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We investigate the frame-dragging effect of the hairy Kerr spacetimes on the spin of a test gyro and
accretion disk. First, we analyze Lense-Thirring (LT) precession frequency, geodetic precession frequency,
and the general spin precession frequency of a test gyro attached to a stationary observer in the spacetime.
We find that the black hole hair suppresses those precession frequencies in comparison with that which
occurs in Kerr spacetime in general relativity. Moreover, using those frequencies as a probe, we
differentiate the hairy Kerr black hole (BH) from naked singularity (NS). Specifically, as the observer
approaches the central source along any direction, the frequencies grow sharply for the hairy Kerr BH,
while for the hairy NS they are finite except at the ring singularity. Then, we investigate the quasiperiodic
oscillations (QPOs) phenomena as the accretion disk approaches the hairy Kerr BH or NS. To this end, we
analyze the bound circular orbits and their perturbations. We find that as the orbits approach the
corresponding innermost stable circular orbit (ISCO), both LT precession frequency and periastron
precession frequency behave differently in the hairy Kerr BH and NS. Additionally, the hairy parameters
have significant effects on the two frequencies. We expect that our theoretical studies could shed light
on astrophysical observations in distinguishing hairy theories from Einstein’s gravity, and also in
distinguishing BH from NS in spacetime with hair.
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I. INTRODUCTION

Einstein’s general relativity (GR) is a successful theory
in modern physics and passes plenty of tests in astrophysics
as well as astronomy. The existence of black holes is a
prediction of GR, and black holes provide natural labo-
ratories to test gravity in the strong field regime. Recent
observations on gravitational waves [1–3] and the super-
massive black hole images [4–8] agree well with the
predictions of Kerr black hole described by the Kerr metric
from GR. More observations, such as those from Next
Generation Very Large Array [9] and Thirty Meter
Telescope [10], also provide significant properties in the
regime of strong gravity of black hole spacetimes. In
particular, these observations open a valuable window to
explore, distinguish, or constrain physically viable black
hole solutions that exhibit small deviations from the
Kerr metric. On the other hand, due to the additional

surrounding sources, the black holes in our Universe could
obtain an extra global charge dubbed “hair” and the
spacetime may deviate from the Kerr metric. Recently, a
rotating hairy Kerr black hole was constructed with the use
of the gravitational decoupling (GD) approach [11,12],
which is designed for describing deformations of
known solutions of GR due to the inclusion of additional
sources. The hairy Kerr black hole attracts lots of atten-
tions. Plenty of theoretical and observational investigations
have been done in this hairy Kerr black hole spacetime,
for examples, thermodynamics [13], quasinormal modes
and (in)stability [14–16], strong gravitational lensing
and parameter constraint from Event Horizon Telescope
observations [17,18].
There are many theoretical scenarios in which a visible

singularity exists, especially after it was found in [19] that a
spacetime with a central naked singularity can be formed as
an equilibrium end state of the gravitational collapse of
general matter cloud. However, whether naked singularity
(NS) really exists in nature and what is its physical
signature distinguished from black hole (BH) are still open
questions. In mathematics, the Kerr spacetime metric in
GR, as a solution of Einstein field equations, describes Kerr
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BH and the Kerr singularity is contained in the event
horizon, otherwise, if the event horizon disappears, the
metric describes a NS. In shadow scenario, the shadow cast
by NS spacetime was found to have similar size to that an
equally massive Schwarzschild black hole can cast [20].
More elaborate discussions on shadow from NS have been
carried out in [21–23], which are important theoretical
studies and match recent observations on the shadow of
M87* and SgrA*. In addition, the orbital dynamics of
particles or stars around a horizonless ultracompact object
could be another important physical signature which could
be distinguishable from that around black holes, since
the nature of timelike geodesics in a spacetime closely
depends upon the geometrical essence of the spacetime. In
this scenario, the timelike geodesics around different types
of compact objects and the trajectory of massive particles or
stars are widely studied, [24–33] and references therein.
People expect that the nature of the precession of the
timelike orbits can provide more information about the cen-
tral compact object, as GRAVITY [34] and SINFONI [35]
are continuously tracking the dynamics of S stars orbiting
around SgrA*.
For the timelike orbits around a rotating compact body,

the geodetic precession [36] and Lense-Thirring (LT)
precession [37] are two extraordinary effects predicted
by GR. The former effect is also known as de Sitter
precessions and it is due to the spacetime curvature of the
central body, while the latter effect is due to the rotation of
the central body which causes the dragging of locally
inertial frames. One can examine the dragging effects by
considering a test gyro based on the fact that a gyroscope
tends to keep its spinning axis rigidly pointed in a fixed
direction relative to a reference star. The LT precession and
geodetic effects have been measured in the Earth’s gravi-
tational field by the Gravity Probe B experiment, in which
the satellite consists of four gyroscopes and a telescope
orbiting 642 km above the Earth [38]. The geodetic
precession in Schwarzschild BH and the Kerr BH have
been studied in [39]. The LT precession is more complex
and usually some approximations should be involved. In
the weak field approximations, the magnitude of LT
precession frequency is proportional to the spin parameter
of the central body and decreases in the order of r−3 with r
the distance between the test gyro from the central rotating
body [40]. In the strong gravity limit, the LT precession
frequency was studied in various rotating compact objects,
for instances, in Kerr black hole [41,42] and its general-
izations [43], in rotating traversable wormhole [44] and in
rotating neutron star [45]. Those studies further show that
the behavior of LT frequency in the strong gravity regime
closely depends on the nature of the central rotating bodies.
In particular, it was proposed in [46] that the spin
precession of a test gyro can be used to distinguish Kerr
naked singularities from black holes, which was then
extended in modified theories of gravity [47–50].

Thus, one of the main aims of this paper is to investigate
the spin precession frequency, including the LT frequency
and geodetic frequency, of the test gyro in the hairy Kerr
spacetime, and differentiate the hairy Kerr BH from hairy
NS. We find a clear difference on the precession frequen-
cies between hairy rotating BH and NS, and the effects of
the hairy parameters are also systematically explored.
Additionally, we also investigate the accretion disk

physics in the hairy Kerr spacetime, which is realized by
studying the orbital precession of a test timelike particle
around the hairy Kerr BH and NS. The motivation stems
from the followings. Accretion in low-mass x-ray binaries
(LMXBs) occurs in the strong gravity regime around
compact bodies, in which the quasiperiodic oscillations
(QPOs) phenomena involves and their frequencies in the
Hz to kHz range have been detected [51–53]. Plenty of
efforts have been made to explain the QPOs phenomena,
see [54] for a review. It shows that the geodesic models of
QPOs are related with three characteristic frequencies of
the massive particles orbiting around the compact bodies,
namely the orbital epicyclic frequency and the radial and
vertical epicyclic frequencies. Therefore, since the QPOs
provide a way to testify the strong gravity, these three
frequencies could be used as a tool to study the crucial
differences among the central compact objects [48] or test/
constrain alternative theories of gravity [55–59]. In par-
ticular, more recently it was proposed in [60] that LT effect
may have connection with QPOs phenomena and perhaps
be used to explain the QPOs of accretion disks around
rotating black holes. Thus, Along with using the spin
precession frequency and LT precession frequency of the
test gyro to indicate the differences between hairy Kerr BH
and NS, we further study the three characteristic frequen-
cies of massive particles orbiting around the corresponding
central rotating objects. It is found that the LT precession
and periastron precession of massive particle behave crucial
differences between hairy Kerr BH and NS, as a support of
the results from the test gyro in strong gravity regime of
compact bodies.
Our paper is organized as follows. In Sec. II, we briefly

review the hairy Kerr spacetime derived from GD
approach, and analyze the parameter spaces for the corre-
sponding black hole and naked singularity. Then we derive
the timelike geodesic equations in the spacetime. In
Sec. III, we derive the spin precession frequency of a test
gyro in the hairy Kerr spacetime. Then we compare the LT
frequency as well as the spin frequency between the hairy
Kerr BH and NS cases. In Sec. IV, we study the accretion
disk physics by analyzing innermost stable circular orbit
(ISCO), and LT precession and periastron precession in
terms of the three characteristic frequencies, of a timelike
particle around the hairy Kerr BH and NS, respectively. The
last section is our conclusion and discussion. Throughout
the paper, we use GN ¼ c ¼ ℏ ¼ 1 and all quantities are
rescaled to be dimensionless by the parameter M.
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II. HAIRY Kerr SPACETIME AND THE
TIMELIKE GEODESIC EQUATIONS

In this section, first we will show a brief review on the
idea of gravitational decoupling (GD) approach and the
hairy spacetime constructed from GD approach by
Ovalle [11]. Then we derive the timelike geodesic equa-
tions in the hairy Kerr spacetime.
The no-hair theorem in classical general relativity states

that black holes are only described by mass, electric charge
and spin [61–63]. But it is possible that the interaction
between black hole spacetime and matters brings in other
charge, such that the black hole could carry hairs. The
physical effect of these hairs can modify the spacetime of
the background of black hole, namely hairy black holes
may form. Recently, Ovalle et al. used the GD approach to
obtain a spherically symmetric metric with hair [11]. The
hairy black hole in this scenario has great generality
because there is no certain matter fields in the GD
approach, in which the corresponding Einstein equation
is expressed by

Rμν −
1

2
Rgμν ¼ 8πT̃μν: ð1Þ

Here T̃μν is the total energy momentum tensor written as
T̃μν ¼ Tμν þ ϑμν where Tμν and ϑμν are energy momentum
tensor in GR and energy momentum tensor introduced by
matter fields or others, respectively. ∇μT̃μν ¼ 0 is satisfied
because of the Bianchi indentity. It is direct to prove that
when ϑμν ¼ 0, the solution to (1) degenerates into
Schwarzschild metric. The hairy solution with proper
treatment (strong energy condition) of ϑμν was constructed
and the detailed algebra calculations are shown in [11,12].
Here we will not repeat their steps, but directly refer to the
formula of the hairy metric

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ with

fðrÞ ¼ 1 −
2M
r

þ αe−r=ðM−l0=2Þ: ð2Þ

In this solution, M is the black hole mass, α is the
deformation parameter due to the introduction of surround-
ing matters and it describes the physics related with the
strength of hairs, and l0 ¼ αl with l a parameter with length
dimension corresponds to primary hair which should
satisfy l0 ≤ 2M to guarantee the asymptotic flatness. The
metric (2) reproduces the Schwarzchild spacetime in the
absence of the matters, i.e., α ¼ 0.
Later, considering that astrophysical black holes in our

universe usually have rotation, the authors of [18] induced
the rotating counterpart of the static solution (2), which is
stationary and axisymmetric, and in Boyer-Lindquist coor-
dinates it reads as

ds2 ¼ gttdt2 þ grrdr2 þ gθθdθ2 þ gϕϕdϕ2 þ 2gtϕdtdϕ

¼ −
�
△ − a2sin2θ

Σ

�
dt2

þ sin2θ

�
Σþ a2sin2θ

�
2 −

△ − a2sin2θ
Σ

��
dϕ2

þ Σ
△
dr2 þ Σdθ2

− 2asin2θ

�
1 −

△ − a2sin2θ
Σ

�
dtdϕ ð3Þ

with

Σ ¼ r2 þ a2cos2θ;

△ ¼ r2 þ a2 − 2Mrþ αr2e−r=ðM−l0
2
Þ: ð4Þ

It is noticed that the above metric is also proved to satisfy
the equations of motion in the GD approach [11]. The
metric describes certain deformation of the Kerr solution
due to the introduction of additional material sources (such
as dark energy or dark matter). In the metric, a is the spin
parameter and M is the black hole mass parameter. Similar
to those in static case, α is the deviation parameter from GR
and l0 is the primary hair which is required to be l0 ≤ 2M
for asymptotic flatness. When α ¼ 0, the metric reduces
to standard Kerr metric in GR, namely no surrounding
matters.
The metric (3) could describe nonextremal hairy Kerr

black hole, extremal hairy Kerr black hole and hairy naked
singularity which correspond to two distinct, two equal and
no real positive roots of grr ¼ △ ¼ 0 as well as Σ ≠ 0,
meaning they have two horizons, single horizon and no
horizon, respectively. The parameter space ðl0 − aÞ of the
related geometries for some discrete α has been show
in [18]. Here in Fig. 1, we show a 3D plot in the parameters
space ðl0; a; αÞ for various geometries. In the figure, for the
parameters in the white region, the spacetime with the
metric (3) is a non-extremal hairy Kerr black hole with two
horizons, while it is a naked singularity without horizon for
the parameters in the shaded region; and for the parameters
on the orange surface, it is an extremal hairy Kerr black
hole with single horizon. Besides, how the hairy parameters
affect the static limit surface and the ergoregion of the hairy
Kerr black hole has also been explored in [18]. Moreover,
as we aforementioned, some theoretical and observational
properties of the hairy Kerr black hole have been carried
out, such as the thermodynamics [13], quasinormal modes
and (in)stability [14–16], strong gravitational lensing
and parameter constraint from Event Horizon Telescope
observations [17,18].
In the following sections, we shall partly study the

physical signatures in the strong field regime of those
different central objects in the hairy Kerr spacetime (3). We
will analyze the inertial frame dragging effects on a test
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gyro and on the accretion physics, respectively, which is
expected to show the difference between black hole and
naked singularity. To proceed, we should analyze the
timelike geodesic equations in the hairy Kerr spacetime.
Since for the spacetime, we have two Killing vector fields
∂t and ∂ϕ, so we can define the conserved energy E and
axial-component of the angular momentum L of which the
expressions are

E ¼ −gtt_t − gtϕ _ϕ; L ¼ gtϕ_tþ gϕϕ _ϕ; ð5Þ

where the dot represent the derivative with respect to the
affine parameter λ. We employ the Hamilton-Jacobi
method [64] and introduce the Hamilton-Jacobi equation
for the particle with rest mass μ

H ¼ −
∂S
∂λ

¼ 1

2
gμν

∂S
∂xμ

∂S
∂xν

¼ μ2; ð6Þ

where H and S are the canonical Hamiltonian and Jacobi
action, respectively, and xμ denote the coordinates t; r; θ;ϕ
in the metric (3). Then after variation, we find that we can
separate the Jacobi action as S ¼ 1

2
μ2λ − Etþ Lϕþ

SrðrÞ þ SθðθÞ and define the constant C via

�
dSθ
dθ

�
2

þ ðL − aEsin2θÞ2
sin2θ

¼ −Δ
�
dSr
dr

�
2

þ ððr2 þ a2ÞE2 − aLÞ2
Δ

¼ C ð7Þ

to separate the outcome into four first-order differential
equations describing the geodesic motion

Σ_t ¼ aðL − aEsin2θÞ þ r2 þ a2

Δ
ððr2 þ a2ÞE − aLÞ; ð8Þ

Σ _ϕ ¼ L
sin2ϑ

− aE þ a
Δ
ððr2 þ a2ÞE − aLÞ; ð9Þ

Σ_r ¼ Δ
�
dSr
dr

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððr2 þ a2ÞE − aLÞ2 − ΔðQþ ðL − aEÞ2 þ μ2r2Þ

q
;

ð10Þ

Σ_θ ¼ dSθ
dθ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ cos2θ

�
a2ðE2 − μ2Þ − L2

sin2θ

�s
; ð11Þ

where Q≡ C − ðL − aEÞ2 with C defined in (7) is the
Carter constant. Thus, the geodesics equations in the hairy
Kerr spacetime (3) are separable as in Kerr case, and the
modification from the hair appears in the metric functionΔ.
Now we can proceed to investigate the influence of hair on
the orbital precession. For convenience, we will assume
that the gyros/stars/particles we will consider are minimally
coupled to the metric, and also there is no direct coupling
between them and the surrounding matters, i.e., the
modified gravity effect or print of hair would only be
reflected in the metric functions.

III. SPIN PRECESSION OF TEST GYROSCOPE
IN HAIRY Kerr SPACETIME

In this section, we will study the spin precession
frequency of a test gyroscope attached to a stationary
observer, dubbed stationary gyroscopes for brevity in the
hairy Kerr spacetime, for whom the r and θ coordinates are

FIG. 1. The parameters space ðl0; a; αÞ for nonextremal hairy black hole (the white region), extremal black hole (the orange surface),
and naked singularity (the shaded region).
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remaining fixed with respect to infinity. Such a stationary
observer has a four-velocity uμstationary¼utstationaryð1;0;0;ΩÞ,
where t is the time coordinate and Ω ¼ dϕ=dt is the
angular velocity of the observer.
Let us consider stationary gyroscopes moving along

Killing trajectory, whose spin undergoes Fermi-Walker
transport along u ¼ ð−K2Þ−1=2K with K the timelike
Killing vector field. Since the hairy Kerr spacetime (3)
has two Killing vectors which are the time translation
Killing vector ∂t and the azimuthal Killing vector ∂ϕ, so a
more general Killing vector is K ¼ ∂t þ Ω∂ϕ. In this case,
the general spin precession frequency of a test stationary
gyroscope is the rescaled vorticity filed of the observer
congruence, and its one-form is given by [65]

Ω̃p ¼ 1

2K2
� ðK̃ ∧ dK̃Þ; ð12Þ

where K̃ is the covector of K, the denotations � and ∧
represent the Hodge dual and wedge product, respectively.
According to the pedagogical steps of [46], the correspond-
ing vector of the covector Ω̃p is

Ω⃗p ¼
εckl

2
ffiffiffiffiffiffi−gp �

1þ2Ω g0c
g00

þΩ2 gcc
g00

���g0c;k− g0c
g00

g00;k

�

þΩ
�
gcc;k−

gcc
g00

g00;k

�
þΩ2

�
g0c
g00

gcc;k−
gcc
g00

g0c;k

��
∂l;

ð13Þ
where g is the determinant of the metric gμνðμ; ν ¼ 0;
1; 2; 3Þ and εcklðc; k; l ¼ 1; 2; 3Þ is the Levi-Civita symbol.
Then in the hairy Kerr spacetime (3) which is stationary and
axisymmetric spacetime, the above expression can be
reduced as

Ω⃗p ¼ ðC1r̂þ C2θ̂Þ
2
ffiffiffiffiffiffi−gp �

1þ 2Ω gtϕ
gtt
þ Ω2 gϕϕ

gtt

� ; ð14Þ

with

C1 ¼ −
ffiffiffiffiffiffi
grr

p ��
gtϕ;θ −

gtϕ
gtt

gtt;θ

�
þ Ω

�
gϕϕ;θ −

gϕϕ
gtt

gtt;θ

�

þΩ2

�
gtϕ
gtt

gϕϕ;θ −
gϕϕ
gtt

gtϕ;θ

��
;

C2 ¼
ffiffiffiffiffiffi
gθθ

p ��
gtϕ;r −

gtϕ
gtt

gtt;r

�
þ Ω

�
gϕϕ;r −

gϕϕ
gtt

gtt;r

�

þΩ2

�
gtϕ
gtt

gϕϕ;r −
gϕϕ
gtt

gtϕ;r

��
: ð15Þ

It is worthwhile to emphasize that this expression is valid
for observers both inside and outside of the ergosphere for a
restricted range of Ω

Ω−ðr; θÞ < Ωðr; θÞ < Ωþðr; θÞ; ð16Þ

with Ω� ¼ ð−gtϕ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ − gϕϕgtt

q
Þ=gϕϕ, which could

ensure that the observer at fixed r and θ is timelike.
Since the gyroscope has an angular velocity Ω, the

general precession frequency (14) stems from two aspects:
spacetime rotation (LT precession) and curvature (geodetic
precession). To disclose the properties of precession of
gyroscope in hairy Kerr spacetime, we will study the
influence of hairy parameters on the LT precession,
geodetic precession and the general spin precession of
the hairy Kerr black holes and naked singularities,
respectively.

A. Case with Ω= 0: LT precession frequency

When the angular velocity vanishes, saying Ω ¼ 0, it
means that the gyroscope is attached to a static observer in a
stationary spacetime. Such static observers do not change
their location with respect to infinity only outside the
ergoregion. It corresponds to a four-velocity uμstatic ¼
utstaticð1; 0; 0; 0Þ and the Killing vector K ¼ ∂t. Thus, Ω⃗p

reduces to the LT precession frequency, Ω⃗LT, of the
gyroscope attached to a static observer outside the ergo-
sphere [41]. Subsequently, the LT precession frequency in
the hairy Kerr spacetime (3) takes the form

Ω⃗LT ¼ 1

2
ffiffiffiffiffiffi−gp
	
−
ffiffiffiffiffiffi
grr

p �
gtϕ;θ −

gtϕ
gtt

gtt;θ

�
r̂

þ ffiffiffiffiffiffi
gθθ

p �
gtϕ;r −

gtϕ
gtt

gtt;r

�
θ̂



: ð17Þ

Samples of the above LT-precession frequency vector for
hairy Kerr black holes and naked singularities are plotted in
the Cartesian plane shown in Fig. 2. The upper row exhibits
the vector for hairy Kerr BH, giving that the LT precession
frequency is finite outside the ergosphere and it diverges
when the observer approach the ergosphere. In the bottom
row for hairy NS, the LT precession frequency is regular in
the entire spacetime region except the ring singularity
r ¼ 0 and θ ¼ π=2.
The magnitude of LT precession frequency is given by

ΩLT¼
1

2
ffiffiffiffiffiffi−gp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grr
�
gtϕ;θ−

gtϕ
gtt

gtt;θ
�
2þgθθ

�
gtϕ;r−

gtϕ
gtt

gtt;r
�
2

r
ð18Þ

which are shown in Figs. 3 and 4 for samples of parameters.
In Fig. 3 for hairy Kerr BH, the LT precession frequency
diverges at the ergosphere. In the region far away from the
static limit, the LT precession frequency hardly affects by
various parameters as expected. When the observer goes
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near the static limit, the LT precession frequency increases
as the angle and spin parameter increase, similar to that in
the case of Kerr BH [66]; in addition, it becomes smaller for
larger α or smaller l0.
In Fig. 4 for hairy NS, the LT precession frequency is

always finite and possesses a peak. Similar to that in Kerr
case [66], as the angle increases, both the peak and
frequency near the ring singularity increase, while the
spin parameter has the opposite influence. Moreover,
the hairy parameter l0 also enhances the peak but α
suppresses it; while the hairy parameters have no imprint
on the frequency at the ring singularity. Though the
concrete expression of the LT precession frequency
are complex, we can analytically reduce the behaviors
at r → 0 as

ΩLTjr→0 ¼
sec2ðθÞ tanðθÞ

a2
: ð19Þ

Therefore, it is obvious that LT precession frequency at
r → 0 is independent of the hairy parameters l0 and α, and
it is finite unless θ ¼ π=2, which are consistent with what
we see in Fig. 4.

B. Case with a= 0: Geodetic precession frequency

The metric (3) with a ¼ 0 describes hairy Schwarzschild
spacetime. In this case, the precession frequency (14) does
not vanish, though the LT-precession frequency (17)
vanishes. The nonvanishing sector of the spin precession
is known as the geodetic precession due to the curvature of
the spacetime, and its formula is

�6 �4 �2 0 2 4 6
�6

�4

�2

0

2

4

6
a=0.9M, =1,l0=1M, BH

�6 �4 �2 0 2 4 6
�6

�4

�2

0

2

4

6
a=0.99M, =1,l0=1.5M, BH

(b)(a)

�6 �4 �2 0 2 4 6
�6

�4

�2

0

2

4

6
a=2M, =1,l0=1M, NS

�6 �4 �2 0 2 4 6
�6

�4

�2

0

2

4

6
a=0.99M, =1,l0=1M, NS

(d)(c)

FIG. 2. The vector field of the LT precession frequency for the hairy Kerr spacetime. The plots in (a) with a ¼ 0.9M; α ¼ 1; l0 ¼ 1M
and (b) with a ¼ 0.99M; α ¼ 1; l0 ¼ 1.5M are for hairy Kerr black hole, while in (c) with a ¼ 2M; α ¼ 1; l0 ¼ 1M and (d) with
a ¼ 0.99M; α ¼ 1; l0 ¼ 1M are for hairy naked singularity.
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Ω⃗pja¼0 ¼
1

2
ffiffiffiffiffiffi−gp �

1þΩ2 gϕϕ
gtt

� �−Ω ffiffiffiffiffiffi
grr

p �
gϕϕ;θ −

gϕϕ
gtt

gtt;θ

�
r̂þ Ω

ffiffiffiffiffiffi
gθθ

p �
gϕϕ;r −

gϕϕ
gtt

gtt;r

�
θ̂

�
: ð20Þ

To proceed, we can choose the observer in the equatorial plane by setting θ ¼ π=2 without loss of generality due to the
spherical symmetry. Then we have

Ωpja¼0 ¼
Ω ffiffiffiffiffiffi

gθθ
p �

gϕϕ;r −
gϕϕ
gtt

gtt;r
�

2
ffiffiffiffiffiffi−gp �

1þ Ω2 gϕϕ
gtt

� ¼
�
3l0M − 6M2 þ e

2r
l0−2Mr2α − l0r

�
1 − e

2r
l0−2Mα

�
þ 2Mr

�
1þ e

2r
l0−2Mα

��
Ω

ðl0 − 2MÞ
�
2M þ r

�
−1 − e

2r
l0−2Mαþ r2Ω2

�� ; ð21Þ

meaning that the gyroscope moving in the hairy Schwarzschild spacetime will also precess. Therefore, in this case,
the frequency for the gyro moving along a circular geodesic could be the Kepler frequency [67] ΩKep ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM − αr2e−r=ðM−l0=2Þ=ð2M − l0ÞÞ=r3

q
, with which we can induce

Ωpja¼0;Ω¼ΩKep
¼ ΩKep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
r3

− α
e−r=ðM−l0=2Þ

ð2M − l0Þr

s
: ð22Þ

The above expression gives the precession frequency in the Copernican frame, computed with respect to the proper time τ,
which is related to the coordinate time via

dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M=r3 þ αð1þ r=ð2M − l0ÞÞe−r=ðM−l0=2Þ

q
dt: ð23Þ

Therefore, in the coordinate basis, the geodetic precession frequency is
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FIG. 3. Lense-Thirling precession frequency as a function of radial coordinate for hairy Kerr black hole. In plot (a), we focus the effect
of the angle with fixed a ¼ 0.4M; l0 ¼ 1M, and α ¼ 1; In plot (b), we focus on the effect of the spinning parameter a with fixed
α ¼ 1; l0 ¼ 1.5M, and θ ¼ π=4; In plot (c), we focus on the effect of α with fixed a ¼ 0.4M; l0 ¼ 1M, and θ ¼ π=4; In plot (d), we
focus on the effect of l0 with fixed a ¼ 0.4M; α ¼ 1, and θ ¼ π=4.
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Ωgeodetic ¼
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M
r3

þ α

�
1þ r

2M − l0

�
e−

r
M−l0=2

s !

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
r3

− α
e−r=ðM−l0=2Þ

ð2M − l0Þr

s
: ð24Þ

It is obvious that when the deviation parameter, α, vanishes,
the above expression reproduces the geodetic precession of
the Schwarzschild black hole found in [39]. How the model
parameters α and l0 affect the geodetic precession of the
hairy Schwarzschild BH is shown in Fig. 5. We see that the

geodetic precession is suppressed by the hair comparing to
that in GR, and its deviation from that in Schwarzschild
black hole is more significant as the α increases. Moreover,
the geodetic precession frequency is enhanced by larger l0.

C. Spin precession frequency in hairy Kerr
black hole and naked singularity

We move on to study the general spin precession
frequency (14) in hairy Kerr spacetime, and analyze its
difference between hairy Kerr BH and NS. As we afore-
mentioned, the angular velocity has a restricted range for
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FIG. 5. The geodetic precession as a function of radial coordinate for the hairy Schwarzschild black hole. In the left panel, we tune the
deviation parameter α with fixed l0 ¼ 1M, while in the right panel, we tune l0 with fixed α ¼ 1.
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FIG. 4. Lense-Thirling precession frequency as a function of radial coordinate for hairy naked singularity. In plot (a), we check the
effect of the angle with fixed a ¼ 2M; l0 ¼ 1M, and α ¼ 1; In plot (b), we check the effect of the spinning parameter a with fixed
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the timelike stationary observers. So, we introduce a
parameter 0 < k < 1 so that the angular velocity Ω can
be rewritten in terms of Ω� as

Ω ¼ kΩþ þ ð1 − kÞΩ−

¼
ð2k − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ − gϕϕgtt

q
− gtϕ

gϕϕ
: ð25Þ

It is obvious that for k ¼ 1=2, this expression can be
reduced as

Ωjk¼1=2 ¼ −
gtϕ
gϕϕ

; ð26Þ

with which the observer is called the zero-angular-momen-
tum observer (ZAMO) [68]. It was addressed in [46] that
the precession frequency of the gyroscope attached to
ZAMO in the Kerr black hole spacetime has different
behavior from a gyroscope attached to other observers with
other angular velocities, because these gyros has no
rotation with respect to the local geometry and stationary
observer.
Substituting (25) into (14), we can obtain the general

spin precession frequency in terms of the parameter k,

thus the magnitude of spin precession frequency is
written as

Ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 þ C2

2

p
2
ffiffiffiffiffiffi−gp �

1þ 2Ω gtϕ
gtt
þΩ2 gϕϕ

gtt

� ; ð27Þ

where C1 and C2 are defined in (15).
The magnitude of the general spin precession frequen-

cies with different k for the hairy Kerr BH and NS are
depicted in Fig. 6, where k ¼ 0.1, 0.5, 0.9 from the left to
right column. In the first row, we show the results for black
hole with a ¼ 0.9M, α ¼ 1, and l0 ¼ 1M. It is obvious that
for hairy Kerr BH, the spin precession frequency of a
gyroscope attached to any observer beyond ZAMO, always
diverges whenever it approaches the horizons along any
direction. However, Ωp remains finite for ZAMO observer
everywhere including at the horizon. In the second row, we
show the results for hairy naked NS with a ¼ 0.9M, α ¼ 2,
and l0 ¼ 1M. It shows that the spin precession frequency
for NS is finite even as the observer approach r ¼ 0 along
any direction except from the direction θ ¼ π=2. More
results for different model parameters are shown in Fig. 7
where we have set k ¼ 0.4 and θ ¼ π=4. Again, it is
convenient to verity that
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FIG. 6. The effect of θ on the spin precession frequency Ωp for different k in hairy Kerr spacetime. Here we fix a ¼ 0.9M and
l0 ¼ 1M, then α ¼ 1 corresponds to hairy Kerr black hole (a–c) while α ¼ 2 corresponds to naked singularity (d–f). From left to right,
k ¼ 0.1 (a, d), 0.5 (b, e), and 0.9 (c, f), respectively.

PRECESSION AND LENSE-THIRRING EFFECT OF HAIRY … PHYS. REV. D 107, 064033 (2023)

064033-9



Ωpjr→0;θ¼π=4 ¼

a2ð1 − 2kÞ2 þ ð17þ 4ðk − 1Þkð17þ 8ðk − 1ÞkÞÞM2 þ 12

ffiffiffi
2

p ð1 − 2kð2þ kð2k − 3ÞÞÞM2

8a4ðk − 1Þ2k2

s
ð28Þ

which is independent of α and l0.

IV. LT PRECESSION AND PERIASTRON
PRECESSION OF ACCRETION DISK PHYSICS

AROUND HAIRY Kerr SPACETIME

In this section, we will study the LT precession frequency
and the periastron precession frequency of accretion disk
physics around different geometries in the hairy Kerr
spacetime, as the related physics could help to test the strong
gravity of the central compact bodies. We expect that this
study could further differentiate the hairyKerr black hole and
naked singularity as the central objects. To this end, we
should study the geodesic motion of a test massive particle
around the hairy Kerr spacetime. To study the accretion disk
physic via the orbits of testmassive particle,we should fix the
stable circular orbit around the central bodies and then

perturb it. One important stable circular orbit is the innermost
stable circular orbit (ISCO)which is the last or smallest stable
circular orbit of the particle. Therefore, wewill first recall the
procedure of deriving an orbit equation to introduce the
bound orbits, circular orbits and ISCO in the hairy Kerr
spacetime. Thenwe explore the LT precession frequency and
the periastron precession frequency by perturbing the circu-
lar orbit in equatorial plane. For convenience, we shall focus
on the orbits in the equatorial plane of the spacetime.

A. Bound orbit and ISCO

For a test particle moving along the timelike geodesic
with the four velocity pμ in hairy Kerr spacetime (3), we
have two conserved quantities for the massive particle
defined in (5). So for the orbit in the equatorial plane with
θ ¼ π=2, we can solve out

pt ¼ gϕϕE þ gtϕL

g2tϕ − gttgϕϕ

����
θ¼π=2

¼
r3E þ a2E

�
2M þ r − e

2r
l0−2Mrα

�
þ aL

�
−2M þ e

2r
l0−2Mrα

�
r
�
a2 þ r

�
−2M þ rþ e

2r
l0−2Mrα

�� ; ð29Þ

pϕ ¼ −
gtϕE þ gttL

g2tϕ − gttgϕϕ

����
θ¼π=2

¼
aE
�
2M − e

2r
l0−2Mrα

�
þ L

�
−2M þ rþ e

2r
l0−2Mrα

�
r
�
a2 þ r

�
−2M þ rþ e

2r
l0−2Mrα

�� : ð30Þ

Inserting the above formulas into the normalization condition pμpμ ¼ −1 for timelike geodesic, we can obtain the radial
velocity as

pr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 − gttðptÞ2 − 2gtϕptpϕ − gϕϕðpϕÞ2

grr

s ����
θ¼π=2

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E2 − 1 − e

2r
l0−2Mα

�
þ 2M

r
−
L2 − a2ðE2 − 1Þ þ e

2r
l0−2MαðL − aEÞ2

r2
þ 2MðL − aEÞ2

r3

s
; ð31Þ
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FIG. 7. The dependence of the spin precession frequency Ωp on the model parameters. From left to right, we tune l0, α and a,
respectively. In each plot, the dashed curves correspond to hairy Kerr black hole while the solid curves correspond to naked singularity.
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where� corresponds to the radially outgoing and incoming
cases, respectively. Consequently, the effective potential of
the equatorial timelike geodesics is

VeffðrÞ ¼ E −
1

2
ðprÞ2

¼ −
M
r
þ 1

2
e

2r
l0−2Mα

þ L2 − a2ðE2 − 1Þ þ e
2r

l0−2MαðL − aEÞ2
2r2

−
MðL − aEÞ2

r3
; ð32Þ

where E ¼ 1
2
ðE2 − 1Þ is the total relativistic energy of the

test particle. For the stable bound orbits, the total energy
should not be smaller than the minimal effective potential
which is determined by

dVeff

dr

����
rm

¼ 0;
d2Veff

dr2

����
rm

> 0: ð33Þ

It is difficult to give the analytical expression of rm
and the minimal effective potential Vmin, so the we show
a sample of Veff in Fig. 8 with given E ¼ −1=1000
and various L. It is obvious that both rm and Vmin becomes
larger for larger L, similar to that found in Kerr
spacetime [69]. The hairy parameters affect Vmin and its
location.
Using the bound orbit condition Vmin ≤ E < 0 [68], we

will explicitly show the shape of the orbit. The geodesic
could give us how u ¼ 1=r changes with respect to ϕ in
the way

du
dϕ

¼ −u2
pr

pϕ

¼ 1þ e
2

ðl0−2MÞuα − 2Muþ a2u2

−Lþ e
2

ðl0−2MÞuðaE − LÞαþ 2ðL − aEÞMu
Xu; ð34Þ

with

Xu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1 − e

2
ðl0−2MÞuαþ uð2M þ YuÞ

q
; ð35Þ

Yu ¼ uða2ðE2 − 1Þ − L2 − e
2

ðl0−2MÞuðL − aEÞ2α
þ 2ðL − aEÞ2MuÞ; ð36Þ

such that

d2u
dϕ2

¼ ð4ðaE −LÞAuC−
u

þ 4ðC−
u þ a2ðl0 − 2MÞu3ÞBuX2

u þZuÞ
Au

2ðl0 − 2MÞB3
u

ð37Þ

with

Zu ¼ BuAu

�
2e

2
ðl0−2MÞuαþ ðl0 − 2MÞu2ð2M þ YuÞ

þ u2ððl0 − 2MÞYu þ 2ðaE − LÞ2Cþ
u Þ
�
; ð38Þ

Au ¼ 1þ e
2

ðl0−2MÞuα − 2Muþ a2u2; ð39Þ

Bu ¼ L − e
2

ðl0−2MÞuαðaE − LÞ þ 2ðaE − LÞMu; ð40Þ

C�
u ¼ �e

2
ðl0−2MÞuαþ ðl0 − 2MÞMu2: ð41Þ

Then by numerically integrating the above orbital equation,
we can figure out the shape of the boundorbit of a test particle
freely falling in the hairy Kerr BH and NS spacetime. We
show the bound orbits in Kerr hairy black hole (a ¼ 0.4M)
and naked singularity (a ¼ 1.2M) in Fig. 9, where we fix
α ¼ 1, l0 ¼ 1M, L ¼ 12, and E ¼ −1=1000. In the figure,
we also simultaneously plot the corresponding results for
Kerr spacetime denoted by black dotted curves, namely with
α ¼ 0. The differences betweenBHandNS are slight both in
hairy Kerr and Kerr spacetimes.
An interesting type of bound orbit is the circular or

spherical orbit which satisfies

Veff jrc ¼ 0;
dVeff

dr

����
rc

¼ 0; ð42Þ

with rc the radius of the circular orbit. The bound circular
orbit could either be stable or unstable depending on the
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effective potential in each case.
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sign of d2Veff
dr2 . d

2Veff
dr2 > 0 means that the orbit is stable while

for d2Veff
dr2 < 0 it is unstable. Thus, one can define the ISCO,

known as the smallest stable marginally bound circular
orbit which satisfies the above conditions accompanying
with the vanishing second order derivative [68], meaning
that the orbital radius, rISCO, is determined by

Veff jrISCO ¼ 0;
dVeff

dr

���
rISCO

¼ 0;
d2Veff

dr2

���
rISCO

¼ 0: ð43Þ

The exact formula of rISCO for Kerr spacetime was solved
out in [68], and it was rISCO ¼ 6M as a ¼ 0 for
Schwarzschild spacetime. Again, due to the existence of
exponential term, the expression of the rISCO for hairy Kerr
spacetime becomes difficult, so we numerically obtain
rISCO of the hairy Kerr BH and NS. The values of rISCO
as a function of spin parameter are depicted in Fig. 10, from
which we see that rISCO is smaller for faster spinning hairy
Kerr BH while it is larger for fast spinning hairy Kerr NS,
which is similar to those occur in Kerr spacetime indicated
by black curve in each plot. In addition, rISCO for hairy Kerr
BH increases as l0 increases, but decreases as α increases;
while the dependence of rISCO for the hairy NS on the hairy

parameters is closely determined by the spinning of the
central object.

B. LT precession and periastron precession

We move on to study the LT precession frequency and
the periastron precession of the circular orbit by perturbing
the geodesic equation of the massive particle, which could
disclose important features of accretion disk around the
central bodies, such that testify the strong gravity of the
hairy Kerr spacetime.
To proceed, we have to model the three fundamental

frequencies which are very important for accretion disk
physics around the hairy Kerr spacetime. For a test massive
particle moving along a circle in the equatorial plane of the
metric (3), the orbital angular frequency, Ωϕ, is

Ωϕ ¼ dϕ
dt

¼
−gtϕ;r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtϕ;rÞ2 − gtt;rgϕϕ;r

q
gϕϕ;r

: ð44Þ

If the particle is perturbed, then it oscillates with some
characteristic epicyclic frequencies Ωr and Ωθ in the radial
or vertical direction, respectively, which can be obtained by
perturbing the geodesic equation as [56,70]
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with

X ¼ gtt þ gtϕΩϕ; Y ¼ gtϕ þ gϕϕΩϕ: ð47Þ

Subsequently, we can extract the nodal precession fre-
quency Ωnod and periastron precession frequency Ωpre

as [71]

Ωnod ¼ Ωϕ − Ωθ; ð48Þ

Ωpre ¼ Ωϕ −Ωr ð49Þ

which measure the precession of orbital plane and orbit of
the accretion disk, respectively. The nodal precession
frequency is also known as LT precession frequency.
Focusing on the equatorial plane with θ ¼ π=2, we plot

Ωnod and Ωpre for hairy Kerr BH and NS with samples of

parameters in Fig. 11, in which the red curves are for NS
while the blue curves are for BH, and the vertical lines
correspond to the corresponding location of ISCO. It is
obvious that the LT precession frequency increases monoto-
nously as theorbit approaches the ISCOof the hairyKerrBH.
While in the hairy NS spacetime, as the orbit moves toward
the ISCO, Ωnod first increases to certain peak and then
decreases. In addition, Ωnod at the ISCO of NS is always
smaller than that at ISCO of BH, and it even can be negative
indicating a reversion of the precession direction. The
periastron precession frequency Ωpre in hairy Kerr BH and
NSspacetimeshas similar behavior that is increasingwith the
decrease of r. The value ofΩpre for hairy Kerr BH is always
larger than that for NS, and their difference is more
significant as the orbit becomes smaller. The effect of
different model parameters on the LT precession frequency
are shown in Fig. 12 which indicates that the parameters
indeed have significant imprint on the LT frequencies.
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FIG. 11. The behavior of Ωnod (upper row) and Ωpre (bottom row) as a function of r in hairy Kerr black hole and naked singularity,
respectively. In all plots, the blue curve is for naked singularity case while the red curve is for black hole case, and the vertical lines
indicate the location of the corresponding ISCO. From left to right, the hairy spacetime is either black hole or naked singularity,
depending on l0, α, and a, respectively.

PRECESSION AND LENSE-THIRRING EFFECT OF HAIRY … PHYS. REV. D 107, 064033 (2023)

064033-13



V. CONCLUSION AND DISCUSSION

Gravitational wave and shadow are two important obser-
vations to test strong gravity physics, such that they allow us
to probe the structure of black holes. Thus, they could also be
used to reveal the scalar fields provided that they leave an
imprint onBH.Thewell knownno-hair theorem inEinstein’s
GR predicts that the rotating black holes are described by the
Kerr metric. However, beyond GRwith additional surround-
ing sources, the hairy rotating black holes should be
described by a deformed Kerr metric, including extra hairy
parameter. A hairy Kerr black hole was recently constructed
using the gravitational decoupling approach, describing
deformations of Kerr black hole due to including additional
sources [12], Observational investigations related with
gravitational wave and shadow of the hairy Kerr black hole
have been studied in [14–18], which indicates that the hairy
Kerr black hole could not be ruled out by the current
observations. In this paper, we focused on the Lense-
Thirring effect, another important observable effect, to
differentiate the hairyKerr black hole fromnaked singularity.
First, we analyzed the spin precession of a test gyro

attached to a stationary observer in the hairy Kerr space-
time. When the observer is static with respect to a fixed star,
i.e., the angular velocity vanishes, we calculated the LT
precession frequency. It was found that the LT precession
frequency diverges as the observer approaches the ergo-
sphere of the hairy Kerr BH along any direction, while it
keeps finite in the whole region of the hairy NS, except at
the ring singularity. Then, we parametrized the range of
angular velocity of a stationary observer by k, and sys-
tematically studied the general spin precession frequency.
The general spin precession frequency diverges as the
observer approaches the horizon of the hairy Kerr BH, but it

is finite when k ¼ 0.5 defining ZAMO observer because in
this case the test gyro has no rotation with respect to the
local geometry. For the hairy NS, it is always finite unless
the observer reaches the ring along the direction θ ¼ π=2.
We also obtained the geodetic precession for observers in a
hairy static black hole. The general spin frequency, LT
frequency and geodetic frequency all decrease as the
parameter αðl0Þ increases (decreases) in hairy Kerr black
hole. And α and l0 have similar effect on the LT frequency
in hairy NS as that in BH case, but their effects on general
spin frequency in NS depend on the spinning.
Then, we investigated the quasiperiodic oscillations

(QPOs) phenomena as the accretion disk approaches the
hairy Kerr BH and NS, which also show difference. To this
end, we first analyzed the orbital precession of bound
orbits, and ISCO of a test massive particle orbiting in the
equatorial plane of the hairy Kerr BH and NS spacetime,
respectively. Then we perturbed the stable circular orbit and
computed the three fundamental frequencies related with
QPOs phenomena. Accordingly, our results show that as
the orbit moves toward the ISCO, the LT frequency
increases monotonously in hairy Kerr BH, while it first
increases to certain peak and then decreases in hair NS;
the periastron frequency increases in both hairy Kerr BH
and NS as the orbit approaches the corresponding ISCO.
Moreover, the hairy parameters indeed have effects on the
LT and periastron frequencies.
In conclusion, we do theoretical evaluation on various

precession frequencies caused by the frame-dragging effect
of the central sources, which differentiate the hairy Kerr BH
from NS spacetime. We expect that our theoretical studies
could shed light on astrophysical observations on distin-
guishing hairy theory from GR, distinguishing BH from NS
and even further constraining the hairy parameters.
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