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We use the open source, community-driven, numerical relativity software, the EINSTEIN TOOLKIT to
study the physics of eccentric, spinning, nonprecessing binary black hole mergers with mass-ratios
q ¼ f2; 4; 6g, individual dimensionless spin parameters χ1z ¼ �0.6, χ2z ¼ �0.3, that include higher
order gravitational wave modes l ≤ 4, except for memory modes. Assuming stellar mass binary black
hole mergers that may be detectable by the advanced LIGO detectors, we find that including modes up to
l ¼ 4 increases the signal-to-noise of compact binaries between 3.5% to 35%, compared to signals that
only include the l ¼ jmj ¼ 2 mode. We use two waveform models, TEOBResumS and SEOBNRE,
which incorporate spin and eccentricity corrections in the waveform dynamics, to quantify the
orbital eccentricity of our numerical relativity catalog in a gauge-invariant manner through fitting
factor calculations. Our findings indicate that the inclusion of higher order wave modes has a measurable
effect in the recovery of moderately and highly eccentric black hole mergers, and thus it is essential to
develop waveform models and signal processing tools that accurately describe the physics of these
astrophysical sources.
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I. INTRODUCTION

The modeling of eccentric compact binary mergers has
attracted significant attention in recent years. The under-
standing of these astrophysical sources has gradually
increased through a variety of analytical and numerical
relativity studies that have shed new light into physics of
these systems, and the properties of the gravitational wave
signals that may be emitted by these sources [1–32]. Strides
in the modeling and understanding of eccentric compact
binary mergers has been accompanied by population syn-
thesis models [33–36] that have been significantly improved
to be compatible with the observation of stellar mass black
holes in dense stellar environments, such as globular clusters
in our galaxy [37–39], and galactic nuclei [40–42].
Impelled by these theoretical and observational

advances, researchers have developed the required tools
to search for this astrophysical population in gravitational
wave data [43–48]. Some recent studies have attempted to
constrain the eccentricity of actual gravitational wave
sources [49]. A plethora of studies for the massive stellar
black hole merger named GW190521 [50] provide per-
suasive evidence for the existence of eccentric compact
binary mergers in dense stellar environments [28,51,52]. It

is expected that several tens of eccentric compact binary
mergers observed by advanced ground-based gravitational
wave detectors will suffice to understand what formation
channels contribute or dominate the eccentric merger
rate [49].
In view of these developments, and the upcoming deluge

of gravitational wave observations to be enabled by
advanced LIGO [53,54] and its international counterparts
VIRGO and KAGRA [47,55,56], it is timely and relevant to
continue developing adequate tools for the identification of
gravitational wave signals that may be produced by eccentric
compact binary mergers.
The best tool at hand to gain insights about the physics of

eccentric binary black hole mergers is numerical relativity,
and thus we use the open source, community-driven,
numerical relativity software, the EINSTEIN TOOLKIT [57]
to produce a suite of numerical relativity waveforms that
describe eccentric, spinning, nonprecessing binary black
hole mergers. Non-spinning, eccentric simulations were
investigated in previous works in [3,46]. These waveforms
include higher order modes up to l ≤ 4, except for memory
modes.We use these numerical relativity waveforms to carry
out the following studies:

(i) Gravitational wave detection We construct two
types of waveforms that include either quadrupole*avjoshi2@illinois.edu
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modes, l ¼ jmj ¼ 2, or modes up to l ≤ 4. We
assume stellar mass binary black holes that may be
observed by advanced LIGO-type detectors and
compute signal-to-noise ratio (SNR) calculations
for a variety of astrophysical scenarios, and explore
whether the inclusion of higher order wave modes
leads to measurable SNR increases.

(ii) Gravitational wave modeling We use two effective-
one-body (EOB) eccentric waveform models: TEO-
BResumS [58–65] and SEOBNRE [5,66,67] to
estimate the eccentricities of our numerical rela-
tivity waveforms. This exercise was useful to
identify areas of improvement for next generation
waveform models, and to get a better understanding
of signals that may be discovered in upcoming
gravitational wave searches. Note that due to con-
ventions and different definitions of eccentricity, the
inferred eccentricities cannot be directly compared
with each other. A detailed comparison between the
two waveform models is given in Knee et al. [68].

(iii) Parameter space degeneracy We quantified the
impact of including higher order modes in terms
of fitting factor calculations that aim to pinpoint an
optimal quasicircular NRHybSur3dq8 waveform
signal [69] whose astrophysical parameters best
reproduce the complex morphology of moderately
or highly eccentric numerical relativity waveforms.

These three complementary studies underscore the
importance of improving our understanding of compact
binary mergers in dense stellar environments. It is not
enough to hope for the best and expect that burst or machine
learning searches identify complex signals in gravitational
wave data [46,48]. It is also necessary to develop a
comprehensive toolkit that encompasses numerical relativ-
ity waveforms, semianalytical or machine learning based
models, and signal processing tools to detect and then infer
the astrophysical properties of eccentric compact binary
mergers. Not doing so would be a disservice to the proven
detection capabilities of advanced gravitational wave detec-
tors, and would limit the science reach of gravitational wave
astrophysics. To contribute to this important endeavor, we
release our catalog of numerical relativity waveforms along
with this article.
This article is organized as follows. We describe our

approach to create a catalog of eccentric numerical
relativity waveforms in Sec. II. Section IV presents our
waveform catalog, and a systematic study on the impor-
tance of including higher order wave modes in terms of
SNR calculations. In Sec. V we study whether surrogate
models based on quasicircular, spinning, nonprecessing
binary black hole numerical relativity waveforms can
capture the physics of spinning, nonprecessing eccentric
mergers. We summarize our findings and future directions
of work in Sec. VI.

II. NUMERICAL SETUP AND
SIMULATION DETAILS

We used the EINSTEIN TOOLKIT to generate a catalog of
numerical relativity waveforms. Initial data for the binaries
was computed using the TwoPunctures code. The evolution
was done with the CTGAMMA code implementing the 3þ 1
BSSN formulation. The outer boundary of the simulation
domain was placed far enough (2500 M) to avoid any
contamination of the signal until 200 M after the merger.
Each simulation was run at three resolutions to check
for convergence (see appendix A): N ¼ 36, 40, 44 where
N is the resolution across the finest grid radius. The
highest resolution simulations were used for all analyses.
Further details of the simulation setup are given in [3].
Waveforms extracted at future null infinity were computed
for 1 < l ≤ 4 and 1 ≤ jmj ≤ l modes using the POWER

code [70] by extrapolating the observed signals from 7
detectors located 100–700 M. m ¼ 0 modes were not used
since these modes (so-called memory modes) are many
orders of magnitude smaller than the dominant modes of
the waveform making a reliable estimation difficult due to
numerical resolution (for more details see Sec. 6.2 in [71]).
A plot of all the hþ simulation waveforms is shown in
Fig. 1. Note that the simulations are also dimensionalized in
units of M.
Table I describes the properties of our waveform catalog,

including the mass-ratio, individual spins and orbital
eccentricity of each binary (measured from both waveform
templates). The library consists of 27 simulations across 3
mass ratios, q ¼ f2; 4; 6g, and a combination of non-
precessing individual spins, namely �0.6 and �0.3, for
the primary (heavier) and secondary (lighter) binary com-
ponents, respectively.

III. ECCENTRICITY MEASUREMENTS

Orbital eccentricity in a Keplerian interpretation can only
be defined for a BBH system during the early inspiral,
where the orbits of the binaries are nearly closed (the
adiabatic approximation). This definition breaks down
close to the merger, which is when our simulations begin.
Thus, the definitions of eccentricity used to generate the
initial conditions are ill-defined, even though they produce
eccentric simulations.
Using evolution information of the binary, such as the

separation between the components, throughout the simu-
lation to obtain a measure of orbital eccentricity is not
useful, as such a concept is gauge-dependent by assuming a
coordinate system. To obtain a useful measure of eccen-
tricity, we calibrate our numerical simulations to the spin-
aligned eccentric EOB models TEOBResumS and
SEOBNRE. For both of these models, a reference eccen-
tricity e0 and reference GW frequency fref are used as inputs
to generate adiabatic initial conditions of the binary from
which the waveform is computed. As investigated in Knee
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et al. [68], each waveform model’s definition of e0 may
vary, due to different conventions of fref and initial
condition constructions.
The method is similar to that used in [18,66]. The key

idea consists of using l ¼ jmj ¼ 2 waveforms to compute
the fitting factor between a given numerical relativity
waveform, and an array of templates. In this work, we
have assigned fref ¼ 10 Hz, which is at the lower end of
the detectability range for LIGO. To estimate the eccen-
tricity of our numerical relativity waveforms, we need to
compute a few objects. The first of them is the inner
product between one of our numerical relativity wave-
forms, hNR22 , and a waveform template, htemplate

22 , given by:

hhNR22 jhtemplate
22 i ¼ R

�Z
t2

t1

hNR22 h
� template
22

�
: ð1Þ

WhereR represents the real component. Note that the inner
product is calculated by maximizing over both the time and
phase of the two waveforms. t1 represents an initial time at
a point free from initial junk radiation, and t2 marks the end

of the numerical relativity simulation. t2 in general is
50–100 M after merger for the signal to reach the outermost
detectors in the simulation, but not long enough so that the
initial junk radiation gets reflected back to the detectors due
to the outer Dirichlet boundary conditions. The norm of a
waveform is given by:

khk≡ ffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p
: ð2Þ

With these two quantities, we can compute the fitting factor
between one of our numerical relativity waveforms and a
bank of waveform templates, and thus measure the eccen-
tricity e0 as:

FF≡max
t0;ϕ0

hhNR22 jhtemplate
22 i

khNR22 k · khtemplate
22 k ; ð3Þ

e0 ¼ arg max
e0

ðFFÞ; ð4Þ

where the eccentricity e0 is defined at the lower frequency
bound fref which determines the length of the simulation
prior to merger for the template. This calculation essentially
corresponds to the inner product of a numerical relativity
waveform maximized over a bank of SEOBNRE and
EOBResumS templates. Note that to dimensionalize fref ,
the total mass of the binary (M) needs to be provided. Thus,
all inferences of eccentricity are dependent on the choice of
M, which differed based on the waveform template code for
stability purposes.
All inferred eccentricities for both TEOBResumS and

SEOBNRE are given in Table I.

A. TEOBResumS inferences

For TEOBResumS waveforms (produced with the
TEOBResumS-DALI branch), we set the total mass of
the binary system M ¼ 30M⊙ and fref ¼ 10 Hz. Scans
were made up to e0 ¼ 0.8, with a resolution of 0.001. To
note, for TEOBResumS, the waveform begins from apas-
tron and while we maximize the fitting factor by changing
the initial phase ϕ0, this resulting definition of fref is
different from that used in SEOBNRE.
From Table I, we see that good matches are obtained for

nearly all the simulations—23 out of 27 simulations have
FF > 90%. The remaining simulations that do not match
well visually appear to be of high eccentricity (possibly
e0 > 0.8) which would be beyond the explored parameter
space. Figure 2 shows a comparison between the simu-
lations and the best fitting TEOBResumS for 3 simulations.

B. SEOBNRE inferences

To produce this bank of SEOBNRE templates, we set
fref ¼ 10 Hz. To obtain stable SEOBNRE waveforms, we
set the total mass of the binary system M ¼ 60M⊙ for

TABLE I. Physical parameters of numerical relativity wave-
form catalog Mass-ratio, q, individual spins, ðχ1z; χ2zÞ, and
estimated orbital eccentricity, e0, of our numerical relativity
waveforms.

Simulation q χ1z χ2z

TEOBResumS
e0ðFFÞ

SEOBNRE
e0ðFFÞ χup

U1007 2 0.6 0.3 0.36 (97.2%) 0.39 (94.8%) 0.39
U1008 2−0.6−0.3 0.39 (98.3%) 0.67 (94.0%) −0.39
U0009 2 0.6 0.3 0.46 (97.2%) 0.70 (29.3%) 0.39
U0010 2−0.6−0.3 0.47 (88.5%) 0.79 (99.3%) −0.39
U0011 2 0.6 0.3 0.46 (55.6%) 0.08 (45.7%) 0.39
U0027 2 0.6−0.3 0.47 (99.0%) 0.70 (90.3%) 0.26
U0028 2−0.3−0.3 0.40 (98.7%) 0.66 (96.7%) −0.23
U0030 2−0.3−0.3 0.56 (76.7%) 0.77 (84.0%) −0.23

U0014 4−0.6−0.3 0.27 (99.4%) 0.26 (99.8%) −0.46
U1013 4 0.6 0.3 0.29 (97.5%) 0.33 (61.2%) 0.46
U1014 4−0.6−0.3 0.48 (98.3%) 0.68 (95.0%) −0.46
U0015 4 0.6 0.3 0.47 (99.5%) 0.05 (28.7%) 0.46
U0017 4 0.6 0.3 0.56 (93.4%) 0.45 (30.2%) 0.46
U0032 4−0.3−0.3 0.40 (99.2%) 0.40 (87.2%) −0.25
U0033 4 0.6−0.3 0.44 (97.6%) 0.69 (18.6%) 0.39
U0034 4−0.3−0.3 0.40 (98.7%) 0.41 (93.1%) −0.25
U0035 4 0.6−0.3 0.56 (79.2%) 0.49 (25.7%) 0.39
U0036 4−0.3−0.3 0.44 (91.7%) 0.70 (79.7%) −0.25

U0020 6−0.6−0.3 0.34 (99.7%) N/A −0.50
U1019 6 0.6 0.3 0.34 (94.9%) 0.58 (12.7%) 0.50
U1020 6−0.6−0.3 0.54 (93.8%) N/A −0.5
U0021 6 0.6 0.3 0.50 (93.7%) 0.20 (15.6%) 0.50
U0023 6 0.6 0.3 0.52 (98.4%) 0.60 (13.1%) 0.50
U0038 6−0.3−0.3 0.48 (97.3%) 0.70 (94.1%) −0.26
U0039 6 0.6−0.3 0.44 (96.2%) 0.26 (29.8%) 0.45
U0040 6−0.3−0.3 0.32 (98.3%) 0.41 (96.2%) −0.26
U0041 6 0.6−0.3 0.53 (96.8%) 0.47 (13.6%) 0.45
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FIG. 1. Numerical relativity waveform catalog Each column is associated with a given mass-ratio q ¼ f2; 4; 6g. From top to bottom,
simulations are ordered in ðχ1z; χ2zÞ. The eccentricity e0 inferred from TEOBResumS is given in the label. Each panel presents two types
of waveforms: a l ¼ jmj ¼ 2 signal (orange), and one that includes higher order modes (blue). We have selected the inclination of the
binary that maximizes the contribution higher order modes.
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e ≤ 0.5 and M ¼ 30M⊙ for e > 0.5. Higher mass binaries
spend less cycles in the detectable frequency band, and so
for highly eccentric simulations, the code does not have
enough inspiral points to produce an accurate waveform,
requiring a smaller mass for stability. Lower mass binaries
at low eccentricities produced waveforms that were too
large, and thus M ¼ 60M· was chosen for efficiency.
As seen in Table I, we find good fitting factors for

roughly half of the simulations. For some highly eccentric
simulations, a suitable match was not found. This is because
some numerical relativity waveforms contain moderately
spinning binaries with highly eccentric orbits that are
beyond the realm of applicability of the SEOBNRE model.
It is possible to quantify the reliability of SEOBNRE signals
with the “spin hang-up parameter”, χup [66]

χup ¼
8χeff þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
χA

11
; ð5Þ

where χeff ¼ðqχ1zþχ2zÞ=ð1þqÞ, χA¼ðqχ1z−χ2zÞ=ð1þqÞ
and η ¼ m1m2=M2 for a binary of masses ðm1; m2Þ and
(orbit aligned) dimensionless spins ðχ1z; χ2zÞ respectively.
Furthermore, M ¼ m1 þm2 and q ¼ m1=m2 ≥ 1.
For simulations with poor matches, we find that

χup > 0.35, and visual inspection of these waveforms
suggest high eccentricity, e0 > 0.6. The SEOBNRE tem-
plate waveform is inaccurate in producing reliable wave-
forms in that region of parameter space [66]. Indeed, for the
two simulations with χup ¼ −0.5, we were unable to obtain
a suitable waveform. Nevertheless, in the valid regions,
eccentricities are found to good accuracy. For simulations
with FF < 75% the eccentricity is considered unconstrained,
and we simply report the best match for completeness.

C. Comparison of the two waveform models

For a detailed comparison between the two waveform
models, we refer to Knee et al. [68] which goes into detail
about the systematic differences. Two results that can be
corroborated is the fact that the TEOBResumS calibrated e0
is uniformly less than that of SEOBNRE (eTEOB0 < eSEOBNRE0 ).
Moreover, the disparity is low at eTEOB0 ≈ 0.2 and increases
up to 50% for higher eccentricities.

IV. IMPORTANCE OF HIGHER ORDER
HARMONICS

Having computed higher order wave modes, hlmðtÞ, we
can construct the full waveform

hðt; θ;ϕÞ ¼ hþ þ ihx ¼
X
l≥2

Xm≤l

m≥−l
hlm−2Ylmðθ;ϕÞ; ð6Þ

where −2Ylmðθ;ϕÞ are the spin-weight–2 spherical har-
monics computed at a particular inclination (θ) and azimuth
(ϕ). θ ¼ 0 corresponds to observing the binary face-on, i.e.,
with the orbital angular momentum vector pointed toward
the observer.
Since nearly eccentric waveforms resemble quasicircu-

lar signals near merger due to circularization, we compute
the importance of including higher order harmonics on
the signal across the entire waveform evolution to better
quantify the effect of eccentricity. From the results of [46]
Sec. III, the ΔB metric is used. It involves integrating over
the entire numerical relativity waveform (after removing
junk radiation)

FIG. 2. Comparison between numerical relativity waveforms and TEOBResumS. Comparison of three waveforms overlaid with the
best matching TEOBResumS waveform, effectively calibrating the eccentricity e0 of the waveform. The total mass of the binary is
M ¼ 30M⊙ and the reference frequency is fref ¼ 10 Hz. Solid lines represent numerical relativity waveforms, while dotted lines
represent optimal TEOBResumS templates.
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Bðl;jmjÞðθ;ϕÞ ¼
Z

T

t¼t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðt; θ;ϕÞh̃ðt; θ;ϕÞ

q
dt; ð7Þ

ΔBðθ;ϕÞ ¼ Bðl;jmjÞðθ;ϕÞ − Bðl¼jmj¼2Þðθ;ϕÞ
Bðl¼jmj¼2Þðθ̂; ϕ̂Þ ; ð8Þ

where ðθ̂; ϕ̂Þ represent the orientation that maximizes the
(l ¼ jmj ¼ 2) mode of B. To find the ðθ;ϕÞ combination
that maximizes the contribution of higher order modes in
terms of SNR calculations, we scan across ðθ;ϕÞ space at a
resolution of 0.01 radians and select the orientation
(θ�;ϕ�) that maximizes ΔB in Eq. (8). The resultant
optimal orientation is usually within three categories:
one with the inclination close to the pole, one with
inclination close to the equator and one slightly apart
from both these angles.
To quantify the impact higher order modes would have

on ground based detectors, we focus on the optimal SNR
response of a waveform [h] as [46]

SNR½h�2 ¼ 4R
Z

∞

0

h̃ðfÞh̃�ðfÞ
SnðfÞ

df; ð9Þ

where SnðfÞ is the one-sided power spectral density
(PSD) for LIGO’s zero detuned high power configuration
(ZDHP) [72]. We thus compute SNRs for both ðl; jmjÞ and
(l ¼ jmj ¼ 2) modes across all sky locations ðα; βÞ with
the optimized orientation ðθ�;ϕ�Þ. For the following results
we set the polarization angle to ψ ¼ π=4, and compute the
effect of the higher order modes as

ΔSNR ¼ SNRðl;jmjÞ − SNRðl¼jmj¼2Þ

ˆSNRðl¼jmj¼2Þ ; ð10Þ

where ˆSNRðl¼jmj¼2Þ is the maximum value of the l ¼
jmj ¼ 2 mode across the sky ðα̂; β̂Þ. The total mass of the
binary is set to M ¼ 60M⊙.
The results can be categorized into three different

categories depending on what the optimal orientation of
the binary is ðθ�;ϕ�Þ. The first category is that in which
θ� → 0, and the inclusion of higher order modes has a
marginal impact on the SNR of the signal, typically no
more than 4%. The second category is for 70° < θ� < 110°,
in which case the contribution of higher order modes to the
SNR of the signal is significant, with ΔSNR ∼ 25%. The
final category are the in-between values of θ� for which
ΔSNR will be intermediate to that of the first two
categories. Figure 3 shows the high effect of higher order
modes on the skymap for two simulations. Increasing the
mass of the binary toM ¼ 80M⊙ yields an increase of SNR
to nearly 25% for some of the simulations.
These studies underscore the importance of including

higher order modes in the modeling and detection of
eccentric compact binary mergers, since SNR increases
of order ΔSNR ∼ 20% mean that marginally detectable
signals [73] may then become easier to detect, or observ-
able to larger distances.

V. COMPARISONS WITH QUASICIRCULAR
WAVEFORMS

Studies in the literature have shown that the morphology
of nonspinning, mildly eccentric binary black hole mergers
may be captured by quasicircular, spinning, nonprecessing
binary black hole mergers [7]. Here we quantify whether
this parameter space degeneracy between orbital eccentric-
ity and spin corrections still remain when we directly
compare our new set of eccentric, spinning, nonprecessing
numerical relativity waveforms with the NRHybSur2dq8
surrogate model [74] that describes quasicircular, spinning,
nonprecessing mergers.
We carry out this study by computing fitting factor

calculations, see Eq. (3), between a given waveform in
our numerical relativity catalog and an array of
NRHybSur2dq8 waveforms that scan the ðq; χ1z; χ2zÞ

FIG. 3. Importance of higher order modes for SNR calculations
The panels show the high increase in SNR, ΔSNR in Eq. (10), as
a result of including higher order modes in the modeling of
eccentric, spinning, binary black hole mergers. We assume an
advanced LIGO-type detector, and binaries with total mass M ¼
60M⊙ for numerical relativity waveform U0014 (top panel) and
U0023 (bottom panel).
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parameter space using a simple grid search. We use an
interval of size Δq ¼ 2 centered around the truth mass-
ratio. So for numerical relativity waveforms of mass-ratio
q ¼ 4, we scan an interval that covers the range 2 ≤ q ≤ 6

(note for q ¼ 2 the interval is 1 ≤ q ≤ 4). For individual
spins, we consider the range −0.7 ≤ χf1z;2zg ≤ 0.7. The
resolution of the search is δq ¼ 0.1, and δχ ¼ 0.02 for both
spins. Following these conventions, we consider two cases.
In the first both numerical relativity waveforms and
NRHybSur2dq8 waveforms include only the l ¼ jmj ¼
2 mode, whereas in the second case both types of wave-
forms include higher order modes. Results of this analysis
for simulations U0014 and U0023 are presented in Fig. 4.
Additional results for other numerical simulations in

our waveform catalog may be found in Table II. These
findings, along with the results we presented in Table I
using the SEOBNRE waveform family, exhibit the impor-
tance of developing waveform models that are informed by
numerical relativity simulations to accurately capture
orbital eccentricity and spin corrections. At this time,
these results show that moderately or highly eccentric and
spinning signals may not be captured by template

matching algorithms, unless the signal is loud enough
to be captured by unmodeled (burst) searches.
In summary, this study shows that it is not possible for

quasicircular, spinning, nonprecessing signals to capture
the dynamics of moderately and highly eccentric, spinning,
nonprecessing signals. We either develop the required
methods (waveforms and signal processing tools) to search
for and find these signals or we may miss an interesting
population of compact binary sources.

VI. CONCLUSIONS

We have presented a set of 27 eccentric, spin-aligned
binary black hole simulations that describe three different
mass-ratios q ¼ f2; 4; 6g. To measure the eccentricity of the
simulations, we computed fitting factors against two spin-
aligned eccentric effective-one-body models with eccentric-
ity—TEOBResumS and SEOBNRE. We were able to esti-
mate eccentricities for nearly all of the simulations with
TEOBResumS, with eccentricity ranges of 0.27 ≤ eTEOB0 <
0.58 and roughly half of the simulations with SEOBNRE
with eccentricity ranges 0.26 ≤ eSEOBNRE0 < 0.8. The
remaining simulations appear to be of even higher

FIG. 4. Nonparameter space degeneracy between spin and eccentricity corrections Fitting factor (FF) calculations between numerical
relativity waveform U0014 (top panels) and U0023 (bottom panels) and NRHybSur2dq8 waveform templates. In both cases, we show
results for signals that include only l ¼ jmj ¼ 2 modes (left panels) and higher order modes (right panels). We notice significant
discrepancies between ground-truth and recovered values for the mass-ratio and individual spins of the binary components through FF
calculations.
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eccentricity, though producing such waveforms from tem-
plates proved to be difficult for the values of spins and orbital
eccentricities used in our simulations. Current limitations to
the existing SEOBNRE library will be alleviated by includ-
ing higher order eccentricity terms, which become increas-
ingly important at higher mass ratios as indicated by our
findings and those reported in [66]. Indeed in Liu et al. [67],
the authors introduce a new model SEOBNREHM that utilizes
these higher order terms greatly that improves fitting factors
and produces accurate waveforms for maximally spinning,
highly eccentric simulations. Comparing our simulations
with this model is a future project that may yield new results.
For these simulations, we performed the following

analyses:
(1) Selecting the orientation of the binary that max-

imizes the contribution of higher order modes, we
computed the SNR observed for ground-based
LIGO-type detectors across the sky. In doing so,
we observed that for simulations, the inclusion of
high order modes in the waveform increases the
SNR between 5%–35%.

(2) We do not find significant parameter space degen-
eracies between spinning, eccentric waveforms and
quasicircular, spinning waveforms upon computing
fitting factor calculations assuming a coarse grid
search across mass ratio, and spins. In general the
fitting factors are worse when comparing higher
order modes.

These analyses underscore the importance of using
numerical relativity to understand the physics of these
compact binary systems, and then inform the design of
neural network models [46,48,75,76], matched filtering
approaches [77,78], or unmodeled searches [79,80] to
discover moderately and highly eccentric spinning binaries
in future discovery campaigns.
We also found that including higher order terms will

enhance the detectability as the results suggest that the
(l ¼ jmj ¼ 2) modes do not faithfully capture the dynam-
ics of the system for asymmetric mass-ratio systems.
This set of simulations extends the library of open-source

simulations introduced in [3], stored in the DataVault
repository maintained by NCSA at the University of
Illinois [81]. We intend to make this set of simulations
publicly available on the same repository soon and until
then, any data can be availed upon request to the authors of
this paper.
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APPENDIX A: CONVERGENCE

Details about the nature of convergence can be found in
appendix B of [3]. To summarize, though the spatial finite
difference operators are at 8th order, the error in the
simulations does not scale to 8th order with spatial reso-
lution. This is due to a combination of lower order operations
due interpolation on the mesh refinement boundary (5th
order accuracy), adaptive mesh refinement operations and
varying temporal resolution (from differing spatial resolu-
tions). For each simulation in the library, we have 3 different
resolutions which we use to check for convergence—
N ¼ 36, 40, 44 corresponding to the number of points in
the finest grid radius. We compare the phase difference
between the highest resolution and the lower resolutions. To
see how much the phase difference reduces with resolution,
we scale the phase difference of the higher difference
(h40–h44) to match the lower difference (h36–h44).
Figure 5 shows the phase difference of the signals for the
U1007 simulation. The order appears to be around 7 which
is reasonable for these simulations. Note that this is not the

FIG. 5. Convergence of the phase difference between the
waveform of the highest resolution (h44) and the lower reso-
lutions (h40, h36) with appropriate scaling to get a rough match.
This suggests an order of around 7 but this is not representative of
the entire library. Note that the plot includes the initial junk
radiation (left of vertical dotted line) and the merger and ring-
down signal both of which have very large phase differences that
are cut out in the plot.
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same scaling for other simulations in the library—it can vary
from 4 to 10. This illustrates the point that it is difficult to
pull out a universal convergence scaling of the simulations.

APPENDIX B: INFERRED PARAMETERS
FROM NRHybSur2dq8

Here we list the inferred parameters from the parameter
survey of the NRHybSur2dq8 library of quasicircular,

spin-aligned binary waveforms for both the (l ¼ jmj ¼ 2)
and the l ≤ 4 modes separately. The simulations not
listed in Table II had consistently low FFs across all
parameter space. The resolution of the grid search
was 0.1 in q, and 0.02 in spins near the inferred values
(a lower resolution search was initially done followed by a
finer search).
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