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The geodesics around compact objects are one of the best tools to understand the geometrical properties
of the central gravity source. In this paper, we study timelike and lightlike geodesics of a quantum black
hole proposed in [E. Binetti et al., Phys. Rev. D 106, 046006 (2022).], which does not require committing
to a specific model of quantum gravity. We analyze the quantum correction on the related obsrevables:
periapsis precession of bounded orbits and angular shadow size. We find that, compared to the classical
case, the quantum correction will enhance the periapsis precession as well as the black hole shadow. This
effect is more significant for a smaller quantum black hole.
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I. INTRODUCTION

As the most ambitious goal of physicists, the Grand
Unified Theory intends to unite the gravitational and the
other three interactions under the same framework, which
inevitably requires a quantized theory of gravity. To date,
Einstein’s general relativity (GR) has been a very success-
ful theory in modern physics and has passed plenty of
test in astrophysics as well as astronomy. In particular,
as a prediction of GR, black holes provide natural labo-
ratories to test gravity in the strong field regime. Recent
observations on gravitational waves [1–3] and the Event
Horizon Telescope (EHT) on the shadow of supermassive
M87* [4–6] and SgrA* [7,8] black holes further demon-
strate the great success of GR. Nevertheless, GR is still
facing challenges, such as the existence of the closed
timelike curve [9], the nonlocality of gravitational field
energy, etc. Especially, it breaks down inside the interior
of event horizon and at the spacetime singularity. To
address the problems at the singularities and event horizon,
we should construct a self-consistent and complete theory
of quantum theory. In this scenario, plenty of efforts have
been made to invent black holes with quantum character-
istics in various frameworks, such as noncommutative
geometry [10,11], the loop quantum gravity [12,13], the
effective field theories [14,15], and the renormalization
group [16–18].
Since the strong gravity regime near a black hole is

thought to be a region that may be helpful for exploring the

quantum nature of the spacetime, it is unsurprising that the
related theoretical studies on the optical observabational
predictions, particularly the strong gravitational lensing
effect and black hole shadow, of quantum effects on such
black holes in various quantum gravity theories have been
widely extended [19–36]. Those studies disclosed the print
of the quantum effects on the strong gravitational effects of
black hole, leading to an optimistic conclusion that quan-
tum gravity effects could be accessible in the black holes’
observations, especially from the shadow and photon ring
of Sgr A* by EHT as proposed by Steven B. Giddings in
2014 [37].
The remarkable progress on the orbital evolution of

S-stars orbiting the central object and the black hole image
of Sgr A* shows the experimental ability to observe the
vicinity of black holes. In the theoretical aspect, on one
hand, the general relativistic effect promotes the elliptic
orbit to rotate in the same direction as the orbital evolution,
known as the periapsis precession of bound orbits [38].
Then, we could evaluate various contributions to the
gravitational source field by observing the displacement
of the orbit due to the precession and inversely diagnose the
properties of the center gravity sources; see, for example,
Refs. [39–44] and references therein. On the other hand, the
shadow region due to the strong gravitational lensing effect,
surrounded by a bright ring, is one of the important features
in the black hole image. In detail, there is a photon region
around the black hole, where the light rays from the light
source are captured such that they cannot form an image
visible to an outside observer. However, such a photon
region could be dynamically unstable under perturbations,
which allows light to encircle the black hole any number of
times before being either scattered back to infinity or falling
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into the black hole [45]. If there exists only one unstable
photon region, the photons which escape from the spherical
orbits will form the appearance of the dark silhouette of the
black hole, known as a black hole shadow from the external
observers. Evidently, the shadow size is determined by
photon region and position of the observer, so the angular
size becomes a key measurement, which could characterize
the properties of center black hole for the position-fixed
observer. Thus, it is also widely discussed that the black
hole shadow can provide the information on the central
black holes; see Refs. [45–47] for reviews.
In this paper, we will focus on a quantum black hole in

the effective theory which does not require committing to a
specific model of quantum gravity, proposed very recently
in Ref. [48]. In their approach, the quantum correction to
the black hole physics was claimed to be captured, and the
physical quantities can be well expanded in terms of the
inverse powers of the black hole mass. Then, it is natural
to investigate the prints of the general form of quantum
correction on the observables of black hole, especially
those related with the geodesics. Thus, the aim of this paper
is to partly address the issues. We mainly investigate the
quantum effects on the periapsis precession of a bound
orbit of stars and shadow cast by analyzing the timelike or
null-like geodesic in the quantum black hole spacetime.
As we mentioned before, there exist many works on

geodesics and the related observables in the black hole
spacetimes with quantum corrections. But those discussions
highly depend on the models of quantum gravity, and an
expected conclusion is still missing. The studies on the
geodesics for the quantum black hole without requiring
committing to a specific model of quantum gravity would
shed light on the universal properties of quantum corrections
on such geodesics. Moreover, these studies can provide
theoretical prediction on the related observables, which we
hope to be comparable with the possible future observations
on the quantum effects in astrophysics and astronomy.
This paper is organized as follows. In Sec. II, we start by

a briefly introduction to the quantum black hole inves-
tigated in Ref. [48]. In Secs. III and IV, we discuss the
effects of the leading order quantum correction on the
timelike and null-like geodesics. Conclusions and discus-
sions are offered in Sec. V.

II. QUANTUM SCHWARZSCHILD BLACK HOLE

In this section, we will provide a brief review about the
quantum black hole spacetime in an effective field theory
investigated in Ref. [48], which is considered as the
deviation from classical case. For a Schwarzschild black
hole metric

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdψ2Þ;

with fðrÞ ¼ 1 −
2GNM

r
; ð1Þ

if one takes the dimensionless quantities

z ≔ MPr ¼
r
lP

; χ ≔
M
MP

; ð2Þ

with lP the Planck length, MP the Planck mass, and
GNM2

P ¼ 1, one then obtains the redshift function as

fðrÞ ¼ f0ðzÞ ¼ 1 − 2χ=z: ð3Þ

Following the physical procedures in Ref. [48], one can
upgrade the classical metric (1) into a quantum one as

ds2 ¼ −fðzÞdt2 þ dz2

fðzÞ þ z2ðdθ2 þ sin2θdφ2Þ; ð4Þ

with

fðzÞ ¼ 1 −
2χ

z

X∞
n¼0

Ωn

dðzÞ2n ; ð5Þ

where the dimensionless coefficients Ωn are specified by a
given theory of quantum gravity with Ω0 ¼ 1 and

dðzÞ ≔
Z

z

0

dz0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðz0Þj

p
ð6Þ

is the normalized proper distance from the center of the
black hole. Therefore, for the zero-order case, one could
reproduce the classical proper distance

d0ðzÞ ¼
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − 2χ

z0 j
q

¼

8>>><
>>>:

πχ − 2χtan−1
ffiffiffiffiffiffiffiffiffiffiffiffi
2χ
z − 1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð2χ − zÞp

; 0 < z < 2χ

πχ ; z ¼ 2χ

πχ þ 2χtanh−1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2χ

z

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zðz − 2χÞp
; 2χ < z < ∞:

ð7Þ
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Subsequently, by combining (5)–(7), one can derive the
quantum proper distance of any order, as well as the
redshift function of the black hole with quantum correc-
tions of various orders. Readers can refer to Ref. [48] for
more details. Here, we are interested in the quantum black
hole with leading-order quantum correction, so (5) reads as

fðzÞ ¼ 1 −
2χ

z

�
1þ Ω1

d21ðzÞ
�
; ð8Þ

where d1ðzÞ is the leading-order quantum proper distance

d1ðzÞ ¼
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���1 − 2χ
z0

h
1þ Ω1

d2
0
ðz0Þ

i���
r : ð9Þ

It is obvious that asΩ1 → 0, redshift function (8) reduces to
the classical Schwarzschild case (3).
Next, we shall study the periapsis precession of bounded

orbits and angular shadow size affected by the leading-
order quantum correction. In general, the sign of Ω1 could
be arbitrary. However, negative Ω1 corresponds to two
horizons (inner and outer ones), while for positive Ω1,
fðzÞ ¼ 0 has single solution. Therefore, in order to
compare closely with the classical Schwarzschild case,
we will consider only the case with Ω1 > 0, which leads to
a single horizon. Samples of d1ðzÞ for various χ and Ω1 are
numerically shown in Fig. 1. Especially, we plot the

quantum correction term Ω1=d21ðzÞ as a function of χ with
the fixed ratio z=χ ¼ 3 which corresponds to the radius of
photon sphere rps in a classical Schwarzschild black hole
(where rps ¼ 3M).

III. TIMELIKE GEODESIC

Following conventional method, for the metric (4)
and (8), we have two constants of motion

E ¼ fðzÞ_t; L ¼ z2 sin θ2 _φ; ð10Þ

indicating the energy and angular momentum of the
particle, respectively. The dot is respect with the affine
parameter. For a timelike geodesic, the constraint on the
trajectories is given by gμνvμvν ¼ −1, i.e.,

−1 ¼ −fðzÞ_t2 þ _z2

fðzÞ þ z2ð_θ2 þ sin2θ _φ2Þ: ð11Þ

Due to the spherical symmetry of the metric, we are safe to
consider the equatorial plane, i.e., θ ¼ π=2. Substituting
Eq. (10) into Eq. (11), we can obtain that the trajectory of
the particle is uniquely determined by

�
dz
dφ

�
2

¼ z4

L2
ðE2 − V2

effÞ; ð12Þ

FIG. 1. The behavior of d1ðzÞ with different Ω1 and χ. For the first three panels, we choose χ ¼ 1 (the solid blue line), χ ¼ 2 (the
dotted orange line), χ ¼ 4 (the dashed green line), and χ ¼ 10 (the dot-dashed red line). For the right-bottom panel, we plot the quantum
correction term Ω1=d21ðzÞ as a function of χ with the fixed ratio z=χ ¼ 3 for Ω1 ¼ 10, 5, 1 (top to bottom).
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with the definition of effective potential

V2
eff ¼ fðzÞ

�
1þ L2

z2

�
: ð13Þ

With different values of L, we plot the effective potential
for selected parametersΩ1 and χ; please see Fig. 2. It shows
that the quantum effect has a more significant impact on
small mass black holes. See also Fig. 3, where we show the
difference of the effective potential between quantum and
classical Schwarzschild black holes.
For some simplification, we can rewrite Eq. (12) in terms

of u ¼ z−1, which leads to

�
du
dφ

�
2

¼ 2u3χð1þMðuÞÞ − u2 þ 2uχ
L2

ð1þMðuÞÞ

−
1 − E2

L2
; ð14Þ

where the quantum-corrected function

MðuÞ ≔ Ω1

d21ðu−1Þ
: ð15Þ

For Ω1 ¼ 0, the above equation will reproduce the classical
timelike geodesic equation (see the detailed discussion in
Chapter 3 of Ref. [49]). However, for the quantum black
hole with Ω1 ≠ 0, unlike the classical one, the analytical
solution to Eq. (14) can be hardly found, even following the
approach shown in Refs. [50,51]. We have to benefit from
the numerical method to investigate the effect of quantum
term on the trajectories of the particle.

A. Bound orbits

For Eq. (14), the particle trajectories are controlled by
three parameters L, E, Ω1 for fixed χ. In addition, the
effective potential is relevant to parameters L and Ω1 for
fixed χ. Thus, the bounded trajectories will be determined by
disposition of the roots of the equation V2

effðzÞ ¼ E2. There
is an extensive literature that has discussed the classification
of the geodesic in different spacetimes [41,49–59]. In this
work, wewill focus on the case 1 > E2 > V2

effðz;LsÞ, which
will ensure the existence of the bound orbits [49]. Ls is
exclusively confirmed for fixed Ω1 and χ such that

dV2
eff

dz
is a monotonic function and

dV2
eff

dz

����
z¼zs

¼ 0:

ð16Þ

zs is the critical point.
In Figs. 4 and 5, we numerically figure out the bound

trajectories for various parameters (L, E, Ω1, χ). Evidently,
we can draw the following conclusions:

(i) For small black hole, the quantum term will have a
relatively greater influence on the bounded orbits. In
other words, with larger quantum corrections come
greater deviation from the standard bounded orbits.

(ii) For large black hole, the deviation is only obvious
when the quantum corrections are relatively large.

Those properties are reasonable as they are consistent
with the corresponding effects on the quantum corrections
terms we found in Fig. 1.

B. Periapsis precession

We now consider another physical concept, the periapsis
precession, which is defined as

Δper ¼ 2

Z
zap

zper

dφ
dz

dz − 2π; ð17Þ

where zap, zper are the real solutions of E2 ¼ V2
effðrÞ,

standing for the radii of an apoapsis and a periapsis,
respectively [41,60]. This concept states that the periapsis
shifts forward (or backward) by an angle Δper with each
circuit around the ellipse. In Table I, we list the periapsis
precession for selected parameter sets. Again, such results
demonstrate the previous conclusion that only large enough
quantum terms have relatively significant influences on the
bounded orbits.

IV. NULL GEODESIC

We move on to study the motion of photons, the rays
of which could be strongly deflected and even travel on
the circular orbits as they pass close to the black hole.
Therefore, the black hole is seen as a dark disk in the sky,
known as a black hole shadow. It is the photon region
(consisting of rays with unstable circular obits) but not the
horizon that determines the shadow. For spherically sym-
metric and static spacetime, the photon region reduces to
the photon sphere, and the shadow is a perfect circle;
therefore, their unique character is the size or radius. Thus,
we shall explore the quantum effect on the sizes of the
photon sphere and shadow for the quantum black hole
spacetime (8).

A. Photon sphere

The photon sphere describes the unstable circular orbits
outside the horizon, which confines the black hole image
for observers at a distance. The trajectories of photon are
described by the null geodesic, i.e., gμνvμvν ¼ 0, staying on
a sphere. Following Ref. [46], such a sphere requires that

dz
dφ

¼ 0;
d2z
dφ2

¼ 0: ð18Þ

Differentiating the null geodesic equation with respect to φ
and combining the above conditions (18), we obtain
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FIG. 2. The effective potential as a function of z for different L.
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FIG. 4. The bounded orbits with periapsis precession. The green solid line indicates the bounded orbit with quantum correction, where
the dotted red line stands for the bounded orbit for the standard Schwarzschild black hole. The other parameters are E2 ¼ 0.95, L ¼ 4.4.
The black circle means the horizon zh with quantum corrections, (left) zh ¼ 2.118 and (right) zh ¼ 2.651.

FIG. 3. The effective potential as a function of z for the quantum (Ω1 ¼ 10) and classical (Ω1 ¼ 0) Schwarzschild black hole.
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d
dz

h2ðzÞ ¼ 0; ð19Þ

where h2ðzÞ ¼ z2=fðzÞ. For a classical nonrotating spheri-
cally symmetric Schwarzschild black hole, the radius of
photon sphere is given by zcps ¼ 3χ [46].
In Fig. 6, we numerically plot the relative radius Δzps ¼

zps − 3χ of the photon sphere as a function of Ω1 for
selected parameter χ, where zps is the radius of photon
sphere with quantum corrections. It is obvious that the
quantum correction Ω1 will enlarge the photon sphere, and
this phenomenon is more significant for a smaller quantum
black hole.

B. Black hole shadow

To describe the shadow on a static observer’s sky, it is
more proper to employ the angular radius αsh of the shadow
rather than the shadow radius. For a Schwarzschild black
hole, the angular radius is given by [61,62]

sin2αsh ¼ 27m2

�
rO − 2m

r3O

�
; ð20Þ

where rO is the observer’s r coordinate from the black hole
and m ¼ GNM=c2 is the mass of black hole. For the case
rO ≫ m, one has

sin2αsh ¼
27m2

r2O
þO

�
m3

r3O

�
: ð21Þ

For the Schwarzschild metric with quantum corrections,
the angular radius α̃sh can be written as

sin2α̃sh ¼
h2ðzpsÞ
h2ðzOÞ

; ð22Þ

TABLE I. The periapsis precession Δper for different param-
eters ðχ;Ω1; L; E2Þ.
χ Ω1 L E2 Δper

1 0 4.4 0.95 1.779
1 1 4.4 0.95 1.898
1 10 4.4 0.95 4.819
10 0 37 0.921 5.479
10 1 37 0.921 5.496
10 10 37 0.921 5.658

FIG. 6. The difference of radius of photon sphere
Δzps ¼ zps − 3χ as a function of Ω1. From top to down, we
set χ ¼ 1, 4, 7, 10.

FIG. 5. The green solid line indicates the bounded orbit with quantum correction, where the dotted red line stands for the bound orbit
for standard Schwarzschild black hole. The other parameters are E2 ¼ 0.921, L ¼ 37. Left: zh ¼ 20.019; right: zh ¼ 20.163.
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where we have

h2ðzOÞ ¼
z2O

1 − 2χ
zO

�
1þ Ω1

d2
1
ðzOÞ

	 ≈ z2O þO
�
χ

zO

�
: ð23Þ

The second approximation is due to the monotonicity of
d1ðzÞ from Fig. 1. Meanwhile, χ=z can be considered
to have same physical connotation with m=r such that
Eq. (22) is represented as

sin2α̃sh ≈
χ2

z2O

h2ðzpsÞ
χ2

: ð24Þ

The observation of our Galaxy’s supermassive black hole
Sgr A� provides a best estimated mass M ≈ 4.1 × 106M⊙
and a distance ∼8.3 kpc for an observer on the Earth
[63–67].1 As an illustrative example, we can treat Sgr A� as
a classical Schwarzschild black hole so the angular radius
αsh ≈ 25 micro-arc-seconds. In Fig. 7, we plot the differ-
ence of angular radius Δα ¼ α̃sh − αsh as a function of Ω1

using the above data. This result confirms once again that
the quantum correction of spacetime is significant only in
the case of small black holes, as indicated from the
photon sphere.

V. CONCLUSIONS AND DISCUSSIONS

In this work, by analyzing the timelike and null geo-
desics in the quantum black hole spacetime, we numeri-
cally investigate the quantum effects on the observables
like the periapsis precession of a bound orbit of stars and
shadow cast. Such quantum corrections to the black hole
physics are organized by the inverse powers of a physical
distance and the dimensionless coefficients Ωn, which are
specified by a given quantum gravity. With the consid-
eration of the leading-order quantum correction, the results

confirm that the quantum effects are only evident for the
relatively large ratio of Ω1=χ. However, in the calculations,
only small χ has been adopted. For massive black hole
where χ has an extremely large order of magnitude, the
coefficient Ω1 has to be at least the same order as χ to
generate the observable effects. For example, χ ∼ 1044 for
supermassive SgrA*, and our numerical calculation for
such a case is extremely difficult. As was studied in various
modified gravity theories [68–74], we are interested in
further optimizing our numerical methods to study the
constraint on Ω1 from EHTobservations on SgrA* but will
leave it for future work. Anyhow, a non-negligible
and notable point is to determine the physical properties
of the quantum coefficients Ωn with extremely large
magnitude.
With the results obtained by investigating the character-

istics of a quantum black hole, a crucial purpose is to
distinguish the quantum black holes from classical ones
through observation. Our results show that such deviations
are detectable with improved resolution of the EHT once
the black hole mass is preliminarily measured through
various methods; see Refs. [75,76] for the supermassive
and intermediate-mass black hole measurement. More
specifically, the EHT observational data of the black hole
shadow and the photon ring are not sufficient to determine
the quantum parameters because the same result can be
caused by quantum effects or by the classical black holes of
different masses. For example, our calculations show that
the radius of the photon ring increases with the quantum
correction, while the larger the mass of a classical black
hole, the larger the photon ring. However, once we can
measure the black hole mass by other means, then we will
be able to determine the parameter χ, from which we can
further constrain the range of values of Ω1.
Note that here we have focused on the single horizon

quantum black hole with the first leading-order correction.
In Ref. [48], more cases, such as a quantum black hole with
two horizons in the first-order correction and black holes
with higher-order quantum corrections, are addressed.
They all exhibit more colorful geometrical properties with
quantum corrections, so it would be interesting to extend
our studies to these cases. In addition, the observed shadow
images from the EHT collaborator of black holes M87*
and Sgr A* are both compatible with the Kerr black hole.
It will be natural to extend such an effective field approach
to the Kerr black hole and study the properties of its null
and timelike geodesics.
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FIG. 7. The difference Δα ¼ α̃sh − αsh of the angular radius
with unit micro-arc-seconds as a function of Ω1. For both panels
from top to bottom, χ ¼ 1, 4, 7, 10.

1By adopting these data we have the ratio m
rO
∼ 10−11.
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