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Probing hairy black holes caused by gravitational decoupling
using quasinormal modes and greybody bounds
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Gravitational decoupling can add hair to the black holes by adding extra sources. The quasinormal modes
of a hairy black hole caused by gravitational decoupling for the massless scalar field, electromagnetic field,
and gravitational perturbation are investigated. The equations of the effective potential for three perturbations
are derived in a hairy black hole spacetime. We also study the time evolution corresponding to the three
perturbations, and the quasinormal mode frequencies are calculated using the Prony method through the time-
domain profiles. By analyzing the influence of the hairs (a, [, and Q) for the black holes we are studying on
quasinormal modes, we find that the hairs @ and [/, decrease the oscillation frequency of the gravitational-
wave signal, and the hair Q increases its oscillation frequency. Furthermore, we calculate the bounds of the
greybody factor and high-energy absorption cross section with the sinc approximation, which reveals that the
presence of charges (« and /) generating primary hair can increase the probability of gravitational radiation
arriving at spatial infinity, whereas the charge Q from the extra sources does the opposite.
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I. INTRODUCTION

General relativity shows that when a massive star
collapses into a black hole, there are only three physical
quantities—mass, angular momentum, and electric
charge—which uniquely determine the properties of the
black hole. All the other information (“hair”) disappears
[1,2]. However, there may be some other physical quan-
tities that describe black holes. For example, a black hole
may also have quantum hairs [3]. Many methods are used
to evade the no-hair theorem [4-8]. In particular, Ovalle
proposed a gravitational decoupling method to obtain the
solutions of the Einstein field equations by decoupling of
the gravitational sources [9,10]. The gravitational decou-
pling method has gained a lot of attention [11-23] mainly,
because it has the following advantages: (i) it can decouple
the complex energy-momentum tensor into relatively
simpler components; (ii) one can use it to extend some
known seed solutions to more complex solutions; and
(iii) one can use it to find solutions of gravitational theories
other than general relativity. Ovalle et al. assumed that there
are additional general sources described by the conserved
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energy-momentum tensor 6,,. This 6, can explain one or
more fundamental fields, and its key property is that it is
subject to gravity but does not directly interact with the
matter of the black hole. Then, they obtained the hairy
black hole solution by gravitational decoupling [24,25].
In particular, two new families of hairy black holes were
discovered by Ovalle et al. in Ref. [25], which demon-
strates that basic deformations of the seeded Schwarzschild
vacuum retain the energy conditions, and proposes a novel
method for evading the no-hair theorem depending on a
primary hair correlated with the charge that generates these
transformations. This leads us to be interested in the
stability of such a hairy black hole.

The stability of a black hole under certain perturbations
is closely related to the properties of the black hole itself.
Usually, the stability of a black hole spacetime under
perturbations is studied through the field evolution of the
black hole background or a black hole merger. A perturbed
black hole can emit gravitational waves (GW), which are
dominated by quasinormal modes (QNMs) [26] with a
complex frequency, where the real part of the QNM
frequency denotes the oscillation frequency of the black
hole when perturbed, and the imaginary part represents
the decay rate [27-32]. In addition to characterizing the
stability of a black hole spacetime, the QNM frequency
also plays a very important role in determining black
hole parameters. Moreover, a collision event between black
holes will go through three phases: inspiral, merger and
ringdown phases. LIGO/VIRGO first observed gravitational
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waves produced from the black hole merger in 2016 [33].
They found a ringdown in the gravitational-wave signal,
which appears at the end of the waveform and consists of
rapidly decaying oscillations. The ringdown phase is the
QNM of the remnant black hole, which has generated great
interest in the study of black hole QNMs. In Ref. [34],
Cheung et al. studied the QNM spectrum in which the
Schwarzschild potential is perturbed by a small “bump”
consisting of the Gaussian potential or the Pdschl-Teller
potential, and they demonstrated that the fundamental mode
is unstable under general perturbations. In Ref. [35], the
authors studied the pseudospectrum of horizonless exotic
compact objects (ECOs) with reflective surfaces close to the
Schwarzschild radius, and demonstrated that the QNMs of
ECOs are affected by the overall spectral instability. In
Ref. [36], the authors studied the stability of a black hole
with scalar hair under axial gravitational perturbations, and
they found that this black hole with scalar hair is linearly
stable. In particular, Cardoso et al. pointed out that the QNM
spectra of some compact objects with light rings are radically
different from that of a black hole, but they still show a
similar ringdown stage [37]. In fact, this especial QNM
spectrum is also known as echoes [38-51]. Numerous
studies have shown that the QNM frequency of a black
hole is only determined by the properties of the black hole
itself and fields [52-72]. Therefore, we believe that the
properties of a hairy black hole with additional sources
described by a conserved energy-momentum tensor can be
inspected through the QNM.

Quantum mechanics and general relativity form the bed-
rock of the current understanding of physics, but the two
theories do not to work together. In 1974, Hawking showed
that black holes are not perfectly “black™ but actually emit
particles [73,74] as well as scatter and absorb radiation.
Hawking radiation propagates on the curved spacetime
due to the black hole, and the curvature of spacetime
behaves like a gravitational potential where the radiation
is scattered from it. There are two parts: (i) reflected back
into black hole and (ii) transmitted to spatial infinity. Hence
one can calculate the transmission probability, known as
the greybody factor, using various methods such as the
matching technique [75], the WKB approximation for a
high gravitational potential [76,77] and using the rigorous
bound [78-80]. On the other hand, the evaporation rate is
proportional to the total absorption cross section. Since
Hawking’s discovery, there have been many studies done on
the absorption cross section of scalar fields in a black hole
spacetime. First Sanchez [81] calculated the absorption cross
section of a massless scalar wave for the Schwarzschild
black hole in the high-frequency regime, which exhibits
oscillation around the geometrical optics limit using numeri-
cal methods. It is known that the low-frequency behavior
of the scalar field absorption by a black hole tends to the
surface area of the event horizon [82]. At high energy, the
absorption cross section oscillates around a limiting constant

value. For a scalar field absorbed by a spherically symmetric
black hole, using complex angular momentum methods,
Decanini et al. derived Sanchez’s result in the high-
frequency regime with a more accurate coefficient. They
obtained the absorption cross section using the sinc function
Oups = —8me "0y, sinc[27(3v/3M)w], with sinc(x) =
(sinx)/x and oy, = 277M? which are related to the
properties of the unstable photon orbit [83,84]. In the
high-frequency approximation, it was shown that the oscil-
latory term arises from a sum of Regge poles which are
characteristic resonances of the spacetime related to the
QNMs. Briefly, the sinc approximation describes numeri-
cally and physically the fluctuations of the high-energy
absorption cross section.

The authors of Ref. [85] studied the behavior of the
hairy black hole in Ref. [25] under scalar field perturba-
tion, which proved QNM frequencies regulated by the
hair. The main goal of this paper is to probe the physical
properties of another hairy black hole from Ref. [25]
caused by gravitational decoupling using quasinormal
modes under a massless scalar field, electromagnetic
field and axial gravitational perturbations. This involves
thorough calculations of how to see the effect of hair on
QNM frequencies and time-domain profiles. The second
goal is to study the greybody bound of hairy black hole
caused by gravitational decoupling. To that end, we show
numerically how the hair appears in the greybody bounds,
as well as the high-energy absorption cross section with
the sinc approximation.

This paper is organized as follows. In the next section
we briefly review a hairy black hole caused by gravitational
decoupling. Furthermore, we analyze the scalar field,
electromagnetic field, and axial gravitational perturbations
in the hairy black hole background spacetime. In Sec. III,
the time-domain profiles of a massless scalar field, electro-
magnetic field and axial gravitational perturbations in a
hairy black hole spacetime are given, and we also calculate
the QNM frequencies using the Prony method and the
6th- and 13th-order WKB methods. In Sec. IV, the grey-
body factors and high-energy absorption cross section
via the sinc approximation are discussed. Section V is a
conclusion of the full text and a brief discussion of future
directions.

II. EXTERNAL FIELDS AND AXITAL
GRAVITATIONAL PERTURBATIONS IN HAIRY
BLACK HOLE SPACETIME

A. Brief review of the hairy black hole

Ovalle et al. used gravitational decoupling to give
a spherically symmetric black hole with scalar hairs.
This method has two characteristics: extending simple
solutions to more complex fields and decoupling some
complex sources of gravity. They assumed that the system
has a well-defined event horizon and the conserved
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energy-momentum tensor describing the additional source
satisfies the strong energy condition or dominant energy
condition outside the event horizon [25]. The metric has the
form (G=c=1)

ds® = e!dr> — N dr? — 2 (d6® +sin? 0dg?), (1)

where

l

o= ot = 1= M e Ma2) 2)
r

where M is an asymptotic mass M = M + aly/2. This
solution is presented by using gravitational decoupling and
the strong energy condition. Moreover, using the dominant
energy condition, the “charged" hairy black hole can be
written as [25]

2M + al, N Q> aMe M

r r2 r

e/ =e*=1

3)

The solution (2) has been studied in detail by Cavalcanti
et al. [85]. Therefore, all the content we give in the
following is for the black hole (3), and we will not discuss
the relevant content of the black hole (2). It is worth noting
that we cannot reduce the hairy black hole (3) to Eq. (2)
by setting Q = 0. The main reason is that the black hole
solution (2) is the Schwarzschild deformation produced
by a gravitational source which satisfies the strong energy
conditions, while the black hole solution (3) is produced
by a generic source satisfying the dominant energy con-
ditions [25]. For the “charged” hairy black hole (3), the
event horizon radius r, is given by the solution of the
following equation:

2
rh:alo—l—ZM—Q——l—aMe_rh/M. (4)
Th

In addition, Ref. [25] pointed out that the hairs Q, a,
and [, of the hairy black hole (3) satisfy the following
relationship:

Q> >4a(M/e)*> and [y > M/e*. (5)
From Eq. (5) we can see that the case where Q = 0 and a is
nonzero is not allowed. Therefore, we do not discuss this
case in this work. It should be noted that some regions
of the parameter space will make hairy black holes (3)
become a naked singularity. For example, when Q > M
with a = 0, hairy black holes (3) become a naked singu-
larity. Therefore, there should be a minimum o« that

turns the naked singularity into a black hole with an
event horizon.

This hairy black hole (3) contains parameters Q, M, [, a,
where {Q,A = aly} denotes a potential set of charges
generating primary hair. It should be noted that the charge
Q is not necessarily an electric charge of the Maxwell field
source, because the source for the charge Q is a tensor
vacuum. The charge Q could be a tidal charge of extra-
dimensional origin or any other source. However, when the
charge Q denotes an electric charge, one can say that the
electrovacuum of the Reissner-Nordstrom geometry also
includes a tensor vacuum [25]. There are many similar
examples. For example, the hair Q is not an electric charge
in the Dadhich-Maartens-Papadopoulos-Rezania black
hole solution [86], whose charge Q is associated with a
conformal theory. In particular, the parameter A is closely
related to the gauge transformation of the Schwarzschild
metric, and it can push the event horizon to a place larger
than the Schwarzschild radius, such that it can measure how
much the black hole’s entropy increases relative to the
minimum Schwarzschild value as the black hole hair is
added [25].

B. Scalar perturbation of the hairy black hole

In the context of general relativity, there are two
methods to study the black hole perturbations. The first
method is to include a test field in the black hole
background and to study the system by solving the
dynamical equation for a specific test field in the black
hole background. The second is the perturbation metric
itself, i.e. the gravitational perturbation, in which the
evolution equation is usually found by linearizing the
Einstein equations. The most important feature between
the two methods is that the gravitational radiation excited
by gravitational perturbation is much stronger than the
gravitational radiation excited by the perturbation of
the external field of the black hole. We will first study
the case where the external field is a scalar field. In curved
spacetime, the perturbation equation of the massless
scalar field can be written as

V%_gaMW——ggﬂ”aﬂ) ~o. (6)

Putting our considered hairy black hole metric into the
scalar field equation, we can get

Y 1 :
- ty + = (2re*0,¥ + r*e” 0,¥ + r*e*o}¥)
e r
+ 2 (Lo, sinoo¥ +——aw) —0. ()
— | ——0p sin =0,
P2 \sing ’7 " T sin2

where ¢¥ denote %e". Due to the symmetry of the hairy
black hole spacetime background, we perform separation
of variables
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W(t,r,0,¢) = > y(t.r)Y,(60,4)/r, (8)

I.m

by substituting it into Eq. (7), we can get the second-order
partial differential equation about the tortoise coordinate in
the scalar field perturbation

dy*  dy?
W—F‘FV(F)U/:O, (9)

where the tortoise coordinate 7 is defined as dr = 1/edr,
and V(r) is the effective potential

2M +al 2 aMe "M
V(r)= <1—7°+Q—2+7>

r r

—-—= + +—
I‘2 ’,,4 r3 r3 2 7”3

I%

X{1(1+1) 2Q2+2_M+Mae"/M ae"™M alo]'

(10)

The perturbation of the scalar field has been receiving
more attention. Moderski ef al. have investigated the QNM
spectrum under the perturbation of the scalar field in
different black hole spacetimes [87-89]. Boudet et al. have
examined the QNM for a Schwarzschild black hole under
projective-invariant Chern-Simons modified gravity [90].
The authors of Ref. [91] investigated the QNM of a scalar
field perturbation in the spacetime of a rotating regular
black hole.

C. Electromagnetic perturbation
of the hairy black hole

The Maxwell equation satisfied by the electromagnetic
field is

1 0
———(\/—gF") = J". 11
= V7I) (11)
The electromagnetic field we are studying is a vacuum,
so the value of the four-current density J* is 0. F* is the
contravariant tensor of the electromagnetic field in the

black hole spacetime background, and its covariant
tensor is

Fo=A,,—A (12)

My v v

where the comma denotes the ordinary derivative. Since the
background we are studying is spherically symmetric, A,
can be expanded in the four-dimensional vector spherical
harmonics as [92]

0
0
b'™(t, r) ﬁaﬂ,m
—b"™(t,r)sinB0yY,,
()Y,
™ (t, r)Y
k™ (t,7)0pY 1,
ki (t, )04Y 1,

Atr0.0)=>

Lm

, (13)

with [ being the angular quantum number, and m being the
azimuthal number. The item on the left has parity (—1)"*1,
and the item on the right has parity (—1)’. Moreover,
Y}, are the spherical harmonics. Substituting Eq. (13) into
Maxwell’s equation (11), and using the tortoise coordinate,
the second-order differential equation for the perturbation
can be obtained as

——7+V<r)l;/=0, (14)

where the wave function w(r) is a linear combination of
p'm, flm pim and k'™, and the effective potential of the
electromagnetic field perturbation in the hairy black hole
spacetime is

2M + al 2 aMe ™M\ T1(1+ 1
e g e )

r r r r?

V(r) = (1 -
(15)

D. Axial gravitational perturbations
of the hairy black hole

Regge and Wheeler were the first to study the
axial gravitational perturbation of a Schwarzschild black
hole [93]. The standard procedure for axial gravitational
perturbation is to introduce a small perturbation £, into the

static background metric 92,,, ie.

9w = 920 + huw |h;w| < L (16)

Moreover, the Ricci tensor can be expressed as

R,, =R, +6R,,. (17)
with
OR,, = oT%,, — 1%, (18)
where
The = 30 Py + s = ). (19)
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Regge and Wheeler proved that if the metric perturbation
tensor h,,, is expanded into tensor spherical harmonics, the
equations describing the axial perturbations can be sepa-
rated. Using the gauge symmetry of the field equations, one
can obtain the general form of £,,. The remaining compo-
nents after simplification are [93]

0 0 0 holt,r)
0 0 0 hy(e,
hy, = 0 0 0 1(0 ") sin 0dyP,(cos 0),
ho(t,r) hy(t,r) 0O 0
(20)

with P,(cos ) being the Legendre polynomial of order Z.
Unknown functions & (z, r) and h,(z, r) satisfy the follow-

Lh, Phy 2dhy\ 1 P41-2
_ ) —4——"h, =0, 22
(dtz didr 7 dt) O (22)
d2,’l0 aahl 2dh1 f(r)
dr* didr rdt) 2
ho [ df(r) 1
o i+ 1) = 2
r2 [r dr ZZ(H— ) 0, (23)

where f(r) is the g,, in the spherical symmetry metric. By
defining W(¢,r) = (1/r)f(r)h(¢, 1), and according to the
tortoise coordinate, we can gain the Schrodinger-like
equation of the axial gravitational perturbation

ing equations: dy? dv’?
———+V(r)¥=0 24
1 dhy d dh ardr n | ()
_70_ f(r)h]——lf(r):& (21) .
f(r) dt dr dr where the Regge-Wheeler potential V(r) can be read as
|
2M +aly, Q% aMe M\ TI(1+1) 4Q> 6M 3Mae™ ™ qe"/M  3al,
Vir)=(1—-——+= — - - - . 25
(r) ( P r? * r? S r r? r (25)
)2
III. QNM OF A HAIRY BLACK HOLE w(u = up, v) = exp [_ (v . Zc) ]
o
In this section, we will numerically solve the wave
w(u,v=1vy) =0, (29)

equation in a hairy black hole spacetime background to
gain the time-domain profiles of this spacetime. In addition,
we use the Prony method to extract quasinormal modes,
and our results are in good agreement with those calculated
using the higher-order WKB method. To obtain the time-
domain profiles of the hairy black hole, we introduce the
light-cone coordinates

u=1-—r,
v=rt+r. (26)
Then Eq. (9) can be written as
) =Sy, @)
u,v) = —=V(rw(u,).
dudv " Al

Equation (27) can be discreted as [94,95]

+
YN =VWE + Yw —Ws — 5”50V<w> + 0(A4)

(28)
where S=(u,v),W=(u+du,v),E=(u,v+ év),

N = (u + éu, v + 6v). Moreover, we use the following
initial Gaussian pulse:

where uy=vy=0,6=3,v,=10. Thus, the time-domain
profiles of a hairy black hole caused by gravitational
decoupling can be obtained.

In Figs. 1 and 2, we show the time-domain profiles
(TDPs) of the scalar field perturbation in the hairy black
hole. The difference between these two figures is that we
study the case of / = 0 in the former, and the case of / = 1
in the latter. In the top panels of Fig. 1 and Fig. 2, we show
the influence of the black hole parameter @ on the TDP,
where M = 1,1, = 1,0 = 0.7. In addition, we also give
the TDP of the Schwarzschild black hole. One can find
that when « is the smallest, its damped is the strongest. In
other words, the decay rate is the fastest when « is the
smallest, which implies that the imaginary part of the QNM
frequency will decrease as a increases. In the middle panels
of Fig. 1 and Fig. 2, we give the influence of the hairy black
hole charge [, on its TDP with M = 1,0 =0.9,0 = 0.7. It
shows that as [, increases, the TDP damping becomes
slower, which is an indication that the imaginary part of
the QNM frequency that denotes damping should also
be decreasing when the charge [, increases. In the
bottom panels of Fig. 1 and Fig. 2, the influence of the
charge Q on the hairy black hole is presented, where
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FIG. 1. Time-domain profiles of the scalar field perturbation in
the hairy black hole for different @ with M =1,1=0,[, =1,
0 = 0.7, for different [, with M =1,/ =0,0a=0.9,0 =0.7,
and for different Q with M =1,1=0,ly = 1,a = 0.9, respec-
tively. The blue line represents the TDP of the Schwarzschild
black hole (SCH) under scalar field perturbation with M =1,
[=0.

M =1,a=009,]l, = 1. Our results show that when Q is
larger, its TDP decays more slowly. Moreover, in these two
figures one can find the clear power-law tail.

In Fig. 3, the TDP of the electromagnetic field in
the hairy black hole is given. Form Fig. 3, we find
that larger a, [, and Q make the TDP decay more slowly.

100 A
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logy|
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FIG. 2. Time-domain profiles of the scalar field perturbation in
the hairy black hole for different @ with M =1,1=1,[, =1,
0 = 0.7, for different [, with M =1,l=1,a=0.9,0 =0.7,
and for different Q with M =1,1= 1,1y = 1,a = 0.9, respec-
tively. The blue line represents the TDP of the Schwarzschild
black hole (SCH) under scalar field perturbation with M = 1,
[=1.

The contributions of these parameters are similar to those of
the scalar field perturbation, which demonstrates that an
electromagnetic field perturbation and a scalar field per-
turbation make the TDP of a hairy black hole exhibit
similar behavior.
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FIG. 3. Time-domain profiles of the electromagnetic field
perturbation in the hairy black hole for different @ with M = 1,
[=1,Ip=1,0=0.7, for different [, with M =1,1=1,
a=0.9,0 = 0.7, and for different Q with M = 1,1 =1,[, =1,
a = 0.9, respectively. The blue line represents the TDP of the
Schwarzschild black hole (SCH) under electromagnetic field
perturbation with M =1, [ = 1.

In Fig. 4, we present the TDP of the gravitational
perturbation in the hairy black hole. The influence of «,
lp and charge Q on the hairy black hole are studied
respectively. We can see that the effects of a, [, and Q
on the hairy black hole under the gravitational perturbation

107t

10—3 4

10—5 4

log|y|

10—7 4

10—9 4

10—11 4

o4

50 100 150 200 250 300 350 400 450

1071

10—3 4

10—5 4

log|y]

10—7 4

1079 A

10711 4

50 100 150 200 250 300 350 400 450

10°

1072 4

10—4 4

1076 4

log|y|

108 A

10-10

10-12 A
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FIG. 4. Time-domain profiles of the gravitational perturbation
in the hairy black hole for different a with M = 1,1 =21, =1,
Q = 0.7, for different [, with M =1,1=2,a=09,0 =0.7,
and for different Q with M =1,1=2,1y = 1,a = 0.9, respec-
tively. The blue line represents the TDP of the Schwarzschild
black hole (SCH) under scalar field perturbation with M = 1,
[=2.

are similar to the scalar field perturbation and the electro-
magnetic field perturbation.

Apart from studying the time-domain profile, we also
study the QNM frequency. Through continuous develop-
ment, many methods have been proposed to calculate the
QNM frequency. The Poschl-Teller potential approxima-
tion method [96,97] is an earlier method for calculating the
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TABLE I. QNM frequencies of the scalar field perturbation for a hairy black hole.

M=1,1=11,=1,0=07

Prony method (M®)

Sixth-order WKB (M®)

13th-order WKB (M)

0.322775 — 0.0994117i
0.303041 — 0.0951931i
0.286089 — 0.091189i

0.271271 — 0.0874315i
0.258144 — 0.0839217i
0.246392 — 0.0806478i
0.23578 — 0.0775934i

0.226129 — 0.0747407i
0.217300 — 0.072072i

0.209181 — 0.0695709i

0.322772 — 0.0993483i
0.303039 — 0.0951213i
0.286092 — 0.0911003i
0.27128 — 0.08732231

0.258165 — 0.0837874i
0.246423 — 0.0804828i
0.235838 — 0.0773884i
0.226207 — 0.0744979i
0.217378 — 0.0718025i
0.209304 — 0.0692642i

M=1I1=1,a=09,0=07

Sixth-order WKB (M)

13th-order WKB (Mw)

0.283488 — 0.0947429i
0.27147 — 0.0906598i

0.260416 — 0.0869074i
0.250217 — 0.0834488i
0.240779 — 0.0802517i
0.232021 — 0.0772882i
0.223874 — 0.0745339i
0.216278 — 0.0719677i
0.209181 — 0.0695709i

0.283471 — 0.0945504i
0.271478 — 0.0904487i
0.260451 — 0.0866649i
0.250271 — 0.083192i
0.240844 — 0.0799829i
0.232096 — 0.0769971i
0.223966 — 0.074229i
0.216403 — 0.071666i
0.209304 — 0.0692642i

M=11=11l=1,a=09

Sixth-order WKB (M®)

13th-order WKB (Mw)

0.0 0.321507 — 0.101701:

0.1 0.300244 — 0.0964229i
0.2 0.282813 — 0.091302i

0.3 0.268623 — 0.0878727i
0.4 0.255067 — 0.0820306i
0.5 0.243646 — 0.0790852i
0.6 0.233439 — 0.0769056i
0.7 0.224392 — 0.0749798i
0.8 0.217691 — 0.0723938i
0.9 0.209181 — 0.0695709i
ly Prony method (Mw)

0.2 0.281022 — 0.0955926i
0.3 0.269242 — 0.0913397i
0.4 0.258385 — 0.0874759i
0.5 0.24837 — 0.0839461i

0.6 0.239092 — 0.0807142i
0.7 0.23046 — 0.0777224i

0.8 0.222408 — 0.0749569i
0.9 0.214889 — 0.0723729i
1.0 0.209181 — 0.0695709i
0 Prony method (Mw)

0.7 0.209181 — 0.0695709i
0.8 0.21196 — 0.0707743i

0.9 0.214681 — 0.0711001i
1.0 0.218256 — 0.0709727i
1.1 0.222866 — 0.0706441i
1.2 0.228786 — 0.0700971i
1.3 0.23683 — 0.0712016i

1.4 0.246787 — 0.0708725i
1.5 0.262831 — 0.0696549i

0.209181 — 0.0695709i
0.212052 — 0.0698582i
0.21552 — 0.0701646i

0.219709 — 0.0704705i
0.224788 — 0.0707406i
0.231015 — 0.0709032i
0.238783 — 0.0708064i
0.248804 — 0.070053:

0.262188 — 0.0674775i

0.209304 — 0.0692642i
0.212157 — 0.0695651
0.215628 — 0.0699185i
0.219804 — 0.0702317i
0.224854 — 0.0705321i
0.231059 — 0.070716i
0.238807 — 0.0706461
0.248757 — 0.0699446i
0.261999 — 0.0674607i

black hole’s QNM frequency, but only when the effective
potential of the black hole is similar to the Poschl-Teller
potential can a more accurate result be obtained. In
Ref. [85], the authors used this method to calculate the
QNM frequencies of a hairy black hole under scalar
perturbation. In Refs. [69,98], Konoplya used the sixth-
order WKB method to study the scattering problem. In
Ref. [99], the 13th-order WKB method was presented by
using the Padé approximation. In our work, we use the
WKB method [77,100-102] and the Prony method to study
the QNM frequencies of a hairy black hole caused by
gravitational decoupling. The Prony method extracts the
QNM frequency from the time-domain profiles by the
damped exponents [30,103]

P(1) = Ciemien, (30)

We compare the QNM frequencies extracted from the time-
domain profiles using the Prony method with the results
calculated by the higher-order WKB method to verify the
correctness of time-domain profiles. We list the values of
the QNM frequencies in Tables I-IV.

The QNM frequencies of a scalar field perturbation for a
hairy black hole are presented in Table I. We study three
cases in Table I: in the first one we fix the other parameters
M=1,1=1,l,=1,0 = 0.7) to study the effect of & on
the QNM frequencies of a hairy black hole; in the second
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TABLE II. QNM frequencies of the electromagnetic field perturbation for a hairy black hole.

M=1,1=11,=1,0=07

Sixth-order WKB (M®)

13th-order WKB (M)

0.277264 — 0.0951071i
0.259522 — 0.0909144i
0.244445 — 0.0869722i
0.231379 — 0.0832965i
0.21989 — 0.0798778i

0.209666 — 0.0766987i
0.200482 — 0.0737389i
0.192165 — 0.0709789i
0.184584 — 0.0684005i
0.177635 — 0.0659867i

0.277328 — 0.0948974i
0.259592 — 0.0907009i
0.244524 — 0.0867263i
0.231462 — 0.0830699i
0.219977 — 0.0796442i
0.20978 — 0.0764508i

0.200604 — 0.0734884i
0.192297 — 0.0707073i
0.184723 — 0.0681492i
0.17778 — 0.06572951

M=1I1=1,a=09,0=07

Sixth-order WKB (M)

13th-order WKB (Mw)

0.240451 — 0.0899668i
0.230301 — 0.0860831

0.220963 — 0.0825113i
0.212344 — 0.0792167i
0.204367 — 0.0761695i
0.196962 — 0.0733442i
0.190071 — 0.070718i

0.183643 — 0.0682712i
0.177635 — 0.0659867i

0.240592 — 0.0895844i
0.230435 — 0.0857165i
0.221115 — 0.082122i
0.212507 — 0.0788714i
0.204528 — 0.075829i
0.197118 — 0.0730409i
0.190225 — 0.0704139i
0.183795 — 0.06799411i
0.17778 — 0.06572951

M=11=11=1,a=09

Sixth-order WKB (M®)

13th-order WKB (Mw)

a Prony method (M®)

0.0 0.27438 — 0.0952652i

0.1 0.257552 — 0.0915071i
0.2 0.242204 — 0.0868901
0.3 0.229607 — 0.0834999i
0.4 0.218479 — 0.0802702i
0.5 0.208539 — 0.0771759i
0.6 0.199608 — 0.0742378i
0.7 0.191541 — 0.0714914i
0.8 0.184193 — 0.0689691i
0.9 0.177388 — 0.0672283i
ly Prony method (Mw)

0.2 0.238957 — 0.0903121i
0.3 0.228902 — 0.086411i

0.4 0.219661 — 0.0827886i
0.5 0.211118 — 0.0794722i
0.6 0.203217 — 0.0763974i
0.7 0.195489 — 0.0730517i
0.8 0.189112 — 0.0709165i
0.9 0.182467 — 0.0680648i
1.0 0.177388 — 0.0672283i
0 Prony method (Mw)

0.7 0.177388 — 0.0672283i
0.8 0.179783 — 0.0668075i
0.9 0.18274 — 0.0668985i

1.0 0.186791 — 0.0674179i
1.1 0.191665 — 0.067882i

1.2 0.197621 — 0.0682103i
1.3 0.205651 — 0.0687884
1.4 0.216046 — 0.0686647i
1.5 0.229584 — 0.0662932i

0.177635 — 0.0659867i
0.180372 — 0.0663587i
0.183697 — 0.0667678i
0.18774 — 0.0671974i

0.192683 — 0.0676172i
0.198814 — 0.0679582i
0.206573 — 0.0680707i
0.216777 — 0.0675363i
0.230929 — 0.0649291i

0.17778 — 0.06572951
0.180517 — 0.06610117
0.183843 — 0.066497i
0.187859 — 0.066929i
0.192789 — 0.0673285i
0.198927 — 0.0676624i
0.206693 — 0.0677617i
0.216889 — 0.0672306i
0.230986 — 0.0646869i

one we specify other parameters (M =1,/ =1,a=0.9,
Q =0.7) to research the impact of [, on the QNM
frequencies of a hairy black hole; and in the third one
we fix the other parameters (M = 1,1 = 1,1, = 1,a = 0.9)
to investigate the effect of Q on the QNM frequencies of a
hairy black hole. One can see that there is only a slight
deviation between the QNM frequency extracted using the
TDP and the result from the high-order WKB method in
the three cases, which is enough to prove the accuracy of
the TDP. It is seen that when «a increases, the real part and
imaginary part of the QNM frequency are both smaller, that
is, the oscillation frequency of GWs is decreasing and the
damping is also decreasing. In addition, when /; increases,
we can also find that the real and imaginary parts of the
QNM frequency are decreasing. The decrease of the
imaginary part indicates that its decay slows down, which

is consistent with the results shown in Fig. 2. However,
we find that the same trend for different @ and [, does not
continue to the results for various charges Q. The increase
of charge Q under the scalar perturbation leads to the real
part of the QNM frequencies increasing, whereas the
imaginary part decreases, which demonstrates that the
oscillation frequency of GWs is increasing, and the decay
rate is slower. This is the reason why the power-law tails
appear early in Fig. 2 when the charge Q is small, and this
behavior is similar to the results of different o and /), i.e.
smaller o and [, correspond to earlier power-law tails.

In Table II, the QNM frequencies of the electromagnetic
field perturbation for a hairy black hole are given. For
different a, the parameter settingsare M = 1,1 = 1,1, =1,
Q = 0.7. For different [, the parameter settings are M = 1,
[=1,a=09,0 =0.7. For different Q, the parameter
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TABLE III. QNM frequencies of the gravitational perturbation for a hairy black hole.

M=1,1=21,=1,0=07

Prony method (M®)

Sixth-order WKB (M®)

13th-order WKB (M)

0.41962 — 0.0910065i

0.392428 — 0.087046i

0.369425 — 0.0833178i
0.349553 — 0.0798375i
0.332112 — 0.0765966i
0.316614 — 0.0735789i
0.302703 — 0.0707663i
0.290115 — 0.0681411i
0.278644 — 0.0656872i
0.26813 — 0.0633896i

0.419637 — 0.0909727i
0.392426 — 0.0870356i
0.369409 — 0.0833276i
0.349535 — 0.0798671

0.332093 — 0.0766124i
0.316588 — 0.0736032i
0.30268 — 0.0707763i

0.290095 — 0.0681618i
0.27864 — 0.06571881i

0.268131 — 0.0634126i

M=11=2a=09,0=07

Sixth-order WKB (M)

13th-order WKB (Mw)

0.363216 — 0.0864224i
0.347865 — 0.08270i
0.333738 — 0.0792706i
0.320696 — 0.0761044i
0.30862 — 0.0731748i
0.297408 — 0.0704583i
0.286972 — 0.0679339i
0.277235 — 0.0655832i
0.26813 — 0.0633896i

0.363004 — 0.0863902i
0.347729 — 0.0827333i
0.333645 — 0.0793122i
0.320636 — 0.0761492i
0.308578 — 0.0732138i
0.29738 —0.0704918i

0.286956 — 0.0679646i
0.277228 — 0.06560961
0.268131 — 0.0634126i

M=11=21=1,a=09

Sixth-order WKB (M®)

13th-order WKB (Mw)

0.0 0.421319 — 0.093321:

0.1 0.394301 — 0.0872158i
0.2 0.369882 — 0.085768i

0.3 0.350611 — 0.0815108i
0.4 0.332492 — 0.0763707i
0.5 0.315724 — 0.0736334i
0.6 0.303406 — 0.0710666i
0.7 0.290561 — 0.0682911i
0.8 0.278566 — 0.066302i

0.9 0.266795 — 0.0643959i
lo Prony method (Mw)

0.2 0.364607 — 0.0865609i
0.3 0.346775 — 0.0833835i
0.4 0.333299 — 0.0791465i
0.5 0.320798 — 0.0759211i
0.6 0.309047 — 0.0731385i
0.7 0.298027 — 0.0706296i
0.8 0.287702 — 0.0683308i
0.9 0.278041 — 0.0662711i
1.0 0.266795 — 0.0643959i
0 Prony method (Mw)

0.7 0.266795 — 0.0643959i
0.8 0.271865 — 0.0645973i
0.9 0.278479 — 0.0651984i
1.0 0.284881 — 0.0651774i
1.1 0.292663 — 0.0653426i
1.2 0.302629 — 0.0659483i
1.3 0.315112 — 0.0655522i
1.4 0.33039 — 0.0639798i

1.5 0.354654 — 0.0600052i

0.26813 — 0.06338961

0.272466 — 0.0637162i
0.277738 — 0.0640789i
0.284153 — 0.0644651i
0.292016 — 0.0648472i
0.301795 — 0.065162i

0.314282 — 0.0652534i
0.330944 — 0.0646919i
0.355086 — 0.0619111i

0.268131 — 0.0634126i
0.272459 — 0.0637328i
0.27774 — 0.0640953i

0.284135 — 0.0644731i
0.292003 — 0.0648387i
0.301803 — 0.0651248i
0.314329 — 0.0651797i
0.331053 — 0.0645997i
0.355174 — 0.0618972i

settings are M = 1,1 = 1,1y = 1, = 0.9. In addition, we
also give the QNM frequencies of a hairy black hole under
gravitational perturbation in Table III. We can see that
Table II and Table III present the same trend as in Table I for
different cases, which further demonstrates that scalar field
perturbation, electromagnetic perturbation and gravita-
tional perturbation have similar qualitative behavior to
the hairy black hole caused by gravitational decoupling.
In particular, the effects of @ and [, on the real part of the
QNM are opposite to that of Q, i.e., an increase in a and [
will decrease the oscillation frequency of gravitational
waves, whereas an increase in Q will increase the oscil-
lation frequency of gravitational waves.

Table IV shows the QNM frequencies of scalar field,
electromagnetic field, and gravitational perturbations with

different /. It is interesting to note that the increase of the
multipole moment [/ will significantly increase the oscil-
lation frequency of gravitational waves, whereas the effect
on the decay rate is very small. The most important point
in Table IV is that when a =0, Q = 0, our results can
reproduce the results of the Schwarzschild black hole very
well. Moreover, in Table IV, we calculate the error of the
13th-order WKB method. One can find that the error of the
13th-order WKB method for a small / will be larger than
that of the large /, and the error of scalar field perturbation
is larger than that of electromagnetic field and gravitational
perturbations. For example, for the gravitational perturba-
tion results in Table IV, when [ = 2, the error is about
4.47532 x 1073, and it is about 1.03191 x 1078 for [ = 4.
On the other hand, Table V gives the deviation of the QNM
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TABLE IV. QNM frequencies of scalar field (Scal), electromagnetic field (Elec), and gravitational (Grav)
perturbations for different /.

M=1,a=0,0=0

Field

Prony method (M)

Sixth-order WKB (M)

13th-order WKB (M®)

Error

Scal

Elec

Grav

N = O |~

B W W o =

0.105932 — 0.103975i
0.289254 — 0.0967834i
0.476682 — 0.0964193i

0.245525 — 0.0912522i
0.451157 — 0.0927749i
0.644805 — 0.0930214i

0.369919 — 0.0893064i
0.590055 — 0.0919906i
0.792386 — 0.094910i

0.110493 — 0.100793i
0.29291 — 0.0977616i
0.483642 — 0.0967661i

0.248191 — 0.092637i
0.457593 — 0.095011i
0.656898 — 0.0956171i

0.373619 — 0.0888911
0.599443 — 0.0927025i
0.809178 — 0.0941641i

0.111336 — 0.103793i
0.292935 — 0.0976625i
0.483643 — 0.0967596i

0.24826 — 0.0924874i
0.457595 — 0.0950047i
0.656899 — 0.09561631

0.373583 — 0.0889827i
0.599443 — 0.0927028i
0.809178 — 0.094164i

2.57859 x 1073
5.63328 x 1076
3.07067 x 1077

1.65754 x 1073
4.82647 x 1077
4.67008 x 1077

8.39293 x 107°
1.79319 x 108
3.42659 x 1078

M=1I[=1,a=09,0=07

Field

Prony method (M®)

Sixth-order WKB (M®)

13th-order WKB (M)

Error

Scal

Elec

Grav

0.0757766 — 0.0719676i
0.209635 — 0.0696289i
0.345137 — 0.0681247i

0.177388 — 0.0672283i
0.325863 — 0.0671239i
0.466492 — 0.0689451i

0.266795 — 0.0643959i
0.425910 — 0.0666401
0.580939 — 0.067654i

0.0850839 — 0.064694i
0.209181 — 0.0695709i
0.345759 — 0.0687022i

0.177635 — 0.06598671
0.327385 — 0.06750541
0.469885 — 0.0679249i

0.26813 — 0.0633896i
0.429374 — 0.06596381
0.579217 — 0.0669528i

0.0840857 — 0.06749211i
0.209304 — 0.0692642i
0.345765 — 0.06868581

0.17778 — 0.0657295i
0.327391 — 0.06749441i
0.469885 — 0.0679233i

0.268131 — 0.06341261
0.429374 — 0.06596351
0.579217 — 0.0669526i

4.27326 x 1073
1.35598 x 1073
4.57878 x 1077

1.51868 x 107
1.26352 x 107°
1.61534 x 1077

4.47532 x 1073
7.92364 x 1078
1.03191 x 1078

TABLE V. Deviation of the QNM frequencies of Schwarzschild black hole (M = 1, a = 0, Q = 0) calculated by
the Prony method relative to Iyer’s results.

Field [  Prony method (Mw)  Iyer’s results [104] (M®) Frequency deviations Decay rate deviations
Scal 0 0.103129 — 0.107250i 0.1046 — 0.1152; 1.4% 6.9%
1 0.289254 — 0.0967834i 0.2911 — 0.0980: 0.6% 1.2%
2 0476682 —0.0964193i 0.4832 — 0.0968i 1.3% 0.4%
Elec 1 0.245525—0.0912522i 0.2459 — 0.0931i 0.2% 2.0%
2 0451157 —0.0927749i 0.4571 —0.0951i 1.3% 2.4%
3 0.644805 — 0.0930214i 0.6567 — 0.0956i 1.8% 2.7%
Grav 2 0.369919 — 0.0893064: 0.3732 — 0.0892: 0.9% 0.1%
3 0.590055 — 0.0919906: 0.5993 — 0.0927: 1.5% 0.7%
4 0.792386 — 0.094910i 0.8091 — 0.0942i 2.0% 0.8%

frequencies of a Schwarzschild black hole (M = 1,a = 0,
Q = 0) calculated using the Prony method relative to Iyer’s
results [104]. We can see that for the scalar field perturbation
[ = 0, the deviation of the decay rate reaches 6.9%, and for
other cases, whether it is for the frequency or decay rate, the
deviation does not exceed 2.7%. The reason for the large
deviation of th escalar field perturbation / = 0 may be found
in Fig. 1. We can see that the duration of the ringdown of the

TDP is very short from Fig. 1, which implies that the Prony
method is not particularly accurate in this case. In Table VI,
the behaviors of the real parts and imaginary parts of QNM
frequencies for a hairy black hole under gravitational
perturbation with different overtone numbers are shown.
We observe that the real parts of QNM frequencies decrease
with the overtone number, and the imaginary parts of QNM
frequencies increase with the overtone number.
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TABLE VI. QNM frequencies of a hairy black hole for gravitational perturbations with different overtone
numbers.
a=0.01,0 =0.075,1, = 0.15

l n (Mw,) I n (Mw,) I n (Mw,)

2 0 0.37357 — 0.0889782i 3 0 0.599413 — 0.0926969i 4 0 0.809134 — 0.0941578i
1 0.346071 — 0.273517i 1 0.582598 — 0.281333i 1 0.796583 — 0.284316i
2 0.298458 — 0.477529i 2 0.551573 — 0.479015i 2 0.772649 — 0.479881i
3 0.248739 — 0.708946i 3 0.511842 — 0.690648i 3 0.739752 — 0.683955i

IV. BOUNDING THE GREYBODY FACTORS AND
HIGH-ENERGY ABSORPTION CROSS SECTION
VIA THE SINC APPROXIMATION

A. Bounding the greybody factor

In this section, the lower bound of the greybody factor of
a hairy black hole is investigated. There are many methods
to calculate the lower bound, and the WKB method is
the most frequently used one [105,106]. In Ref. [98],
Konoplya et al. studied the greybody factor of a wormhole
using the sixth-order WKB method. In Ref. [107], they
investigated the greybody factor of a Bardeen—de Sitter
black hole under gravitational perturbation and electro-
magnetic perturbation using the WKB method. We use
another rigorous method to calculate the greybody. In this
method, the general bound of the greybody for a black hole
is written as [78-80,108—114]

1 [ dr
Tb Z SeCh2<%/;°o |V m)

Then one can use the Regge-Wheeler potential from
Sec. II, and numerically plot the variation of the greybody
factor with various parameters (a, [, and Q), as seen in
Figs. 5, 6 and 7. From these figures, we can see that the
value of the greybody bound is zero when the frequency is

(31)
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FIG. 5.

with M = 1,1, =1,0 = 0.7.

minimal, and the value of the greybody bound is 1 when
the frequency is large enough. This shows that when the
frequency is small, the wave is basically totally reflected.
As the frequency increases, a part of the wave can pass
through the potential barrier due to the tunneling effect.
When the frequency reaches a certain critical value, the
wave will not be reflected. In addition, one can see that for
larger a and [, the greybody bound is also larger, whereas
the effect of the hair Q is opposite. Therefore, for the hairy
black hole spacetime with large charge Q, the hairy black
hole greatly scatters the incident wave. On the other hand,
the greybody factors for Schwarzschild black holes have
been rigorously analyzed [78,115]. Compared with the
greybody factors of a Schwarzschild black hole, the grey-
body factors of a hairy black hole are larger than those of a
Schwarzschild black hole when the frequency is fixed,
which demonstrates that the probability of Hawking
radiation reaching spatial infinity in the hairy black hole
spacetime is greater than that in the Schwarzschild black
hole spacetime.

B. High-energy absorption cross section
with the sinc approximation

The oscillatory pattern of the high-energy absorption
cross section corresponding to a sinc(x) function within the
photon sphere [with sinc(x) denoting sin c(x) = sin(x)/x].

TabsIM 7]

200 -
150 H

100

— a=0.5
— a=0.2 — a=0.9

50 — SCH

1 2 3 4

w[M]

Greybody bound (left panel) T, as a function of , and the total absorption cross section (right panel) for different values of a,
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with M =1,a=09,0 =0.7.

Tp
1.0
08 — SCH
— Q=07
06" — Q=11
— Q=15
0.4F
0.2F
0.0 0.2 0.4 0.6 0.8 1.0

w

-2
Uabs[M ]
200
150

100

50

FIG.7. Greybody bound (left panel) T',, as a function of w, and the total absorption cross section (right panel) for different values of the

charge Q, with M =1, =0.9,[, = 1.

The oscillatory part of the absorption cross section in the
eikonal limit is [84]
(32)

Cose (@) = =876 o €7 sinc[2zb w]

where

2

ne = me) — S, (33)
and the eikonal cross section is 64, = zb? with the critical
. v,
impact parameter b, = 7

Then the sinc approximation states that the total absorp-
tion cross section at the eikonal limit is 6,5 X Gosc + Ogeo
[81,84,116-118]. In Figs. 5, 6 and 7 we plot the total
absorption cross section for various values of a, [, and Q.
One can find that the total absorption cross section seems to
be divided into three phases with the increase of w: first, the
fast growing phase, then the oscillations phase, and finally
the stabilization around a certain value. Moreover, we find
that the hairy black hole has a larger absorption cross

section when « and [ are larger, and the absorption cross
section of the hairy black hole is smaller when the charge Q
is larger. Compared with the total absorption cross section
of Schwarzschild black holes, our results show that the total
absorption cross section of Schwarzschild black holes is
always smaller than that of hairy black holes.

V. CONCLUSION

In summary, we studied the QNM of hairy black holes
caused by gravitational decoupling. By studying the scalar
field, electromagnetic field, and axial gravitational pertur-
bations, the time-domain profiles of QNMs were given,
and the QNM frequencies of hairy black holes were fitted
according to the time-domain profiles, which are consistent
with the results of the high-order WKB method. We
conclude that for hairy black holes caused by gravitational
decoupling, the effects of these hairs (a, /), @) on time-
domain profiles and QNM frequencies under scalar field,
electromagnetic field, and gravitational perturbations show
similar behavior, i.e. an increase in a and [, decrease
the oscillation frequency of the gravitational-wave signal
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emitted by a perturbed hairy black hole, and an increase in
Q increased the oscillation frequency of the GW signal. In
addition, an increase of the multipole moment / obviously
increases the oscillation frequency of the gravitational-
wave signal, whereas the influence on its decay rate is very
small. In the end, we studied the bounding of the greybody
factor and absorption cross section of hairy black holes
using the sinc approximation. We found that for larger a
and [, the greybody bound and absorption cross section
are also larger, whereas the contribution of the charge Q is
the opposite. Therefore, for the hairy black hole spacetime
with large charge Q, the propagating waves can be greatly
reflected by the potential barrier. A smaller value of the
greybody factor implies that the probability of gravitational
radiation reaching spatial infinity is lower. Consequently,
an increase in a and [, can increase the probability of
gravitational radiation arriving at spatial infinity. In addi-
tion, the increase of o and [/, makes the total absorption
cross section also increase, whereas the increase of Q
makes the total absorption cross section decrease. We
expect our results to provide some direction for detecting
hairy black holes caused by gravitational decoupling in
future experiments. On the other hand, there are some

regions of the parameter space of the hairy black hole we
studied, which will make it become a naked singularity. In
the future, it will be interesting to probe such regions of the
parameter space that may pose a threat to the deterministic
nature of gravitational theories with spherically symmetric
solutions, and in this way one can understand near-extremal
modes and strong cosmic censorship in spherical symmet-
ric black holes [119-127].
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