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In this paper the possible geodesic completeness of an electromagnetic dipole wormhole is studied in
detail. The space-time contains a curvature singularity and belongs to a class of solutions to the Einstein-
Maxwell equations with a coupled scalar field. Specifically, a numerical analysis is performed to examine
congruences of null geodesics that are directed toward the singularity. The results found here show that,
depending on the strength of the coupling between the scalar and electromagnetic fields, the wormhole can
be either geodesically incomplete or complete. We then focus on those wormholes that are geodesically
complete and study the geometry of the neighborhood of their singularity using Kaluza-Klein theory in a
five-dimensional space-time. This process allows us to provide a possible explanation of the completeness
of geodesics despite unbounded curvature.
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I. INTRODUCTION

Geodesic incompleteness, as a sufficient condition for
a space-time to be singular, has been shown to be a useful
tool for the objective of identifying any kind of singu-
larity within a space-time [1]. A geodesic with affine
parameter λ is said to be incomplete if it is not defined for
all values λ ∈ R. In fact, the celebrated singularity
theorems by Penrose and Hawking [2,3] prove the
existence of incomplete geodesics if certain energy,
causality, and boundary or initial state conditions are
satisfied. For instance the first theorem by Penrose
asserts the existence of incomplete null geodesics if
(a) the null energy condition is violated, (b) there is a
noncompact Cauchy surface in the space-time manifold
M (a causality condition), and (c) there is a closed
trapped surface in M (a boundary condition). Penrose
hence demonstrated that singularities are indeed an
inherent part of general relativity, and not simply con-
sequences of the high degree of symmetry assumed for
the solutions of the Einstein field equations.
The answer of whether a space-time is regular or

singular, though, should not be restricted to the pathologi-
cal effects suffered by geodesics on the space-time mani-
fold. Besides the paths of freely falling observers, i.e.,
geodesics, there may exist other physical observers within a
space-time that could also be affected by a singularity.

These are represented by timelike curves of bounded accel-
eration and are prone to incompleteness as well. If any
such curve has a finite length, which is a consequence of
incompleteness, then the space-time should be considered
singular too. This means that, beyond being a sufficiency
criterion, geodesic incompleteness is not a necessary con-
dition to consider a space-time as singular due to the
existence of various observers that can manifest irregular-
ities. Thus, the two concepts are not equivalent. In-depth and
thorough reviews on the subject can be found in [4,5].
Singularities are commonly associated (but not limited)

to the presence of unbounded curvature in a space-time
metric. Such irregular behavior is often referred to as
curvature singularity. A black hole in vacuum, as the
ultimate fate of gravitational collapse, and described by
the Schwarzschild metric to name an example, contains a
curvature singularity in which geodesics become incom-
plete. In this case infinite curvature implies geodesic
incompleteness. There are, however, instances of space-
times that possess unbounded curvature which does not
lead to geodesic incompleteness. In Ref. [6], spherically
symmetric shear-free perfect fluid metrics that feature
curvature divergences along complete geodesics are pre-
sented. These curves take an infinite amount of affine
parameter to run into the singular regions of the space-time.
Other examples of this are the wormhole geometries
examined in [7]. The line element is a solution to high-
energy quadratic extensions of general relativity coupled to
Maxwell electrodynamics. Further study of said metric has
shown that even the curves of observers with bounded
acceleration are complete [8]. On the other hand, the
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seminal two-dimensional model of the Taub-NUT vacuum
space-time by Misner demonstrates that geodesic incom-
pleteness does not imply diverging curvature [9]. Both
notions are therefore apparently independent from each
other: geodesic incompleteness does not imply the presence
of curvature singularities, nor does unbounded curvature
imply geodesic incompleteness [10].
On a separate matter, but not completely unrelated,

wormholes have gained the interest of physicists due to
their peculiar characteristics. In particular, their ability to
communicate distant regions of the same universe (or two
different universes) through a kind of space-time “shortcut”
is rather attractive. In order to facilitate traveling back and
forth between both of the sides that its throat connects, it is
desired for wormholes to be completely regular space-
times, avoiding thus any sort of provoked ill behavior to a
physical observer. It is well-known that Morris and Thorne
showed that regular, static, and spherically symmetric
wormholes require exotic matter (this is, matter that
violates the energy conditions) to support their throats
[11]. Visser and Hochberg have extended those results,
showing that the energy conditions must be violated in
any regular traversable wormhole whose throat consists
of a two-dimensional surface of minimal area [12,13].
Nevertheless, solutions to the Einstein field equations that
represent wormholes in D-dimensional gravity with a
dilatonic field and singular ring bounding their throats
have been alternatively found [14]. These are the so-called
ring wormholes, and it is possible for them to be constituted
of nonexotic matter; their inconvenience is that they
introduce another mayor issue: a singularity. Indeed, even
before the work of Morris and Thorne, a description of the
now known as Zipoy-Voorhees class of metrics, which
consist of static and axially symmetric vacuum solutions of
the Einstein field equations with a ring singularity, was
presented in [15,16]. The space-times were interpreted as
having a topology that consisted of multiple connected
sheets. A method to obtain those ring wormholes (and even
simpler classes of them) from the Schwarzschild metric was
reported in [17]. For a brief and overall review on worm-
holes, including the static and axially symmetric case with a
ring, see [18]. It is therefore of interest to study the
implications of the singular region of this type of intriguing
wormhole geometries.
In this paper we provide an example of a ring wormhole

with a curvature singularity in which, depending on the
value of one of its metric parameters, the space-time can be
either geodesically incomplete or complete. The work is
organized as follows. In Sec. II we give a brief summary of
the wormhole itself; some characteristics not reported so far
in the literature will also be given. Sec. III consists of a
description of the geodesics on the wormhole. Here, two
particular simple cases of motion are studied analytically,
and afterward, more general geodesics are obtained numeri-
cally. We then focus on the geodesically complete type of

wormhole and attempt to examine its singularity as seen in
the five-dimensional space-time generated by Kaluza-Klein
theory. This is done in Sec. IV where additionally, based
on the results found in the higher-dimensional analysis,
an interpretation of the completeness of its geodesics is
elaborated upon. Conclusions are drawn in the final section
of the work.

II. OVERVIEW OF THE WORMHOLE

Our purpose in this section will be to introduce the
wormhole space-time along with its general properties. The
solution was previously found in [19]. Here we provide a
summary of its basic features and complement some
physical properties that were omitted in the past reference.
The wormhole belongs to the class of Einstein-Maxwell

scalar fields first described in [20]. They are stationary,
axially symmetric, and have a rotation parameter that
makes them nonstatic. The general Lagrangian of the
solution is

L ¼ R − 2ε∇μΦ∇μΦ − e−2αΦFμνFμν; ð1Þ
where R is the Ricci scalar, Fμν is the electromagnetic field
tensor, and Φ the scalar field of a zero spin (composed)
particle. Here, we set the quantity ε ¼ þ1 for a dilatonic
field and ε ¼ −1 for a phantom (or ghost) field, both with
coupling constant α. The Einstein-Maxwell-Dilaton field
equations from Lagrangian (1) are

Rμν ¼ 2ε∇μΦ∇νΦþ 2e−2αΦ
�
FμρFν

ρ−
1

4
gμνFδγFδγ

�
;

∇μðe−2αΦFμνÞ ¼ 0; and ∇μ∇μΦ¼ α

2
e−2αΦFδγFδγ: ð2Þ

The parameters of the wormhole are a and L; their
concrete physical meaning is going to be mentioned later
on. Oblate spheroidal coordinates ft; x; y;φg will be used
to express the line element. They are related to those of
Boyer-Lindquist ft; r; θ;φg by the relations Lr ¼ x and
y ¼ cos θ, with L being a constant parameter. We have then
that

ds2 ¼ −ðdtþΩdφÞ2 þ eKΔ
�
L2dx2

Δ1

þ dy2

1 − y2

�

þ Δ1ð1 − y2Þdφ2; ð3Þ

with Δ ¼ L2ðx2 þ y2Þ, Δ1 ¼ L2ðx2 þ 1Þ,

Ω¼ axð1− y2Þ
Lðx2 þ y2Þ ; and

K ¼ k
L4

½1− y2�½8x2y2ðx2 þ 1Þ− ð1− y2Þðx2 þ y2Þ2�
ðx2 þ y2Þ4 : ð4Þ

Finally, the constant k is defined by
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k ¼ a2

8

�
1 −

4ε

α2

�
: ð5Þ

Interesting special cases for the coupling constant are
α2 ¼ 1, which represents a low-energy string theory, and

α2 ¼ 3, in which the Lagrangian (1) reduces to that of a 5-D
Kaluza-Klein theory. In Table I we show the values of the
constant k in the previous cases for the dilatonic and ghost
fields. It also contains the value of α2 for which k ¼ 0 (only
the dilatonic field is possible).
The scalar field Φ and the electromagnetic vector

potential Aμ are given by

Φ ¼ ay
αL2ðx2 þ y2Þ ;

A ¼ −
eαΦ

2
½ð1 − e−αΦÞdtþ Ωdφ�;

while the electromagnetic field Fμν can be computed from
Aμ as

F ¼ aLeαΦ

Δ2

�
2Lxydt ∧ dxþ L2

Δ
ð1 − y2ÞðL2½y4 − x4� − 2ax2yÞdx ∧ dφ

þ Lðy2 − x2Þdt ∧ dyþ x
Δ
ðaL2½x2 − y2�½1 − y2� − 2yΔΔ1Þdy ∧ dφ

�
:

It is, however, more illustrative to consider the asymptotically dominant components of this field tensor in an orthonormal
frame ft̂; x̂; ŷ; φ̂g, namely,

Fμ̂ ν̂ ¼
a

L3x3

2
6666664

0 y −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
=2 0

−y 0 0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − y2
p

=2 0 0 −y

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
=2 y 0

3
7777775
þO

�
1

x4

�
:

Since asymptotically Lx ∼ l and y ¼ cos θ, being l and θ
regular spherical coordinates in flat space-time, then the
form of this electromagnetic field can be immediately
identified with that of an electric and magnetic dipole.
Their electric and magnetic dipole moments, p and μ
respectively, are p ¼ μ ¼ a=2. Hence, in the following this
metric will be referred to as the electromagnetic dipole
wormhole, or electromagnetic wormhole for short.1

The calculation and the analysis of the scalar curvature
invariants of this electromagnetic wormhole yield the
following general form:

RX ¼ e−δKFðx; yÞ
ðx2 þ y2Þβ : ð6Þ

Here, δ and β are positive integers, and Fðx; yÞ is a
polynomial of degree less than the degree of ðx2 þ y2Þβ.
Particularly, δ ¼ 1 for invariants of linear order in the
curvature tensors, e.g., the Ricci scalar R ¼ Rμ

μ, and δ ¼ 2

for quadratic invariants, e.g., RμνRμν. Note that curvature is
not well-defined at the point x ¼ y ¼ 0, and its limit
depends on the direction of approach. From (6) it can be
seen that an observer will encounter an infinite or vanishing
curvature depending on the sign that K takes on its path
(details of this can be found in the upcoming Figs. 1 and 2.
The content of those figures is further explained in
Sec. III.C). For this reason, this kind of pathological
behavior is sometimes called directional singularity.
Other relevant physical characteristics of the wormhole

are as follows:
(i) The parameter L > 0 has units of length and is

related to the size of the throat of the wormhole,
while a has units of angular momentum.

(ii) Itsmassm and angularmomentum J, which are found
by usingKomar integrals evaluated on two-spheres of
arbitrarily large radius, are m ¼ 0 and J ¼ a.

TABLE I. Real values of k for some cases of α2 for both
dilatonic and ghost scalar fields.

k

α2 Dilatonic field (ε ¼ 1) Ghost field (ε ¼ −1)

1 −3a2=8 5a2=8
3 −a2=24 7a2=24
4 0 Not applicable

1This differs from Ref. [19] where this wormhole is claimed to
be purely magnetic due to a misconception related to the use of a
specific gauge to express the electromagnetic vector four poten-
tial. Here, the orthonormal components of the electromagnetic
tensor, which is gauge invariant, help us to realize that there is
also a nonignorable electric dipole contribution.
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(iii) The throat of the wormhole is located at x ¼ 0.
(iv) It presents a curvature ring singularity at x ¼ y ¼ 0

of radius L, which bounds the throat.
(v) It is asymptotically flat.
(vi) If a ¼ 0, the metric describes a flat-space time in

oblate spheroidal coordinates. The relation between
them and regular Cartesian coordinates fu1; u2; u3g is

u1 ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ 1Þð1 − y2Þ

q
cosφ;

u2 ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ 1Þð1 − y2Þ

q
sinφ; u3 ¼ Lxy: ð7Þ

Unfortunately, when trying to describe the motion of
freely falling particles in this space-time, it turns out that an
irreducible quadratic Killing tensor cannot be found. The
existence of such a type of tensors is significantly helpful
for the integrability of geodesics since they imply the

presence of conserved quantities along those curves. Thus,
they add a fourth constant of motion to the three that are
guaranteed to exist in an axially symmetric and stationary
space-time like the present wormhole. The question of
whether higher order tensors of this kind may exist or not in
this space-time is left opened. Nevertheless, by taking a
physically meaningful limit on the metric parameters, we
can obtain the desired Killing tensor. It may be worth
remarking at this point that this only works as an approxi-
mation. The mentioned limit is that of a slowly rotating
wormhole. Mathematically, it is expressed as a condition on
the physical parameters, a=L2 ≪ 1.
After applying the slowly rotating limit, separated

equations of motion for the electromagnetic wormhole
can be written as (see Ref. [19] for details)

Δ2 _x2 ¼ XðxÞ; Δ2 _y2 ¼ YðyÞ; ð8Þ

FIG. 1. Null geodesics in the electromagnetic wormhole with k ¼ 7a2=24 (a ghost field) for three values of angular momentum L. The
numerical values of the space-time parameters and constants of motions are a ¼ 0.1, L ¼ 10, and E ¼ 10. Different colors are used to
distinguish between intersecting curves.
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where an overdot indicates differentiation with respect to an
affine parameter λ, and

XðxÞ ¼ Δ1

�
ðκ þ E2Þx2 þ K

L2

�
−
2aELx

L
þ L2;

YðyÞ ¼ ½1 − y2�½L2ðκ þ E2Þy2 −K� − L2: ð9Þ

In the past equations, the mentioned four constants of
motion appear. Namely, p0 ¼ −E and p3 ¼ L are two of
the conjugate momenta pμ ¼ gμν _xν, both of them are
conserved due to the symmetries of the wormhole. They
can respectively be associated with the physical interpre-
tation at asymptotic infinity of the energy of freely falling
test particles and their projection of angular momentum on
the z axis. The third conserved quantity is their Hamiltonian
2H ¼ κ ¼ gμνpμpν, which takes values κ ¼ −1, 0, 1 for
timelike, null, and spacelike geodesics, respectively.
Finally, K ¼ Kμνpμpν is the constant related to the

existence in the slowly rotating limit of a second-rank
Killing tensor Kμν. Here we will spare the details on how
such a tensor is obtained using the mentioned limit;
however, we must emphasize that it is based on keeping
only first order terms of the quantity a=L2 in the wormhole
metric. So, for instance, we can approximate

eK ≈ 1þO
�
a2

L4

�
:

By looking at the explicit expression for K in (4), it is
easy to realize that, as we get closer to the ring singu-
larity, the approximation begins to disagree with respect to
the original function. Thus, the slowly rotating limit is no
longer valid for regions very close to the ring singularity.
Despite the restricted validity of the slowly rotating limit,

it was argued in [19] that geodesics in general were repelled
when trying to reach the ring singularity at x ¼ y ¼ 0. The
analysis therein used the fact that the polynomials XðxÞ

FIG. 2. Null geodesics in the electromagnetic wormhole with k ¼ −a2=24 (a dilatonic field) for three values of angular momentum L.
The numerical values of the space-time parameters and constants of motions are the same as those of previous figures. Different colors
are used to distinguish between intersecting curves.
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and YðyÞ must be equal to strictly positive quantities, as
can be seen from the equations in (8), and also that
Xð0Þ ¼ −Yð0Þ ¼ Kþ L2. This statement applies to geo-
desics for which K ≠ −L2. In the special case of geodesic
congruences with K ¼ −L2, though, one cannot so easily
guarantee the same property.2 These curves were not
studied with detail in the cited reference, and hence, during
the rest of this paper, we will focus strictly on their possible
incompleteness as a consequence of the singularity.

III. BEYOND THE VALIDITY OF THE SLOWLY
ROTATING LIMIT

In what follows we wish to describe the behavior of
geodesics in regions where the slowly rotating limit breaks
down. The inconvenience with the combination of con-
served quantities described by the condition Kþ L2 ¼ 0 is
that, according to the equations of motion (8), the negative
potential barrier disappears when approaching the singu-
larity (when x; y → 0). Consequently, those curves can
continue its trajectory into the ill-defined region of the
space-time. Eventually the slowly rotating limit will break
down, and the separable equations (8) will no longer give
reliable information about the motion of test particles.
The Hamiltonian, 2H ¼ κ, keeps holding without the

need of approximations. It can be rearranged in the
following convenient form:

eKΔ
�
L2 _x2

Δ1

þ _y2

1 − y2

�
¼ κ þ E2 −

ðΩE þ LÞ2
Δ1ð1 − y2Þ : ð10Þ

This expression, nonetheless, is not enough to determine
the path geodesics will follow in a general case. The only
resource left then is to consider the geodesic equation,
which is of course valid everywhere but extremely difficult
(if not impossible) to study in full detail analytically.
However, some special and interesting cases can be
considered with the help of (10).

A. Motion in the equatorial plane outside the throat

In order for geodesics to be constrained to the plane
y ¼ 0, we also require that _y and ÿ both vanish. The first
condition can only be achieved in y ¼ 0 if Kþ L2 ¼ 0.
Then, when setting y ¼ _y ¼ 0, the ÿ component of the
geodesic equation (not shown here) vanishes too, and this
type of motion is indeed possible without imposing further
restrictions.

We are now interested in the ẍ component of the
geodesic equation, but instead of looking into its full
expression, we can use (10) with y ¼ _y ¼ 0 to write _x as

eKx
L4x2 _x2

Δ1

¼ κ þ E2 −
1

Δ1

�
aE
Lx

þ L
�

2

; ð11Þ

with Kx ¼ Kjy¼0. Note that the left-hand side of the
previous equation is positive. However, as x → 0, the term
in round brackets of the right-hand side dominates over the
others. This is a negative term, thus implying a contra-
diction since clearly, a positive quantity cannot be equal to a
negative one. By this argument, it can be established that
there are no solutions of (11) that reach the ring singularity.
This fact was already mentioned in Ref. [19].

B. Motion within the throat

Geodesics that are constrained to the throat of the
wormhole satisfy x ¼ _x ¼ ẍ ¼ 0. Again, if Kþ L2 ¼ 0,
then _x ¼ 0 in the throat. From the ẍ component of the
geodesic equation with vanishing x and _x we have that

ẍ − e−Ky
aEL
L5y4

¼ 0:

Here, Ky ¼ Kjx¼0. It can be seen that this type of motion is
then only possible if any of the conserved quantities E or L
are zero. Applying the same analysis as before, we utilize
(10) now with x ¼ _x ¼ 0, obtaining thus,

_y2 ¼ e−Ky

L4y2
½L2ð1 − y2ÞðE2 þ κÞ − L2�: ð12Þ

In what follows we will consider that E ≠ 0 and L ¼ 0, due
to the fact that this corresponds to a familiar and physically
realistic case, in contrast to the other possibility of a test
particle with vanishing energy. With the help of Eq. (12) it
can now be determined if geodesics that lie in the throat can
get arbitrarily close to the singularity of the space-time.
For a wormhole with k ≥ 0, _y2 → ∞ as y → 0. Hence,

these geodesics can infinitesimally approach the singular-
ity, possibly becoming incomplete. In fact, Eq. (12) can be
easily integrated if k ¼ 0 and for the particular case of null
geodesics with vanishing angular momentum. The solution
simply reads as

y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ02

p
; ð13Þ

where the affine parameter λ0 was rescaled though a linear
transformation of the original parameter λ for convenience.
When λ0 ¼ 1 the singularity is clearly reached by these
curves, which are only defined for λ0 ∈ ½−1; 1�.
On the other hand, geodesics in wormholes with k < 0

behave in the opposite way; as y → 0 we have that _y2 → 0.

2As a clarifying note we point out that, even though at exactly
the singular region the slowly rotating limit breaks down, its valid
domain is close enough to it such as to obtain a negative value in
either of the XðxÞ or YðyÞ polynomials. This leads to a repulsive
effect on the geodesics with K ≠ −L2 owing to an infinite
potential barrier around the singularity. Unfortunately, this does
not happen for values K ¼ −L2.
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In fact, ÿ → 0 as y → 0 too. This can be seen from the ÿ
component of the geodesic equation of these particular
curves:

ÿþ ½L4y4 þ 2kð1 − y2Þ2�_y2
L4ð1 − y2Þy5 ¼ 0:

The combination of these kinematic conditions indicates
that geodesics constrained to the throat and that start their
path at some value y ¼ y0 will slow down when approach-
ing the singularity. As they go closer, their coordinate
velocity _y will become smaller, almost completely decreas-
ing to zero. As a result, they will never reach the ring
singularity in a finite amount of their affine parameter; in
other words, an infinite affine parameter is needed so that
they can meet the singularity.
This past conclusion can also be obtained from the

following approximate solution of Eq. (12) for y ≪ 1:

λ0 ¼ �
Z

ye−k=2L
4y4 dy: ð14Þ

Here, the original affine parameter λ was properly rescaled
again for simplicity. It is readily seen that if k ≥ 0, the
integrand vanishes as y → 0, leading to a finite affine
parameter at which the singularity is met. On the contrary,
with k < 0 the integrand becomes infinite at y ¼ 0 and
consequently, so does λ0 when trying to reach the singular
region. It should be remarked that, of the interesting cases
for the coupling constant α shown in Table I, those that
have a negative k correspond to a dilatonic field, whereas
those with positive k represent a ghost field. Also from
Eq. (5) and for a ghost field (ε ¼ −1) we have that k > 0.
The two previous simple types of motion have already

given valuable information. The most important is that
equatorial geodesics are not in contact with the ring
singularity. In contrast, those that lie within the throat
are able to encounter it in a finite affine parameter if k ≥ 0.
Indeed, Eqs. (13) and (14) indicate that this is the case for
geodesics with zero angular momentum. This rules out said
wormholes as space-times possessing a curvature singu-
larity without geodesics touching it. In fact, only the
electromagnetic dipole wormhole metric with negative k
stands now as a possible candidate of such a space-time.

C. Numerical analysis of general geodesics

There are of course more general geodesics other than
those constrained to the equatorial plane or the throat.
However, due to the complicated expressions of the
geodesic equation for these wormholes, it is not possible
to analytically solve these curves. Since according to the
previous results, there exists the possibility that geodesics
can be found arbitrarily close to the ring singularity by
traveling near the disc bounded by it, we need to determine
if there are general geodesics (others than those of constant

x ¼ 0) that follow this path. The only resource left is to
study them numerically with the inherent and unfortunate
restrictions of these methods.
The procedure we shall follow is now described. We are

interested in geodesics for which Kþ L2 ¼ 0 in the slowly
rotating limit. Therefore, initial conditions for the coor-
dinates x and y are chosen in a region where this limit is
valid. In turn, for given values of the constants of motion E,
L, and κ ¼ 0;−1, as well as the corresponding space-time
parameters, the initial position x0 and y0 will fix the initial
velocities _x0 and _y0 according to Eq. (8). Finally, as is
evident, our principal objective is to examine geodesics that
advance toward the singularity as their affine parameter
increases. With this set of initial data and conditions the
numerical calculation of geodesics is performed. Several
results are shown in the following figures, presenting the
curves in the x-y plane of coordinates (the singularity is
described by the origin).
As discussed previously in the analysis of the two simple

types of motion, we can expect different behaviors in this
wormhole depending on the sign of the constant k of
Eq. (5). We thus start with the case of a positive k (Fig. 1).
An interesting property that seems to dominate the path
taken by geodesics is whether K is positive or negative in
the e−K factor appearing, for example, in Eqs. (6) and (12).
Curves whose initial position is in the K > 0 area tend to
stay within it, and curves whose initial position is in the
K < 0 area tend to cross their starting region into the first
area. Furthermore there are four points in the x-y plane, one
for each K > 0 zone, at which all curves seemingly
converge to. The only found exceptions to this behavior
were already described, i.e., motion constrained to y ¼ 0 or
x ¼ 0 (not shown in Fig. 1). It must be mentioned that
although it appears that geodesics reach one of these
supposed convergence points and then stop there, it is
not quite exactly what happens. Instead, their velocities and
accelerations become increasingly small as they advance,
most likely as a consequence of the e−K factor severely
decreasing as well. This is not at all unfamiliar since we
found earlier that some geodesics in the throat of the
wormhole with k < 0 exhibit this type of behavior. Other
than geodesics constrained to the throat, which can exist
arbitrarily close to the singularity, no other curves were
found that could touch it in a finite value of affine
parameter. Owing to the fact that geodesics in the throat
become incomplete, we should definitely discard this kind
of wormhole as being regular. One must keep in mind,
though, that the problematic geodesics are bounded by the
ring; they do not escape to infinity. In this sense, one can
think of this space-time as not so badly behaved for distant
observers. It is worth remarking that k is positive for any
wormhole coupled to a ghost field, and therefore, all such
space-times are geodesically incomplete.
There are some similarities between the electromagnetic

dipole wormhole with k > 0 and that with k < 0 (Fig. 2).
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The behavior of the curves is naturally also heavily
influenced by the e−K factor, but as the sign of the constant
k has been changed, so have the areas of positive and
negative K. We also observe here apparent convergence
points that were rotated so that they are now located in the
K > 0 region too. From these points forward, and advanc-
ing toward the singularity, the curves seem to greatly slow
down as well. The difference in this wormhole is that the
inversion of the K regions with respect to the k > 0 case
allows for the x and y axis to be found within a positive K
area. This leads to the past result in which geodesics
constrained to x ¼ 0 take an infinite amount of affine
parameter to meet the singular ring. Therefore it could be
said that, in a strict sense, causal geodesics do not
encounter the curvature singularity. Furthermore, none of
this type of curves were found to be incomplete either.
Hence, the electromagnetic dipole wormhole with a neg-
ative constant k remains as a candidate of a space-time with
complete curves despite the presence of curvature singu-
larities. Only wormholes coupled to dilatonic fields can
feature this property. Nevertheless, since not all values of
the coupling constant α2 lead to k < 0 in (5), not all of the
dilatonic wormholes (ε ¼ 1) will be geodesically complete.
For reference, the coupling constants corresponding to a
low energy-string theory and to Kaluza-Klein theory have a
negative k parameter (see Table I).
This specific manner of achieving completeness in the

analyzed geodesics leads to peculiar conclusions that
resemble properties of the so-called “bag of gold” singu-
larities introduced by Wheeler in [21], namely, the counter-
intuitive notion of having an infinite volume bounded by a
finite superficial area. To see this, consider a surface Sϵ of t
and x ¼ ϵ constant. It is evident that Sϵ has a finite
superficial area. Now take a spacelike geodesic ζ with t,
φ and x ¼ 0 constant (E ¼ L ¼ 0 and κ ¼ 1) in (12). The
approximate solution in (14) is equally valid for this case;
hence, the geodesic length of this curve becomes infinite
when approaching the singularity. The geodesic ζ lies
inside the volume Vϵ bounded by Sϵ and thus, it would be
reasonable to compute this volume using the geodesic
length of said curve. However, by doing this, one ends up
with an infinite volume bounded by a finite superficial area.
This unusual property is a direct consequence of having
geodesics directed toward the singularity, but never com-
pletely reaching it.

Asmentioned in Sec. I, the atypical behavior displayed by
the previously described causal geodesics is not completely
new in the literature. Another work worth mentioning that
contemplates this scenario (besides [6]) can be found in [22].
The space-times of interest there, however, are different from
those of this paper in the sense that possible geometries of
geodesically complete and spherically symmetric black
holes are discussed. It is also assumed that curvature
singularities are generally absent from the metric. Despite
this, the comprehensive analysis done therein goes as far as to
include a case in which curvature singularities are indeed
present and outgoing null geodesics are separated from them
by an infinite affine length. The example presented in this
paper replicates that feature but for general causal geodesics
of an axially symmetricwormhole. It shouldbe remarked that
other assumptions made for the geometry of the space-times
from [22] include global hyperbolicity, a property that is yet
to be analyzed for this type of wormhole.
Some final comments are now outlined. These figures

only show null geodesics; the reason for this is that there
was no significant qualitative difference between said
geodesics and their timelike counterparts. Lastly, the results
described here are numerous; in order to concisely present
them, Table II summarizes their most important aspects.

IV. FIVE-DIMENSIONAL INTERPRETATION OF
THE SINGULARITY

In this section we will use the five-dimensional Kaluza-
Klein theory in order to probe, in the context of a higher
dimensional space, the geometry of a neighborhood of the
singularity. For this purpose, embedding diagrams shall be
utilized, thus allowing us to visualize slices of the five-
dimensional metric corresponding to the wormhole studied
so far.
In Kaluza-Klein theory an extra dimension is added to the

typical four dimensions of general relativity. This is done as a
means to naturally incorporate electromagnetism into the
geometry of the space-time, very much as the gravitational
force arises purely from the curvature of a four-dimensional
manifold in standard gravity. In this sense, the theory could
be viewed as an extension of general relativity that unifies
gravity with electromagnetism.
The geometric properties and the consequences of an

additional dimension may be physically hard to grasp.

TABLE II. The properties of geodesics that closely approach the ring singularity σ of the electromagnetic dipole
wormhole.

Geodesics that encounter σ

Wormhole Conditions Curvature Regularity

k ≥ 0 Constrained to x ¼ 0
(finite λ required, incomplete)

Unbounded Singular (singularity visible
to observers in the throat)

k < 0 Infinite λ required to reach σ Vanishing Complete causal geodesics
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However, in effective terms it is interpreted as being
compactified and hence, imperceptible to a macroscopic
observer which would experience space-time consisting
only of four dimensions. In fact, Klein suggested that the
geometry of the extra dimension is of the form of a circle S1

with a small radius. We will follow this idea and therefore,
shall consider the fifth dimension as periodic.
The five-dimensional metric gAB is given by

ds2 ¼ gABdxAdxB ¼ I−1gμνdxμdxν

þ I2ðdx5 þ AμdxμÞðdx5 þ AνdxνÞ; ð15Þ

with I ¼ eαΦ=3. The parameter α is the coupling constant
discussed earlier. Also Φ and Aμ are, respectively, the
scalar field and the electromagnetic four potential (if any)
coupled to the original four-dimensional solution. In this
5-D analysis Latin indices are used which take values
A;B ¼ 1; 2;…; 5. Then, the Einstein-Hilbert action in five
dimensions can be written as

Sð5Þ ¼ 1

16πGð5Þ

Z
d5x

ffiffiffiffiffiffiffiffiffiffi
−gð5Þ

q
Rð5Þ;

where a (5) superscript denotes quantities of the five-
dimensional space-time. Electromagnetic interactions in
four dimensions arise from vacuum solutions obtained
from this action if they are projected into the standard
four-dimensional space-time. When inserting the metric of
Eq. (15) in this action, and after integrating over the
periodic fifth coordinate x5, the action in four dimensions
resulting from Lagrangian (1) with ε ¼ 1 and α ¼ ffiffiffi

3
p

is
obtained. Note hence that the studied wormholes coupled
to phantom fields (ε ¼ −1) cannot be described by this
theory. See [23] and references therein for a more in-depth
review of the subject.
We follow [24] and start by taking slices of constant t

and φ in metric (15), reducing it to a three-dimensional
subspace. Thus,3

ds23D ¼ I−1gijdxi ⊗ dxj þ I2dx5 ⊗ dx5; ði; j ¼ 2; 3Þ;

only if A ¼ Atdtþ Aφdφ, which is the case for the
stationary and axially symmetric wormhole of interest.
The resulting subspace is going to be even further reduced
to two dimensions in order to properly embed it in a three-
dimensional Euclidean space. The process shall be done
separately for constant x2 ¼ x20 and constant x3 ¼ x30, i.e.,
for constant x ¼ x0 and y ¼ y0 in the oblate spheroidal
coordinate system ft; x; y;φg used in the paper. This yields

ds2x ¼ I−12 gxxdx ⊗ dxþ I22dx
5 ⊗ dx5;

ds2y ¼ I−13 gyydy ⊗ dyþ I23dx
5 ⊗ dx5; ð16Þ

where I2 ¼ Iðx; y0Þ and I3 ¼ Iðx0; yÞ. Expressed more
compactly we have that

ds2i ¼ I−1i giidxi ⊗ dxi þ I2i dx
5 ⊗ dx5;

for fixed values i ¼ 2; 3 ðno sum over repeated indicesÞ:

In Eq. (16) we are already focusing on the form of metric
(3); nevertheless, this procedure is possible for any sta-
tionary and axially symmetric space-time that admits an
adapted coordinate system (one in which the only off-
diagonal metric component is gtφ). To embed these two
subspaces in three dimensions we follow the typical
scheme. First we take the line element of flat space-time
in cylindrical coordinates, ds2cyl ¼ dz2 þ dρ2 þ ρ2dϕ2, and
consider zðρÞ as a profile function that describes the
embedded geometry. Alternatively, one can instead make
zðxiÞ and ρðxiÞ (i ¼ 2, 3) so that each coordinate value xi

defines a point in the z-ρ plane, hence obtaining the desired
profile. So, ds2cyl can be rewritten as

ds2cyl ¼
��

dz
dxi

�
2

þ
�
dρ
dxi

�
2
�
dxi ⊗ dxi þ ρ2ðxiÞdϕ ⊗ dϕ:

ð17Þ

Since the fifth coordinate x5 is assumed to be periodic, it
can be associated with the azimuthal angle ϕ of the
previous flat space. Comparing (17) with (16) we obtain

�
dz
dxi

�
2

þ
�
dρ
dxi

�
2

¼ gii
Ii
; ρ2ðxiÞ ¼ I2i : ð18Þ

This defines a first order differential equation for zðxiÞ
that later on will be solved numerically for each value
i ¼ 2, 3. Before that, interesting properties of the
embedded profile can be found from ρðxiÞ ¼ Ii, which
is basically a relation for the radius of the fifth dimension.
According to the ongoing analysis, this radius will depend
on whether we are interested in slices of constant y ¼ y0 or
constant x ¼ x0; it is respectively given by

I2 ¼ eay0=3L
2ðx2þy2

0
Þ; or I3 ¼ eay=3L

2ðx2
0
þy2Þ:

From these explicit expressions it is easy to make the
following observations. If y0 > 0, the radius I2 has an
absolute maximum at x ¼ 0, i.e., at the throat of the worm-
hole. This maximum becomes a minimum if y0 < 0. When
x0 ≠ 0, the radius I3 has an absolute maximum at y ¼ x0
and an absolute minimum at y ¼ −x0. Since y ∈ ½−1; 1�,
the maximum and minimum are only relevant when −1 ≤
x0 < 0 or 0 < x0 ≤ 1. The general radius Iðx; yÞ is severely

3In some of the following equations, the tensor product⊗ will
be explicitly written just to avoid any sort of possible confusion
caused by exponents in the infinitesimal coordinate displace-
ments dxA.
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discontinuous at x ¼ y ¼ 0; this can be seen from the fact
that Iðx; 0Þ ¼ I2jy0¼0 ¼ 1, and when inspecting Ið0; yÞ ¼
I3jx0¼0 with the following limits:

lim
y→0þ

I3jx0¼0 ¼ ∞; lim
y→0−

I3jx0¼0 ¼ 0;

where we have assumed that a > 0. Such problematic
behavior, of course, is naturally expected due to the presence
of the curvature singularity. In this case, we can see that it has
a deep impact on the geometrical characteristics of the fifth
dimension when interpreted as periodic and visualized in a
Euclidean three-dimensional space.
We now turn to the profiles zðρÞ that describe the

embedded geometry when considering slices of either y
or x constant in the space-time. They are respectively
obtained numerically by solving the equations in (18) for
i ¼ 2 and i ¼ 3. The profiles, which are shown in Figs. 3 to
6, are then parametrized by ρðxiÞ and zðxiÞ. For the sake of
completeness, and to illustrate some of the discussed
features for the radii I2;3, we begin in Fig. 3 by examining
the slices of x0 ≠ 0 and y0 ≠ 0, all of them being regular
profiles as expected. Initial conditions were chosen so that
zðx ¼ 0Þ ¼ 0 and zðy ¼ 0Þ ¼ 0 for every graphic, and the
upper half of the planes correspond to positive x (left panel)
and positive y (right panel4), while the lower half corre-
spond to their negative counterparts. The mentioned
properties for the maximum and minimum radii can be
readily appreciated. Furthermore, in both cases the value of
the maximum increases as the profiles draw closer to the
singularity and, on the contrary, the minimum decreases
approaching it. This will be consistent with the later

analysis for the neighboring regions of the curvature
pathology. Lastly, since the differential equation that yields
the profiles for x ¼ x0 constant is symmetric for the x
coordinate, then the profiles obtained by taking x ¼ −x0
are the same as those with x ¼ x0 constant.
Next, we attempt to study the embedded geometry for

regions close to the singularity. To do so, let us set x0 ¼ 0 in
(18) for i ¼ 3, thus probing the geometry at the throat of the
wormhole. Explicitly we have that

�
dz
dy

�
2

¼ L2y2eKy

I3ð1− y2Þ−
a2I23
9L4y4

; with I3 ¼ Ið0; yÞ ¼ ea=3L
2y

and Ky ¼Kjx¼0 ¼
a2ð1− y2Þ2
24L4y4

: ð19Þ

It is important to notice some aspects of the previous
equation. First, owing to the squared derivative, it will
generally possess two families of solutions, one corre-
sponding to the positive branch and the other to the
negative branch. Second, it is singular at y ¼ 0 and thus,
solutions for the initial value problem zð0Þ ¼ z0 are not
guaranteed to exist. The following limit does exist, and a
careful evaluation of it yields

lim
y→0

�
dz
dy

�
2

¼ ∞:

Third, the right-hand side of Eq. (19) can be negative for
some y ∈ ½−1; 1�; Fig. 4 serves as an example of this, and
hence no real solutions exist in such regions. This portion
of the geometry cannot be visualized in three-dimensional
Euclidean space. Unfortunately, the relation in (19) is
nonlinear for y, and its roots cannot be found analytically.
For reference, it will be useful to first study the

a ¼ 0 case in expression (19), i.e., a flat space-time. The
differential equation then reduces simply to

FIG. 3. Embedding profiles for slices of different values y0 ≠ 0 (left panel) and x0 ≠ 0 (right panel). The domain of numerical
integration is respectively −5 ≤ x ≤ 5 and −0.99 ≤ y ≤ 0.99. The resulting two-dimensional manifolds are obtained by rotating each
profile about the ρ axis. The numerical values of the space-time parameters are the same as those of previous figures.

4For the domain of the y variable, the points y ¼ �1 could not
be included due to the nature of the coordinates used here. Indeed,
they represent the coordinate singularity of the rotation axis, very
much like that appearing when using spherical coordinates.
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�
dz
dy

�
2

¼ L2y2

1 − y2
; and I3 ¼ Ið0; yÞ ¼ 1; ð20Þ

which can be easily solved, obtaining thus zðyÞ ¼
�Lð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
− 1Þ. Initial conditions were chosen so that

zð0Þ ¼ 0. Considering zðyÞ, along with ρðyÞ ¼ 1, the curve
parametrized by y ∈ ½−1; 1� in the ρ − z is a compact,
vertical line that joins the points ð1;�LÞ and (1, 0). This
defined profile then needs to be rotated about the symmetry
axis (the z axis), therefore describing a cylinder of radius
equal to one and of height L. It is easy to understand the
meaning of this result. In four-dimensional space-time, x ¼
0 represents a disc of radius L that, by fixing the azimuthal
angle φ to a constant, becomes a line of length L. When
introducing a periodic fifth dimension the line generates a
closed cylinder of the same height. In this case, the radius
of the new dimension is normalized to unity. Note also that
zðyÞ ¼ zð−yÞ; this is consistent with the fact that in x ¼ 0,
y and −y describe the same set of points on the disc [see the
equations shown in (7)].
Being aware of these characteristics for ðdz=dyÞ2, we are

forced to study separately the regions in which the geometry
can be embedded in a three-dimensional space, i.e., those
with ðdz=dyÞ2 ≥ 0. According to Fig. 4 there are four of
them. Our interest will focus mainly on those closer to the
singularity. The procedure we shall follow is to fix the initial
conditions zðy�1Þ ¼ 0 and zðy�2Þ ¼ 0, where y�1 and y�2

are the approximate roots of ðdz=dyÞ2 mentioned in the past
figure. Since the differential equation is singular when y ¼ 0
and y ¼ �1, this process will create four disjoint profiles of
constant x0 ¼ 0 that span all y such that ðdz=dyÞ2 ≥ 0, their
domains being y ∈ ð�1; y�1� and y ∈ ½y�2; 0Þ. These pro-
files are presented in Fig. 5, in which the positive branch of
the solutions is used in all cases.
From the figure of space-time slices corresponding to

x0 ¼ 0 we can see that, as expected, the effects of the fifth
dimension are stronger near the singularity (jyj ≪ 1). This
is seen respectively in the increase or decrease of the radius

when approaching it from positive or negative y values.
Recall that when applying the same analysis to a flat space-
time, which can be recovered by fixing a ¼ 0, the radius of
the extra dimension is constant, it reduces to unity. Thus,
the change of this geometrical property can be interpreted
as the fifth dimension finally becoming nontrivial, or non-
negligible, in the neighborhood of the singular region.
In these embeddings within Euclidean three space, the z
coordinate diverges to �∞ as y → 0∓, while ρ either
increases without bound or tends to zero depending again
on whether y is positive or negative. This already is a big
difference compared with flat space-time in which, due
to the property zðyÞ ¼ −zðyÞ and to the constant radius
ρðyÞ ¼ 1, y and −y were mapped to the same point on
the ρ-z plane. In this sense, one can think of the extra
dimension as opening up or collapsing as an observer
attempts to draw closer to the singularity. The fact that both
possibilities exist is consistent with the directional nature of
this ill-defined region. It can also be observed that z grows
extremely faster than the radius, and therefore, thementioned
vanishing and infinite limits of the latter cannot be fully
appreciated in these numerical solutions. Nevertheless, given
a sufficiently small neighborhood of the singularity, one can
find solutions with either arbitrarily large or arbitrarily small
values of ρ ¼ I.
To aid the reader in correctly visualizing these results, the

past profiles can be rearranged in one graphic as follows. For
0 < y < 1we choose to show the negative branch for dz=dy
[recall that it appears squared in Eq. (19)], and for −1 <
y < 0we take the positive branch. This is presented in Fig. 6.
Naturally, moving away from the singularity, the profiles for
positive and negative values of y start to approach that of the
Minkowski metric. This is due to the first term on the left-
hand side of (19) dominating over the second one when
y2 ≈ 1. Notice that despite the differential equation being
singular at y ¼ �1, its solution itself, as seen by examining
the special case in (20), is regular at those points. Another
comment worth highlighting from Fig. 6 is that the a

FIG. 4. The function ðdz=dyÞ2 given by Eq. (19). Observe that it becomes negative for some small values of jyj, but then it diverges to
positive infinity as y → 0. In this case its roots are approximately at y�1 ¼ �0.0325 and at y�2 ¼ �0.008. The numerical values of the
space-time parameters are the same as those of previous figures.
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parameter is not only responsible for curvature (all of the
curvature quantities are proportional to a positive power
ofa), but also for the points y and−y beingdistinguishable in
the resulting profiles. Indeed, they represent completely
different infinite trajectories to x → 0 depending on the sign
of the y coordinate.
Finally, since the profiles zðρÞ obtained here diverge at

the singularity, we can associate this geometrical property
to the peculiar behavior found in Sec. III C in which
geodesics constrained to the throat (x ¼ 0) take an infinite
affine parameter λ to meet the singularity. In this five-
dimensional analysis we give it the following interpretation.
When approaching the singular ring, such observers travel
across the fifth dimension, spanning an infinite profile that

leads them to the singularity, but that never completely
reaches it. If their path is projected into a four-dimensional
space-time it would seem as if they are hardly advancing
toward the singularity because the effects of the fifth
dimension are not being considered. However, by taking
into account the extra dimension, it can be realized that the
infinite affine parameter needed to reach the singularity is the
result of an infinite five-dimensional path.
Unfortunately, the analysis done here only goes as far as

being able to illustrate the five-dimensional geometry near
the singularity for the relatively simple x0 ¼ 0 case, while
general geodesics that approach it can travel without being
restricted to that plane. These curves, as seen in the past
section, also need infinite affine parameter to reach the

FIG. 5. Embedding profiles for slices of constant x0 ¼ 0. The domains of numerical integration are 0.0325 ≤ y ≤ 0.99 (top left panel),
0.005 ≤ y ≤ 0.008 (top right panel), −0.99 ≤ y ≤ −0.0325 (bottom left panel), −0.008 ≤ y ≤ −0.005 (bottom right panel). The
resulting two-dimensional manifolds are obtained by rotating each profile about the z axis. The values of the space-time parameters are
the same as those of previous figures.
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singular ring. Thus, it is likely that physical observers
following said geodesics meet some kind of infinite
embedded geometry on their way to the singularity too.
One can alternatively consider slices of constant y0 ¼ 0.
However, these are not very interesting due to the fact that
Iðx; 0Þ ¼ I2jy0¼0 ¼ 1, and therefore, the radius of the fifth
dimension is constant. In this case, the solution zðxÞ for
Eq. (18) is singular at x ¼ 0, growing without bound.
Besides, it was already shown that geodesics attempting to
meet the singularity by traveling in the plane y ¼ 0 were
repelled. Consequently, this particular embedded geometry
shall not be of any further interest here.

V. CONCLUSIONS

In this paper we have extended a previous study of
geodesics in an electromagnetic dipole wormhole, our
interest focused mainly on the completeness of this kind
of curves. The space-time is a solution to the Einstein-
Maxwell equations coupled to either a dilatonic or phantom
field, and it contains a curvature singularity in the shape of
a ring. The singularity is directional in the sense that,
depending on the path taken to approach it, curves will
encounter either infinite or almost vanishing curvature. As
a starting point, special cases of geodesics were examined.
The most relevant case to completeness was that of motion
constrained to the throat of the wormhole. In the phantom
wormhole those geodesics were found to be incomplete due
to them being able to meet the singular ring in a finite affine
parameter. Numerical analysis was then needed in order
to study a set of general geodesics directed toward the
singularity. Results revealed that, in contrast to the worm-
hole with a phantom field and depending on the coupling of
the scalar field with the electromagnetic part, it is also
possible for geodesics to require an infinite amount of said

parameter to reach the ill-defined region of the space-time.
Thus, the curves under consideration did not become
incomplete. Only wormholes coupled to dilatonic fields
exhibit this behavior; physically relevant cases of this are
found in a low-energy string theory and in Kaluza-Klein
theory. Completeness is mainly achieved due to the direc-
tional nature of the singularity.
To better understand the singularity on thedilatonic type of

wormholes, we then presented a further analysis of it in the
context of the five-dimensional theory by Kaluza and Klein.
In such theory, electromagnetism is naturally incorporated
into thegeometry of space-time through the additionof a fifth
dimension. Considering the extra dimension as compactified
and periodic, we embedded two-dimensional slices of the
space-time in a Euclidean space of dimension three. It was
found that, depending on the direction in which an observer
approaches the singularity, the radius of the fifth dimension
either becomes infinite or tends to zero. Thus, the singularity
greatly modifies the geometrical properties of the space-time
seen as a five-dimensional object. The embedded profiles
also became infinite due to the singularity, giving a possible
explanation to the previously described feature of geodesics
needing infinite affine parameter to reach it. The infinite
profiles were interpreted as endless paths that lead an
observer to the singular region without ever meeting it.
Finally, these dilatonic wormholes constitute examples

in which the presence of a curvature singularity does not
necessarily imply geodesic incompleteness, leaving open
the possibility of them being space-times with complete
causal curves. To prove this final characteristic, though, the
effects of the singularity on timelike curves of bounded
acceleration must be studied too. If, on the contrary, other
nongeodesic curves are shown to reach the singularity, then
we are left with a particular and interesting instance of a
singular space-time despite it being geodesically complete.

FIG. 6. The embedding profiles shown in Fig. 5 reorganized in one general plot. The curve corresponding to values between
y ¼ �0.008 and y ¼ �0.0325 cannot be visualized in Euclidean three space. The profile generated by a flat space-time (a ¼ 0) (dashed
blue line) is also included for comparative purposes.
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