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The superradiant instabilities of Kerr-Newman black holes with charged or uncharged massive spin-0
fields are calculated analytically to the next-to-leading order in the limit of α ∼ rgμ ≪ 1. A missing factor
of 1=2 in the previous leading-order result is identified. The next-to-leading order result has a compact form
and is in good agreement with existing numerical calculations. The percentage error increases with α, from
a few percent for α ∼ 0.1 to about 50% for α ∼ 0.4. Massive neutral scalars too heavy to be produced with
Kerr black hole superradiance may exist in the superradiant region of Kerr-Newman black holes.
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I. INTRODUCTION

Ultralight boson condensate could form around a
rotating black hole (BH) if the boson’s Compton wave-
length is comparable to the size of the BH horizon. With
the proper choice of parameters, such scalar condensate
can continuously extract energy and angular momentum
from the BH until the BH spin is below some critical
value and/or nonlinear effects become important [1–3].
This phenomenon is known as BH superradiance [4,5].
There exist numerous works on various bosons, including
spin-0 [1,6–26], spin-1 [25–38] and spin-2 [39,40] fields.
In this work, we focus on the ultralight scalars. The
superradiance of other types of bosons could be found in
the comprehensive review [41].
The scalar superradiance, especially with a Kerr BH, is

important in phenomenology. Such BH-condensate sys-
tems have been widely studied for constraining the scalar
properties and for the possible observation of the gravita-
tional wave (GW) emission. It has been shown that the BH
evolves along the Regge trajectories on the mass-spin plot
if the superradiant effect is strong [1,17]. Consequently,
there are “holes” on the Regge plot in which BHs cannot
reside. Combining with the observed BH spin distribution,
favored and unfavored scalar mass ranges can be identified
[42–44]. On the other hand, with the continuous GW
generated by the BH-condensate, works have been done to
study the possibility of resolving these systems from the
backgrounds [1,13–15,18,19,45]. The positive frequency
drift [13,27] and the beatlike pattern [46] have been
proposed to distinguish them from other monochromatic

GW sources, such as neutron stars. The unresolved BH-
condensate systems have also been carefully studied as
stochastic backgrounds for GW detectors [18,19].
The phenomenological study of BH superradiance

depends on the accurate determination of the bound state’s
eigenfrequency. For Kerr BHs, the numerical continued
fraction method was first proposed by Leaver for massless
scalars [47]. It is later developed for massive scalars
in Ref. [8] and further refined in Ref. [10]. In the small
α ∼ rgμ limit, an analytic approximation was obtained
by Detweiler [6]. Nonetheless, these two solutions are
not consistent with each other. The problem is recently
resolved in our previous work by including the next-to-
leading-order (NLO) contribution to the analytic approxi-
mation [21]. A power-counting strategy is also proposed
which facilitates the NLO calculation.
In Ref. [48], Damour et al. have shown that the super-

radiance can also be realized with a charged massive scalar
field in Kerr-Newman spacetime. Comparably, it does
not attract as much attention as that for Kerr BHs.
It may be because the Kerr-Newman BH (KNBH) is
unlikely to play important roles in astrophysics [49–51].
Nonetheless, as pointed out in Ref. [52], the KNBH
provides an ideal testing ground for studying the interplay
between gravity and electrodynamics. In the previous
studies of scalar superradiance with KNBHs, Detweiler’s
method has been applied to obtain the leading-order (LO)
analytic approximation at the α ≪ 1 limit [53–55]. The
numerical solution has also been achieved using the 3-term
continued fraction method [56]. The parameter space of
the KNBH superradiance is also probed by analyzing the
existence of the potential well [57–59].
In this work, we refine the power-counting strategy in

our previous work and apply it to calculate the NLO
contribution of the KNBH superradiance. A compact NLO
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expression for α ≪ 1 is obtained which could be straight-
forwardly applied to phenomenological study. The scalar
field can be either neutral or charged. By comparing to the
existing numerical results, the percentage error of the NLO
approximation increases with α, from a few percent for
α ∼ 0.1 to about 50% for α ∼ 0.4. In comparison, the LO
approximation does not agree with the numerical results
qualitatively (see Fig. 3 below).
This paper is organized as follows. In Sec. II, we briefly

review theKlein-Gordon equation to be solved and obtain the
superradiance condition from its solution at the outer horizon.
Detweiler’s method is applied to derive the LO and NLO
analytic expressions in Sec. III. In Sec. IV, the obtained
analytic expressions are compared to the existing numerical
calculation. Some effects relevant to phenomenology are
also discussed. Finally, we summarize our results in Sec. V.

II. SCALARS IN KERR-NEWMAN SPACETIME

The spacetime around a KNBH with mass M, angular
momentum J and charge Q can be expressed in Boyer-
Lindquist coordinates [60],

ds2 ¼ −
�
1 −

2rgr −Q2

Σ2

�
dt2 þ Σ2

Δ
dr2 þ Σ2dθ2

þ
�
ðr2 þ a2Þ þ ð2rgr −Q2Þa2sin2θ

Σ2

�
sin2θdφ2

−
2ð2rgr −Q2Þasin2θ

Σ2
dtdφ; ð1Þ

with

a ¼ J=M; ð2aÞ
rg ¼ GM; ð2bÞ
Σ2 ¼ r2 þ a2 cos2 θ; ð2cÞ

Δ ¼ r2 − 2rgrþ a2 þQ2: ð2dÞ

The equation Δ ¼ 0 gives two event horizons at

r� ¼ rg � b with b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2g − a2 −Q2

q
. In this work, we

only consider the KNBHs with r2g − a2 −Q2 ≥ 0.
To study the superradiance of a scalar field close to a BH,

one needs to solve the combined Einstein and Klein-
Gordon field equations, which is a very difficult task,
especially because the existence of the scalar perturbs the
spacetime around the BH. Nonetheless, it has been shown
that this perturbation could be safely ignored due to the tiny
energy-stress tensor of the scalar cloud for Kerr BH [17].
We assume the same situation happens for the KNBHs.
We further assume the self-interaction of the scalar field can
also be ignored. Then the problem reduces to solving the
Klein-Gordon equation on the stationary Kerr-Newman
background,

ð∇α − iqAαÞð∇α − iqAαÞϕ − μ2ϕ ¼ 0; ð3Þ
where μ and q are the mass and electric charge of the
scalar field, respectively. The vector Aα is the background
electromagnetic potential,

Aα ¼
Qr
Σ2

ð−1; 0; 0; a sin2 θÞ: ð4Þ

For complex scalars, ϕ can be written with the separation
of variables,

ϕðt; r; θ;φÞ ¼
X
l;m

Z
dωRlmðrÞSlmðθÞeimφe−iωt: ð5Þ

Inserting it into Eq. (3), one obtains the angular equation,

1

sin θ
d
dθ

�
sin θ

dSlm
dθ

�

þ
�
−a2ðμ2 − ω2Þcos2θ − m2

sin2θ
þ Λlm

�
Slm ¼ 0; ð6Þ

where Λlm is the eigenvalue. Its solution SlmðθÞ is
called the spheroidal harmonic function, whose proper-
ties can be found in Ref. [61]. The corresponding radial
equation is [62]

Δ
d
dr

�
Δ
dRlm

dr

�
þ UðrÞRlm ¼ 0; ð7Þ

with

UðrÞ ¼ ½ωða2 þ r2Þ − am − qQr�2
þ Δ½2amω − μ2r2 − a2ω2 − Λlm�: ð8Þ

These are the equations for the complex scalar field. For
real scalars, one should set q ¼ 0 in Eq. (3) and choose
only the real part on the right side of Eq. (5). In the rest of
this paper, we focus on the equations for the complex
scalars. The case for the real scalars can then be simply
obtained by choosing q ¼ 0.
To obtain a constraint on the parameters that allow

superradiance, we change to the tortoise coordinates,

dr� ¼
r2 þ a2

Δ
dr; ð9Þ

with which the interesting region r ∈ ðrþ;þ∞Þ corre-
sponds to r� ∈ ð−∞;þ∞Þ. We also define,

R�ðr�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
RðrÞ: ð10Þ

Then Eq. (7) can be rewritten into a Schrödinger-like
equation,

d2R�ðr�Þ
dr2�

− VðrÞR�ðr�Þ ¼ 0; ð11Þ
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where the effective potential is

VðrÞ ¼ −
�
ω −

amþ qQr
a2 þ r2

�
2

þ Δμ2

a2 þ r2

−
Δ

ða2 þ r2Þ2 ½2amω − Λlm þ a2ðμ2 − ω2Þ�

þ Δ½Δþ 2rðr − rgÞ�
ða2 þ r2Þ3 −

3Δ2r2

ða2 þ r2Þ4 : ð12Þ

In the region close to the outer horizon rþ, the potential has
the asymptotic form,

lim
r→rþ

VðrÞ ¼ −ðω − ωcÞ2 þOðr − rþÞ; ð13Þ

where the critical frequency is defined as

ωc ¼
maþ qQrþ
r2þ þ a2

¼ maþ qQrþ
2rgrþ −Q2

: ð14Þ

Inserting this asymptotic expression of VðrÞ into Eq. (11),
one gets the solution at the outer horizon,

lim
r�→−∞

R�ðr�Þ ¼ d1e−iðω−ωcÞr� þ d2eiðω−ωcÞr� ; ð15Þ

where the first term is the wave falling into the outer
horizon, and the second term is the wave escaping from
the outer horizon; d1 and d2 are their respective amplitudes.
Physically, nothing can escape from the horizon, indicating
d2 ¼ 0. The superradiance requires the phase velocity and
the group velocity to be in opposite directions, which leads
to the superradiance condition for a KNBH,

ReðωÞ < ωc: ð16Þ

From Eq. (14), we can see that with Q fixed, this condition
is more relaxed (strict) compared to the superradiance
condition of a Kerr BH if the charges of the scalar and the
BH have the same sign (different signs).

III. ANALYTIC SOLUTION AT α ≪ 1

In the small α limit, the asymptotic matching method first
proposed in Ref. [6] gives a reasonable approximation of
the complex eigenfrequency ω. In a previous work, we have
further calculated the NLO contribution for Kerr BH super-
radiance [21]. The NLO result has a much better agreement
with the numerical solutions compared to the LO approxi-
mation. In the current work, we apply the method to
KNBHs. In this section, we first repeat the LO approxima-
tion in Ref. [56]. A missing factor of 1=2 is identified.
We then continue to calculate the NLO contribution. The
calculation is valid for both real and complex scalar fields.
For a real scalar field, one simply sets q ¼ 0 throughout.

A. Leading-order approximation

We first formally introduce the power-counting param-
eter α ∼ rgμ for the expansion. The scaling of other
parameters are Reω ∼ μ ∼ q and a ∼Q ∼ rþ ∼ r− ∼ rg.
Unlike some previous calculations in which α is defined
to be rgμ, here we leave α as a power-counting parameter,
which could be rgμ or any other quantity with the same
scaling. In the limit r → þ∞, the derivative term in Eq. (7)
divided by Δ2 can be written into a familiar form,

1

Δ
d
dr

�
Δ
dR
dr

�
≈
d2R
dr2

þ 2

r
dR
dr

¼ 1

r
d2

dr2
ðrRÞ: ð17Þ

The second term on the left side of Eq. (7) divided by Δ2

can be expanded in powers of rg=r. Keeping terms up to
r2g=r2, the radial function at large r limit ðr ≫ rgÞ can be
simplified as

d2

dr2
ðrRÞ þ

�
ðω2 − μ2Þ þ 2ð2rgω2 − rgμ2 − qQωÞ

r

−
l0ðl0 þ 1Þ

r2
þOðr−3Þ

�
rR ¼ 0; ð18Þ

where

l0ðl0 þ 1Þ ¼ Λlm þ 4r2gðμ2 − 3ω2Þ þ a2ðω2 − μ2Þ
þQ2ð2ω2 − q2 − μ2Þ þ 8rgqQω: ð19Þ

The l0 is related to the orbital angular number by

l0 ¼ lþ ϵ: ð20Þ
Here ϵ ∼Oðα2Þ plays the role of a regulator and cannot be
simply dropped.
For a confined profile, the real part of ω is less than the

boson mass μ. The physical solution is the one that decays
exponentially at large r. It is more convenient to define,

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q
; ð21Þ

λ ¼ 2rgω2 − rgμ2 − qQω

κ
; ð22Þ

y ¼ κr; ð23Þ

uðyÞ ¼ yR

�
y
κ

�
: ð24Þ

Then Eq. (18) can be rewritten as

d2uðyÞ
dy2

þ
�
−1þ 2λ

y
−
l0ðl0 þ 1Þ

y2

�
uðyÞ ¼ 0: ð25Þ

The two solutions are Whittaker functions, and only one of
them has the correct behavior at r → þ∞ required by the
bound states. The solution with the correct behavior can
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be further written in terms of confluent hypergeometric
functions. Finally, the radial function at large r is

RðrÞ ¼ e−κrð2κrÞl0Uðl0 þ 1 − λ; 2l0 þ 2; 2κrÞ; ð26Þ
up to an arbitrary normalization.

The bound states only exist if λ > 0 in the large r region.
The superradiance conditon in Eq. (16) gives another
constraint ωðr2þ þ a2Þ −ma < qQrþ. Combining these
two inequalities, one can obtain

0 < ð2rgω2 − rgμ2 − qQωÞrþ < 2rgrþω2 − rgrþμ2 − ðr2þ þ a2Þω2 þmaω

¼ maω − rgrþμ2 þQ2ω2 < ½ma − ðrgrþ −Q2Þμ�ω; ð27Þ

indicating no superradiant bound state if m ≤ 0. It also
shows that Reissner-Nordström BHs could not hold
bounded scalar clouds. The minimum KNBH spin a
allowing superradiant instability is approximately
μðrgrþ −Q2Þ=m.
Next, we look at Eq. (7) in the small r limit. For BH

superradiance, the inner boundary is the outer horizon

r ¼ rþ. It is more convenient to write the radial function in
terms of z ¼ ðr − rþÞ=2b,

zðzþ 1Þ d
dz

�
zðzþ 1Þ dR

dz

�
þ UðzÞR ¼ 0; ð28Þ

where UðzÞ can be written as an expansion of z,

UðzÞ ¼ p2 þ z

�
4rgrþω

b

�
rþω −

am
2rþ

−
Q2ω

2rg

�
− ðΛlm þ r2þμ2 þ a2ω2Þ þ qQ

b
ðamþ rþqQ − a2ω − 3r2þωÞ

�

þ z2ða2ω2 − Λlm þ 2μ2a2 − 3μ2r2þ þ 6r2þω2 þ 2Q2μ2 þ q2Q2 − 6rþqQωÞ
þ 4z3b½rgμ2 þ 2rþðω2 − μ2Þ − qQω� þ 4z4b2ðω2 − μ2Þ; ð29Þ

in which,

p ¼ ðr2þ þ a2Þ
2b

ðω − ωcÞ: ð30Þ

Note that both p and rgωc scale as Oðα0Þ.
In the limit of small α, the Λlm has the expanded form

Λlm ¼ lðlþ 1Þ þOðα4Þ. At the LO of α, we get the radial
equation in limit ðr − rþÞ ≪ maxð1=ω; 1=μÞ,

zðzþ 1Þ d
dz

�
zðzþ 1ÞdR

dz

�
þ ½p2 − l0ðl0 þ 1Þzð1þ zÞ�R ¼ 0:

ð31Þ
At LO, the l0 should be replaced by l in this order.
Nonetheless, the ϵ in l0 plays the role of a regulator in
the intermediate steps. It will be set to zero at the end.
The general solution of Eq. (31) is a linear combination

of two associated Legendre functions, and the physical
solution is the one with the ingoing wave at r → rþ. After
changing the variable back to r, the solution of the radial
function is

RðrÞ ¼
�
r − rþ
r − r−

�
−ip

2F1

�
−l0; l0 þ 1; 1 − 2ip;−

r − rþ
2b

�
;

ð32Þ
up to an arbitrary normalization.

Next, we apply the matching method first proposed in [6]
and further developed recently in Ref. [21]. The solution of
Eq. (26) is only valid in r ≫ rg limit, while the solution in
Eq. (32) requires r ≪ rgα−2 from the ignorance of terms
proportional to z3 and z4. They have an overlapped region
in the limit α ≪ 1. In this region, the two solutions are
expected to have the same behavior. The behavior of
Eq. (26) in the overlapped region is obtained by looking
at its small r limit, which is,

ð2κÞl0Γð−2l0 − 1Þ
Γð−l0 − λÞ rl

0 þ ð2κÞ−l0−1Γð2l0 þ 1Þ
Γðl0 þ 1 − λÞ r−l

0−1: ð33Þ

On the other hand, the behavior of Eq. (32) in the over-
lapped region is obtained by looking at its large r limit,
which is1

ð2bÞ−l0Γð2l0 þ 1Þ
Γðl0 þ 1ÞΓðl0 þ 1 − 2ipÞ r

l0 þ ð2bÞl0þ1Γð−2l0 − 1Þ
Γð−l0 − 2ipÞΓð−l0Þ r

−l0−1:

ð34Þ

1Without the regulator ϵ, the ratio Γð−2l − 1Þ=Γð−lÞ in
Eq. (34) is ill-defined and needs to be handled with great caution.
In comparison, the calculation with ϵ is more straightforward.
More discussion can be found in the Appendix of Ref. [21].
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The ratio of the coefficients of the rl
0
and r−l

0−1 should
be the same for the two solutions in the overlap region.
The obtained equation is the eigenequation of ω. It can be
solved perturbatively by the observation that the second
term in the expression (33) must be suppressed at small r,
indicating l0 þ 1 − λ is very close to zero or some negative
integer,

l0 þ 1 − λ ¼ −n − δλ; ð35Þ

where jδλj ≪ 1 and n is zero or a positive integer.
Following the convention in literature, we also define
n̄ ¼ nþ lþ 1. Then the above relation is re-expressed
as λ ¼ n̄þ ϵþ δλ. At LO of α, it reduces to λ ¼ n̄þ δλ.
Combining with the definition of λ in Eq. (22), the rgκ
scales as α2, which is important in power-counting. Since
jδλj ≪ 1, one could solve for δλ perturbatively with
expressions (33) and (34).
The LO calculation of δλ for Kerr BHs was completed in

Ref. [6], with the regulator ϵ set to zero from the beginning.
Recently, we have confirmed a missing factor of 1=2 in
that result [21], which was first identified in Ref. [34]. The
missing factor is conjectured to be from the mistreatment of
Γ functions with negative integer arguments. The correct
formula is provided in the Appendix of Ref. [21]. This
subtle calculation turns out to be straightforward with the
regulator ϵ kept in the intermediate steps. More details
could be found in Ref. [21]. For KNBHs, the first LO
calculation of δλwas completed in Ref. [56]. It followed the
same steps in Ref. [6] and missed the factor 1=2 as well.
After the correction, the LO result of δλ is

δλð0Þ ¼ −ipð4κbÞ2lþ1
ðnþ 2lþ 1Þ!ðl!Þ2
n!½ð2lÞ!ð2lþ 1Þ!�2

Yl
j¼1

ðj2 þ 4p2Þ;

ð36Þ

where the superscript (0) indicates that it is the LO result.
It scales as Oðα4lþ2Þ.
The eigenfrequency ω can be expressed in terms of δλ

with Eqs. (22) and (35). Defining ω ¼ ω0 þ ω1δλ
ð0Þ in

Eq. (22) and expanding it to the linear term of δλð0Þ,
one arrives at

λ ¼ rgð2ω2
0 − μ2Þ − qQω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

0

p

þ rgω0ω1ð3μ2 − 2ω2
0Þ − qQμ2ω1

ðμ2 − ω2
0Þ3=2

δλð0Þ þOððδλð0ÞÞ2Þ:

ð37Þ

On the other hand, we have λ ¼ n̄þ δλð0Þ from Eq. (35).
Then it is straightforward to get,

rgð2ω2
0 − μ2Þ − qQω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

0

p ¼ n̄; ð38aÞ

rgω0ω1ð3μ2 − 2ω2
0Þ − qQμ2ω1

ðμ2 − ω2
0Þ3=2

¼ 1: ð38bÞ

Note that in getting Eq. (38a), we have ignored the ϵ
which could be traced back to the l0 in Eq. (35). This
omission leads to an error in rgω0 at the order of Oðα5Þ.
Solving ω0 perturbatively from Eq. (38a), one arrives at

ωð0Þ
0

μ
¼ 1 −

1

2

�
rgμ − qQ

n̄

�
2

þOðα4Þ: ð39Þ

Then the ω1 could be expressed in terms of ω0 from
Eq. (38b) and expanded in powers of α,

ωð0Þ
1

μ
¼ ðrgμ − qQÞ2

n̄3
þOðα4Þ: ð40Þ

Since bothω0 andω1 are real,ω0 andω1δλ
ð0Þ are the leading

terms of the real and imaginary parts of ω, respectively.
Note, the imaginary part of ω scales as Oðα4lþ5Þ.

B. Next-to-leading-order approximation

In a previous work, we have carefully studied the
superradiance of a real scalar field around a Kerr BH [21].
The LO eigenfrequency ω obtained in Ref. [6] has an error
as large as 160% compared to the numerical result. After
correcting the missing factor 1=2, the convergence is
improved, with the error ≲80%. Except for the large
discrepancy, the LO result also has some strange behaviors.
Since the LO result is the leading term in the Taylor series
of the exact ω at α ¼ 0, it is expected to converge to the
exact ω with α approaching zero. Nonetheless, the relative
error seems to be a nonzero constant for small α, reaching
as large as 30% at α ¼ 0.07 for a ¼ 0.99. This discrepancy
at small α calls into question the power-counting strategy.
Moreover, the discrepancy at small α increases quickly with
the BH spin parameter a.
These problems are solved by adding the NLO correc-

tion of ω [21]. Below we follow the same steps for the
KNBHs. The key observation is that the first term in the
square bracket in Eq. (29), which scales as α2, is enhanced
by a factor of 1=b. For BHs with large spin a and/or charge
Q, this term can be as important as the LO contribution.
Other NLO contributions are also added for consistency.
The first NLO correction appears as ϵ in the asymptotic

radial wave function at large r, which is given in Eq. (26). It
can be calculated from the definition of l0 in Eq. (19),

ϵ ¼ −8r2gμ2 þQ2μ2 þ 8rgqQμ − q2Q2

2lþ 1
þOðα4Þ: ð41Þ
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The second NLO contribution is from the asymptotic radial
wave function at small r. The potentialUðzÞ in Eq. (29) can
be approximated by p2 − l0ðl0 þ 1Þzð1þ zÞ þ zd, where d
is defined as

d ¼ ð4rgμ − 2qQÞp − 2ð4rg − rþÞrgμ2
þ 2μqQð4rg − rþÞ − q2Q2 þOðα3Þ:

Up to an arbitrary normalization, the corresponding radial
function at the NLO is

RðrÞ ¼ ðr − r−Þ
ffiffiffiffiffiffiffiffi
d−p2

p

ðr − rþÞip 2F1

�
−l0 − ipþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d − p2

q
;

l0 þ 1 − ipþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d − p2

q
; 1 − 2ip;−

r − rþ
2b

�
: ð42Þ

In the r → þ∞ limit, the asymptotic behavior of this
function is

ð2bÞ−l0−ipþ
ffiffiffiffiffiffiffiffi
d−p2

p
Γð2l0 þ 1ÞΓð1− 2ipÞ

Γðl0 þ 1− ip−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d − p2

p
ÞΓðl0 þ 1− ipþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d− p2

p
Þ
rl

0

þ ð2bÞl0þ1−ipþ
ffiffiffiffiffiffiffiffi
d−p2

p
Γð−2l0 − 1ÞΓð1− 2ipÞ

Γð−l0 − ip−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d− p2

p
ÞΓð−l0 − ipþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d− p2

p
Þ
r−l

0−1:

ð43Þ

Following similar matching steps above, the NLO contri-
bution of δλ could be obtained after some algebra,

δλð1Þ ¼
�
d
2ϵ

−
ϵ

2
− ip

� ð4κbÞ2l0þ1Γðnþ 2l0 þ 2ÞΓpd

n!½Γð2l0 þ 1ÞΓð2l0 þ 2Þ�2 ;

ð44Þ

where the superscript (1) indicates it is the NLO result, and
the Γpd is defined as

Γpd ¼

���Γ�l0 þ 1þ ipþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d − p2

p 	
Γ
�
l0 þ 1þ ip −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d − p2

p 	���2Γð1þ 2ϵÞΓð1 − 2ϵÞ
Γ
�
1 − ip −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d − p2

p
− ϵ

	
Γ
�
1þ ipþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d − p2

p
þ ϵ

	
Γ
�
1 − ipþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d − p2

p
− ϵ

	
Γ
�
1þ ip −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d − p2

p
þ ϵ

	 :

ð45Þ

The last NLO contribution is from ω0 and ω1. Defining

ω ¼ ωð1Þ
0 þ ωð1Þ

1 δλð1Þ, the expansion of λ in Eq. (37) is still
valid, only with δλð0Þ replaced by δλð1Þ. Combining with
λ ¼ n̄þ ϵþ δλð1Þ, one could follow the same steps as in the
LO calculation and obtain,

ωð1Þ
0

μ
¼ 1 −

1

2

�
rgμ − qQ

n̄

�
2

þ ðrgμ − qQÞ2
8n̄4

½3ðrgμ − qQÞð5rgμ − qQÞ þ 8n̄ϵ�
þOðα6Þ; ð46aÞ

ωð1Þ
1

μ
¼ ðrgμ − qQÞ2

n̄3

−
3ðrgμ − qQÞ2

2n̄5
½ðrgμ − qQÞð5rgμ − qQÞ þ 2n̄ϵ�

þOðα6Þ: ð46bÞ

Finally, we discuss a subtle problem related to the ω
dependence in the definition of p. In the calculation of the

δλð1Þ, theω in p should be replaced byωð0Þ
0 , rather thanωð1Þ

0 .
Here we explain the reason. In deriving the small-r
asymptotic form of the radial function, we approximate
UðzÞ in Eq. (29) by p2 − l0ðl0 þ 1Þzðzþ zÞ þ zd. The

coefficient of z and z2 are accurate at Oðα2Þ and Oðα0Þ,
respectively. At z ∼OðαÞ, this two terms are at the same
order of Oðα4Þ. Consequently, we only need to keep the

terms in p2 up toOðα4Þ, which then leads to ω ¼ ωð0Þ
0 in p.

In comparison to the numerical calculation, this choice of ω

gives a satisfactory NLO result. Using ωð1Þ
0 in p is not as

satisfactory, due to partially including the higher-order
contributions.

IV. RESULTS

The eigenfrequency of the Kerr BH superradiance has
been studied in Refs. [8,10,21]. In comparison, the case
for Kerr-Newman BH has two more parameters, the BH
charge Q and the scalar charge q. In this section, we first
study the superradiance of a neutral scalar field, focusing
on the effect of Q. Then we consider the superradiance of a
charged scalar field. Comparisons with the numerical
calculations in the literature are also provided.

A. Neutral scalar fields

In the following study of neutral scalar superradiance, we
adopt the NLO δλð1Þ in Eq. (44), where the scalar charge q

is set to zero. The ωð1Þ
0 and ωð1Þ

1 in Eqs. (46) are used. Then

the NLO eigenfrequency is ω ¼ ωð1Þ
0 þ ωð1Þ

1 δλð1Þ.
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The BH charge Q cannot be chosen arbitrarily. In our
derivation, we have implicitly assumed the KNBH has

horizons, which requires jQj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2g − a2

q
. In addition,

neutral scalars could not distinguish the sign of the BH
charge. Mathematically, it means the BH chargeQ can only
appear in the formulas as Q2. So it is sufficient to only
consider positive Q.
The superradiance condition in Eq. (16) with q ¼ 0 has

the same form as the Kerr BH. The effect of the BH charge

Q is hidden in rþ ¼ rg þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2g − a2 −Q2

q
. Keeping the BH

massM and spin a fixed, larger charge Q results in a larger
upper limit of ReðωÞ. Thus massive scalars too heavy to be
produced with Kerr BH superradiance may exist in the
superradiant region of KNBHs.
Figure 1 shows the imaginary part of ω as a function

of rgμ. For comparison, the curves for Kerr BHs are
also shown, labeled with Q ¼ 0. All curves have the same
qualitative behavior. With an increasing value of rgμ, they
first increase, then drop rapidly to below zero after reaching
the maxima. There are three effects of the BH charge Q.

Firstly, the superradiant region of rgμ is enlarged with
larger Q. Correspondingly, the peak of the curve moves to
the right with increasing Q. The maximum rgμ with
positive ImðωÞ is quite accurately determined by μ ¼ ωc.
Secondly, the maximum ImðωÞ increases with larger Q.
Fixing the BH spin to be a ¼ 0.9, the maximum values of
rgImðωÞ with Q ¼ 0 are 2.088 × 10−8, 2.427 × 10−9 and
1.029 × 10−10 for l ¼ m ¼ 1, 2, 3, respectively. The
numbers for Q ¼ 0.43 are 1.476 × 10−7, 2.006 × 10−8

and 8.760 × 10−10, which are larger than the Q ¼ 0 cases
by factors of 7.07, 8.26 and 8.51. For BHs with spin
a ¼ 0.7, the maximum Q is 0.71. The enhancement factors
are 90.29, 269.91, and 707.16, for l ¼ m ¼ 1, 2, 3,
respectively. Finally, in the ranges of small rgμ before
reaching the round peaks of theQ ¼ 0 curves, the chargeQ
turns out to impede the growth of the scalar clouds. We
define a factor sðQÞ as

sðQÞ ¼ ImωðQÞ
ImωðQ ¼ 0Þ : ð47Þ

In Fig. 2, we show sðQÞ as a function of rgμ, for two
different BH spins and several values of Q. Interestingly,
the suppression factor varies slowly with rgμ. It decreases
with increasing Q, reaching the minimum value ∼0.8 for
a ¼ 0.9 and ∼0.5 for a ¼ 0.7.
In Ref. [56], the authors claim that when a≳ 0.997rg,

the maximum value of Imω decreases as Q grows. We do
not observe the same behavior. For any spin parameter a,
the peak value of Imω from the NLO approximation
increases monotonically with Q.

B. Charged scalar fields

In this part, we study the superradiance of KNBHs under
charged scalar perturbation. The NLO eigenfreqency is

given by ω ¼ ωð1Þ
0 þ ωð1Þ

1 δλð1Þ, with the NLO δλð1Þ in

Eq. (44), and the ωð1Þ
0 and ωð1Þ

1 in Eqs. (46). Note that

the ω in p should take the form of ωð0Þ
0 in Eq. (39), as

explained at the end of Sec. III B. We also compare the
NLO results to the LO ones. The latter is given by

ω ¼ ωð0Þ
0 þ ωð0Þ

1 δλð0Þ, with the expressions defined in
Eqs. (36), (39) and (40). The ω in p is replaced by μ
for consistency.
Figure 3 shows the comparison of the LO and NLO

approximations to the numerical results taken from Fig. 6 in
Ref. [53]. The NLO approximation agrees much better with
the numerical results. In particular, the average percentage
errors of the NLO results for the points in Fig. 3 are
6.7%; 9.9%; 20.7% and 48.3% for rgμ ¼ 0.1, 0.2, 0.3 and
0.41, respectively. These numbers can be used as estimates
of the NLO results for different values of α. Moreover, the
convergence of NLO results is better for a smaller value
of rgμ, qualifying the power-counting strategy. To the

FIG. 1. The imaginary part of NLO eigenfrequency with q ¼ 0
as a function of rgμ. Only the curves with n ¼ 0 are shown. In the
top (bottom) panel, the BH spin a is 0.9 (0.7). In both panels,
from left to right, the three bunches correspond to l ¼ m ¼
1, 2, 3, respectively. In each bunch, the curves with different
colors correspond to different values of the BH charge Q.
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contrary, the LO results do not seem to converge to the
numerical result at small rgμ, which is also observed for
Kerr BHs [21]. The reason for the bad convergence of the
LO result is explained at the beginning of Sec. III B.
A caveat is that the curves for the LO approximations in
Fig. 3 are not the same as those in Ref. [53]. The latter
misses a factor of 1=2.
Table I shows the comparison of the NLO results and

the numerical solutions for five more parameter sets in

FIG. 3. Comparison of the numerical result and the analytic
approximations for n ¼ 0, l ¼ m ¼ 1, a ¼ 0.98, and Q ¼ 0.01,
with rg chosen to be 1 for compacity. The imaginary part of ω is
plotted as a function of the scalar field charge q. The dashed
(solid) curves are the LO (NLO) approximations and the scattered
dots are numerical results taken from Fig. 6 in Ref. [53]. The
curves with different colors correspond to different values of μ,
labeled above the corresponding curves with the same color.

TABLE I. Comparison of the NLO approximations of Im(ω)
with the numerical results from Ref. [56] (cases A to D) and from
Ref. [53] (case E). All cases are with n ¼ 0 and l ¼ m ¼ 1. The
numbers below assume rg ¼ 1 for compacity. The percentage
error is calculated by taking the difference between the approxi-
mation and the numerical result, then dividing it by the numerical
result. Case A: a ¼ 0.9, Q ¼ 0.2, q ¼ −0.264, μ ¼ 0.282; Case
B: a ¼ 0.99, Q ¼ 0.1105, q ¼ −0.6335, μ ¼ 0.397; Case C:
a ¼ 0.997, Q ¼ 0.004, q ¼ −18.91, μ ¼ 0.39822; Case D:
a ¼ 0.997, Q ¼ 0.0001, q ¼ −756.68, μ ¼ 0.39816; Case E:
a ¼ 0.98, Q ¼ 0.01, q ¼ −8, μ ¼ 0.35.

Case Type Im(ω) % error

A LO 5.623 × 10−9 74.9%
NLO 2.882 × 10−8 28.5%
Numerical 2.243 × 10−8 � � �

B LO 1.224 × 10−8 92.9%
NLO 1.981 × 10−7 14.1%
Numerical 1.736 × 10−7 � � �

C LO 1.264 × 10−8 92.9%
NLO 2.041 × 10−7 14.1%
Numerical 1.788 × 10−7 � � �

D LO 1.263 × 10−8 92.9%
NLO 2.041 × 10−7 14.1%
Numerical 1.788 × 10−7 � � �

E LO 1.27 × 10−8 88.8%
NLO 1.39 × 10−7 22.7%
Numerical 1.13 × 10−7 � � �

FIG. 4. The imaginary part of NLO eigenfrequency as a
function of rgμ with different negative values of q. Other
parameters are n ¼ 0, l ¼ m ¼ 1, a ¼ 0.9 and Q ¼ 0.01.

FIG. 2. Factor sðQÞ with q ¼ 0 as a function of rgμ for BH spin
a ¼ 0.9 (upper panel) and a ¼ 0.7 (lower panel). The vertical
dashed line in each panel labels the value of rgμ where
ImωðQ ¼ 0Þ reaches its maximum value for the corresponding
spin parameter a.
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the literature. They are the most unstable modes with
different parameters. The percentage uncertainty of the
NLO approximation varies from 14% to 29% compared to
the numerical results.
Next, we analyze the effect of q. In the formulas, the q

and Q appears as qQ and Q2. So it is sufficient to consider
the case with Q > 0, and with q being either positive or
negative. There are two constraints for the existence of
the superradiant bound states. The superradiance requires
ω < ωc in Eq. (16). And the existence of the bound states
gives the second constraint λ > 0 from Eq. (22), which is
approximately rgμ − qQ > 0.
If the scalar and the KNBH at the center have opposite

charges, i.e. qQ < 0, the scalar cloud is more tightly
bounded. In this case, the second constraint above is
automatically satisfied. Figure 4 shows the imaginary part
of ω as a function of rgμ in the n ¼ 0, l ¼ m ¼ 1 bound
state, with BH spin a ¼ 0.9 and charge Q ¼ 0.01. The
scalar charge q varies from −45 to 0. The region of
superradiance shrinks when q is more negative, which is
a consequence that ωc decreases with q for fixed Q. The
peak value of ImðωÞ seems to be smaller with decreasing q.
Nonetheless, a more careful study shows that the maximum
ImðωÞ happens at some small but nonzero jqj (see Table II).
If the charges of the scalar and the KNBH have the same

sign, i.e. qQ > 0, the scalar cloud is less bounded. The
second constraint above gives rgμ > qQ for the existence
of bound states. Figure 5 shows the imaginary part of ω as a
function of rgμ in the n ¼ 0, l ¼ m ¼ 1 bound state, with
BH spin a ¼ 0.9 and chargeQ ¼ 0.01. With larger value of
positive q, the superradiance region shrinks and the peak is
lower as well.

V. CONCLUSION

In this work, we have studied the scalar superradiant
instability of the KNBH and obtained the LO and NLO
expressions of the superradiant rate in the regime of α ≪ 1.
The calculation is based on the matching method which
is proposed by Detweiler for Kerr BHs in Ref. [6] and
developed in our previous work [21]. In this paper, we
further refine the power-counting strategy and apply it to
the KNBH.
The LO scalar superradiant rate for KNBH has

been calculated previously in Ref. [53]. With our refined
power-counting strategy, a similar result is obtained but
with an extra overall factor of 1=2. We conjecture the
factor is from the mistreatment of the Γ functions with
negative integer arguments, similar to the case of Kerr
BHs. More analysis could be found in our previous
work [21].
We compare the LO and NLO results with the existing

numerical calculations in the literature. The LO results
are smaller than the numerical solutions by an order of
magnitude. To the contrary, the percentage error of the
NLO result ranges from a few percent to about 50%,
depending on the value of α (see Fig. 3 and Table I). In
particular, the error of the NLO result decreases for a
smaller value of α, qualifying our power-counting strategy.
The obtained NLO expression has a compact form

and can be straightforwardly applied to phenomenological
studies of the KNBH superradiance as well as the ultralight
scalars, either neutral or charged. Besides the superradiance
condition ReðωÞ < mΩH as the Kerr BHs, there is another
condition rgμ > qQ for the existence of bound states.
For neutral scalars, larger BH charge Q leads to a larger
superradiant range of rgμ as well as the maximum super-
radiant rate (see Fig. 1). Thus massive neutral scalars too
heavy to be produced with Kerr BH superradiance may
exist in the superradiant region of KNBHs. The situation is
different for charged scalars. For fixed BH spin a and

FIG. 5. The imaginary part of NLO eigenfrequency as a
function of rgμ with different positive values of q. Other
parameters are n ¼ 0, l ¼ m ¼ 1, a ¼ 0.9 and Q ¼ 0.01.

TABLE II. The maximum value of ImðωÞ obtained by varying
q, with a and Q fixed. The numbers below assume rg ¼ 1 for
compacity.

(a,Q) q Im(ω)

(0.9, 0.01) −2.5 2.10313 × 10−8

−2.25 2.10329 × 10−8

−2.2 2.10329 × 10−8

−2 2.10268 × 10−8

(0.9, 0.02) −1.25 2.10814 × 10−8

−1.1 2.10831 × 10−8

−1 2.10815 × 10−8

−0.75 2.10682 × 10−8

(0.7, 0.01) −3 4.14247 × 10−10

−2.8 4.14270 × 10−10

−2.75 4.14260 × 10−10

−2.5 4.14104 × 10−10

(0.7, 0.02) −1.5 4.14863 × 10−10

−1.4 4.14888 × 10−10

−1.25 4.14726 × 10−10

−1 4.13927 × 10−10

NEXT-TO-LEADING-ORDER SOLUTION TO KERR-NEWMAN … PHYS. REV. D 107, 064037 (2023)

064037-9



charge Q, increasing the scalar charge q always leads to
narrower superradiant range of rgμ (see Figs. 4 and 5).
Interestingly, the maximum superradiant rate happens at a
small negative scalar charge q (see Table II). We have no
explanation for this observation.
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