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We study false vacuum decay in a black hole (BH) spacetime with an angular momentum. Considering
the false vacuum region described by a Kerr–de Sitter geometry, under the thin wall approximation, we can
obtain the stationary configuration of the vacuum bubble seen from the outside false vacuum region without
specifying the geometry inside the domain wall. Then, assuming the true vacuum region is described by a
Kerr geometry, we can fix the mass and the spin parameter for the Kerr geometry by imposing the first
junction conditions and conservation of the angular momentum. Although the assumption of the Kerr
geometry inside the domain wall cannot be fully consistent with the second junction conditions, we can
roughly evaluate the error associated with this inconsistency by calculating the Brown-York quasilocal
energy on the domain wall. Then the decay rate can be estimated by using the obtained parameters for
the inside Kerr geometry and the Brown-York quasilocal energy. Our results support the statement that the
BH spin suppresses the false vacuum decay in a BH spacetime.
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I. INTRODUCTION

False vacuum decay is transition of a field from a
metastable state (false vacuum) to a stable state (true
vacuum) (Fig. 1). The phenomenon is triggered by, e.g.,
a thermal excitation and a quantum tunneling, which we
focus on in this paper. Let us consider the transition in the
spacetime filled up with a false vacuum field. The false
vacuum decay occurs stochastically, and there will be some
finite number of true vacuum regions, called vacuum
bubbles. The bubbles expand typically and the true vacuum
region will fill the spacetime eventually (vacuum phase
transition) (Fig. 2).
False vacuum decay has been studied for more than

40 years since the pioneering work about vacuum decay in
the flat background spacetime by Coleman [1]. Coleman
and De Luccia investigated vacuum decay in the maximal
symmetric spacetime including the gravitational effect
in [2], and vacuum decay in a black hole (BH) spacetime
was discussed in [3] for the first time. In [3], it was reported
that, for the Schwarzschild solution, namely, the static and
spherically symmetric vacuum solution of the Einstein
equations, a BH acts as a nucleation site for the decay. More
recently, the transition in the Schwarzschild spacetime
has been investigated in more detail [4,5]. According to
the results in Refs. [4,5], there are some cases where the
existence of BHs raises the decay rate.
Although there is no perfect understanding of a physical

reason for the promoting effect of BHs, one of the most

plausible explanations is that the effect is associated with
thermal assistance [6]. In [6], the authors give an inter-
pretation of the effect in some limiting cases as follows:
BHs are thermal sources of which temperatures are those
Hawking temperatures, and tunneling with them is ther-
mally assisted tunneling with the temperature. That is to
say, the authors stated that the thermal radiation from the
BHs enhance the vacuum decay rate. The thermal nature of
BHs is regarded as a quantum gravity effect, so if we follow
this interpretation, vacuum decay in BH spacetimes has
quantum nature of gravity at a semiclassical level. In [4,5],
decreasing horizon area, which violates the area theorem in
the classical gravity theory, was reported, so we can also
regard this result as a consequence of the quantum nature of
gravity. These facts imply that vacuum decay with BHs
may be a clue to quantum gravity theory.
False vacuum decay in BH spacetimes is getting atten-

tion for its applications in recent years. In 2012, the Higgs
particle has been found [7,8]. And then, it has been pointed
out by several authors that the Higgs vacuum may be
metastable and decay [9–16]. If the Higgs vacuum is
metastable and there are many BHs to trigger the decay,
the lifetime of the Higgs particle in our Universe is
shortened. Following such a perspective, in [17], a con-
straint on the mass spectrum of primordial black holes
is provided.
At the present time, there is much room to discuss

vacuum decay with BHs. Besides poor understanding of
physical meanings, we can point out that most of the related
previous research focused on spherically symmetric space-
times. In general, realistic BHs are rotating, so discussions
in spherically symmetric spacetimes are insufficient for
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applications. Therefore, it would be meaningful to consider
transitions in a rotating BH spacetime. Because of the lack
of spherical symmetry, it is difficult to treat the problem as a
one-dimensional problem as in Ref. [4]. Indeed, no robust
way has been established to treat vacuum decay in a non-
spherically-symmetric BH spacetime. An analysis in the
Kerr spacetime has been done in Ref. [18] for the first time
with some assumptions such as no backreaction to the
spacetime. According to Ref. [18], increasing the BH spin
decreases the decay rate. On the other hand, different from
the result in Ref. [18], we found that the spin of the BH
promotes the decay in the Bañados-Teitelboim-Zanelli
(BTZ) spacetime, which is a three-dimensional spacetime
with an angular momentum [19]. The origin of this
discrepancy has not been clarified yet. In this paper, we
aim to obtain a deeper understanding by analyzing vacuum
decay in the Kerr spacetime with different settings and
assumptions from [18]. We take the thin wall approxima-
tion as in many previous researches. In addition, we focus
on the transition with a stationary bubble wall and evaluate
the decay rate.
This paper is organized as follows. In Sec. II, we briefly

summarize the working hypotheses we make in this paper.
In Sec. III, we show how to calculate the configuration of
the bubble wall without knowing the geometry inside the
bubble wall. In Sec. IV, assuming the inside geometry is
given by a Kerr geometry, we fix the mass and spin
parameters by demanding the continuity of the metric
and the conservation of the angular momentum. In Sec. V,

we discuss how we deal with the inconsistency in the
second junction conditions associated with the use of the
Kerr geometry inside the bubble wall. We show the results
in Sec. VI and discuss their implications in Sec. VII.
Throughout this paper, we use the geometrized units in

which both the speed of light and Newton’s gravitational
constant are unity, G ¼ c ¼ 1.

II. SUMMARY OF THE PROCEDURE TO
EVALUATE THE DECAY RATE

As is stated in the Introduction, no sophisticated treat-
ment is known for the evaluation of the vacuum decay rate
in a non-spherically-symmetric spacetime. Our understand-
ing is still far from a fully consistent treatment for the
evaluation of the decay rate, and we need to introduce some
working hypotheses. In order to avoid any confusion, let us
first summarize our procedure to evaluate the decay rate in
this section.
According to Ref. [1], in a vacuum decay process via a

quantum tunneling, the decay rate per unit spacetime
volume Γ is given by

Γ ∝ e−B=ℏ ¼ e−ðSE−SE0Þ=ℏ; ð2:1Þ

where SE and SE0 are the values of the Euclidean action for
the Euclidean tunneling solution and the false vacuum
solution, respectively, and B has been defined as

B ≔ SE − SE0: ð2:2Þ

Apart from the overall factor, the decay rate can be mostly
evaluated by the value of B, and we focus on the evaluation
of B in this paper.
Throughout this paper, we rely on the thin wall approxi-

mation for the bubble wall between true and false vacuum
regions and do not consider any specific matter contents
which realize the vacuum decay process. Although the thin
wall approximation is one of our working hypotheses,
at least in the case of the transition of a scalar field in the
flat spacetime with a double well potential, the thin wall
assumption would be justified under some conditions: a
steeper potential peak between two minima and a smaller
gap in the potential values in the local minima [1]. This
assumption is also adopted in many related papers, e.g.,
Refs. [3,4,6]. Then we also regard the system we treat as
composed of a false vacuum region, a true vacuum region,

FIG. 1. The schematic figure for the vacuum decay via quantum
tunneling.

FIG. 2. The schematic figure for vacuum phase transition.
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and a thin wall that mediates them satisfying the Israel
junction conditions [20]. In the neighborhood of the bubble
wall, the system can be locally approximated by a planar
domain wall system, and the intrinsic energy-momentum
tensor Sab of the wall would be approximated by the pure
tension type,

Sab ¼ −σhab; ð2:3Þ

where σ > 0 is the tension of the shell and hab is the
induced metric on the shell.
For further simplification, we focus on the stationary

configurations of the system, that is, we consider time-
independent configurations. This assumption is not just a
simplification. According to the results in Ref. [4], in the
spherically symmetric case, the transition with the static
shell gives the largest decay rate for a sufficiently large BH
mass in the false vacuum region. Based on this fact, at least
for slowly rotating cases, we may expect that the transition
with the stationary shell also gives the maximum proba-
bility, and we focus on such cases. Then, as is reviewed in
Appendix A, the difference of the Euclidean action B can
be evaluated by computing the difference of the black hole
horizon area before and after the transition. Since our
purpose is reduced to the computation of the horizon
areas in the stationary system, we perform all computations
in the main text with the Lorentzian metric to avoid
possible confusion.
Our procedure to calculate the decay rate can be divided

into the following three steps:
(1) For a given value of the tension σ, solving the shell

equation of motion, we determine the bubble wall
configuration seen from the outside Kerr–de Sitter
region which is characterized by the mass parameter
Mþ, the spin parameter aþ, and the de Sitter length l.
This process can be done without specifying the
geometry inside the wall once we assume the
vanishing vacuum energy for the inside geometry
as will be explained in Sec. III.

(2) Assuming that the geometry inside the shell is given
by the Kerr metric, we fix the mass parameter M−
and the spin parameter a− by imposing the con-
servation of the angular momentum and the first
junction conditions on the shell. Then we can
evaluate the decay rate by calculating the horizon
area of the BH in the true vacuum region. However,
in this process, the assumption of the inside Kerr
geometry cannot be justified without a nonspherical
version of Birkhoff’s theorem and leads to incon-
sistency in the second junction conditions.

(3) We quantitatively evaluate the inconsistency in the
second junction conditions by calculating the Brown-
York energy inside the shell with the Kerr geometry
being the reference metric. Since the evaluated
Brown-York energy must be zero if the procedure

is fully consistent, thevalue of theBrown-York energy
allows us to evaluate an uncertainty for the decay rate.
Then we also show the decay rate with the correction
evaluated from the Brown-York energy.

A more concrete description will be given in the following
sections.

III. BUBBLE CONFIGURATION
IN A KERR–DE SITTER SPACETIME

The Israel junction conditions consist of the first
conditions

½hab�� ¼ 0; ð3:1Þ

and the second conditions

½Kab�� ¼ −8π
�
Sab −

1

2
habS

�
; ð3:2Þ

where Kab is the extrinsic curvature on the shell. Here, for
convenience, we labeled the quantities on the spacetime
outside/inside of the bubble wall with the subscript þ=−
and used the expression

½A�� ≔ Aþ − A−: ð3:3Þ

Let us consider representing the equation of motion
(EOM) for the shell configuration only with the geomet-
rical quantities 0n theþ side. In order to do that, we use the
junction conditions and the constraint equation on the shell.
Let us consider the projection of the Einstein equations
onto the normal direction to the shell (the Hamiltonian
constraint),

3R − K2
� þ K�

abK
ab
� ¼ −16πTabnanb: ð3:4Þ

Here, Tab is the energy-momentum of theþ=−-side region,
and na is the outward unit normal vector to the shell. By
subtracting the −-side equation from the þ-side equation,
we obtain

½Kab��K̄ab − ½K��K̄ ¼ −8π½Tabnanb��; ð3:5Þ

where we defined the expression

Ā ≔
1

2
ðAþ þ A−Þ: ð3:6Þ

By using Eq. (3.2) and its trace

½K�� ¼ 4πS; ð3:7Þ

we can obtain

SabK̄ab ¼ ½Tabnanb��: ð3:8Þ
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In this paper, we assume that the false vacuum has positive
vacuum energy Tabþ ¼ − 3

8πl2 gabþ and vanishing vacuum
energy for the true vacuum Tab−nanb ¼ 0. Based on these
assumptions, we obtain

½Tabnanb�� ¼ −
3

8πl2
: ð3:9Þ

By using Eq. (2.3), we get

SabKab ¼ −σK; ð3:10Þ

and

Kþ þ K− ¼ 3

4πσl2
: ð3:11Þ

By contracting Eq. (3.2) with Sab, we obtain

Kþ − K− ¼ −12πσ; ð3:12Þ

and summing Eqs. (3.11) and (3.12), we can get

Kþ ¼ −6πσ þ 3

8πσl2
: ð3:13Þ

This is the EOM for the shell configuration. Note that, in
order to obtain the EOM, the pure tension assumption is
necessary, besides the Hamiltonian constraint and the
second junction conditions.
In this paper, we consider transition from a Kerr–

de Sitter spacetime characterized by the BH mass Mþ,
spin aþ, and the de Sitter length l. The metric in the Boyer-
Lindquist coordinates is given by

ds2¼−
1

ρ2
ðΔl−a2sin2θΔθÞdt2

−
2asin2θ
ρ2Σl

�
Δθðr2þa2Þ−Δl

�
dtdϕþ ρ2

Δl
dr2þ ρ2

Δθ
dθ2

þ sin2θ
ρ2Σl

�
Δθðr2þa2Þ2−Δla2sin2θ

�
dϕ2; ð3:14Þ

Δl ≔ ðr2 þ a2Þ
�
1 −

r2

l2

�
− 2Mr; ð3:15Þ

Δθ ≔ 1þ a2

3l2
cos2 θ; ð3:16Þ

Σl ≔ 1þ a2

3l2
: ð3:17Þ

Because of the axisymmetry, we can assume that the
stationary shell is given as a hypersurface

W ≔ fðt�; r�; θ�;ϕ�Þjr� − Rðθ�Þ ¼ 0g; ð3:18Þ

and the unit normal vector to this surface is computed as

na ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grr þ gθθð∂θRÞ2

p ½grrð∂rÞa − gθθ∂θRð∂θÞa�: ð3:19Þ

By calculating

Kþ ¼ ∇anajrþ¼RðθþÞ ð3:20Þ

from Eq. (3.19) and putting it into Eq. (3.13), we can obtain
a second order differential equation for RðθþÞ. By solving
this equation, we can obtain the shell configuration seen by
an observer outside the shell. We note that our treatment is
fully consistent under the thin wall approximation thus far
without specifying the inside geometry.

IV. DETERMINING THE INSIDE GEOMETRY

In the spherically symmetric case, the geometry can be
restricted to the Schwarzschild–de Sitter family thanks to
Birkhoff’s theorem. However, without spherical symmetry,
we cannot easily specify the inside geometry by a known
family of solutions. For a fully consistent treatment, we
may have to solve the Euclidean Einstein field equations
inside the shell with a boundary condition specified on the
bubble wall. This is an extremely hard problem and, in this
paper, we adopt an alternative way to avoid this difficulty.
We simply assume that the inside geometry is given by the
Kerr family described by (3.14) with

Δl → r2 þ a2 − 2Mr; ð4:1Þ

Δθ → 1; ð4:2Þ

Σl → 1: ð4:3Þ

That is, the inside geometry is characterized by two
parameters: the mass parameterM− and the spin parameter
a−. In our situation, because of the stationarity, the differ-
ence of the Euclidean action B can be calculated from the
difference of the BH horizon areas. See Appendix A for the
derivation. BH horizon areas of a Kerr–de Sitter and Kerr
spacetime are given by

AHþ ¼ 4π
r2þ þ a2þ
1þ a2þ

l2

; ð4:4Þ

AH−
¼ 8πM−

�
M− þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

− − a2−

q �
; ð4:5Þ

respectively, where rþ is the outer event horizon radius for
the Kerr–de Sitter spacetime.
Once the values of Mþ, aþ, and l are fixed, we can

compute B by knowing the values of the parameters M−
and a−. As is explained in the following subsections, we fix
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the values of M− and a− by using the angular momentum
conservation and the first junction conditions. Since the
forced inside geometry leads to inconsistency in the second
junction condition, we will evaluate the decay rate with the
deviation associated with the inconsistency as will be
explained in Sec. V. In this section, first, we explain
how we fix the values of the parameters M− and a−.

A. Conserved angular momentum

Since we are focusing on stationary and axisymmetric
spacetimes, we may use a conserved charge associated
with the symmetries to give a restriction on the possible
parameter space of M− and a−. More specifically, we can
evaluate the quasilocal energy and angular momentum
with the Komar integral [21]. However, as is explained in
Appendix B, the energy conservation is not appropriate to
be used in our setting. On the other hand, we can use the

angular momentum conservation. Let us consider the
Komar integral for the angular momentum given by

J ≔
1

16π

I
r¼RðθÞ;Σt

∇a

�
∂

∂ϕ

�
b
dSab ð4:6Þ

on the shell, where dSab is given by

dSab ¼ −2u½anb�dS ð4:7Þ
with ua and dS being the unit normal 1-form to the time slice
Σt and the two-dimensional surface element of the shell
Σt ∩ W. Here, it should be noted that, since the spacetime
is axisymmetric, the Killing vector ð∂ϕÞa is globally and
uniquely defined with the period 2π of the coordinate ϕ.
By explicit calculation at just outside of the shell

rþ ¼ RðθþÞ, we can compute the value of the angular
momentum which is given by the following expression:

Jþ ¼ −
Z

π

0

dθþ
Mþaþl2 sin3 θþða4þ − 6R4þ − 3a2þR2þ − 2a2þRþð∂θþRþÞ sin 2θþ þ a2þða2þ − R2þÞ cos 2θÞ

ða2þ þ l2Þ2ða2þ þ 2R2þ þ a2þ cos 2θþÞ2
: ð4:8Þ

Here, we introduced the expression Rþ ¼ RþðθþÞ in order to stress that we are treating with theþ-side quantities. Because
of the pure tension assumption, the shell cannot have an intrinsic momentum and cannot carry the angular momentum.
Therefore, the conservation of the angular momentum leads to

M−a− ¼ Jþ: ð4:9Þ

B. The first junction conditions

The first junction conditions require the continuity of the induced metric on the shell. The line element on the shell can be
written as

ds2W ¼ h�abdx
a
�dx

b
� ¼

�
gttdt2 þ 2gtϕdtdϕþ gϕϕdϕ2 þ

�
gθθ þ grr

�
dR
dθ

�
2
�
dθ2

�
r�¼R�

ð4:10Þ

in the Boyer-Lindquist coordinates. Since the system is
stationary and axisymmetric, the metric components do not
depend on t nor ϕ, and a linear combination of the Killing
vectors ð∂tÞa and ð∂ϕÞa is also a Killing vector. Therefore,
the first three terms describe a cylinder metric, and the
continuity of the two-dimensional part of the metric can be
guaranteed by just imposing the equality of the circum-
ferential radius. That is, regarding gϕϕ as a function of θ and
the radial coordinate RðθÞ on the shell, we obtain

½gϕϕðRðθÞ; θÞ�� ¼ 0 ⇔ g−ϕϕðR−ðθ−Þ; θ−Þ
− gþϕϕðRþðθþÞ; θþÞ ¼ 0: ð4:11Þ

Here, we introduced the notation g�ϕϕðR�ðθ�Þ; θ�Þ for the
metric component on the shell to emphasize that gϕϕ

depends only on R ¼ RðθÞ and θ there. Since we already
know RþðθþÞ, this gives a condition for R−ðθ−Þ.
Because the unit vectors in theþ and − sides of the shell

must be identical to each other on the shell, we obtain

dθ−
dθþ

¼
ffiffiffiffiffiffiffi
hþθθ
h−θθ

s
: ð4:12Þ

Combining Eqs. (4.11) and (4.12), we can obtain the
following set of ordinary differential equations:

dθ−
dθþ

¼ θ0−ðR−; θ−; θþ;M−Þ; ð4:13Þ

dR−

dθþ
¼ R0

−ðR−; θ−; θ0−; θþ;M−Þ; ð4:14Þ
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where the prime denotes the derivative with respect to θþ.
We consider Mþ, aþ, and l as fixed parameters, and treat
Rþ as a given function of θþ. Note that the value of a− is
given as a function of M− through (4.8) and (4.9). We
numerically solve them in the following way. First, we put a
trial value of M− and set the initial value of θ− as
θ−ðθþ ¼ 0Þ ¼ 0. Then, we obtain the initial value of R−
by demanding the second junction condition (3.2),

½Kabuaub��jθþ¼0 ¼ 4πσ ð4:15Þ

at θ ¼ 0. Under this setup, we can solve and obtain
R− ¼ R−ðθ−Þ depending on the value of M−. Then, we
numerically find the value of M− which satisfies the
regularity condition

R0
−jθ−¼π

2
¼ 0: ð4:16Þ

V. ESTIMATION OF THE DEVIATION IN THE
SECOND JUNCTION CONDITIONS

As we discussed in the previous section, we can obtain
M− and a− and compute B by solving the first conditions.
However, we cannot fully impose the second junction
conditions

Kþ
ab − K−

ab þ 4πσhab ¼ 0: ð5:1Þ

The second junction conditions are partially included in the
conditions (3.7) and (4.15), and these are sufficient in the
spherically symmetric case with the static configuration.
However, without spherical symmetry, the other compo-
nents are nontrivial and we inevitably suffer from the
inconsistency of them with our procedure. Letting K0

ab
be the extrinsic curvature for the inside Kerr geometry,
we find

δKab ≔ K−
ab − K0

ab ¼ Kþ
ab þ 4πσhab − K0

ab ≠ 0: ð5:2Þ

The origin of the inconsistency can be regarded as the
assumption of the inside Kerr geometry. In order to give a
rough quantitative estimation for the correction of the decay
rate due to the inconsistency, let us evaluate the Brown-
York quasilocal energy [22] of the region bounded by the
shell with the inside Kerr geometry being the reference
geometry. The Brown-York energy is defined by

EBY ¼ −
1

8π

Z
r¼RðθÞ;Σt

ðk − k0ÞdS; ð5:3Þ

where k is the extrinsic curvature on Σt ∩ W, and k0 is the
fiducial extrinsic curvature to evaluate the energy. Apart
from the use of the reference geometry, the Brown-York
quasilocal energy can be evaluated only by the geometrical
quantities on the boundary. For our purpose, we may

consider the inside Kerr geometry as the reference for k0.
That is,

k − k0 ¼ δK þ δKabuaub: ð5:4Þ

Then, we may estimate the deviation δM of the proper
value M̄− from M− evaluated on the boundary shell as

δM ≔ M̄− −M− ¼ EBY: ð5:5Þ

Wenote again that, foraþ ¼ 0, the rest of the second junction
conditions (5.1) are satisfied automatically and we obtain
δM ¼ 0. We can also expect δM ≪ M− for aþ ≪ Mþ.
Since the corrected mass M̄− can be given by

M̄− ¼ M− þ δM, the corrected spin can be also evaluated as

ā− ¼ Jþ
M̄−

¼ Jþ
M− þ δM

; ð5:6Þ

due to the angular momentum conservation (4.9). Although
the proper geometry inside the shell would be different from
theKerr geometry and the horizon areawouldnot begivenby
Eq. (4.5), we adopt the expression (4.5) for the estimation of
the deviation. Since we have two estimated values for B
associatedwithM− and M̄−, hereafter, we expressBwith the
argument as BðM−Þ or BðM̄−Þ.
A more speculative argument about this estimated value

BðM̄−Þ is the following. Once the true vacuum region
comes out in the Lorentzian spacetime and the shell
expands far away from the BH, the BH may approach
the Kerr BH. The mass for the Kerr BH may be expected to
be bounded by the energy initially contained inside the
shell, and the horizon area of the resultant Kerr BH is at
most that with the mass M̄−. Namely, together with the area
law, the estimated horizon area with the mass M̄− may give
an upper bound for the horizon area at the moment of the
nucleation. Consequently, the estimated value of BðM̄−Þ
would give a lower bound for B.

VI. RESULTS

A. Shell configuration

Before showing the results, we note that there should be
a lower bound on the value of Mþ to have a stationary
configuration. According to Ref. [4], in the spherically
symmetric case, if Mþ is smaller than the threshold MC,
there is no static transition. Here,MC is explicitly written as

MC

l
¼ 1024π3ðσlÞ3

27½16π2ðσlÞ2 þ 1�2 ð6:1Þ

for the spherically symmetric case. Conversely, if Mþ
satisfies MC < Mþ < MN , static transition exists, where
MN=l ¼ 1=

ffiffiffiffiffi
27

p
is the Nariai mass. Although we have no

clear criteria for the case of rotating spacetimes, since the
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situation reduces to the static shell transition in the limit of
aþ → 0, we restrict the parameter region toMC<Mþ<MN .
Solving Eqs. (3.20), (4.13), and (4.14), we obtain the

shell configurations RþðθþÞ and R−ðθ−Þ seen from the
outside and inside observer, respectively, as depicted in
Fig. 3. First, we can see that the coordinate radius decreases
with aþ for both cases. In addition, the shell configuration
gets more distorted for a larger value of aþ as is explicitly
shown in Fig. 4, where the eccentricity obtained by fitting
RþðθþÞ with an ellipsoid is depicted as a function of aþ.
We can also confirm that the shell is spherical for aþ ¼ 0
as is expected.

B. The mass and spin of the BH after the transition

Through the procedure stated in the previous sections,
we obtain the values of M−, a−, and δM. We plot those
values as functions of aþ=l for Mþ=l ¼ 0.05 and 0.125
with σl ¼ 0.1=π in Fig. 5. From Fig. 5, we can see that the
values of δM are always negative; consequently, we have
M̄− < M− and ā− > a−. While δM ¼ 0 for aþ ¼ 0, we
have nonzero δM for aþ > 0 and its absolute value
increases with aþ. This fact implies that the assumption

of the Kerr geometry inside the shell more significantly
conflicts with the second junction conditions for a larger
value of aþ. In both cases for Mþ=l ¼ 0.05 and 0.125, we
find an overspinning Kerr geometry, namely, a− > M− for
a relatively larger value of aþ=l. Since the deviation δM is
relatively smaller than the aþ dependence of M− and a−,
we also find ā− > M̄− for a relatively larger value of aþ=l.
We note that, before the transition, the central BH is a Kerr–
de Sitter BH with aþ < Mþ, and the singularity is hidden
inside the horizon. Nevertheless, as a consequence of the
matching conditions on the shell, we obtain the over-
spinning BH. This consequence can be easily understood
by considering the angular momentum conservation as
follows. First, we can find that the resultant value of the
quasilocal angular momentum Jþ can be approximately
given by Mþaþ (see Fig. 6). Then, by using the angular
momentum conservation, we obtain

M−a− ¼ Jþ ≃Mþaþ;

∴
a−
M−

≃
Mþaþ
M2

−
≤
M2þ
M2

−
: ð6:2Þ

Therefore, we would find ā− ≃ a− > M− ≃ M̄− for a
sufficiently large aþ if Mþ > M−.

1 Since we cannot
estimate the transition rate for the case a− > M− because
of the existence of the naked singularity, we will not further
discuss these cases in this paper.

C. Decay rate

Finally, we show the aþ dependence of the difference of
the Euclidean action B. We normalize B with BCDL, the

FIG. 3. Configurations of the shell from the outside RþðθþÞ (left) and from the inside R−ðθ−Þ (right).
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FIG. 4. aþ dependence of the eccentricity of RþðθþÞ.

1According to Ref. [4], for the static shell transitions in
Schwarzschild spacetimes, the value of M− is smaller than
Mþ unless the value of Mþ is large enough. For example, we
obtain M− ¼ Mþ for σl ¼ 0.1=π and Mþ=l ¼ 0.1327.
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FIG. 5. The aþ dependence of M− and a−.

FIG. 6. The value of Jþ and Mþaþ.

FIG. 7. The aþ dependence of B.
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value in themaximally symmetric spacetimes [2]. The results
are depicted in Fig. 7 forMþ=l ¼ 0.05, 0.1, and 0.125 with
σl ¼ 0.1=π. As is stated in Sec. VI B, since δM < 0, we
obtain BðM̄−Þ > BðM−Þ and BðM̄−Þ − BðM−Þ increases
with aþ=l. In the case of Mþ=l ¼ 0.05 and σl ¼ 0.1=π,
both BðM−Þ and BðM̄−Þ increase with ãþ. By recalling that
the decay rate is proportional to expð−B=ℏÞ, this result
means that the spin decreases the rate. On the other hand, for
the Mþ=l ¼ 0.10 and 0.125 cases, BðM−Þ decreases with
aþ=l for aþ=l ≪ 1 and starts to increase from a certain value
ofa=l. However, as is explicitly shown in the figures,BðM̄−Þ
is always an increasing function of aþ. Therefore, for the
Mþ=l ¼ 0.10, 0.125 cases, we cannot give any concrete
conclusion. Nevertheless, if we accept the speculative argu-
ment stated in the last part of Sec. V, BðM̄−Þ gives the lower
bound for B, which gives an upper bound for the decay rate.
Since the upper bound for the decay rate is smaller than the
decay rate for aþ ¼ 0, we reach the same conclusion as for
Mþ=l ¼ 0.05, that is, the spin decreases the decay rate.

VII. SUMMARY AND DISCUSSION

In this paper, we have discussed false vacuum decay in a
Kerr–de Sitter spacetime. Because of the lack of spherical
symmetry, a fully consistent analysis is very hard. Instead
of trying to make a self-consistent procedure, we performed
the tricky analysis briefly described below.
First, we considered a Kerr–de Sitter geometry as the

false vacuum region. Assuming that the bubble wall is
described by the stationary thin shell with the equation of
state being the pure tension type, we can fix the configu-
ration of the bubble wall seen from the outside region
following the junction conditions without knowing the
inside geometry. Under these assumptions, the decay rate
can be calculated once we obtain the horizon area of a BH
in the true vacuum region. However, the inside geometry is
not necessarily given by a Kerr geometry because of the
lack of Birkhoff’s theorem which only works with spherical
symmetry. Nevertheless, we can find a Kerr geometry that
fits the shell imposing the angular momentum conservation
and the first junction conditions. That is, we can obtain the
mass parameterM− and the spin parameter a− for the inside
geometry. Although we expect that the decay rate estimated
from the fitted Kerr geometry ΓðM−Þ gives a good
estimation at least for a relatively small Kerr parameter,
we can go further by evaluating the deviation associated
with the inconsistency in the second junction conditions.
Since we do not fully take into account the second junction
conditions when we look for the inside Kerr geometry,
there should be inconsistency in the second junction
conditions. In order to evaluate the inconsistency, we
calculated the Brown-York energy δM with the inside
Kerr geometry being the reference geometry. The value
of δM can be regarded as an error associated with the
inconsistency in the second junction conditions if we
accept the inside Kerr geometry as an approximation for

the unknown true geometry. Then we may estimate the
corrected mass parameter inside geometry by M̄− ¼
M− þ δM. In this sense, the decay rate is estimated at
around the values ΓðM−Þ and ΓðM̄−Þ with an expected
magnitude of the uncertainly ∼jΓðM−Þ − ΓðM̄−Þj.
There might be another interpretation about the mass

parameter M̄−. Once the bubble is nucleated in the
Lorentzian spacetime and the bubble wall expands, the
inside geometry would approach a Kerr spacetime. Then
we naively expect that the mass inside the shell M̄− would
be carried by the resultant Kerr BH. Because of the area law
in the classical gravity, the horizon area of the inside BH
increases with time in the Lorentzian spacetime. Thus the
horizon area estimated by the Kerr geometry with the mass
parameter M̄− should give an upper bound for the horizon
area at the moment of the nucleation. Although this inter-
pretation is not very solid and is speculative because of the
ambiguity of the quasilocal gravitational energy, once we
accept it, the decay rate ΓðM̄−Þ gives an upper limit.
The results are summarized as follows. For a relatively

small mass parameter of a Kerr–de Sitter spacetime for the
falsevacuum region, lettingΓSph denote the decay rate for the
spherically symmetric case, we obtain ΓðM̄−Þ < ΓðM−Þ <
ΓSph. That is, we can safely say that the decay rate is
suppressed by the spin of the BH for a relatively small mass
parameter. For a relatively large value of the mass parameter,
weobtainΓðM̄−Þ < ΓSph < ΓðM−Þ. Therefore, adopting δM
as an error and the estimation of the decay rate as around
ΓðM−Þ and ΓðM̄−Þ, we cannot make any concrete conclu-
sion. However, if we accept ΓðM̄−Þ as the upper bound for
the decay rate, we may obtain the same conclusion as for
the case of a relatively small mass parameter, that is, the spin
of the BH suppresses the decay.
Let us compare these results with the previous research

in the Kerr spacetime [18]. In Ref. [18], the authors
focused on the small spin limit aþ ≪ l and assumed that
there is no backreaction to the BH parameters. Moreover,
they assumed that the shell has the anisotropic pressures
pθ and pψ , and treated the system in the form of the
potential problem as often used in the spherically sym-
metric case. As a result, they stated that the spin of the
black hole decreases the decay rate as is consistent with
our results. On the other hand, according to our work in
the BTZ spacetime [19], the spin in the three-dimensional
rotating spacetime promotes the decay. The reason for this
difference has not yet been clarified. One possible cause is
dimensional dependence, which would be investigated
in future works. In this paper, we performed a tricky
procedure to avoid difficulties associated with lack of the
spherical symmetry and took a rough estimation. In order
to get a concrete answer, we need to perform a totally
consistent analysis which may require the construction of
the inside geometry by solving a set of elliptic equations
for geometrical quantities. Throughout the paper, we have
used the thin wall approximation and assumed that the
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shell has pure tension. Relaxing these assumptions would
be valuable future work.
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APPENDIX A: EUCLIDEAN
ACTION AND DECAY RATE

In this appendix, by following Ref. [4], we calculate SE,
the Euclidean action of the system, and derive the specific
form in the case of a stationary configuration. Throughout
this appendix, all computations will be done with the
Euclidean signature.
We can divide SE into four parts as follows (Fig. 8):

SE ¼ SH þ SM−
þ SMþ þ SW ; ðA1Þ

where SH is the contribution from conical defects. By
taking appropriate coordinates near the defects [4], we can
obtain

SH ¼ −
AH−

4
−
Ac

4
; ðA2Þ

where AH−
and Ac are the BH event horizon area and

cosmological horizon area, respectively.

SW is the contribution of the matter field on the shellW.
Under the thin wall approximation and the pure tension
assumption, we obtain

SW ¼ −
Z
W
dW

Z
Rþ0

R−0
drLm

ðEÞ

≃
Z
W
dW

Z
Rþ0

R−0
drσδðr − RðτEÞÞ

¼
Z
W
dWσ; ðA3Þ

where dW is the spacetime volume element and the
integration is over the wall and Euclidean time. Here,
r is the Gaussian normal coordinate to the wall.
SM� are the contributions from the þ=− side of the

domain wall with the boundary terms, which are written as

SM� ¼−
Z
M�

dV

�
1

16π
RðEÞ þLðEÞ

m

�
þ 1

8π

Z
∂M�

dWK̃E�;

ðA4Þ

where dV is the spacetime volume element. By taking the 3þ 1 decomposition

RðEÞ ¼3 RðEÞ − K̃2
E� þ K̃E�abK̃ab

E� þ 2∇aðũb�∇bũa�Þ − 2∇bðũa�∇aũb�Þ; ðA5Þ

on the constant (Euclidean) time slice ΣtE� , we can write them as

SM� ¼ −
1

16π

Z
dV

�
3

RðEÞ − K̃2
E� þ K̃E�abK̃ab

E� þ 16πLðEÞ
m

�

þ 1

8π

Z
W
dWK̃E� þ 1

8π

Z
W
dWñ�aũb�∇bũa�: ðA6Þ

Here, ũa� is the unit normal to ΣtE� , and ñ�a ¼ �na is the inward unit normal vector to W. K̃E� is the Euclidean extrinsic
curvature, which is related to K� via K� ¼ �K̃E�. The first line in Eq. (A6) vanishes due to the Hamiltonian constraint
and the Killing symmetry [4]. Then we obtain

SMþ þ SM−
¼ 1

8π

Z
W
dWðKþ − K−Þ þ

1

8π

Z
W
dWðnaũbþ∇bũaþ − naũb−∇bũa−Þ: ðA7Þ

FIG. 8. Schematic picture of Euclidean spacetime.
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The second term can be rewritten as

1

8π

Z
W
dWðnaũbþ∇bũaþ − naũb−∇bũa−Þ ¼ −

1

8π

Z
W
dWðũaþũbþ∇bna − ũa−ũb−∇bnaÞ

¼ −
1

8π

Z
W
dWðKþuu − K−uuÞ; ðA8Þ

where K�uu ≔ ũa�ũ
b
�∇bna and in the first equality, we used

the relation ũa�ña ¼ 0. By using the second conditions

Kþ − K− ¼ −12πσ; ðA9Þ

Kþuu − K−uu ¼ −4πσhuu ¼ −4πσ; ðA10Þ

we obtain

SMþ þ SM−
¼ 1

8π

Z
W
dWð−12πσÞ þ 1

8π

Z
W
dWð4πσÞ

¼
Z
W
dWð−σÞ: ðA11Þ

Here, huu ¼ habũa�ũ
b
� ¼ ðgab − nanbÞũa�ũb� ¼ 1. Note that

ũa�ũ�a ¼ 1 in the Euclidean spacetimes. Using Eqs. (A3)
and (A11), we obtain

SMþ þ SM−
þ SW ¼

Z
W
dWðσ − σÞ ¼ 0; ðA12Þ

and we can see that only SH contributes to B. Eventually,
B reduces to

B ¼ 1

4
ðAHþ − AH−

Þ: ðA13Þ

From the expression, we can see that the exponent of the
decay rate depends only on the BH horizon areas. Note that
the stationarity of the shell ũa�na ¼ 0 is necessary to obtain
this result.

APPENDIX B: NO USE OF ENERGY
CONSERVATION

Because of the stationarity of the system, one might
think that the energy conservation law is useful with the use
of the Komar integral [21]

EKom ≔ −
1

8π

Z
r¼RðθÞ;Σt

∇aξbðtÞdSab; ðB1Þ

where ξaðtÞ is a timelike Killing vector. However EKom is ill
defined for the following reason. Let us define the timelike
Killing vector associated with the false vacuum as

ξaðtÞþ ¼
�

∂

∂tþ

�
a
: ðB2Þ

For the quasilocal energy to be well defined, the Killing
vector must be defined globally in the system. Therefore,
because of the normalization, the Killing vector in the true
vacuum must be

ξaðtÞ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gþtt ðθÞ
−g−ttðθÞ

s �
∂

∂t−

�
a

ðB3Þ

on the bubble wall. However, the normalization factorffiffiffiffiffiffiffiffiffiffiffi
−gþtt ðθÞ
−g−ttðθÞ

q
has θ dependence and does not agree with the

Killing vector inside the bubble wall. Therefore, we cannot
use the energy conservation with the Komar integral in a
consistent way.
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