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The construction of quasitopological gravities in three-dimensions requires coupling a scalar field to the
metric. As shown in [arXiv:2104.10172], the resulting “electromagnetic” quasitopological (EQT) theories
admit charged black hole solutions characterized by a single-function for the metric, −gtt ¼ g−1rr ≡ fðrÞ,
and a simple azimuthal form for the scalar. Such black holes, whose metric can be determined fully
analytically, generalize the Bañados-Teiteilboim-Zanelli black hole (BTZ) solution in various ways,
including singularity-free black holes without any fine-tuning of couplings or parameters. In this paper we
extend the family of EQT theories to general curvature orders. We show that, beyond linear order, fðrÞ
satisfies a second-order differential equation rather than an algebraic one, making the corresponding
theories belong to the electromagnetic generalized quasitopological (EGQT) class. We prove that at each
curvature order, the most general EGQT density is given by a single term which contributes nontrivially to
the equation of fðrÞ plus densities which do not contribute at all to such equation. The proof relies on the
counting of the exact number of independent order-n densities of the form LðRab; ∂aϕÞ, which we carry
out. We study some general aspects of the new families of EGQT black-hole solutions, including
their thermodynamic properties and the fulfillment of the first law, and explicitly construct a few of
them numerically.

DOI: 10.1103/PhysRevD.107.064050

I. INTRODUCTION

Gravity is different in three spacetime dimensions. On the
one hand, the three-dimensional Riemann tensor is fully
determined by the Ricci tensor. This implies that all Einstein
metrics are locally equivalent to maximally symmetric
spacetimes and that—in the absence of additional fields
—no local degrees of freedom propagate [1]. Classical
three-dimensional Einstein gravity is far from trivial though.
In the presence of a negative cosmological constant this is
reflected, for instance, in the existence of black hole
solutions [2,3]. In spite of various fundamental differences
with its higher-dimensional cousins—such as being locally
equivalent to pure AdS3 and possessing no curvature
singularity—the Bañados-Teiteilboim-Zanelli (BTZ) black
hole does feature many of their characteristic properties,
including the presence of event and Cauchy horizons, or
their thermodynamic and holographic interpretations.

Since all non-Riemann curvatures can be generically
removed from the action by field redefinitions, all higher-
curvature corrections to Einstein gravity built exclusively
from the metric are trivial when considered as perturbative
corrections. However, when included with finite couplings,
they typically give rise to nontrivial local dynamics—mani-
fest in the propagation of massive spin-2 and spin-0 modes
[4,5]. Also, while the BTZ black hole is a solution of all
higher-curvature gravities, new solutions have also been
constructed in certain cases. For instance, new massive
gravity [6] and its generalizations [7–9] allow for black holes
which differ from the BTZ by: being locally inequivalent to
AdS3; possessing dS3, flat, or Lifshitz asymptotes; or
presenting curvature singularities [10–21]. Various classes
of new black holes arise when gravity is coupled to
additional fields. These include solutions to Einstein-
Maxwell [22–29], Einstein-Maxwell-dilaton [30–33], and
Maxwell-Brans-Dicke [34,35] systems. For these, the metric
typically presents a curvature singularity and some of the
matter fields include logarithmic profiles. Black hole
solutions of various types have also been found for
theories with minimally and nonminimally coupled scalar
fields [36–46]. Some of these are obtained fromwell-defined
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limits of Lovelock gravities to three-dimensions, [47–50].
Again, the solutions generically contain curvature singular-
ities and, sometimes, globally regular scalars. There also exist
black-hole solutions to gravity theories coupled to nonlinear
electrodynamics in various ways [51–57]. In some cases,
special choices of the modified electromagnetic Lagrangian
give rise to singularity-free black holes [58–60]. On a
different front, in the context of braneworld holography,
modified versions of the BTZ black hole which incorporate
the full backreaction of strongly coupled quantum fields have
been studied in [61–63].
In addition to these results, a new collection of analytic

generalizations of the BTZ black hole was presented
in [64]. The new configurations solve the equations of a
new family of Einstein gravity modifications which involve
a nonminimally coupled scalar field and belong to the so-
called “electromagnetic quasitopological” (EQT) class—
see (2.1) below for the action. The solutions take the form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dφ; ϕ ¼ pφ; ð1:1Þ

with r ≥ 0, φ ¼ ½0; 2πÞ, and where p is an arbitrary
dimensionless constant. It is notable the presence of a
single function, fðrÞ, characterizing the metric, as well as
the explicit “magnetic” form of the scalar field.1 The
general solution—see (2.4)—includes various types of
spacetimes, depending on the values of the gravitational
couplings. These include black holes with one or several
horizons and with various kinds of possible singularities
(BTZ-like, conical and curvature singularities), including
completely regular ones. In some of the latter, global
regularity is achieved without imposing any kind of fine
tuning between the gravitational couplings and the physical
parameters of the solutions. This situation occurs for
solutions which behave as fðrÞ⟶r→0Oðr2sÞ with s > 1
and is special to three-dimensions.
The results in [64] were motivated by a set of ideas which

have led to the construction of numerous higher-curvature
generalizations of Einstein gravity black holes in higher
dimensions [65–86]. The corresponding theories possess
static solutions which are continuous deformations of the
Schwarzschild black hole. These are characteristically
determined by a single metric function fðrÞ which: either
satisfies an algebraic equation (in that case, the theories are
called “quasitopological” (QT) gravities) or, alternatively,
satisfies a second order differential equation (in that case,
the theories are called “generalized quasitopological”
(GQT) gravities instead2). As argued in [82,83] and later

in [64,87], matter fields can be implemented within this
framework in a natural way. Explicitly, the idea is to
nonminimally couple gravity to a (D − 2)-form field-
strength H and consider solutions for which H is given
by the volume form of the space transverse to the ðt; rÞ
directions in the black hole ansatz times an arbitrary
constant p. This “magnetic” ansatz automatically solves
the equation of motion of H. For instance, in four
dimensions, this corresponds to a standard 2-form field
strength given by H ¼ p sin θdθ ∧ dϕ. While H is auto-
matically determined for all theories in a unique way, its
presence changes the metric in a nontrivial way. In the case
of interest here, the 1-form field strength is given by dϕ,
where ϕ is a real scalar, and the magnetic ansatz is just
dϕ ¼ pdφ, as shown in (1.1). The presence of H in the
corresponding Lagrangians gives rise to the notion of
electromagnetic generalized quasitopological (EGQT) the-
ories, in order to distinguish them from the purely gravi-
tational generalized quasitopological ones.3

In the three-dimensional case, it was shown in [5] that only
trivial GQT theories exist in the absence of nongravitational
fields. As mentioned above, the situation changes when a
scalar field is introduced. We say that a three-dimensional
LagrangianL½Rab; ∂aϕ� belongs to the EGQT class when the
reduced Lagrangian obtained from evaluating

ffiffiffiffiffijgjp
LEGQT on

the single-function magnetic ansatz (1.1) becomes a total
derivative. In that case, the equations of motion of the theory
reduce to a single equation for the metric function fðrÞ
[64,87]. In this paper we characterize all EGQT gravities in
three dimensions. In particular, we show that themost general
theory of that kind can be written as4

IEGQT ¼ 1

16πG

Z
d3x

ffiffiffiffiffi
jgj

p �
Rþ 2

L2

þ
X
k¼1

β0;kL2ðk−1ÞΦk
0 −

X
n¼1

Gn

�
; ð1:2Þ

where the order-n EGQT family reads

Gn ≡
X
k¼0

ð−1Þnβn;k
n

L2ðkþ2n−1ÞΦk
0

× ½ð2kþ 5n − 2ÞΦ1 − nΦ0R�Φn−1
1 ; ð1:3Þ

and we defined

Φ0 ≡ gab∂aϕ∂bϕ; Φ1 ≡ Rab∂
aϕ∂bϕ: ð1:4Þ

1The scalar field should be understood in this context as a
0-form with field strength dϕ, which is the gauge-invariant
quantity. Analogously to a magnetic monopole in D ¼ 4, the
scalar field ϕ can be defined globally by gluing two patches.

2Often, the term generalized quasitopological is used to refer to
both types when considered together.

3EGQT gravities should not be confused with the quasitopo-
logical electromagnetism theories studied, e.g., in [88–91].

4We show this to be true up to densities which make no
contribution at all to the equation of fðrÞ. As a consequence, we
refer to those as “trivial” densities, even though they generally
possess nontrivial equations for other backgrounds.

BUENO, CANO, MORENO, and VAN DER VELDE PHYS. REV. D 107, 064050 (2023)

064050-2



In these expressions, L is a length scale and βn;k are
dimensionless constants. Observe also that at each curvature
order, Gn contains terms with an arbitrary number of
derivatives of the scalar field. For n ¼ 1, the above action
reduces to the one presented in [64], andwe find that it is only
in that case that the equation for fðrÞ is algebraic. Indeed, the
equations of motion for the action (1.2) admit solutions of the
form (1.1) where fðrÞ satisfies

r2

L2
− f − λ − β0;1p2 log

�
r
L

�

þ
X
k¼2

β0;kp2kL2ðk−1Þ

2ðk − 1Þr2ðk−1Þ þ
X
n¼1

EðnÞ ¼ 0: ð1:5Þ

Here, λ is an integration constant related to the mass of the
solution and EðnÞ reads

EðnÞ ¼
X
k¼0

−βn;kL2ð2n−1þkÞp2ðkþnÞ

nr3nþ2k−1

h
nð3nþ 2k − 2Þff0ðn−1Þ

þ ðn − 1Þr½f0n − nff0n−2f00�
i
; ð1:6Þ

where it is manifest that only for n ¼ 1 the theory is of the
EQT class. A detailed review of EQT theories and their
solutions can be found in Sec. II.
In order to count the number of EGQT families, in

Sec. III we count the exact number of independent densities
constructed from arbitrary contractions of the Ricci tensor
and ∂aϕ. We do so both as a function of the total number of
derivatives of fields, and as a function of the curvature order
(namely, independently of the number of derivatives of ϕ).
In particular, we find that there exist

#ðnÞ ¼
�ðnþ 1Þ

288
ð9ð−1Þn þ n3 þ 17n2 þ 95nþ 184Þ þ 1

2

�
;

ð1:7Þ

three-dimensional densities LðRab; ∂aϕÞ of curvature-order
n, where b·c is the floor function.
We use this result in Sec. IV to prove that there exists one

and only one nontrivial EGQT family of order-n densities,
parametrized by an arbitrary function of gab∂aϕ∂bϕ (which
is obviously order-0 in curvature) as well as #ðnÞ − n − 1
“trivial” densities. We find a recursive formula which
allows one to construct arbitrary-order densities from
lower-order ones as well as the explicit expression shown
in (1.3). Then, we study the near-horizon and asymptotic
behavior of the black-hole solutions, finding that there will
in general be a unique solution in each case. In order to
actually verify their existence, we construct numerically the
corresponding solutions in a few cases.
Wewrap up in Sec. V, wherewemention a few ideas for the

future. Finally, Appendix contains a proof that the number of

conditions one needs to impose to a general order-n density in
order for it to be of the EGQT class equals n.

II. EQT GRAVITIES IN THREE DIMENSIONS

In this section we review the electromagnetic quasitopo-
logical gravity theories constructed in [64], which we aim
to generalize in the rest of the paper. In Sec. II B we present
new results regarding the thermodynamic properties of the
EQT black holes. In particular, we compute all the relevant
quantities in the most general case, and we verify that they
satisfy the first law.

A. Review of the theories and their black holes

In [64] we presented a new family of three-dimensional
gravity theories nonminimally coupled to a scalar field
admitting new classes of static black-hole solutions. The
Lagrangian of such a family can be written as

LEQTðRab; ∂aϕÞ ¼
1

16πGN

�
Rþ 2

L2
−
X1
n¼0

Gn

�
; ð2:1Þ

where we assumed a negative cosmological constant with
length scale L and where

G0 ≡þ
X
i¼1

β0;iL2ði−1ÞΦi
0; ð2:2Þ

G1 ≡ −
X
j¼0

β1;jL2ðjþ1ÞΦj
0½ð3þ 2jÞΦ1 −Φ0R�; ð2:3Þ

are the electromagnetic quasitopological densities. Here,
β0;i; β1;j are dimensionless constants which parametrize the
infinite terms contained in both G0 and G1. Indeed, observe
that the new densities are, respectively, order-0 and order-1
in curvature, but both contain terms of arbitrarily high order
in derivatives of ϕ.
For these theories, the effective Lagrangian LEQT ≡ffiffiffiffiffijgjp

LEQTðRab; ∂aϕÞ becomes a total derivative when
evaluated in the magnetic ansatz (1.1). This implies that
they admit solutions characterized by a single function
fðrÞ. Indeed, the full nonlinear equations of motion reduce
to a single independent equation for fðrÞ which can be
integrated once and reads [64]

r2

L2
− fðrÞ þ Eð0Þ þ Eð1Þ ¼ λ; ð2:4Þ

where

Eð0Þ ≡þ
X
i¼2

β0;ip2

2ði − 1Þ
�
pL
r

�
2ði−1Þ

− β0;1p2 log

�
r
L

�
; ð2:5Þ

Eð1Þ ≡ −
X
j¼0

β1;jð2jþ 1Þ
�
pL
r

�
2ðjþ1Þ

fðrÞ; ð2:6Þ
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are the contributions from G0 and G1, respectively, and λ is
an integration constant.
Equation (2.4) can then be trivially solved for fðrÞ, and

one finds

fðrÞ ¼

�
r2

L2 − λ − β0;1p2 logðrLÞ þ
P

i¼2
β0;ip2

2ði−1Þ ðpLr Þ2ði−1Þ
�

�
1þP

j¼0β1;jð2jþ 1Þ
�

pL
r

�
2ðjþ1Þ� ;

ð2:7Þ

where λ is an integration constant.5 The new metrics
represent continuous generalizations of the static BTZ
black hole [2,3], which is obtained for β0;i ¼ β1;j ¼ 0

∀ i; j, as well as of its charged version [22–24], which we
recover for β0;i>1 ¼ β1;j ¼ 0 ∀ j. The charged BTZ black
hole is obtained as a solution to Einstein gravity minimally
coupled to a scalar field because theories of the type
LðRab; ∂aϕÞ are dual to theories with an electromagnetic
field, i.e., of the form LðRab; Fcd ≡ 2∂½cAd�Þ, and the kinetic
term of a free scalar simply gets mapped to the usual
Maxwell term [64]. In the general case, the dual field
strength is defined by

Fab ¼ 4πGϵabc
∂L

∂ð∂cϕÞ
; ð2:8Þ

and one can in principle invert this relation to find ∂ϕðFÞ
and, from this, the dual Lagrangian, LdualðRab; FcdÞ≡
L − 1

8πGFab∂cϕϵ
abc. This is something difficult to do in

general but, in the present case, one can consider a
perturbative expansion in powers of the length scale L,
which yields, for β0;1 ≠ 0,

Ldual ¼
1

16πG

�
Rþ 2

L2
þ 2

β0;1
FabFab

− 4L2

�
β0;2
β40;1

ðFabFabÞ2 þ 3β1;0
β20;1

Fa
bFacRhbci

��

þOðL4Þ; ð2:9Þ

where Rhbci is the traceless part of the Ricci tensor. Observe
the appearance of the usual Maxwell term controlled by
β0;1, as anticipated. While the original “magnetic” frame
Lagrangian may contain a finite number of terms, the dual
one contains infinitely many in general. One can choose to
work on either frame, and the magnetically charged
solutions of the original frame become electrically charged

in the dual one, with a field strength given by Ftr ¼ −∂rAt,
where the electrostatic potential reads

At ¼
1

2

�
β0;1p log

r
r0

−
X
i¼2

iβ0;ip
2ði − 1Þ

�
Lp
r

�
2ði−1Þ

− f0ðrÞL
X
j¼0

β1;jðjþ 1Þ
�
Lp
r

�ð2jþ1Þ
þ 2pβ1;0

�
þΦ;

ð2:10Þ

and r0, an IR cutoff, prevents the potential from diverging
within the radius r0. Also,Φ is an integration constant which
corresponds to the potential in the asymptotic region and
whose value can be fixed by imposing that AtðrÞ vanishes at
the horizon of the black hole. Since the expression of the
magnetic-frame Lagrangian is simpler, and so is the form of
ϕ for the class of solutions we are interested in, from now on
we will perform all our calculations in such a frame.
Going back to the solutions, observe that, on general

grounds, they will describe black holes whenever the
function fðrÞ has at least one positive root. If fðrÞ has
several positive roots, then the solution possesses several
horizons and the largest root represents the event horizon,
that we denote by

rh ¼ max fr > 0jfðrÞ ¼ 0g: ð2:11Þ

More generally, as we show in detail in [64], depending
on the values of the gravitational couplings, the newmetrics
describe different types of solutions, including: black holes
with curvature singularities, black holes with conical
singularities, black holes with “BTZ-like” singularities,

regular black holes for which fðrÞ⟶r→0
1 (which require

some degree of fine tuning of the parameters), regular black

holes for which fðrÞ⟶r→0
0 (which do not require any fine

tuning), as well as solutions with no horizons which are
regular everywhere.

B. Black hole thermodynamics

Let us now consider the thermodynamic properties of the
above black hole solutions.6

The temperature T ¼ f0ðrhÞ=ð4πÞ can be straightfor-
wardly obtained from the metric function (2.7) using the
horizon condition fðrhÞ ¼ 0. The result reads

T ¼ 1

4π

�
2rh
L2

−
X
i¼1

β0;ip2iL2ði−1Þ

r2i−1h

�

·
�
1þ

X
j¼0

β1;jð2jþ 1Þ
�
Lp
rh

�
2ðjþ1Þ�−1

: ð2:12Þ5This constant is related to the mass of the solution, but the
precise identification would require a careful analysis of the
conserved charges in the theory (2.1) as the density with β1;0
seems to yield a nontrivial contribution. Instead, below we obtain
the mass from the free energy.

6A previous study of various thermodynamic aspects of these
black holes in several particular cases can be found in [92].
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Regarding the entropy, we can use Wald’s formula [93,94],
given by

S ¼ −2π
Z
h
dφ

ffiffiffi
h

p
ϵa

cϵcb
∂L
∂Rab

; ð2:13Þ

where h is the horizon surface,
ffiffiffi
h

p
is the determinant of the

induced metric and ϵab is the binormal to the horizon
surface, normalized so that ϵabϵab ¼ −2. We find

S ¼ πrh
2G

�
1 −

X
j¼0

β1;j

�
Lp
rh

�
2ðjþ1Þ�

: ð2:14Þ

Note that the higher order terms proportional to β1;j lead to
corrections to the area law.
The free energy F can be computed from the

Euclidean on-shell action F ¼ βIE, where β is the
inverse of the temperature. The full Euclidean action
reads

IE ¼ −
1

16πG

Z
M

d3x
ffiffiffi
g

p
L −

1

8πG

Z
∂M

d2x
ffiffiffi
h

p �
K −

1

L

�
;

ð2:15Þ
where the first term is the bulk action, and the second
one includes the Gibbons-Hawking-York boundary term
[95,96] and a suitable counterterm [97–99]. We find

F ¼ 1

8G

�
λþ β0;1p2 log

r0
L
− 2p2β1;0 − rhf0ðrhÞ þ

X
j¼0

β1;j
ðLpÞ2ðkþ1Þ

r2kþ1
h

f0ðrhÞ
�

¼ 1

8G

�
r2h
L2

− β0;1p2 log
rh
r0

þ
X
i¼2

β0;ip2

2ði − 1Þ
�
pL
rh

�
2ði−1Þ

− rhf0ðrhÞ − 2β1;0p2

þ
X
j¼0

β1;j
ðLpÞ2ðkþ1Þ

r2kþ1
h

f0ðrhÞ
�
; ð2:16Þ

where in the second line we wrote λ in terms of rh using that
fðrhÞ ¼ 0. The thermodynamic mass of the black holes M
can be then obtained found from the relation F ¼ M − TS,
this is7

M ¼ 1

8G

�
λþ β0;1p2 log

r0
L
− 2p2β1;0

�

¼ 1

8G

�
r2h
L2

þ β0;1p2 log
r0
rh

− 2p2β1;0

þ
X
i¼2

β0;ip2

2ði − 1Þ
�
pL
rh

�
2ði−1Þ�

: ð2:17Þ

Moreover, the electric charge can be trivially computed in
the “magnetic frame,” yielding

Q ¼ 1

4πG

Z
S1

dϕ ¼ p
2G

: ð2:18Þ

Finally, we can give an expression for the potential, that is,
the quantity conjugate to the charge. This is defined as
Φ ¼ limr→∞ At, so using (2.10) we find

Φ ¼ 1

2

�
−β0;1p log

rh
r0

− 2pβ1;0 þ
X
i¼2

iβ0;ip
2ði − 1Þ

�
Lp
rh

�
2ði−1Þ

þ 4πTL
X
j¼0

β1;jðjþ 1Þ
�
Lp
rh

�
2jþ1

�
: ð2:19Þ

With all these ingredients, the first law,

dF ¼ −SdT þΦdQ; ð2:20Þ

can be easily verified to hold.8 Equivalently, we can
write it in terms of the mass instead of the free energy as

dM ¼ TdSþΦdQ: ð2:22Þ

III. COUNTING LðRab;∂aϕÞ DENSITIES
Three-dimensional EGQT gravities are theories built

from contractions of the Ricci tensor and ∂aϕ admitting
black hole solutions of the form (1.1). In order to character-
ize them, we can start by counting the number of densities

7Note that this does not coincide with the ADM mass
[100,101] reported in [64], the difference being 3β1;0p2. We
suspect that a more detailed calculation of the latter may make the
mismatch disappear.

8Relatedly, one can check that the relations

S ¼ −
∂rhF

∂rhT
; Φ ¼ 1

∂pQ

�
∂pF − ∂pT

∂rhF

∂rhT

�
; ð2:21Þ

are satisfied.
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of the form LðRab; ∂aϕÞ which exist in three dimensions.
Out of the Ricci tensor alone, it is possible to see that the
most general density one can build is a function of the
invariants [9,102]

R; R2 ≡ RabRab; R3 ≡ Rb
aRc

bR
a
c: ð3:1Þ

The exact number of order-n densities of the form LðRabÞ
was computed in [5], the result being

#ðnÞ ¼
	
n
2

�
n
6
þ 1

�
þ ϵ



ð3:2Þ

where dxe≡minfk ∈ Zjk ≥ xg is the ceiling function and
ϵ is any positive number ϵ ≪ 1. We have, for instance,
#ð4104Þ ¼ 1405621 densities of order 4104.
Including the scalar into the game amounts to consider

three additional building blocks besides the pure-curvature
ones. These are

Φ0 ≡ gab∂aϕ∂bϕ; Φ1 ≡ Rab∂
aϕ∂bϕ;

Φ2 ≡ RacRc
b∂

aϕ∂bϕ: ð3:3Þ

Invariants whose curvature order is greater or equal to three,
n ≥ 3, can be written in terms of lower-order invariants
using Schouten identities, analogously to what happens
with pure-gravity densities for n ≥ 4. Indeed,

δa1…an
b1…bn

Rb1
a1R

b2
a2 � � � ∂anϕ∂bnϕ ¼ 0; for n ≥ 3: ð3:4Þ

This greatly reduces the number of independent invariants
and allows us to express the most general Lagrangian as

LðRab; ∂aϕÞ ¼
X

i;j;k;l;m;p

αijklmnpRiRj
2R

k
3Φl

0Φm
1 Φ

p
2 : ð3:5Þ

The curvature order of a particular density is given by
n ¼ iþ 2jþ 3kþmþ 2p whereas the number of scalar
fields is given by nϕ ¼ 2ðlþmþ pÞ.
We are interested in characterizing the possible mono-

mials from Eq. (3.5) through the number of derivatives
N ¼ 2nþ nϕ ¼ 2ðiþ 2jþ 3kþ lþ 2mþ 3pÞ, either in
the metric or in the scalar field. For N ¼ 2, 4, 6, 8, the
independent densities read

D2 ¼ fR;Φ0g; ð3:6Þ

D4 ¼ R ·D2 ∪ fΦ2
0;R2;Φ1g; ð3:7Þ

D6 ¼ R ·D4 ∪ fΦ3
0;R2Φ0;Φ1Φ0;R3;Φ2g; ð3:8Þ

D8 ¼ R ·D6 ∪ fΦ1Φ2
0;Φ4

0;R2Φ2
0;R3Φ0;Φ2Φ0;

R2
2;R2Φ1;Φ2

1g: ð3:9Þ

So we have #ð2Þ ¼ 2, #ð4Þ ¼ 5, #ð6Þ ¼ 10 and #ð8Þ ¼ 18,
respectively. We can obtain the number of possible invar-
iants with N derivatives using a generating function of
the form

Gðx; yÞ ¼ 1

ð1 − x2Þð1 − x4Þð1 − x6Þð1 − y2Þð1 − x2y2Þð1 − x4y2Þ ; ð3:10Þ

where x and y parametrize the number of derivatives in the metric tensor and in the scalar field respectively. The Maclaurin
series reads

Gðx; yÞ ¼ þ1|{z}
N¼0

þ ð1 · x2 þ 1 · y2Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
N¼2

þ ð2x4 þ 2x2y2 þ y4Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N¼4

þ ð3x6 þ 4x4y2 þ 2x2y4 þ y6Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N¼6

þ ð4x8 þ 6x6y2 þ 5x4y4 þ 2x2y6 þ y8Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N¼8

þ… ∼
X
N¼0

#ðN ÞxN ð3:11Þ

where the coefficients are to be read as follows: there are two densities withN ¼ 2, one purely geometrical and another that
only depends on the scalar field; then, there are 5 densities with N ¼ 4 derivatives: two that depend only on derivatives of
the metric, two mixed and one with only derivatives of the scalar field; and so on and so forth.
Setting x ¼ y in (3.10), we are able to explicitly compute the number of densities with N number of derivatives

#ðN Þ ¼
	

N 5

138240
þ N 4

2304
þ 101N 3

10368
þ 29N 2

288
þ
�
24299

51840
þ ð−1ÞN2

128
þ 1

81
cos

�
N π

3

��
N þ ϵ



; ð3:12Þ

where 0 < ϵ ≪ 1. This can be written in a somewhat more explicit fashion as
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#ðN Þ ¼

8>><
>>:

1
960

½60ðð−Þk − 1Þ þ kð131þ 45ð−Þk þ 2kð360þ kð410þ 9kð20þ 3kÞÞÞÞ�;
1

960
½−75ðð−Þk − 1Þ þ kð941 − 45ð−Þk þ 2kð900þ kð680þ 9kð25þ 3kÞÞÞÞ�;

ð2þkÞ
960

½435þ 45ð−Þk þ 2kð4þ kÞð146þ 27kð4þ kÞÞ�;
ð3:13Þ

valid for N ¼ 6k − 4, N ¼ 6k − 2 and N ¼ 6k, respec-
tively. For large N , the number of densities behaves as

#ðN Þ ≈ N 5

138240
þ N 4

2304
þ 101N 3

10368
þ 29N 2

288
: ð3:14Þ

It will also be relevant for our purposes to know how
many densities there exist of a certain curvature order n—
i.e., independently of the number of derivatives of ϕ. From
this perspective, the possible densities for the first few
orders read

d1 ¼ fR;Φ1g; ð3:15Þ

d2 ¼ R · d1 ∪ fR2;Φ2
1;Φ2g; ð3:16Þ

d3 ¼ R · d2 ∪ fR3;Φ3
1;Φ2Φ1;R2Φ1g; ð3:17Þ

d4 ¼ R · d3 ∪ fΦ4
1;Φ2Φ2

1;R2Φ2
1;R

2
2;Φ2

2;R2Φ2;R3Φ1g:
ð3:18Þ

where it is understood that each density can in fact be
multiplied by an arbitrary function of Φ0, which has n ¼ 0.
Again, we can find the total number of invariant terms at
any given order n following the generating functional
procedure. In this case, we have

GðxÞ ¼ 1

ð1 − xÞ2ð1 − x2Þ2ð1 − x3Þ ; ð3:19Þ

where the ð1 − x1Þ2 comes from the 2 independent order-1
invariants, the ð1 − x2Þ2 comes from the 2 independent
order-2 invariants, and the ð1 − x3Þ1 comes from the single
independent order-3 one. Expanding, we find

GðxÞ ¼ 1þ 2xþ 5x2 þ 9x3 þ 16x4 þ 25x5 þ…

¼
X
n¼0

#ðnÞxn: ð3:20Þ

We see that the corresponding coefficients match the
number of densities enumerated above for n ¼ 1, 2, 3,
4, namely, #ð1Þ ¼ 2, #ð2Þ ¼ 5, #ð3Þ ¼ 9, #ð4Þ ¼ 16.
Similarly, we expect #ð5Þ ¼ 25, and so on and so forth.
The number of invariants of order n can be written in a
closed form as

#ðnÞ ¼
�ðnþ 1Þ

288
½9ð−1Þn þ n3 þ 17n2 þ 95nþ 184� þ 1

2

�
;

ð3:21Þ

where bxc≡maxfk ∈ Zjk ≤ xg is the floor function. For
large n, the number of densities grows as

#ðnÞ ≈ n4

288
þ n3

16
þ 7n2

18
: ð3:22Þ

Again, we stress that each density of order n can be
multiplied by an arbitrary function of Φ0, which means
that, strictly speaking, there are infinitely many indepen-
dent densities at each order n. In spite of this, we still find it
more illuminating to classify our families of densities as a
function of n instead of N .

IV. EGQT GRAVITIES IN THREE DIMENSIONS

In this section we construct new families of electromag-
netic generalized quasitopological gravities. We show that
there exists exactly one single nontrivial family of theories
of that kind at each curvature order n—each family
parametrized by an arbitrary function of ∂aϕ∂aϕ. We find
a recurrence relation which allows for the construction of
general-order densities starting from lower-order ones, and
find an explicit expression for the general-n family. For
n ¼ 1, such family reduces to the electromagnetic quasi-
topological gravities presented in [64] and reviewed in
Sec. II, for which the metric function fðrÞ satisfies an
algebraic equation. For n ≥ 2, we find that the resulting
theories are all genuinely “generalized,” namely, fðrÞ
satisfies a second-order differential equation instead. We
study the near-horizon and asymptotic behavior of the
black hole solutions of these theories and construct their
profiles numerically in a few cases. Finally, we compute the
relevant thermodynamic quantities and verify the first law
in the general case.

A. One EGQT family at each order

When gravity is coupled to a scalar field, there are
infinitely many theories which belong to the EGQT class.
In fact, a family of EGQT gravities linear in curvature, i.e.,
with n ¼ 1—but involving terms with arbitrarily high
N—was presented in [64]. The Lagrangian of such family
can be written as
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G1 ¼ Φ1

�
3Fð1Þ½Φ0� þ 2Φ0F0

ð1Þ½Φ0�
�
−Φ0RFð1Þ½Φ0�;

ð4:1Þ

where Fð1Þ ¼ Fð1Þ½Φ0� is some arbitrary function of the

kinetic term of the scalar field ϕ and F0
ð1Þ ≡ dFð1Þ½x�

dx . To this

we can add an additional order-0 term involving an
arbitrary function of Φ0, namely,

G0 ¼ Fð0Þ½Φ0�: ð4:2Þ

Writing Fð0Þ and Fð1Þ as series expansions in Φ0, G0 þ G1

becomes

G0 þ G1 ¼
X
i¼1

β0;iL2ði−1ÞΦi
0 −

X
j¼0

β1;jL2ðjþ1ÞΦj
0

· ½ð3þ 2jÞΦ1 −Φ0R�; ð4:3Þ

where β0;i; β1;j are arbitrary dimensionless constants, and
L is some length scale. The above is the form originally
presented in [64] and the one we used in Sec. II.
In this section, we extend the catalog of EGQT densities

to arbitrary orders in curvature. The procedure is fairly
simple: we consider the most general Lagrangian at a given
order n, which will be a linear combination of the
independent densities, each multiplied by an arbitrary
analytic function of the scalar field Fin;ðnÞ. Then, we impose
the condition that the reduced Lagrangian Lf becomes a
total derivative when evaluated on (1.1). As a consequence,
the functions Fin;ðnÞ must satisfy a set of relations. Although
the number of those is smaller than the number of
independent densities, we find that, at each order n, there
is a single way in which EGQT densities modify the
equations of the metric function fðrÞ, namely, we can write
the most general order-n EGQT density as a single density
which contributes nontrivially to the equation of fðrÞ, plus
a sum of densities which make no contribution whatsoever
to the equation of fðrÞ—sometimes we will call such
densities “trivial” even though they will not be trivial when
evaluated on other backgrounds.
Let us illustrate this with the example of n ¼ 2. We start

considering the most general second-order Lagrangian of
the type LðRab; ∂aϕÞ, this is

Lð2Þ
general ¼ F1;ð2ÞR2 þ F2;ð2ÞR2 þ F3;ð2ÞRΦ1

þ F4;ð2ÞΦ2
1 þ F5;ð2ÞΦ2: ð4:4Þ

Now, introducing this expression into the EGQT condition
we obtain relations between the free functions, reducing
their number to three. The resulting Lagrangian reads

G̃2 ¼ G2 þ G2;trivial

where

G2 ≡ Fð2Þ½Φ0�Φ0

�
R2

2
−R2

�

−
�
Φ0F0

ð2Þ½Φ0� þ
3

2
Fð2Þ½Φ0�

�
Φ2 ð4:5Þ

is a density which contributes nontrivially to the equation
of fðrÞ. Also,

G2;trivial ≡G1;ð2ÞT 1;ð2Þ þ 3G2;ð2ÞT 2;ð2Þ; ð4:6Þ

where G1;ð2Þ, G2;ð2Þ are arbitrary functions of Φ0 and

T 1;ð2Þ ≡Φ2
1 −Φ0Φ2;

T 2;ð2Þ ≡ 3Φ2 −Φ0ð2R2 − R2Þ − 2RΦ1; ð4:7Þ

are two densities which vanish when evaluated in such
ansatz, T 1;ð2Þjð1.1Þ ¼ T 2;ð2Þjð1.1Þ ¼ 0. The first density,
T 1;ð2Þ, vanishes not only for static and spherically sym-
metric ansätze, but for all diagonal metrics. The other,
T 2;ð2Þ, vanishes when evaluated in (1.1). Therefore, both
densities correspond to “trivial” EGQT densities and all
higher-curvature Lagrangians constructed from linear com-
binations of them will be as well. We can then take G2 as a
representative of order-2 nontrivial EGQT densities as it
will differ from any other EGQT of the same order by a
trivial density.
We can apply the same procedure at third order in

curvature. In this case, we start with a Lagrangian con-
sisting of nine densities. Then, applying the GQT con-
dition, we obtain the nontrivial family

G3 ¼ −2Fð3Þ½Φ0�Φ1

�
R2

2
−R2

�

þ
�
Fð3Þ½Φ0�Rþ 2

3
F0
ð3Þ½Φ0�Φ1

�
Φ2; ð4:8Þ

plus five trivial combinations, which vanish when evaluated
in (1.1).
Interestingly, we find a pattern satisfied by the Gn of the

first few orders when evaluated on (1.1). In particular, we
observe that they satisfy

Gnjð1.1Þ ¼
p2

r2
FðnÞ

�
p2

r2

��
f0

r

�ðn−1Þ
f00

−
p2

r2

�
FðnÞ

�
p2

r2

�
þ 2p2

nr2
F0
ðnÞ

�
p2

r2

���
f0

r

�
n
; ð4:9Þ

which by itself satisfies the EGQT condition for arbitrary n,
namely:

ffiffiffiffiffiffi−gp
Gnjð1.1Þ is a total derivative,
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ffiffiffiffiffiffi
−g

p
Gnjð1.1Þ ¼

p2

n
d
dr

�
FðnÞ

�
p2

r2

��
f0

r

�
n
�
: ð4:10Þ

We suspect that this on-shell expressions are valid for
EGQT densities of arbitrary order. In the particular case in
which all the general functions of Φ0 are equal to each
other, Fð1Þ ¼ Fð2Þ ¼ � � � ¼ FðnÞ ≡ F we can use (4.9) to
derive a recurrence relation

Gn ¼
ðn − 2Þðn − 1Þ

nΦ2
0F

0½Φ0�ðn − 3Þ ½Gn−2G2 − Gn−1G1�; ð4:11Þ

valid for n > 3. This means that using lower-order EGQT
densities, we can build arbitrarily high order ones in a
recursive way. For instance, using G1, G2, G3 we can
construct a new density, G4, which is of order n ¼ 4 and
is guaranteed, by virtue of (4.10), to be of the EGQT class.
We can go on and build Gn for general n in an analogous
way. The relation (4.11) tells us that there exists at least one
family of EGQT gravities at each order in curvature and,
from (4.9), what its on-shell form in our single-function
ansatz is. Observe that once the new density Gn is
constructed, the fact that we had to take the functions
FðiÞ to be equal for the densities of various orders involved
simply suggests that for each n the corresponding nontrivial
EGQT density depends on a single arbitrary function ofΦ0,
which is precisely what we have observed for the first few
orders.
This does not exclude, however, the possibility that

additional, inequivalent, EGQT densities exist for n > 3.
We will show now that, as a matter of fact, there are no
additional nontrivial densities. First, in the Appendix we
show that given the most general order-n family of
densities, we need to impose exactly n conditions to the
relative coefficients in order to obtain the most general
EGQT density of that order. On the other hand, we have to
take into account the existence of the “trivial” densities at
each order, understood as those that vanish identically for
static spherically symmetric metric. As seen above, there
are two trivial densities at second order and four at third
order. It is, however, simpler to count first the number of
nontrivial densities #nontrivialðnÞ. In order to do that, it is
convenient to momentarily switch our basis of building-
block invariants. Indeed, using the traceless Ricci tensor
Sab ≡ Rab −

gab
3
R we consider now

S2 ≡ SabSab; S3 ≡ Sb
aSc

bS
a
c;

Ξ1 ≡ Sab∂
aϕ∂bϕ; Ξ2 ≡ SacSc

b∂
aϕ∂bϕ; ð4:12Þ

plus R and Φ0. The benefit of this basis is that it allows
one to express the on-shell Lagrangians in a simpler
way. Defining the quantities A≡ −ð2f0=rþ f00Þ and
B≡ ðf00 − f0=rÞ=3, the independent on-shell densities read

Rjð1.1Þ ¼ A; Ξ1jð1.1Þ ¼
p2B
r2

; S2jð1.1Þ ¼
3B2

2
;

Ξ2jð1.1Þ ¼
p2B2

r2
; S3jð1.1Þ ¼

3B3

4
: ð4:13Þ

Now, observe that all of the above, with the single
exception of R, are proportional to powers of B.
Therefore, all the independent densities that we can have
at order n in the curvature are RiΞn−i

1 , with i ¼ 0; 1;…n,
times arbitrary functions of Φ0. Thus, the number of
nontrivial densities is

#nontrivialðnÞ ¼ nþ 1: ð4:14Þ

This result, combined with the fact that at order n there are
n constraints that must be satisfied in order to yield an
EGQT density, implies that there is only one nontrivial
family of EGQT densities at each order in the curvature—
each family characterized by a function ofΦ0. On the other
hand, the number of “trivial” densities has a more com-
plicated expression for general n. This can be easily
obtained as the total number of densities minus the number
of densities which belong to the nontrivial set, namely,

#trivialðnÞ ¼ #ðnÞ − #nontrivialðnÞ ¼ #ðnÞ − n − 1: ð4:15Þ

where #ðnÞwas presented in (3.21). Hence, at each order n,
we have a single nontrivial EGQT and #ðnÞ − n − 1
trivial ones.
In fact, we have been able to obtain an explicit formula

for such an order-n EGQT density. It reads

Gn ¼
ð−1Þn−1
3nn

�
Rþ 3Ξ1

Φ0

�
n−1

�
3

�
3nFðnÞ½Φ0�

þ 2Φ0F0
ðnÞ½Φ0�

�
Ξ1 þ 2Φ2

0F
0
ðnÞ½Φ0�R

�
; ð4:16Þ

which of course satisfies the recursive relation (4.11) and
reduces to (4.9) when evaluated on-shell on (1.1). While
this reduces to G1 as in (4.1), the expressions for G2 and G3

appearing in (4.5) and (4.8) differ from the ones corre-
sponding to the n ¼ 2, 3 cases in (4.16) by terms which are
trivial when evaluated on (1.1). Observe that Gn includes
terms divided by powers of Φ0 starting at n ¼ 2. Because
of this, if we consider a polynomial expansion for the
arbitrary function FðnÞ½Φ0�, we must demand its lowest-
order term to be n − 1, i.e.,

FðnÞ½Φ0� ¼
X
j¼n−1

β̃1;jL2ðjþnÞΦj
0; ð4:17Þ

where the β̃1;j are dimensionless constants. Taking this into
account, we can write the most general nontrivial EGQT in
three dimensions as
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IEGQT ¼ 1

16πG

Z
d3x

ffiffiffiffiffi
jgj

p �
Rþ 2

L2
−
X
n¼0

Gn

�
; ð4:18Þ

where G0 is a general function of Φ0—see (4.2). Assuming
polynomial expansions for the general functions of Φ0

present in the Gn, we have

G0 ¼ þ
X
k¼1

β0;kL2ðk−1ÞΦk
0; ð4:19Þ

G1 ¼ −
X
k¼0

β1;kL2ðkþ1ÞΦk
0½ð2kþ 3ÞΦ1 −Φ0R�; ð4:20Þ

G2 ¼ þ
X
k¼0

β2;k
2

L2ðkþ3ÞΦk
0½ð2kþ 8ÞΦ1 − 2Φ0R�Φ1; ð4:21Þ

G3 ¼ −
X
k¼0

β3;k
3

L2ðkþ5ÞΦk
0½ð2kþ 13ÞΦ1 − 3Φ0R�Φ2

1;

…ð4:22Þ

Gn ¼þ
X
k¼0

ð−1Þnβn;k
n

L2ðkþ2n−1ÞΦk
0

× ½ð2kþ5n−2ÞΦ1−nΦ0R�Φn−1
1 ; ðn≥ 1Þ ð4:23Þ

where in the last line we have written the general form
which includes all cases with n ≥ 1.

B. Equations of motion and black holes

As expected for EGQT gravities, the equations of motion
of (4.18) reduce, when evaluated for static and spherically
symmetric solutions, to a single equation for the metric
function fðrÞ which can be integrated once. The resulting
equation can be obtained either by direct evaluation of the
full nonlinear equations of the theory or, alternatively, by
considering an ansatz of the form

ds2 ¼ −N2ðrÞfðrÞdt2 þ dr2

fðrÞ þ r2dφ2; ϕ ¼ ϕðφÞ;

ð4:24Þ

r ∈ ½0;þ∞Þ, φ ¼ ½0; 2πÞ. Evaluating LN;f;ϕ ≡
ffiffiffiffiffijgjp

LEGQTjð4.24Þ and imposing the variations with respect to
the three undetermined functions to vanish,

δLN;f;ϕ

δN
¼ 0;

δLN;f;ϕ

δf
¼ 0;

δLN;f;ϕ

δϕ
¼ 0; ð4:25Þ

one finds three equations which are equivalent to the ones
obtained from direct substitution of the ansatz (4.24) on the
full nonlinear equations—both for the metric and the scalar
—of the theory [64,103,104]. We find that the second and
third equations are proportional to dN=dr and d2ϕ=dφ2,

respectively, and therefore can be solved by setting
NðrÞ ¼ N0 and ϕ ¼ pφþ ϕ0 where N0 and ϕ0 are
integration constants which we can set to 1 and 0,
respectively, without loss of generality. On the other hand,
the first equation can be integrated once and the result reads

r2

L2
− f − λ − β0;1p2 log

r
L
þ
X
k¼2

β0;kp2

2ðk − 1Þ
�
pL
r

�
2ðk−1Þ

þ
X
n¼1

EðnÞ ¼ 0; ð4:26Þ

where λ is an integration constant related to the mass of the
solution and EðnÞ reads

EðnÞ ≡
X
k¼0

−βn;kL2ð2n−1þkÞp2ðkþnÞ

nr3nþ2k−1

�
nð3nþ 2k − 2Þff0ðn−1Þ

þ ðn − 1Þr½f0n − nff0n−2f00�
�
: ð4:27Þ

As anticipated, the equations of motion depend, at most, on
second derivatives of the metric function fðrÞ for generic
higher-curvature theories. Interestingly, it is only for n ¼ 1
that the expression reduces to an algebraic equation, which
means that only at linear order the theory is of the
quasitopological type. This is of course the set of theories
presented in [64] and reviewed in Sec. II.
Although (4.26) cannot be solved analytically in general,

it is possible to establish the existence of black-hole
solutions and construct them numerically, as we show
below in a few cases. As explained, e.g., in [70,76], in order
for the metric to describe black holes, there are two
boundary conditions which need to be satisfied. The first
comes from requiring regularity at the horizon, and the
other comes from imposing the correct asymptotic
behavior, namely, the one corresponding to the Einstein-
gravity solutions. Let us analyze these two regimes in more
detail.
First, assuming the existence of an outermost horizon,

we can consider a Taylor expansion of the solution at rh,
namely,

fðrÞ ¼ 4πTðr − rhÞ þ
X
k¼2

ak
k!

ðr − rhÞk; ð4:28Þ

where, again, we employed the relation T ¼ f0ðrhÞ=ð4πÞ,
and ak ≡ fðkÞðrhÞ. Substituting this ansatz into (4.26), we
can solve order by order in the expansion. The first two
orders lead to the constraints
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r2h
L2

− λ − β0;1p2 log
rh
L
þ
X
k¼2

β0;kp2

2ðk − 1Þ
�
pL
rh

�
2ðk−1Þ

¼
X
n¼1

X
k¼0

βn;k

�
L
rh

�
2ð2nþk−1Þ ðn − 1Þ

n
p2ðkþnÞð4πTrhÞn;

ð4:29Þ

and

2rh
L2

− 4πT −
X
k¼1

β0;k
p2

rh

�
pL
rh

�
2ðk−1Þ

¼
X
n¼1

X
k¼0

βn;k

�
L
rh

�
2ð2nþk−1Þ ð3nþ 2k − 2Þ

nrh

× p2ðkþnÞð4πTrhÞn; ð4:30Þ

respectively. These implicitly relate rh and T with λ, p and
the gravitational couplings. Meanwhile, going to higher
orders shows that all coefficients an>3 are fixed in terms of
a2, which turns out to be the only free parameter of the
solution. Effectively, a2 will be fixed by requiring the
solution to have the correct asymptotic behavior. In order to
study that regime, we can assume that the solution takes the
form of the charged BTZ solution plus a correction,

fðrÞ ∼ r2

L2
− λ − β0;1p2 log

r
L
þ fpðrÞ þ ϵfhðrÞ: ð4:31Þ

Here fpðrÞ is a particular solution of the Eq. (4.26) near
infinity, obtained as a 1=r expansion,

fpðrÞ ∼ −p2

�
pL
r

�
2l Xlþ1

n¼1

βn;l−nþ12
n

�
lþ 3

2
−
1

n

�

þO
�
log r=L

r2ðlþ1Þ

�
; ð4:32Þ

and fhðrÞ represents a perturbation over this solution,
controlled by the parameter ϵ ≪ 1. In the above expression
we defined l≡minfnþ k − 1jn > 0g, that is, the lowest
combination nþ k − 1 corresponding to nonvanishing
coupling constants βn>0;k, and we also assumed β0;1 ≠ 0.
The equation of motion at OðϵÞ is an homogeneous
differential equation that reads

af00h þ bf0h þ fh ¼ 0; ð4:33Þ

where

a≡ −
ðpLÞ2ðlþ1Þ

r2l
Xlþ1

n¼1

βn;l−nþ12
n−2ðn − 1Þ þOðr−2ðlþ1Þ log r=LÞ;

b≡þðpLÞ2ðlþ1Þ

r2lþ1
ðlþ 2Þ

Xlþ1

n¼1

βn;l−nþ12
n−1ðn − 1Þ þOðr−ð2lþ3Þ log r=LÞ: ð4:34Þ

Note that for n ¼ 1 we are left with fh ¼ 0 and
fðrÞ ∼ r2

L2 − λ − β0;1 log r=L − p2β1;0, in agreement with
(2.7). In the general case, the two independent solutions
of (4.33) behave asymptotically as

fhðrÞ ∼ Ar
lþ4
2 exp

�
rlþ1

ðlþ 1ÞðLjpjÞlþ1 ffiffiffi
ρ

p
�

þ Br
lþ4
2 exp

�
−rlþ1

ðlþ 1ÞðLjpjÞlþ1 ffiffiffi
ρ

p
�
; ð4:35Þ

where

ρ≡Xlþ1

n¼1

βn;l−nþ1ðn − 1Þ2n−2: ð4:36Þ

This means that regularity at infinity imposes A ¼ 0, as
long as ρ > 0, and the perturbation remains small (ex-
ponentially suppressed) near the asymptotic region. Thus,
requiring that the exponential mode is absent at infinity

fixes an extra constant and, from the horizon-expansion
point of view, this amounts to fixing a2 to a particular value
for each set of gravitational couplings. On the other hand,
whenever ρ < 0 the solutions diverge and both coefficients
would need to vanish. Since we have a single available free
parameter, we do not expect black-hole solutions to exist
for ρ < 0.
We have solved (4.26) numerically in a few cases using

the “shooting method.” That is, we solved for fðrÞ in a
region outside the horizon r > rh þ ϵ, specifying fðrh þ ϵÞ
and f0ðrh þ ϵÞ, according to the expansion (4.28). In each
case, we carefully adjusted the coefficient a2 so that the
diverging exponentialmode at infinity did not popup and the
solution had the right asymptotic behavior. Once a2 was
determined, we also solved the differential equation inside
the event horizon r < rh − ϵ, using fðrh − ϵÞ and f0ðrh − ϵÞ
as boundary conditions. Finally, we glued the interior and
exterior solutions. In the left plot of Fig. 1 we show some of
these solutions, corresponding to n ¼ 2 EGQT gravities. In
each case, we plot the rescaled function fðrÞ=½1þ r2=L2�,
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which gives us more control on the solution in the
asymptotic region—in particular, this function is bounded
from abovewhen the exponential mode at infinity is absent.
The blue curves represent the n ¼ 2 EGQT black holes,
while the red one corresponds to the charged BTZ. For
additional reference, in the right plot we include some of
the analytic solutions corresponding to the EQT (n ¼ 1)
theories. As we can see, the new solutions possess a single
horizon and they seem to behave near r → 0 in a way
analogous to the neutral BTZ black hole, i.e., fðrÞ → −jμj
for some constant μ. This corresponds to a singularity
in the causal structure [3]. Observe that switching β2;0 to
zero, such solutions reduce to the charged BTZ,
which instead has a curvature singularity at the origin.
Hence, the introduction of the higher-order coupling tends
to smooth out the charged BTZ singularity. It would be
interesting to study in more detail the properties of these
new black holes, including the possible existence of
solutions with additional horizons or other kinds of
singularities.

C. Black hole thermodynamics

In this section we analyze the thermodynamics of the
EGQT black holes described above. Although it might be
natural to express the thermodynamic quantities as func-
tions of the horizon radius and the charge (or temperature),
due to the complicated relation that these satisfy, it proves

more convenient to make some redefinitions. We rewrite
(4.30) in the form

2 − y −
X
k¼1

β0;kxk −
X
n¼1

X
k¼0

βn;k
ð3nþ 2k − 2Þ

n
xnþkyn ¼ 0

ð4:37Þ

where

x≡ L2p2

rh2
; and y≡ 4πL2T

rh
; ð4:38Þ

are dimensionless variables. Since expressed in these new
variables (4.30) looks tidier, we find it simpler to work with
the set frh; x; yg rather than frh; T; pg. We stress that by
virtue of the above equation all the thermodynamic
quantities will implicitly depend only on two of these
variables, for instance frh; xg.
The entropy, computed using Wald’s formula (2.13),

reads

S ¼ πrh
2G

�
1 −

X
n¼1

X
k¼0

βn;kxnþkyn−1
�
: ð4:39Þ

The free energy is calculated according to the procedure
described in [87], and the result reads

F ¼ 1

8G

�
λþ β0;1p2 log

r0
L
− 2p2β1;0 − rhf0ðrhÞ þ

X
n¼1

X
k¼0

βn;k
L2ð2nþk−1Þp2ðkþnÞ

r3nþ2k−2
h

f0ðrhÞn
�

¼ r2h
8GL2

�
1þ β0;1x log

r0
rh

þ
X
k¼2

β0;k
2ðk − 1Þ x

k − 2β1;0x − yþ
X
n¼1

X
k¼0

βn;k
n

xnþkyn
�
;

FIG. 1. Left: We plot the numerical profiles obtained for black-hole solutions of n ¼ 2 EGQT theories. We take L ¼ 1, p ¼ 1, λ ¼ 1,
β0;1 ¼ 1, and we set to zero all the rest of couplings, with the exception of β2;0. Right: We plot profiles corresponding to (analytic) black-
hole solutions of EQT gravities. The solutions chosen possess one, two and three horizons, respectively.
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where r0 is an IR cutoff. From the definition F ¼ M − TS one gets for the mass

M ¼ 1

8G

�
λþ β0;1p2 log

r0
L
− 2p2β1;0

�

¼ r2h
8GL2

�
1þ β0;1x log

r0
rh

þ
X
k¼2

β0;k
2ðk − 1Þ x

k − 2β1;0x −
X
n¼1

X
k¼0

βn;k
n − 1

n
xnþkyn

�
: ð4:40Þ

On the other hand, the variable conjugate to the charge is
the electric potential AtðrÞ at infinity, which is computed
from the relation

Fab ≡ 2∂½aAb� ¼ 4πGϵabc
∂L

∂ð∂cϕÞ
: ð4:41Þ

Choosing an integration constant Φ such that AtðrhÞ ¼ 0,
the solution to the above equation is

AtðrÞ ¼ þ 1

2

�
β0;1p log

r
L
−
X
k¼2

β0;k
kp

2ðk − 1Þ
�
Lp
r

�
2ðk−1Þ

−
X
n¼1

X
k¼0

βn;k

�
Lp
r

�
2ðnþk−1Þ�L2f0

r

�
n

ðkþ nÞp
n

þ 2β1;0p

�
þΦ ð4:42Þ

Hence,

Φ ¼ rh
ffiffiffi
x

p
2L

�
−β0;1 log

rh
r0

− 2β1;0 þ
X
k¼2

β0;kkxk−1

2ðk − 1Þ

þ
X
n¼1

X
k¼0

βn;kðkþ nÞ
n

xnþk−1yn
�
: ð4:43Þ

Finally, written in the suitable variables, the charge and the
temperature read

Q ¼ p
2G

¼ rh
2GL

ffiffiffi
x

p
; ð4:44Þ

and

T ¼ yrh
4πL2

: ð4:45Þ

Using (4.37), we can check that the first law holds:

∂M
∂rh

¼ T
∂S
∂rh

þΦ
∂Q
∂rh

ð4:46Þ

and

∂M
∂x

¼ T
∂S
∂x

þΦ
∂Q
∂x

: ð4:47Þ

In the above expressions we must take into account that all
the quantities are implicitly functions of rh and x alone, so
that for a function fðrh; x; yÞ we must apply the chain rule
∂f
∂x ≡ ∂f

∂x þ ∂y
∂x

∂f
∂y.

V. CONCLUSIONS

In this paper we have characterized and constructed the
most general electromagnetic (generalized) quasitopolog-
ical theory of gravity in three dimensions. This class
includes densities of arbitrarily high curvature orders and
generalizes the results presented in [64]. Up to terms which
make no contribution to the equations of motion when
considered for static and spherically symmetric ansätze, the
most general theory appears in (1.2). The theories
admit solutions of the form (1.1). The metric function
fðrÞ satisfies a second-order differential equation whenever
the EGQT theory includes terms of order n ¼ 2 or higher in
curvatures, and an algebraic one when only n ¼ 0, 1 terms
are present—see (1.6). We have shown that at each
curvature order there exists a single EGQT family, Gn,
which can be modified by adding to it any linear
combination of the #ðnÞ − n − 1 order-n densities which
are trivial when evaluated on a static and spherically
symmetric ansatz—see (3.21) for the explicit form of
#ðnÞ. We have studied some general properties of the
black-hole solutions of these theories, explicitly construct-
ing the profiles numerically in a couple of cases. We have
computed the relevant thermodynamic quantities for the
most general theory and verified that the first law is
satisfied.
It would be interesting to study further the black holes

of these theories. In particular, a better understanding of
aspects such as the number of horizons or the types of
singularities which may arise would clearly be desirable.
This would allow for a better comparison with the analytic
EQT cases more thoroughly studied in [64]. Unexplored
aspects both of the EQT and the new EGQT solutions
presented here include the study of their causal structure
and orbits, conserved charges, quasinormal modes and
dynamical stability—e.g., along the lines of [105–107]. On
a different front, EGQT gravities in higher dimensions have
been used, in their holographic toy models facet, to prove a
universal property satisfied by charged entanglement
entropy for general CFTs [108]. In two-dimensional
CFTs, the charged Rényi entropies display interesting
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nonanalyticity features in the case of free fields [109] and it
would be interesting to find out if a similar behavior is
realized for other theories. Our three-dimensional
EGQT gravities are ideal candidates for this. On a different
front, it would be interesting to see if double-copy
ideas [110,111] may make sense for these theories and,
if so, characterize the corresponding solutions from the
gauge-field perspective.
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APPENDIX: NUMBER OF CONDITION FOR A
GENERAL-ORDER DENSITY TO BE EGQT

In this appendix we show that, given a general order-n
density, n conditions need to be imposed on the coefficients
so that the resulting density is of the EGQT class. In order
to do so, it is convenient to change our basis of invariants.
We write now our independent building blocks in terms of
the traceless Ricci tensor Sab ¼ Rab −

gab
3
R. Our set of seed

invariants reads now

S2 ≡ SabSab; S3 ≡ Sb
aSc

bS
a
c;

Ξ1 ≡ Sab∂
aϕ∂bϕ; Ξ2 ≡ SacSc

b∂
aϕ∂bϕ: ðA1Þ

plus R and Φ0. The benefit of this basis is that it
allows one to express the on-shell Lagrangians in a
simpler way. Defining the quantities A≡ −ð2f0=rþ f00Þ
and B≡ ðf00 − f0=rÞ=3, the independent on-shell densities
read

Rjð1.1Þ ¼ A; Ξ1jð1.1Þ ¼
p2B
r2

; S2jð1.1Þ ¼
3B2

2
;

Ξ2jð1.1Þ ¼
p2B2

r2
; S3jð1.1Þ ¼

3B3

4
: ðA2Þ

In this basis, the general form of an order-n density can be
written as

LðnÞ
general ¼

X
j;k;m;p

Gjkmp;ðnÞ½Φ0�Rn−ð2jþ3kþmþ2pÞ

× Sj
2S

k
3Ξm

1 Ξ
p
2Φ

n−m−p
0 ; ðA3Þ

whereGjkmp;ðnÞ½Φ0� are arbitrary functions and the last term
is introduced for convenience. The expression of the on-
shell Lagrangian evaluated on (1.1) reads

LðnÞ
generaljð1.1Þ ¼

X
j;k;m;p

G̃jkmp;ðnÞ

�
p2

r2

��
f00 þ2

f0

r

�
n−ð2jþ3kþmþ2pÞ

×

�
f00−

f0

r

�ð2jþ3kþmþ2pÞ
; ðA4Þ

where we defined

G̃jkmp;ðnÞ

�
p2

r2

�
≡ Gjkmp;ðnÞ

�
p2

r2

� ð−1Þn−ð2jþ3kþmþ2pÞ

18jþ2k

�
p2n

r2n

�
:

ðA5Þ

Nowwe follow the steps of [5], where it was proven, for the
case without additional fields besides gravity, that the GQT
condition—namely, the fact that the effective Lagrangian

LðnÞ
f ¼ ffiffiffiffiffiffi−gp

LðnÞ
generaljð1.1Þ evaluated on the single-function

ansatz becomes a total derivative—imposes exactly n
constraints on the couplings. We will show that the same
applies in the EGQT case. We start by employing the
binomial identity twice in (A4) so that the effective
Lagrangian reads

LðnÞ
f ¼ r

X
j;k;m;p;q;s

˜̃Gjkmpqs;ðnÞ

�
p2

r2

�
ðf00Þqþs

�
f0

r

�
n−q−s

; ðA6Þ

where

˜̃Gjkmpqs;ðnÞ≡ ð−1Þð2jþ3kþmþ2pÞ−s

22jþ3kþmþ2pþq−n

�
n− ð2jþ3kþmþ2pÞ

q

�

×

�
2jþ3kþmþ2p

s

�
G̃jkmp;ðnÞ: ðA7Þ

A necessary condition for LðnÞ
f to be a total derivative is that

the terms with powers of f00 higher than one must vanish.
Since 0 ≤ qþ s ≤ n, there are n − 1 constraints that we
need to impose in order to remove all such terms and keep
the densities of orders 0 and 1 in f00. By doing so, the
general on-shell density becomes

LðnÞ
f ¼ r

X
j;k;m;p

�
˜̃Gjkmp00

�
f0

r

�
n
þ 2 ˜̃Gjkmpð10Þ

�
f0

r

�
n−1

f00
�
;

ðA8Þ

where 2 ˜̃Gjkmpð10Þ ¼ ˜̃Gjkmp10 þ ˜̃Gjkmp01. Now, in order for

this to be an EGQT density, LðnÞ
f needs to satisfy the Euler-

Lagrangian equation for fðrÞ, which in three dimensions is
known to take the form [5]

∂LðnÞ
f

∂f0
¼ d

dr

∂LðnÞ
f

∂f00
þ const: ðA9Þ
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By doing so, we obtain a single additional condition which
can be straightforwardly read from (A8). Adding this to the
n − 1 constraints obtained above, we obtain a total of n

conditions that one must impose to a general order-n
density in order to obtain the most general EGQT density
of that order.
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