertical line
q2

R2 ¼ 27
16
¼ 1.6875, below the line C31 plus C31C32, and to the left

of the vertical line q2

R2 ¼ 3.0 in Fig. 1. The critical adiabatic index

γcr for four values of the electric charge parameter q2

R2 ¼ 1.8,
q2

R2 ¼ 2.4, q2

R2 ¼ 2.7, and q2

R2 ¼ 3.0, is shown as a function of the
radius r0

R. In each of the four plots, the line starts just above
r0
R ¼ 0

for some γcr and extends to some value as r0
R grows and

approaches the line C31 plus C31C32. The adiabatic index γcr
decreases up to some large r0

R and it decays abruptly for large r0
R

being even zero when q2

R2 ¼ 3.0, which is consistent since in this
case the regular black hole is made of a pure de Sitter interior, and
the de Sitter solution is stable against radial perturbations. The
light gray region on the right side of each plot corresponds to
different regular black holes, beyond the line C31 plus C31C32.

TABLE VI. The critical adiabatic index γcr for the radial
perturbations of regular black holes with negative energy den-

sities with q2

R2 ¼ 3 and for various values of the parameter r0R. These
regular black holes are in a part of region (d1) of Fig. 1.

r0
R γcr

0.0186989 2.71551
0.158885 1.42949
0.299070 1.00152
0.439256 0.817217
0.579442 0.723642
0.719628 0.667765
0.859813 0.616897
0.999999 0.000367
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Note that as r0
R increases the γcr decreases down to zero

when r0
R is equal to one, so that this regular black hole is

stable for this type of perturbations.
In Fig. 10, we show the numerical results for the critical

adiabatic index γcr as a function of the radius r0
R for four

values of the electric charge, namely, q2

R2 ¼ 3.1, q2

R2 ¼ 5,
q2

R2 ¼ 10, and q2

R2 ¼ 20, as indicated in the figure. In each plot
the left part is the axis r0

R ¼ 0. The white region represents
the range of the parameter r0

R where regular black holes are
found, all situated in the region (d1) in Fig. 1. The right part
is the axis r0

R ¼ 1. The solid curved line in each of the four
plots is for the vanishing fundamental oscillation frequency
squared, i.e., for ω2

0 ¼ 0, which means that ω2
0 changes sign

across such a curve. All configurations represented by
points located above the ω2

0 ¼ 0 line are stable regular
black holes, i.e., all ω2

n are positive, all configurations
represented by points located below the ω2

0 ¼ 0 line are
unstable regular black holes. Each solid curved line starts
just above r0

R ¼ 0 and extends to a point on the line

r0
R ¼ r−

R ¼ 1. The limit r0
R → 1 with q2

R2 > 3 gives the top
boundary of region (d1) of Fig. 1. For small r0R the behavior
of γcr is practically the same for each of the four plots; it
starts at about γcr ¼ 3.5. For large r0

R and q2
R2 a little larger

than 3, q2
R2 ¼ 3.1 in the plot, γcr decreases to some value

greater than zero when r0
R → 1. For large r0

R and relatively

large q2

R2, as is shown in the plots for q2

R2 ¼ 5, q2

R2 ¼ 10, and
q2

R2 ¼ 20, the increase in γcr is very rapid, even abrupt, when
the radius r0

R approaches r0
R ¼ 1. In this limit, the regular

black holes are stable against radial perturbations for
positive adiabatic indices larger than some γcr. This γcr
increases with the electric charge, starting from γcr ¼ 0 at
q2
R2 ¼ 3, and diverges in the limit q2

R2 → ∞.
In Table VII, we give details of the numerical results for

the stability of regular black holes with negative energy
densities. The behavior of γcr as a function of the radius r0

R,

for q2

R2 ¼ 5, is displayed. The values of the critical adiabatic
index γcr are obtained from the shooting and the pseudo-
spectral methods, and are in agreement with each other up
to six decimal places. The solutions for these regular black
holes have boundary radii extending from above r0

R ¼ 0 to
approximately r0

R ¼ 1. Note that as r0
R increases the index γcr

decreases to a minimum at some r0
R close to r0

R ¼ 1, and then
increases with r0

R up to a finite value in the limit r0R → 1. The
change of behavior of γcr in comparison to the region for
smaller electric charges occurs exactly at q2

R2 ¼ 3. Such a

change is not visible in the case of q2

R2 ¼ 3.1, whose γcr
curve is shown in the top left panel of Fig. 10, because the
turning point is very close to the boundary line.

2. Regular black holes with a phantom matter core

Regular black holes with a phantom matter core have no
singularities and the radius r0 is inside the Cauchy horizon,
r0 < r−. These configurations belong to regions (d2) and
(e1) above the curve C31 plus C31C32 in Fig. 1 and below
the line C33 of Fig. 2, with Fig. 2 being an enlargement of
Fig. 1 in that region of interest.

FIG. 10. Stability of regular black holes with negative energy
density, continuation from the previous figures, i.e., Figs. 8
and 9. These regular black holes belong to region (d1) to the
right of the vertical line q2

R2 ¼ 3 and have as upper boundary the
line r0 ¼ r− ¼ R in Fig. 1. The critical adiabatic index γcr for

four values of the electric charge parameter q2

R2 ¼ 3.1, q2

R2 ¼ 5.0,
q2

R2 ¼ 10, and q2

R2 ¼ 20, is shown as a function of the radius r0
R. In

each of the four plots, the line starts just above r0
R ¼ 0 for some

γcr and extends to some value as r0
R grows and approaches the

line r0 ¼ r− ¼ R. The adiabatic index γcr decreases down to
some large r0

R and in the last three plots it starts to grow for large
r0
R reaching a finite value at the r0

R ¼ 1.

TABLE VII. The critical adiabatic index γcr for the radial
perturbations of regular black holes with negative energy den-

sities with q2

R2 ¼ 5 and for various values of the parameter r0R. These
regular black holes are in right part of region (d1) of Fig. 1.

r0
R γcr

0.0186989 2.81135
0.158885 1.62442
0.299070 1.16791
0.439256 0.941473
0.579442 0.813839
0.719628 0.729194
0.859813 0.656414
0.999999 1.86624
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In the region (d2) the energy density is positive and
finite at the center of the distribution of matter, changes to
negative values at some r < r0, and changes back to
positive values close to the surface, the pressure is negative
and, in modulus is larger than the energy density at the
center of the distribution, and it goes to zero at the
surface r0. In the region (e1) the matter energy density
is positive everywhere and the pressure is negative. Thus,
for a finite region inside the matter one finds ρþ p < 0. As
a consequence, the coefficient FðrÞ is a negative function
on the whole interval 0 ≤ r ≤ r0 if γ is a positive number,
and is a positive function on the whole interval 0 ≤ r ≤ r0 if
γ is a negative number. The coefficient WðrÞ is a negative
function in 0 ≤ r ≤ rd, for some rd, and it is positive in
rd ≤ r ≤ r0. This case falls into case (D) of the theorem in
the Appendix C, and the behavior of the eigenvalues of the
SL problem is tortuous. The upshot is that there are no
stable configurations against radial perturbations for regu-
lar black holes with a phantom matter core, as can be seen
in more detail in Appendix E.

3. Regular tension black holes
with positive enthalpy density

Regular tension black holes with positive enthalpy density
are not phantom and obey r0 < r−. These configurations
belong to region (e2), above the curve C33 of Fig. 2 which is
an enlargement of Fig. 1 to precisely see this region.
In this case, the energy density is positive every-

where inside the matter and the pressure is negative,
i.e., the matter is constrained from bursting by tension.
The enthalpy density is always positive hðrÞ ¼ ρðrÞ þ
pðrÞ > 0. Since hðrÞ > 0 one has that the coefficient WðrÞ
is a positive function. Thus, the SL problem falls into case
(A) of the theorem of Appendix C only if the adiabatic
index is a negative number. In this case the stable solutions
to radial perturbations are found for γ < γcr where γcr here
is a negative number, so in absolute values jγj > jγcrj.
In Fig. 11 we show the numerical results for the critical

adiabatic index γcr as a function of the radius for four values

of the electric charge, namely, q
2

R2 ¼ 1.1, q
2

R2 ¼ 2.2, q
2

R2 ¼ 2.8,

and q2

R2 ¼ 2.99, as indicated in the figure. In each plot the
light gray region on the left side contains solutions that are
regular black holes but not of this kind; they are solutions
below line C33. The white region represents the range of the
parameter r0R where regular tension black holes with positive
enthalpy density are found. The vertical line r0

R ¼ 1 on the
right side marks the end of the plots. The solid curved line
in each of the four plots is for the vanishing fundamental
oscillation frequency squared, i.e., for ω2

0 ¼ 0, which
means that ω2

0 changes sign across such a curve. All
configurations represented by points located below the
ω2
0 ¼ 0 line are stable regular black holes against radial

perturbations, i.e., all ω2
n are positive, all configurations

represented by points located above the ω2
0 ¼ 0 line are

unstable regular black holes. Each solid curved line starts at
some r0

R and extends to r0
R ¼ 1. The behavior of the critical

adiabatic index γcr is such that it decreases slowly for a
relatively small black hole radius, but then it decreases very
fast when r0

R is near 1. So, in modulus, jγcrj is small for
relatively low r0

R close to the curve C33, and the maximum
values of jγcrj in modulus are obtained for r0R ¼ 1, when r0 is
also equal to r−. Note also that, for a fixed negative
adiabatic index, the regular black hole configurations are
stable for a relatively small black hole radius, but are

unstable for a large radius. In the q2

R2 near 1 case, of which
q2

R2 ¼ 1.1 shown is an example, for r0
R close to 1 stability is

only achieved for large values of the adiabatic index γcr,

near γcr ¼ −29. In the q2

R2 far from 1 case, of which q2

R2 ¼ 2.8
shown is an example, for r0

R close to 1 stability is now
achieved for relatively small values of the adiabatic index

γcr, near γcr ¼ −0.34. In the limit q2

R2 → 3, i.e., approaching

point D of Figs. 1 and 2, of which q2

R2 ¼ 2.99 is the closest
value the numerical methods furnish good results, stability
is achieved for all values of the adiabatic index γcr < 0,
since γcr → 0. The limit r0

R ¼ 1 with the electric charge in

FIG. 11. Stability of regular tension black holes with positive
enthalpy density. These regular black holes belong to region (e2),
above the curve C33 of Fig. 2 which is an enlargement of Fig. 1.
The critical adiabatic index γcr for four values of the electric

charge parameter q2

R2 ¼ 1.1, q2

R2 ¼ 2.2, q2

R2 ¼ 2.8, and q2

R2 ¼ 2.99, is
shown as a function of the radius r0

R . In each of the four plots, the
line starts at a minimum radius r0

R on the curve C33 for which γcr is
negative and for larger r0

R, γcr becomes more negative up to the
line r0

R ¼ 1. The light gray region on the left side of each plot
corresponds to other different regular tension black holes.
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the interval 1 < q2

R2 < 3 gives the top boundary of region
(e2) of Fig. 1. As seen in Fig. 11, in this limit, the regular
tension black holes with positive enthalpy are stable against
radial perturbations for negative adiabatic indices smaller
than γcr. The critical adiabatic index decreases in modulus
with the electric charge, starting from arbitrarily large

negative values close to q2

R2 ¼ 1, i.e., at the QNBH con-

figuration, and reaching γcr ¼ 0 at q2
R2 ¼ 3, i.e., at the de

Sitter regular black hole mentioned already.
In Table VIII, we give details of the numerical results for

the stability of regular black holes with positive enthalpy
density. The behavior of γcr as a function of the radius

r0
R , for

q2

R2 ¼ 2.2, is displayed. The values of the critical adiabatic
index γcr are obtained from the shooting and the pseudo-
spectral methods, and are in agreement with each other up
to six decimal places. The solutions for these regular black
holes are in the region (e2) of Fig. 1 and have boundary
radii extending from relatively high r0

R up to r0
R ¼ 1.

Note that as r0
R increases the index γcr decreases negatively,

i.e., its modulus jγcrj increases up to a maximum finite
value. So the regular black holes in this region can be stable
to radial perturbations.

4. Regular de Sitter black hole: r0 = r− and q2

R2 = 3

Point D in Fig. 1 is a special configuration, a pure
de Sitter interior solution that obeys the equation of state
pðrÞ ¼ −ρðrÞ up to the lightlike surface boundary r0 ¼ r−,
where there is a coat of electric charge, and where both the
energy density and the pressure drop to zero. The solution
is a regular black hole with a de Sitter interior and a
lightlike boundary, and is a particular case of the regular
black holes studied in [14].
This regular de Sitter black hole is stable with γ cr ¼ 0.

The vanishing of γcr when approaching the point D can be
seen in the bottom right panel of Fig. 9, where the curve for

γcr was drawn by taking q2

R2 ¼ 3.0. The same behavior is

verified in the top left panel of Fig. 10, where the curve for

γcr was drawn by taking q2

R2 ¼ 3.1, as well as in the bottom
right panel of Fig. 11, where the curve for γcr was drawn by

taking q2

R2 ¼ 2.99. Our analysis confirms the previous
studies on the stability of regular black holes with a de
Sitter core inferred in [15]. Moreover, we give a definite
answer, that this de Sitter regular black hole is stable
against radial perturbations.

C. The stability of quasiblack holes
and quasinonblack holes

1. Quasiblack holes from regular
undercharged pressure stars

QBHs from regular undercharged pressure stars are
obtained by approaching the point Q from region (a) of

Fig. 1, obey q2 ¼ m2 and also obey q2

R2 ¼ 1.
The resulting objects are pressure QBHs that satisfy all

the energy conditions and, as long as the parameter a obeys
1 < a < 4

3
, they also satisfy the causality condition [10].

In Fig. 12 we show the numerical results for the critical
adiabatic index γcr as a function of the radius r0

R for four
values of the parameter a, namely, a ¼ 1.001, a ¼ 1.100,
a ¼ 1.200, and a ¼ 4

3
¼ 1.333, as indicated in the figure.

TABLE VIII. The critical adiabatic index γcr for the radial
perturbations of regular black holes with positive enthalpy

density with q2

R2 ¼ 2.2 and for various values of the parameter
r0
R . These regular black holes are in region (e2) of Fig. 2 which is
an enlargement of Fig. 1.

r0
R γcr

0.998379 −0.327587
0.998610 −0.368522
0.998842 −0.416910
0.999073 −0.475289
0.999305 −0.549655
0.999536 −0.651395
0.999768 −0.819164
0.999999 −2.02034

FIG. 12. Stability of QBHs from regular undercharged pressure
stars. These QBHs come from approaching point Q from region
(a) in Fig. 1. The critical adiabatic index γcr for four values of
the parameter a, namely, a ¼ 1.001, a ¼ 1.100, a ¼ 1.200, and
a ¼ 4

3
¼ 1.333, is shown as a function of the radius r0

R. Each line
starts at r0R ¼ 0.9999 and ends at r0R ¼ 0.9999999. The limit r0R ¼ 1

represents QBH configurations. The critical adiabatic index γcr
diverges in this limit.
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The solid curved line in each of the four plots is for the
vanishing fundamental oscillation frequency squared, i.e.,
for ω2

0 ¼ 0, which means that ω2
0 changes sign across

such a curve. All configurations represented by points
located above the ω2

0 ¼ 0 line are stable pressure stars,
i.e., all ω2

n are positive, all configurations represented by
points located below the ω2

0 ¼ 0 line are unstable
pressure stars. For r0

R close to 1, i.e., on the QBH limit,
one finds that to be stable to radial perturbations the
adiabatic index has to be arbitrarily large. Thus, the QBH
configurations which are obtained by approaching the
point Q from region (a) are unstable unless γ assumes
arbitrarily large values.
In Table IX we give details of the numerical results

for the stability of QBHs from regular undercharged

pressure stars. The behavior of γcr as a function of a, q2

R2,
and m

R is given for the configuration approaching the
QBH limit. One sees that γcr is high and in the limit
diverges.

2. Quasiblack holes from extremal dust stars

QBHs from extremal dust stars are obtained by
approaching the point Q along the curve C0 of Fig. 1,

obey a ¼ 1, q2 ¼ m2, and also obey q2

R2 ¼ 1.
The resulting objects have charge density equal to

mass density, ρe ¼ ρ, the pressure is zero and satisfy all
the energy conditions and the causality condition [19], see
also [10]. These are extremal dust QBHs.
As we have seen in Eq. (68) the condition for stability

of the stars along the C0 curve is ω2ρðrÞA3
2ðrÞξðrÞ ¼ 0.

This means that for nonzero A one has ω2 ¼ 0 and the
corresponding stars are neutrally stable. Now, for a QBH A
is zero at one radius, the gravitational radius rþ, which
obeys AðrþÞ ¼ 0. So AðrþÞ is zero at rþ and nonzero for all
other points. So ω2 ¼ 0 for all radii except conceivably
at rþ. But by continuity we must infer that ω2 ¼ 0 for all
radii. This result confirms what is otherwise known,
namely, that these QBHs from extremal dust stars are
topological objects [7], and so stable to perturbations, in
particular neutrally stable against radial perturbations
which is a remarkable result.

3. Quasiblack holes from overcharged tension stars

QBHs from regular overcharged tension stars are
obtained by approaching the point Q from region (b) of

Fig. 1, obey 0 < a < 1, q2 ¼ m2, and also obey q2

R2 ¼ 1.
The resulting objects are tension QBHs and satisfy all the

energy conditions.
In Fig. 13 we show the numerical results for the critical

adiabatic index γcr as a function of the radius r0
R for four

values of the parameter a, namely, a ¼ 0.06, a ¼ 0.24,
a ¼ 0.60, and a ¼ 0.98, as indicated in the figure. The
solid curved line in each of the four plots is for the
vanishing fundamental oscillation frequency squared,
i.e., for ω2

0 ¼ 0, which means that ω2
0 changes sign across

such a curve. All configurations represented by points
located below the ω2

0 ¼ 0 line are stable tension stars, i.e.,
all ω2

n are positive, all configurations represented by
points located above the ω2

0 ¼ 0 line are unstable tension
stars. For r0

R close to 1, one sees that to be stable to radial
perturbations the critical adiabatic index, γcr, is negative,
and has an almost constant value. In the limit of r0

R ¼ 1,
with 0 < a < 1, i.e., at the QBH limit from tension
stars, all jγcrj are finite. Thus, the QBH configurations
which are obtained by approaching the point Q from
region (b) are stable to radial perturbations for a suffi-
ciently moderate jγcrj.

TABLE IX. The critical adiabatic index γcr for radial perturba-
tions of undercharged pressure stars, i.e., stars in region (a) of
Fig. 1, for four values of the parameter a close to the QBH
configuration, i.e., for r0

R ¼ 0.9999999. In the QBH limit, r0R ¼ 1,
γcr diverges.

a q2

R2
m
R γcr

1.001 0.999105 0.999552 3859.97
1.100 0.999062 0.999531 4329.59
1.200 0.999020 0.999510 4865.11
1.333 0.998967 0.999484 5689.66

FIG. 13. Stability of QBHs from regular overcharged tension
stars. These QBHs come from approaching point Q from region
(b) in Fig. 1. The critical adiabatic index γcr for four values of
the parameter a, namely, a ¼ 0.06, a ¼ 0.24, a ¼ 0.60, and
a ¼ 0.98, is shown as a function of the radius r0

R . Each line starts
at r0

R ¼ 0.9999 and ends at r0
R ¼ 0.9999999. The limit r0

R ¼ 1

represents QBH configurations. The critical adiabatic index γcr is
negative and for a sufficiently high jγcrj these QBHs are stable
against radial perturbations.
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In Table X we give details of the numerical results for the
stability of QBHs from regular overcharged tension stars.

The behavior of γcr as a function of a,
q2

R2, and m
R is given, i.e.,

for the configurations approaching the QBH limit. One sees
that γcr is negative and finite at the limit.

4. Quasinonblack holes from regular black holes

QNBHs from regular black holes are obtained by
approaching the point Q from region (d2) and (e1) of
Fig. 1 and (e2) of Fig. 2, this latter being a blow up of Fig. 1
in order that region (e2) pops out. Now, all regular black

holes from region (d2) and (e1) are unstable, so we
do not need to treat their approach to point Q. On the
other hand, some black holes from region (e2) are stable to
radial perturbations, so it is of great interest to treat their
approach to point Q. These QNBHs obey a > 4, q2 < m2,

and also q2

R2 ¼ 1.
The resulting objects are tension QNBHs, which have

an additional important property, namely, they satisfy the
dominant and weak energy conditions.
In Fig. 14, we show the numerical results for the critical

adiabatic index γcr as a function of the radius r0
R for four

values of the parameter a, namely, a ¼ 5, a ¼ 15, a ¼ 25,
and a ¼ 40, as indicated in the figure. The solid curved
line in each of the four plots is for the vanishing funda-
mental oscillation frequency squared, i.e., for ω2

0 ¼ 0,
which means that ω2

0 changes sign across such a curve.
All configurations represented by points located below the
ω2
0 ¼ 0 line are stable regular black holes, i.e., all ω2

n are
positive, all configurations represented by points located
above the ω2

0 ¼ 0 line are unstable regular black holes. For
r0
R close to 1, one sees that to be stable to radial perturba-
tions, the critical adiabatic index, γcr, has to be negative,
and that in the QNBH limit jγcrj assumes arbitrarily large
values, and so the objects are effectively unstable to radial
perturbations in this limit.
In Table XI, we give details of the numerical results

for the stability of QNBHs from regular black holes. The

behavior of γcr as a function of a,
q2

R2, and m
R is given, i.e., for

the configurations approaching the QNBH limit.

V. CONCLUSIONS

A. Main results

We have studied the stability of several types of electri-
cally charged objects in general relativity, namely, the
stability to radial perturbations for stars, regular black
holes, QBHs, and QNBHs has been performed.
We have combined the theorems regarding the eigen-

values of the SL problem to find that the stability of these
compact objects depends on the sign of the pressure pðrÞ
and on the sign of the enthalpy density hðrÞ ¼ ρðrÞ þ pðrÞ,

TABLE X. The critical adiabatic index γcr for radial perturba-
tions of overcharged tension stars, i.e., stars in region (b) of
Fig. 1, for four values of the parameter a close to the QBH
configuration, i.e., for r0

R ¼ 0.9999999. In the QBH limit, r0R ¼ 1,
γcr is negative and finite, and the object is stable against radial
perturbations for sufficiently high negative adiabatic index.

a q2

R2
m
R γcr

0.06 0.999781 0.999890 −0.165394
0.24 0.999562 0.999781 −0.135874
0.60 0.999307 0.999653 −0.113167
0.98 0.999115 0.999557 −0.0975539

FIG. 14. Stability of QNBHs from regular black holes. These
QNBHs come from approaching point Q from region (e2) in
Fig. 2 which is a blow up Fig. 1. The critical adiabatic index γcr
for four values of the Guilfoyle parameter, a ¼ 5, a ¼ 15,
a ¼ 25, and a ¼ 40, is shown as a function of the radius r0

R.
Each line starts at r0

R ¼ 0.9999 and ends at r0
R ¼ 0.9999999. The

limit r0
R ¼ 1 represents QNBH configurations, and in this limit

jγcrj is high, of the order of 400, so QNBHs with higher γ are
stable against radial perturbations for high jγcrj.

TABLE XI. The critical adiabatic index γcr for radial perturba-
tions of regular black holes, i.e., black holes in region (e2) of
Fig. 1, for four values of the parameter a close to the QNBH
configuration, i.e., for r0

R ¼ 0.9999999. In the QBH limit, r0R ¼ 1,
γcr diverges.

a q2

R2
m
R γcr

5 1.00200 1.00100 −119.107
15 1.00347 1.00174 −164.433
25 1.00448 1.00224 −172.479
40 1.00567 1.00284 −173.115
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which in turn have implications to the sign of the adiabatic
index γ. Using all this and two powerful numerical methods
we were able to discover that there are objects that can be
stable against radial perturbations, in which case we have
determined the critical adiabatic index γcr, and there are
objects that are always unstable. The index γcr, when it
exists, is such that objects with a modulus of the adiabatic
index γ higher than the modulus of γcr are stable against
radial perturbations.
Zero charge stars are the best objects to start the analysis

because they are the simplest and one can have a solid
ground of direct comparison with Chandrasekhar’s analysis.
We have found that stars with a small radius, and thus
smaller mass, and so do not have too much gravitation, are
stable configurations against radial perturbations for adia-
batic indices with moderate values. These stars are far from
the Buchdahl limit. Stars with a large radius, and thus
bigger mass, have too much gravitation, and are generically
unstable configurations. These stars are near the Buchdahl
limit. Our results for these zero charge stars conform
qualitatively and quantitatively with Chandrasekhar’s results.
Undercharged stars are supported by pressure. Stars with

a small radius, and thus smaller mass, and so do not have
too much gravitation, are stable configurations against
radial perturbations for adiabatic indices with moderate
values. These stars are far from the Buchdahl-Andréasson
limit. Stars with a large radius, and thus bigger mass, have
too much gravitation, and so are unstable configurations.
These stars are near the Buchdahl-Andréasson limit.
Extremal charged stars are made of dust and for any

radius, small or large, are neutrally stable. By itself the star
neither expands nor collapses.
Overcharged stars are supported by tension and the matter

perturbations are characterized by a negative adiabatic index.
Stars with a small radius, and thus with a small mass, do not
have enough gravitation to counterbalance the strong repul-
sion due to the electric charge, and so are essentially unstable.
Stars with a large radius, and thus higher mass, have enough
gravitation counterbalancing the electric repulsion, and so
are stable against radial perturbations for adiabatic indices
with moderate values in modulus.
Regular black holes with negative energy density and

with phantom matter can be stable against radial perturba-
tions if the adiabatic index is sufficiently high, i.e., higher
than γcr and as such are of interest. These regular black
holes have a rich structure in the stability analysis.
Regular black holes with positive energy density at the

center and with phantom matter are unstable for any values
of the adiabatic indices.
Regular black holes with positive enthalpy, and so not

phantom black holes, are stable for radial perturbations
with negative adiabatic index with sufficiently high values
in modulus, i.e., for jγj ≥ jγcrj.
QBHs stability was one of the main motivations of this

work. We have found that the results in the case of QBHs

configurations depend on how the QBH limit is reached
because this type of solution is degenerate. The results yield
that the QBHs from undercharged stars are unstable, unless
the adiabatic index is arbitrarily large, QBHs from extremal
stars seem to be stable against radial perturbations, and
QBHS from overcharged stars are stable for reasonable
negative adiabatic indices. QNBHSs are a recently new
type of object, and we have been able to perform a stability
analysis, which indicates that they are stable against radial
perturbations for reasonable negative adiabatic indices.

B. Summary tables

In Tables XII and XIII we give a summary of the results
about the stability of stars, regular black holes, QBHs,
and QNBHs.
In Table XII (a), i.e., top part, we show the various

intervals numerically found for which there is stability for
stars and regular black holes. The table is set as follows.
The first column represents the type of studied object. The
second column yields the interval of r0

R for which there is
stability. In the case there is neutral stability for any r0

R in the
interval 0 ≤ r0

R ≤ 1 it is written the word neutral, and in case
there is no stability in the interval 0 ≤ r0

R ≤ 1 it is written the
word no, noting that the equalities should be read as
numerically found, i.e., they are approximate equalities.

The third column indicates the value of q2

R2 used to calculate
the interval of r0

R when there is stability, and in the case of
regular black holes with a phantom matter core for which

there is no stability, the interval of values of q2

R2 where this
region exists is indicated. The fourth column gives the
value of the adiabatic index γ used in the numerical
calculation. In Table XII (b), i.e., bottom part, we present
again stability for stars and regular black holes but now in
qualitative terms giving the general features. The table is set
as the one before with respect to the rows. The first column
represents the type of object studied. The second column
yields whether there is stability or not with the words yes,

neutral, or no, for q2

R2 and γ without showing the intervals

of r0R. The third column indicates the interval of q2

R2 for which
there are stable solutions, with the regular black holes with
negative energy densities showing that we can find regions

of stability for q2

R2 > 0. The fourth column gives the sign of
the adiabatic index γ, either positive or negative, which
gives stability, without giving numerical values.
In Table XIII, we present the stability of QBHs and

QNBHs in qualitative terms giving the general features.
The table is set as follows. The first column represents the
type of studied object. The second column expresses
whether there is stability or not with the words yes,
neutral, or no. The third column indicates the interval of
the parameter a for which there are stability solutions, in
the case of QBHs from regular undercharged pressure
stars there are no stable solutions for a > 1. The fourth
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column gives the sign of the adiabatic index γ, either
positive or negative, which gives stability, without giving
numerical values.
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APPENDIX A: CONSISTENCY OF THE
EINSTEIN-MAXWELL-ELECTRIC MATTER

SYSTEM OF EQUATIONS

The Einstein-Maxwell equations with electrically
charged matter presented in Sec. II, specifically, in
Sec. II A, Eqs. (1)–(7), is a consistent system of equations.
We now show this consistency. To be self contained and for

ease of referencing the equations in the deduction of the
consistency we repeat the full set of equations.
The two Einstein-Maxwell equations with electrically

charged matter are

Gμν ¼ 8πTμν; ðA1Þ

∇νFμν ¼ 4πJμ; ðA2Þ

where Gμν is the Einstein tensor, Tμν is the energy-
momentum tensor, ∇μ represents the covariant derivative,
Fμν is the Faraday-Maxwell electromagnetic tensor, Jμ is
the charge current density, and Greek indices range from 0
to 3, 0 corresponding to a timelike coordinate t, and 1,2,3 to
spatial coordinates. The Einstein tensor Gμν is a function of
the metric gμν and its first two derivatives, not needed to be
written explicitly here. There are two distinct contributions
to the energy-momentum tensor Tμν. One contribution
comes from the matter and its energy-momentum tensor
is denoted by Mμν. The other contribution comes from the
electromagnetic field and its energy-momentum tensor is
denoted by Eμν. So, Tμν can be written as

Tμν ¼ Mμν þ Eμν: ðA3Þ

The matter energy-momentum tensorMμν is assumed to be
a perfect fluid energy-momentum tensor, so that

Mμν ¼ ðρþ pÞuμuν þ pgμν; ðA4Þ

where ρ is the fluid matter energy density, p is the iso-
tropic fluid pressure, and uμ is the fluid’s four-velocity.

TABLE XIII. Summary of the results on the stability of QBHs
and QNBHs.

Configurations Stability a γ

QBHs from regular undercharged
pressure stars

no > 1 < ∞

QBHs from extremal dust stars Neutral 1 all
QBHs from overcharged tension stars yes 0–1 Negative
QNBHs from regular black holes yes > 4 Negative

TABLE XII. Summary of the results on the stability of stars and regular black holes: (a) Specific results, (b) Generic results.

Configurations Stability q2

R2 γ

Undercharged pressure stars 0.915703 ≤ r0
R ≤ 0.942943 0.3 4

Extremal charged dust stars Neutral 0–1 all
Overcharged tension stars 0.938387 ≤ r0

R ≤ 0.978111 0.6 −0.06
Regular black holes with negative energy densities 0 ≤ r0

R ≤ 0.866025 1.6875 4
Regular black holes with a phantom matter core no 1–3 all
Regular tension black holes with positive enthalpy density 0.998842 ≤ r0

R ≤ 0.999999 2.2 −0.4
Regular de Sitter black hole r0

R ¼ r−
R ¼ 1 3 all

Configurations Stability q2

R2 γ

Undercharged pressure stars yes 0–1 Positive
Extremal charged dust stars Neutral 0–1 all
Overcharged tension stars yes 0–1 Negative
Regular black holes with negative energy densities yes ≠ 0 Positive
Regular black holes with a phantom matter core no 1–3 all
Regular tension black holes with positive enthalpy density yes 1–3 Negative
Regular de Sitter black hole yes 3 all
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The electromagnetic energy-momentum tensor Eμν has the
expression

Eμν ¼
1

4π

�
Fμ

γFνγ −
1

4
gμνFγβFγβ

�
: ðA5Þ

The covariant derivative ∇μ is defined through the Levi-
Civita connection. The Faraday-Maxwell tensor Fμν is
defined in terms of a vector potential Aμ by

Fμν ¼ ∇μAν −∇νAμ: ðA6Þ

With this definition one can see that Fμν obeys the internal
Maxwell equations F½μν;ρ� ¼ 0, with all the three indices
being antisymmetrized. The current density of an electri-
cally charged fluid has the expression

Jμ ¼ ρeuμ; ðA7Þ

where ρe is the electric charge density.
To show that the system of equations given in

Eqs. (A1)–(A7) is consistent we start by using the con-
tracted Bianchi identities ∇νGμν ¼ 0. This amounts
to ∇νTμν ¼ 0, with Tμν ¼ Mμν þ Eμν, see Eq. (A3).
Now, ∇νMμν ¼ ½∇νðρþ pÞ�uμuν þ ðρþ pÞ½ð∇νuμÞuν þ
uμð∇νuνÞ� þ ð∇νpÞgμν and ∇νEμν ¼ −JνFμν where in
this last equation full use of all the Maxwell equations
has been made. Then, we cross ∇νTμν ¼ 0 with uμ.
Crossing ∇νMμν with uμ, and using uμuμ ¼ −1 and so
uμ∇νuμ¼0, one obtains uμ∇νMμν¼uν∇νρþðρþpÞ∇νuν.
Crossing ∇νEμν with uμ, one obtains uμ∇νEμν ¼
−uμJνFμν ¼ 0 since uμJν is symmetric in μν and Fμν

antisymmetric. So uμ∇νTμν ¼ 0 implies ∇νðρuνÞ þ
p∇νuν ¼ 0, which is the energy conservation equation
for the matter, and when p ¼ 0 turns into the continuity
equation, i.e., ∇νðρuνÞ ¼ 0. Now we use the projection
tensor Pρσ ¼ gρσ þ uρuσ to act on ∇νTμν ¼ 0. First, we
have Pρμ∇νMμν ¼ Pρμðρþ pÞð∇νuμÞuν þ Pρμð∇νpÞgμν,
i.e., Pρμ∇νMμν ¼ ðρþ pÞuνð∇νuρÞ þ∇ρpþ uρuνð∇νpÞ,
where we have used that Pρμuμuν ¼ ðgρμ þ uρuμÞuμuν ¼
uρuν − uρuν ¼ 0, and PρμðρþpÞuμð∇νuνÞ¼ðgρμþuρuμÞ
ðρþpÞuμð∇νuνÞ¼ðρþpÞ½uρð∇νuνÞ−uρð∇νuνÞ�¼0, and
the other identities. Second, we have Pρμ∇νEμν ¼
−PρμJνFμν ¼ −JνFρ

ν, we again used that uμJν is sym-
metric in μν and that Fμν antisymmetric. Thus, Pρμ∇νTμν ¼
0 implies that ðρþ pÞuνð∇νuρÞ þ∇ρpþ uνð∇νpÞuρ −
JνFρ

ν ¼ 0, which is the relativistic Euler equation with
a Lorentz force term as it should. Also, clearly, one has
from Eq. (A2) that ∇μJμ ¼ 0, which is the continuity
equation for the electric current. So the whole setup
presented in Sec. II, specifically in Sec. II A, is consistent.

APPENDIX B: DERIVATION OF THE FULL
SET OF THE DYNAMICAL

PERTURBATION EQUATIONS

Here we give the derivation of the full set of perturbation
equations of Sec. II, specifically, of Sec. II C 2. So we have
to derive Eqs. (26)–(31).
We proceed as follows. Integrating Eq. (23) we arrive

at δA ¼ −8πrðρi þ piÞA2
i ξ which upon using the

tt component of the Einstein-Maxwell equations yields

δA ¼ −AiðA
0
i

Ai
þ B0

i
Bi
Þξ, which is Eq. (26). From Eqs. (20) and

(21), and with the help of Eq. (24), we can find an
expression for the perturbation δB as ðδBBi

Þ0 ¼ 8πAi½2rp0
i−

ðρi þ piÞ�ξþ 8πAirδp − 2AiQiQ0
iξ

r3 , which is Eq. (27). From
Eq. (20) and the equation resulting from the integration
of Eq. (23), we can find an expression for the perturbations

δρ, namely, δρ ¼ −ρ0iξ − ðρi þ piÞ B
1
2
i

r2 ðr2B
−1
2

i ξÞ0, which is
Eq. (28). The Lagrangian perturbation Δρ is obtained by
using relation (28) and the fact that the Lagrangian and the
Eulerian perturbations are linked by the relationship given

in Eq. (17), resulting in Δρ ¼ −ðρi þ piÞ B
1
2
i

r2 ðr2B
−1
2

i ξÞ0.
Using the definition for γ given in Eq. (25) and the equation

for Δρ just derived, one gets Δp ¼ −γ piB
1
2
i

r2 ðr2B−1
2

i ξÞ0, or,
in terms of the Eulerian perturbation, δp ¼ −p0

iξ−

γ
piB

1
2
i

r2 ðr2B−1
2

i ξÞ0, which is Eq. (29). The equation of motion
for ξ, Eq. (30), is simply Eq. (22) written more appropri-
ately to the perturbation problem. The equation for the
perturbed charge, Eq. (31), is essentially Eq. (24), and it is
worth noting that it implies directly that ΔQ ¼ 0, i.e., the
electric charge is conserved when a Lagrangian perturba-
tion is performed, a fact that comes directly from the
conservation of electric charge, i.e., ∇μJμ ¼ 0.

APPENDIX C: STURM-LIOUVILLE PROBLEM

Here we comment on the Sturm-Liouville problem,
see Sec. II, sepcifically, Sec. II C 4.
Standard manipulation of the perturbation equation for

the electrically charged fluid under study, Eq. (32), leads to
a second order ordinary homogeneous differential equation
for the displacement ζ, Eq. (35), which is again displayed
here as

FðrÞζ00ðrÞ þ F0ðrÞζ0ðrÞ þ ½HðrÞ þ ω2WðrÞ�ζðrÞ ¼ 0;

ðC1Þ

where we have used ζðrÞ ¼ r2B
−1
2

i ξðrÞ. The coefficients
FðrÞ, HðrÞ, and WðrÞ are given by

FðrÞ ¼ γpiB
3
2

iA
1
2

i

r2
; ðC2Þ
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HðrÞ ¼ B
3
2

iA
1
2

i

r2

�
1

ðρi þ piÞ
�
QiQ0

i

4πr4
− p0

i

�
2

−
4p0

i

r
− 8πAiðρi þ piÞ

�
pi þ

Q2
i

8πr4

��
; ðC3Þ

WðrÞ ¼ ðρi þ piÞB
1
2

iA
3
2

i

r2
: ðC4Þ

Equation (C1) defines a homogeneous Sturm-Liouville
problem or SL problem for short.
Here we state some known theorems regarding the

eigenvalues of the SL problem that are important for our
work, see, e.g., [30–32]. Consider the differential equation

ðFζ0Þ0 þHζ þ λWζ ¼ 0; in I ¼ ða; bÞ; ðC5Þ

with −∞ < a < b < ∞ and the boundary conditions

α1ζðaÞ þ α2FðaÞζ0ðaÞ ¼ 0; ðC6Þ

β1ζðbÞ þ β2FðbÞζ0ðbÞ ¼ 0; ðC7Þ

where α1 and α2 are not both zero, similarly for β1 and β2,
and with the coefficients satisfying

F;H;W∶ða; bÞ → R;
1

F
;H;W ∈ LðI;RÞ; ðC8Þ

where R denotes the set of real numbers, and LðI;RÞ
denotes the space of real valued Lebesgue integrable
functions in I. Let (C5)–(C7) hold in I, and take the
following considerations [30–32]:
(A) Assume that W > 0 and F > 0 almost everywhere

in I. Then, the boundary value problem (C5)–(C7)
has only real and simple eigenvalues. There are an
infinite but countable number of eigenvalues that are
bounded from below and can be ordered to satisfy
the inequalities

−∞ < λ0 < λ1 < λ2 < λ3 < � � � ; ðC9Þ

with λn → ∞ as n → ∞. If ζn is an eigenfunction
of λn, then ζn has exactly n zeros in the open
interval ða; bÞ.

(B) Assume that W > 0 and F < 0 almost everywhere
in I. Then, the boundary value problem (C5)–(C7)
has only real and simple eigenvalues. There are an
infinite but countable number of eigenvalues that are
bounded from above and can be ordered to satisfy
the inequalities

� � � < λ−2 < λ−1 < λ0 < ∞; ðC10Þ

with λ−n → −∞ as n → ∞.

(C) Assume that W > 0 and that F changes sign in I.
Then, the boundary value problem (C5)–(C7) has
only real and simple eigenvalues. There are an
infinite but countable number of eigenvalues that
are unbounded from below and from above and can
be ordered to satisfy

� � � < λ−2 < λ−1 < λ0 < λ1 < λ2 < � � � ; ðC11Þ
with λn → ∞ as n → ∞, and λn → −∞ as n → −∞.
If ζn is an eigenfunction of λn, then ζn has exactly jnj
zeros in the open interval ða; bÞ. And λ0 is chosen as
the first non-negative eigenvalue in (C11).

(D) Assume that F > 0 and that W changes sign in I.
Then, the boundary value problem (C5)–(C7) has
only real and simple eigenvalues. There are an
infinite but countable number of eigenvalues that
are unbounded from below and from above and can
be ordered to satisfy

� � � < λ−2 < λ−1 < λ0 < λ1 < λ2 < � � � ; ðC12Þ
with λn → ∞ as n → ∞, and λn → −∞ as n → −∞.

The above theorems may be applied to the stability
problems considered in the main text by noting that the
finite interval ½a; b� translates into the interval ½0; r0� in the
radial coordinate r, where r0 is the radius of the boundary
of the matter.

APPENDIX D: NUMERICAL METHODS

1. Shooting method

The pulsation equation, being an eigenvalue SL problem,
can be solved using the shooting method [29–32]. This is
one of the methods mentioned in Sec. II, specifically,
Sec. II C 6. This method is implemented to find the
eigenvalues of the equation which in this case are the
normal frequencies of the normal modes. The shooting
method is based on the reduction of a boundary value
problem to the solution of an initial value problem. In
concrete, the idea of the method is to solve the differential
pulsation equation given in Eq. (32) by performing its
integration from the center at r ¼ 0 toward the surface at r0
using a Runge-Kutta integration with an adaptive stepsize
for a succession of trial values of ω2, see, e.g., [29].
To apply in practice this method it is advisable to

transform Eq. (32) into two first order differential equa-
tions. For that we have to return to the full set of perturbed
equations given in Eqs. (26)–(31). To simplify the whole
scheme, we substitute ξ for a dimensionless variable χðrÞ
defined by χðrÞ ¼ ξðrÞ

r . Then, using Eq. (29) for δp and
recalling that the Lagrangian variation is Δp ¼ δpþ p0ξ
we can write from the very same Eq. (29) χ0 as

χ0 ¼ −
3χ

r
−
Δp
γrp

þ χ

ðρþ pÞ
�
QQ0

4πr4
− p0

�
; ðD1Þ
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where Eq. (13) was also used to eliminate B0 in terms of the
fluid quantities. Now, usingΔp ¼ δpþ p0ξ in Eq. (30) one
has the following equation for Δp0

Δp0 ¼ ω2r
A
B
ðρþ pÞχ − 8πrAðρþ pÞpχ

− 4p0χ þ r
ðρþ pÞ

�
QQ0

4πr4
− p0

�
2

χ

− ðρþ pÞAQ
2χ

r3
− 4πrAðρþ pÞΔp

−
Δp

ðρþ pÞ
�
QQ0

4πr4
− p0

�
; ðD2Þ

where Eqs. (26)–(31) have also been used. For a given ω2,
Eqs. (D1) and (D2) form a first order differential system of
two equations for the two unknowns χ and Δp.
To guarantee a regular solution the imposition of

regular boundary conditions is mandatory. Since ξðrÞ ¼
χðrÞr, the boundary condition ξðr ¼ 0Þ ¼ 0, turns into
χðr¼0Þ×0¼0, which is automatically satisfied if χðr¼0Þ
is finite. One can choose any finite number and we choose

χðr ¼ 0Þ ¼ 1: ðD3Þ

In many concrete problems one has that at r ¼ 0, p0 ¼ 0
and Q0 ¼ 0. Imposing also that χ0ðrÞ ¼ 0 at r ¼ 0, which
one can always do, one finds from Eq. (D1) that Eq. (D3) is
then equivalent to Δpðr ¼ 0Þ ¼ −3γp at r ¼ 0, which is a
helping equation to start the numerical calculations. The
boundary condition at the boundary r ¼ r0 is the same as
before, i.e.,

Δpðr ¼ r0Þ ¼ 0: ðD4Þ

With the two boundary conditions of Eqs. (D3) and (D4),
Eqs. (D1) and (D2) form a first order differential system
of two equations that can be now solved numerically for
the two unknowns χ and Δp, when the correct ω2 is found.
We note that in the uncharged case, for specific neutron
star models, this strategy has been employed in [33,34]. We
use Fortran 77 to implement the shooting method, see,
e.g., [29].

2. Chebyshev finite difference method

The pulsation equation, as an eigenvalue SL problem,
can be solved using other methods besides the shooting
method. The other method that we use here is the
Chebyshev finite difference method [35–39] which is an
instance of generic pseudospectral methods. This is the
other method mentioned in Sec. II, specifically, Sec. II C 6.
The pseudospectral methods are powerful tools which

represent an efficient discretization technique for obtaining
approximate numerical solutions of differential, integral,
and integro-differential equations [35]. The basic idea is

considering that the unknown solution ζðrÞ of the SL
boundary value problem, as given in Eq. (35) can be
approximated as a sum of a finite set of known basis
functions. The basic functions to choose are important
because they depend on the properties of the system under
study [36]. A good choice is the Chebyshev functions of the
first kind defined by

TnðxÞ ¼ cosðn arccos xÞ; ðD5Þ
with n running over the natural numbers, as these present
excellent properties to approximate smooth functions. The
Chebyshev functions are a well-known family of orthogo-
nal polynomials in the interval x ∈ ½−1; 1�, which can be
rescaled and shifted to any other interval. Given this
property, it is convenient to map the domain of the radial
coordinate r of our problem to the domain of these
polynomials, i.e., we want to rescale the interval ½0; r0�
to ½−1; 1�. For this we do r ¼ 1

2
ðxþ 1Þr0, i.e.,

x ¼ 2r
r0

− 1; ðD6Þ

and so r ∈ ½0; r0� is mapped into x ∈ ½−1; 1�.
The formal solution to the perturbation problem can be

put in the form of an infinite sum of Chebyshev functions

ζðxÞ ¼
X∞
n¼0

anTnðxÞ; ðD7Þ

where the an are given by an ¼
R
1
−1 ζðxÞTnðxÞdx. To solve it

numerically one has to approximate the infinite sum in
Eq. (D7) by a finite sum ζNðxÞ defined up to a number N. So

ζNðxÞ ¼
XN
n¼0

θnanTnðxÞ; ðD8Þ

where now the an are given by an ¼
R
1
−1 θnζNðxÞTnðxÞdx

and in these truncated Chebyshev sums it is understood that
the first and the last terms in the series are multiplied by
the factor 1

2
, so that the auxiliary variable θn was created so

that θ0 ¼ θN ¼ 1
2
and the other θn are given by θn ¼ 1. This

numerical approach further requires the definition of a grid
which is a discretization of the domain in which the problem
is to be solved. This means that the continuous independent
variable x is replaced by a discrete set of points called
Chebyshev-Gauss-Lobatto points, and are such that

xk ¼ cos

�
kπ
N

�
; k ¼ 0; 1; 2;…; N: ðD9Þ

Thus, at each xk we can write from Eq. (D8)

ζNðxkÞ ¼
XN
n¼0

θnanTnðxkÞ; ðD10Þ

MASA, LEMOS, and ZANCHIN PHYS. REV. D 107, 064053 (2023)

064053-32



where now an ¼ 2
N

P
N
k¼0 θnζNðxkÞTnðxkÞ. The derivatives

of ζðxÞ that enter into the problem are then expanded as a
linear combination from the values of the function ζNðxÞ at
the Chebyshev-Gauss-Lobatto points ζNðxkÞ. Thus, the
calculation process to obtain the value of the mth order
derivative of ζNðxÞ at a given grid point xk reduces to a
matrix operation given by

ζðmÞ
N ðxkÞ ¼

XN
j¼0

CðmÞ
kj ζNðxjÞ; ðD11Þ

where the first and second of the coefficients CðmÞ
kj are

given by

Cð1Þ
kj ¼ 4θj

N

XN
n¼0

Xn−1
l¼0

ðnþlÞodd

nθn
αl

TnðxjÞTlðxkÞ ðD12Þ

Cð2Þ
kj ¼ 2θj

N

XN
n¼0

Xn−2
l¼0

ðnþlÞeven

nðn2 − l2Þθn
αl

TnðxjÞTlðxkÞ ðD13Þ

where the subscripts j, k run from 0 to N, θ0 ¼ θN ¼ 1
2
,

θn ¼ 1 for n ¼ 1;…; N − 1, α0 ¼ 2, αl ¼ 1 for l ¼ 1;…;
N − 1, see Ref. [37]. The general expressions for the

derivatives ζðmÞ
N can be found in [38].

This procedure allows us to discretize the initial differ-
ential problem into a system of algebraic equations that the
set of the expansion coefficients must satisfy. Since the
pulsation equation, see Eq. (35), is linear, these algebraic
equations can be cast as a matrix equation generically of the
form of a generalized eigenvalue problem,

ðFþ ω2WÞZ ¼ 0; ðD14Þ

where, ðFÞkl¼FðxkÞCð2Þ
kl þGðxkÞCð1Þ

kl þHðxkÞδkl, ðWÞkl ¼
WðxkÞδkl are two purely numerical square matrices
constructed from the coefficients of Eq. (35), and ðZÞk ¼
ζNðxkÞ is the vector with the unknown values of the
eigenfunction at the N þ 1 grid points. The last two rows
of the coefficients matrix of the algebraic system are
replaced by a suitable formulation of the boundary con-
ditions in terms of the polynomial approximation and its
derivatives [38]. This can be solved numerically using, for
instance, Mathematica’s built-in function Eigenvalues, or
Eigensystem to get the eigenfunctions as well; see Ref. [39]
for an application. We use Mathematica packages to
implement the Chebyshev method.

APPENDIX E: MORE TABLES AND COMMENTS

To complete the text on regular undercharged stars, i.e.,
stars with 0 < q2 < m2, see Sec. IVA 2, here we present

the Table XIV for stars with q2

R2 ¼ 0.3, which completes

Table III. The two first columns of Table XIVare also given
in Table III, whereas columns three and four are new and
give the fundamental frequency squared ω2

0 and the first
overtone frequency squared ω2

1 for a matter fluid with
γ ¼ 4. One clearly sees from the table that there is a
change from stability to instability when r0

R goes from
r0
R ¼ 0.933863 to r0

R ¼ 0.942943. One also sees that for
small relative radii, r0R, the stars are electrically charged stars
with very small pressure, they are near the curve C0 of
electrically charged dust stars, and both ω2

0 and ω2
1 take

values close to zero, as it should be from our discussion in
the main text.
To complete the text on regular overcharged tension

stars, i.e., stars with m2 < q2, see Sec. IVA 4, here we
present the Tables XV and XVI. Table XV, for stars with
q2

R2 ¼ 0.6, presents in the first column the radii r0R for regular
overcharged stars. The solutions for these overcharged stars
have radii extending from approximately r0

R ¼ 0.880112 to
approximately r0

R ¼ 0.978113. The endpoints for the radius

TABLE XIV. For regular undercharged stars, 0 < q2 < m2,

with q2

R2 ¼ 0.3, in columns one and two, several r0R are given along
with their own γcr. In columns three and four, the eigenfrequen-
cies ω2

0 and ω
2
1 are given for γ ¼ 4. The transition from stability to

instability of the star goes when ω2
0 goes from positive to

negative.

r0
R γcr ω2

0 ω2
1

0.915704 2.95794 1.64116 × 10−6 4.35847 × 10−5

0.924784 3.32947 7.72620 × 10−3 0.334711
0.933863 3.86695 2.34262 × 10−3 0.541389
0.942943 4.70936 −0.0135501 0.628574
0.952022 6.20193 −0.0371488 0.602781
0.961102 9.47855 −0.0650874 0.469199
0.970181 21.1295 −0.0924624 0.237346
0.979261 440359 −0.111286 3.17674 × 10−6

TABLE XV. For regular overcharged tension stars, m2 < q2,

with q2

R2 ¼ 0.6, in columns one and two, several r0R are given along
with their own γcr. In columns three and four, the eigenfrequen-
cies ω2

0 and ω2
1 are given for γ ¼ 4. There are no stable solutions

for γ ¼ 4 and indeed for any positive finite γ, the eigenfrequen-
cies have a tower of negative values.

r0
R γcr ω2

0 ω2
1

0.880113 1.65801 −1.32771 −13.2864
0.894113 1.73187 −0.974978 −10.7426
0.908113 1.84207 −0.650766 −8.07796
0.922113 2.00277 −0.387085 −5.60955
0.936112 2.24897 −0.193301 −3.49922
0.950112 2.66600 −0.0687836 −1.83197
0.964112 3.51731 −7.57518 × 10−3 −0.652796
0.978111 6.16196 2.88863 × 10−6 −7.18147 × 10−5
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r0
R shown in the first column of the table represent the
minimum and the maximum values where the numerical
methods are in agreement to six decimal places. In the
second column of the table the γcr corresponding to the
given r0

R radius of the star is shown, where γcr is the γ for
which ω2

0 is zero. The third and fourth columns give the
fundamental frequency squared ω2

0 and the first excited
frequency squared ω2

1 for each r0
R considering that the γ of

the fluid has the value γ ¼ 4. The two eigenvalues start
to be negative for small r0

R and become less negative for
larger r0

R. Indeed, ω
2
0 is negative in the approximate range

0.880112 ≤ r0
R ≤ 0.964112 where γ > γcr, and turns up

positive for approximately 0.964112 ≤ r0
R ≤ 0.978111 with

γ < γcr. But ω2
1 still remains negative. This behavior

suggests that all overcharged tension stars, configurations
belonging to the region (b) between the lines C0 and C1

of Fig. 1, are dynamically unstable against small radial
perturbations for positive γ, unless γ ¼ ∞. As explained in
the main text this is expected on physical grounds for stars
that are held up by tension rather than pressure. In

Table XVI for stars with q2

R2 ¼ 0.6 the two first columns
for r0

R and γcr are also given in Table IV. The values of the

critical adiabatic index γcr only depend on the pair
q2

R2 and
r0
R,

and γcr decreases in negative value when
r0
R grows. Columns

three and four are new and give the fundamental frequency
squared ω2

0 and the first overtone frequency squared ω2
1,

respectively, for a matter fluid with γ ¼ −0.06. The
fundamental frequency squared ω2

0 has negative values
for small r0R where jγj < jγcrj, and it has positive values for
large r0

R where jγj > jγcrj. For large relative radii, r0
R, i.e.,

for stars that are almost electrically charged dust stars
with very small tension, and so they are near the curve C0,
it is clear from the table that both ω2

0 and ω2
1 take values

close to zero, as it should be from our discussion in the
main text. One clearly sees from the table that there is a

change from instability to stability when r0
R goes

from approximately r0
R ¼ 0.936112 to approximately

r0
R ¼ 0.950112, which means that stars with more mass
and less electric charge, and so less tension, become
stable against radial perturbations.
To complete the text on regular black holes with negative

energy densities, see Sec. IV B 1, here we present the

Table XVII for regular black holes with q2

R2 ¼ 27
16
¼ 1.6875,

which completes Table V. The two first columns of
Table XVII are also given in Table V, whereas columns
three and four are new and give the fundamental frequency
squared ω2

0 and the first overtone frequency squared ω2
1 for

a matter fluid with γ ¼ 4. The values of the critical
adiabatic index γcr are obtained respectively from the
pseudospectral and the shooting methods, and are in
agreement to each other up to six decimal places. The
radii of these regular black holes extend from just above
r0
R ¼ 0 to approximately r0

R ¼ 0.866025. The critical adia-
batic index γcr decreases with growing r0

R, and for larger r0
R,

γcr rises again, the heuristic physical reason for this
behavior is not clear. All eigenfrequencies are positive,
i.e., ω2

0 and ω2
1 are positive, and so all these regular black

holes with γ ¼ 4 are stable against radial perturbations. In
addition, when r0

R is large enough to yield an object with
mass equal to charge, i.e., when it is near C2, the two
frequencies become zero and the system is neutrally stable.
This latter behavior possibly holds for any γ.
To complete the text on regular black holes with a

phantom matter core, see Sec. IV B 2, here we present the
Table XVIII which gives some more detail for such regular
black holes. Regular black holes with a central core made
by a charged fluid of phantom matter are configurations
whose parameters belong to the regions (d2) and (e1) above
the curve C31 plus C31C32, and below the line C33 of Figs. 1
and 2, in the region (d2), the energy density is positive and

TABLE XVI. For regular overcharged tension stars, m2 < q2,

with q2

R2 ¼ 0.6, in columns one and two, several r0R are given along
with their own γcr, which has negative values. In columns three
and four, the eigenfrequencies ω2

0 and ω
2
1 are given for γ ¼ −0.06.

The transition from instability to stability of these stars goes when
ω2
0 goes from negative to positive.

r0
R γcr ω2

0 ω2
1

0.880113 −0.125874 −0.112415 0.107096
0.894113 −0.113132 −0.0799539 0.118102
0.908113 −0.0952036 −0.0446134 0.119851
0.922113 −0.0779790 −0.0179504 0.106768
0.936112 −0.0623795 −1.69590 × 10−3 0.0827208
0.950112 −0.0483227 5.03599 × 10−3 0.0529323
0.964112 −0.0352687 4.47316 × 10−3 0.0231310
0.978111 −0.0220528 9.30989 × 10−7 3.26101 × 10−6

TABLE XVII. For regular black holes with negative energy
densities with q2

R2 ¼ 27
16
¼ 1.6875, in columns one and two, several

r0
R are given along with their own γcr. In columns three and four,
the eigenfrequencies ω2

0 and ω2
1 are given for γ ¼ 4. All systems

are stable against radial perturbations, there are no negative
frequency squares. The systems with r0

R ¼ 0.864810, approxi-
mately, are neutrally stable, indeed they are systems with mass
equal to charge or close to it.

r0
R γcr ω2

0 ω2
1

0.0186989 2.59470 8.6867 × 109 3.31562 × 1010

0.139572 1.30905 206173 696030
0.260445 0.916685 9970.58 32291.6
0.381318 0.766649 1569.94 5123.63
0.502191 0.701179 378.774 1268.46
0.623064 0.670727 106.670 364.258
0.743937 0.659659 25.9222 87.7674
0.864810 0.666663 6.86986 × 10−3 2.18738 × 10−2
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finite at the center of the distribution of matter and changes
to negative values close to the surface, and in the region
(e1), the matter energy density is positive everywhere and
the pressure is negative. In both regions, the pressure is
larger in absolute value than the energy density at the center
of the distribution, and it goes to zero at the surface r0.
Thus, for a finite region inside the matter one finds
ρþ p < 0. As a consequence, the coefficient WðrÞ in
the SL problem is a negative function in 0 ≤ r ≤ rd for
some rd < r0, and it is positive in rd ≤ r ≤ r0, while the
coefficient FðrÞ is a negative function on the whole interval
0 ≤ r ≤ r0 if γ is a positive number, or conversely the
coefficient FðrÞ is a positive function on the whole interval
0 ≤ r ≤ r0 if γ is a negative number. As pointed out in
Appendix C, case (D), in such a case the behavior of the
eigenvalues of the SL problem is as follows. There are two

simple ground states, ω2ðþÞ
0 > 0 and ω2ð−Þ

0 < 0, where the
frequencies of excited states accumulate at, from above and
from below, respectively, i.e., there are exactly one positive

eigenvalue ω2ðþÞ
n and one negative eigenvalue ω2ð−Þ

n asso-
ciated to which there exist respectively two branches of
eigenvalues each one within the corresponding intervals

ðω2ðþÞ
0 ;∞Þ and ð−∞;ω2ð−Þ

0 Þ, i.e., the eigenvalues of the SL
problem for regular black holes with a phantom matter
central core belonging to regions (d2) and (e1) are
unbounded from below and above. Thus, in these regions
the solutions are unstable due to the double valued,
negative and positive, of the squared frequencies for the
same adiabatic index. In the table, these results are

presented. For some values of r0
R,

q2

R2, and γ positive and
negative, it is shown that ω2

0 and ω2
1 are degenerated, i.e.,

there exist one positive and one negative corresponding
eigenvalues.
To complete the text on regular black holes with positive

enthalpy density, see Sec. IV B 3, here we present some
more detail for such regular black holes. In Fig. 15 we show
the numerical results for the critical adiabatic index γcr as a
function of the radius for four values of the electric charge,

namely, q2

R2 ¼ 1.1, q2

R2 ¼ 2.2, q2

R2 ¼ 2.8, and q2

R2 ¼ 2.99, as
indicated in the figure. The difference of this figure to
Fig. 11 is that here in Fig. 15 the range of r0

R is widened in
each plot to get a good portion of the plotted line, whereas
in Fig. 11 the range of r0

R is fixed so that one sees clearly by
a comparison between the four plots themselves the range
of the validity of the solutions in the axis r0

R .

TABLE XVIII. The top table shows for some values of r0
R,

q2

R2,
and γ positive, that ω2

0 and ω2
1 are degenerated, i.e., there is one

positive and one negative corresponding eigenvalue. The bottom

table shows for the same values of r0
R,

q2

R2, and γ negative, that ω2
0

and ω2
1 are degenerated, i.e., there is one positive and one negative

corresponding eigenvalue.

r0
R

q2

R2 γ ω2ðþÞ
0 ω2ð−Þ

0 ω2ðþÞ
1 ω2ð−Þ

1

0.910 1.8 0.60 6.11397 −3.89608 27.9524 −6.23978
0.940 2.0 0.65 1.51244 −7.81232 29.9170 −96.1171
0.970 2.5 0.55 2.95108 −44.2682 42.4200 −516.103

r0
R

q2

R2 γ ω2ðþÞ
0 ω2ð−Þ

0 ω2ðþÞ
1 ω2ð−Þ

1

0.910 1.8 −0.50 11.2388 −15.0966 65.4825 −36.5027
0.940 2.0 −0.45 13.3861 −25.7676 75.5721 −57.0211
0.970 2.5 −0.30 42.9441 −19.185 300.872 −43.2299

FIG. 15. Adiabatic index γcr as a function of the radius for

four values of the electric charge, namely, q2

R2 ¼ 1.1, q2

R2 ¼ 2.2,
q2

R2 ¼ 2.8, and q2

R2 ¼ 2.99, as indicated in the figure. Stability of
regular tension black holes with positive enthalpy density. These
regular black holes belong to region (e2), above the curve C33 of
Fig. 2 which is an enlargement of Fig. 1. The critical adiabatic

index γcr for four values of the electric charge parameter q2

R2 ¼ 1.1,
q2

R2 ¼ 2.2, q2

R2 ¼ 2.8, and q2

R2 ¼ 2.99, is shown as a function of the
radius r0

R . In each of the four plots, the line starts at a minimum
radius r0

R on the curve C33 for which γcr is negative and for larger
r0
R , γcr becomes more negative up to the line r0

R ¼ 1. The light gray
region on the left side of each plot corresponds to objects that are
not regular tension black holes with positive enthalpy density
configurations. The difference of this figure to Fig. 11, is that here
the range of r0

R is widened in each plot.
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