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Thanks to their interpretation as the first order correction of general relativity at high energies, quadratic
theories of gravity have gained much attention in recent times. Particular attention has been drawn to the
Einstein-Weyl theory, where the addition of the squared Weyl tensor to the action opens the possibility of
having non-Schwarzschild black holes in the classical spectrum of the theory. Static and spherically
symmetric solutions of this theory have been studied and classified in terms of their small scales behavior;
however, a classification of these solutions in terms of the asymptotic gravitational field is still lacking. In
this paper we address this point and present a phase diagram of the theory, where the different types of
solutions are shown in terms of their mass and the strength of a Yukawa-like correction to the gravitational
field. In particular we will show that, in the case of compact stars, different equations of state imply
different Yukawa corrections to the gravitational potential, with possible phenomenological implications.
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I. INTRODUCTION

General relativity is one of the most successful theory of
last century; however there is still no general consensus on
how gravity should be described at the quantum level. It is
known that the Einstein-Hilbert action of general relativity
is not renormalizable within standard perturbative methods,
and modifications of such action are expected at high
energies. The study of modified gravity theories is largely
used to address the high energy limit of gravity while
preserving general relativity at lower energies.
The first corrections expected are quadratic terms in

the curvatures [1], which in four dimensions modify the
action as

SQG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½γRþ βR2 − αCμνρσCμνρσ þ Lm�: ð1Þ

Indeed such action has a long history: in [2] it is proved that
the action (1) in the vacuum is perturbatively renormaliz-
able, in [3] it appears in the low energy limit of string
theory, and recently it has emerged in the framework of the
renormalization group flow [4–6], the asymptotically safe
program [7,8] and the fakeons theory [9,10]. The physical
content of (1) can be resumed in the standard massless
graviton, plus a massive scalar mediator and a massive spin
two ghost mediator, which at the quantum level implies the
loss of unitarity. While various authors proposed solutions
to the ghost problem, in this work we want to focus on the
classical content of the quadratic action. In particular we are
interested in studying the case of static spherically sym-
metric solutions without a cosmological constant in order to

describe the gravitational field of isolated objects. Despite
the fact that the classical solutions of (1) have been largely
investigated in recent works [11–15], given the nonlinear
nature of the field equations, an exact form of the general
solution is lacking, and numerical methods have to be used
in order to understand the link between the asymptotic field
and the physical nature of the solution. In the following we
consider the Einstein-Weyl action

SEW ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½γ R − αCμνρσCμνρσ þ Lm�; ð2Þ

i.e. the quadratic theory restricted to the β ¼ 0 case. Both
the theories defined in (1) and (2) present a large variety of
solution families in addition to the Schwarzschild one, but
while the effect of the R2 term has been largely studied in
astrophysical and cosmological contexts [16–19], the C2

term received relatively less attention until recent times.
The Einstein-Weyl theory indeed gives interesting insight
on the physical content of quadratic gravity. It is proved that
the solution space of Einstein-Weyl gravity coincides with
the one of (1) with the constraint R ¼ 0, and a no-hair
theorem presented in [20], and corrected in [14], states that
under certain conditions the Ricci scalar must vanish. As
main consequence this theorem implies that all the asymp-
totically flat black hole (BH) solutions of quadratic gravity
are present only in the Einstein-Weyl restriction. Moreover,
the results in [14] show that, together with black holes, the
main new families of solutions that appear in quadratic
gravity also appear in the Einstein-Weyl theory. Finally, it
has also been shown that the C2 has a much stronger effect
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than the R2 one in the properties of compact stars [21].
While attempts to link the different families of solu-
tions to the asymptotic field have been made in the full
theory [22,23], the presence of two massive mediators in
the full quadratic case brings numerical issues when
integrating the asymptotic field, namely some nonlinear
terms can be larger than linear ones, which affects the
physical results obtained. Such numerical instabilities have
not been encountered in the Einstein-Weyl theory, so we
found it sensible to restrict our results to this case where the
numerical procedure is much more reliable. In this paper
we use the analytical approximation found in previous
works, together with numerical shooting techniques, in
order to show the complete solution space of the Einstein-
Weyl gravity in the form of a phase diagram of the theory;
to the best of our knowledge this is the first time the link
between the asymptotic field and the families of solutions is
shown with this level of robustness. Building the phase
diagram of the theory is a crucial step to understand the
physical content since it allows us to connect the type of
solution with the observables at large distances. In par-
ticular the results encoded in the phase diagram gives new
insight on the structure of the solution space of quadratic
gravity, showing that some of the new families of the
vacuum solution expected in previous work appear together
with Schwarzschild black holes for all positive mass values,
while others are confined in a finite mass interval.
In what follows we first recall the analytical approxi-

mation needed as a boundary condition and we describe the
numerical method used to integrate the field equations.
Then we list the vacuum solution families encountered in
the solution space and the behavior of their gravitational
potential together with their causal structure. We present
the phase diagram of the theory, in which is indicated the
type of solution in function of the gravitational field at large
distances. The case of a self-gravitating perfect fluid is
studied, showing the corresponding gravitational field and
mass-radius relation compared to their general relativity
counterpart.

II. EQUATIONS OF MOTION, ANALYTICAL
APPROXIMATIONS AND NUMERICAL

INTEGRATION

The equations of motion (e.o.m.) of Einstein-Weyl
gravity in tensorial form are

Hμν ¼ γ

�
Rμν −

1

2
Rgμν

�

− 4α

�
∇ρ∇σ þ 1

2
Rρσ

�
Cμρνσ ¼

1

2
Tμν; ð3Þ

with the trace being

Hμ
μ ¼ −γR ¼ 1

2
Tμ

μ: ð4Þ

Given the condition∇μHμν ¼ 0 andHϕϕ ¼ sin2θHθθ, only
two of these equations are independent. As the ansatz for
the static spherically symmetric metric we choose the one
with Schwarzschild coordinates

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð5Þ

and for the stress-energy tensor we consider a static and
isotropic perfect fluid

Tμν ¼ ðρðrÞ þ pðrÞÞuμuν þ pðrÞgμν; ð6Þ

where uμ is a unit timelike vector, ρðrÞ is the energy density
and pðrÞ is the pressure. The equations of motion result is
equivalent to a system of two second order ordinary dif-
ferential equations in hðrÞ, fðrÞ, as it is shown in [14,24],
and corresponds to

Hμ
μ ¼

1

2
Tμ

μ;

Hrr þ AðrÞ∂r
�
Hμ

μ −
1

2
Tμ

μ

�

þ BðrÞ
�
Hμ

μ −
1

2
Tμ

μ

�
2

þ CðrÞ
�
Hμ

μ −
1

2
Tμ

μ

�
¼ 1

2
Trr; ð7Þ

where the first one is at second order in hðrÞ and first order
in fðrÞ, and the second one is at second order in fðrÞ and
first order in hðrÞ. We removed from Hrr the third
derivatives of hðrÞ adding the term multiplied by

AðrÞ ¼ αð2hðrÞ − rh0ðrÞÞ
3γrhðrÞ ð8Þ

the squares of second order derivatives of hðrÞ adding the
term multiplied by

BðrÞ ¼ α

6γ2fðrÞ ; ð9Þ

and the terms linear in the second order derivatives of hðrÞ
adding the term multiplied by

CðrÞ ¼ α

6γ2r2fðrÞhðrÞ ½hðrÞð4γ − 4γfðrÞ þ 3r2pðrÞ

− r2ρðrÞ − 6γrf0ðrÞÞ − 4γrfðrÞh0ðrÞ�: ð10Þ

Explicitly these equations are
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4γhðrÞ2ðrf0ðrÞ þ fðrÞ − 1Þ − γr2fðrÞh0ðrÞ2 þ γrhðrÞ½rf0ðrÞh0ðrÞ þ 2fðrÞðrh00ðrÞ þ 2h0ðrÞÞ�
¼ r2hðrÞ2ð−ρðrÞ þ 3pðrÞÞ;
12γ2fαr2fðrÞhðrÞðrf0ðrÞ þ 3fðrÞÞh0ðrÞ2 þ 2r2fðrÞhðrÞ2h0ðrÞðαrf00ðrÞ þ αf0ðrÞ − γrÞ

þ hðrÞ3½rð3αrf0ðrÞ2 − 4αf0ðrÞ þ 2γrÞ − 2fðrÞð4αþ 2αr2f00ðrÞ − 2αrf0ðrÞ þ γr2Þ
þ 8αfðrÞ2� − αr3fðrÞ2h0ðrÞ3g

¼ −r2hðrÞ3fα½4γρðrÞð3rf0ðrÞ þ 2fðrÞ − 2Þ þ 8γrfðrÞð3p0ðrÞ − ρ0ðrÞÞ þ r2ρðrÞ2�
− 6pðrÞ½αrð6γf0ðrÞ þ rρðrÞÞ þ 4αγfðrÞ − 2γð2αþ γr2Þ�
þ 9αr2pðrÞ2g − 4αγr3hðrÞ2fðrÞh0ðrÞð−3rp0ðrÞ − 6pðrÞ þ rρ0ðrÞ þ 2ρðrÞÞ; ð11Þ

where on the right-hand sides we collected all the terms
proportional to ρðrÞ, pðrÞ and their derivatives. To our
knowledge, no analytical solutions of this system have been
found, with the exception of the vacuum solutions present
in general relativity i.e. the Minkowski and the Schwarzs-
child spacetime. Numerical methods and analytical ap-
proximations have to be used in order to study the complete
solution space.

A. Linearized solutions at large distance

Since we are interested in studying isolated objects
without a cosmological constant, that is we look for
asymptotically flat solutions, we can describe the metric
at large distances using the weak field limit. As described
in [14,24,25], we write the functions hðrÞ and fðrÞ as

hðrÞ ¼ 1þ ϵVðrÞ; fðrÞ ¼ 1þ ϵWðrÞ; ð12Þ

and solve (3) at linear order in ϵ. When imposing
asymptotic flatness and fixing hðrÞ → 1 as r → þ∞, it
is possible to show that the solutions result to be

hðrÞ ¼ 1 −
2M
r

þ 2S−2
e−m2 r

r
;

fðrÞ ¼ 1 −
2M
r

þ S−2
e−m2 r

r
ð1þm2 rÞ; ð13Þ

with m2
2 ¼ γ

2α being the mass of the spin-two ghost, and M
being the Arnowitt, Deser and Misner (ADM) definition of
mass in Planck units. We note that in the nonrelativistic
limit the gravitational potential will have a Yukawa
correction, as expected for a massive mediator, and there-
fore wewill refer to the parameter S−2 as the Yukawa charge.

B. Series expansion at finite radii

At finite radius the solution can be found within series
expansions by using a generalized Frobenius method. The
metric functions can be expanded as

hðrÞ ¼ ðr − r0Þt
�XN
n¼0

htþn
Δ
ðr − r0ÞnΔ þOððr − r0ÞNþ1

Δ Þ
�
;

fðrÞ ¼ ðr − r0Þs
�XN
n¼0

fsþn
Δ
ðr − r0ÞnΔ þOððr − r0ÞNþ1

Δ Þ
�
;

ð14Þ
where s, t are integer numbers and htþn

Δ
, fsþn

Δ
are the real

coefficients of the expansion, and then it is possible to
classify the solutions as ðs; tÞΔr0 . In [12,14] the families of
solution allowed have been exhaustively studied. The
complete list of such families is shown in Table I, where
in the second column is reported the number of free
parameters after imposing asymptotic flatness and a spe-
cific time parametrization. We specify that we used a
different notation from the one in [12,14], in particular
the different sign for the exponent s due to the metric ansatz
in terms of the function fðrÞ instead of AðrÞ ¼ 1=fðrÞ for
the families around r0 ¼ 0.

C. Numerical integration and shooting method

In what follows the numerical results discussed are
expressed in units of m2 ¼

ffiffiffiffiγ
2α

p
. We used γ

2α ¼ 1 in the
numerical code, together with G ¼ 1 when evaluating the

TABLE I. Families of solutions around finite and zero radii in
Einstein-Weyl gravity, as shown in [26].

Family
No of free
parameters Interpretation

ð0; 0Þ10 2ð→ 0Þ Regular solution/True vacuum
ð−1;−1Þ10 3ð→ 1Þ Naked singularity/Schwarzschild interior
ð−2; 2Þ10 4ð→ 2Þ Bachian singularity/Holdom star
ð0; 0Þ1r0 4ð→ 2Þ Regular metric
ð1; 1Þ1r0 3ð→ 1Þ Black hole
ð1; 0Þ1r0 2ð→ 0Þ Symmetric wormhole
ð1; 0Þ2r0 4ð→ 2Þ Nonsymmetric wormhole
ð4=3; 0Þ3r0 3ð→ 1Þ Not known
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linearized solution (13), in order to obtain adimensional
results. Physical units are restored for nonvacuum solutions
in order to have a comparison with the solutions of general
relativity. The general asymptotically flat solutions in the
vacuum have been studied by numerically integrating the
e.o.m. (11) with the linearized solution (13) as boundary
conditions. To integrate the equations of motion we used
the adaptive stepsize Runge-Kutta integrator DO2PDF imple-
mented by the N.A.G. group in FORTRAN (see https://www
.nag.com for details) with a tolerance of 10−12. The same
analysis was independently carried out with the NDSolve

function of the WOLFRAM language in Mathematica by
using an adaptive stepsize method which switches between
a midpoint and an implicit Euler methods, with a tolerance
of 10−14. For most of the solutions the metric functions hðrÞ
and fðrÞ evaluated with the two methods differ of an
average of their 10−6%–10−5% at each point r, but with the
relative error reaching also Oð1Þ for solutions which in the
parameter space are close to a transition between two
families of solutions. The lines in the ðM;S−2 Þ space which
indicate such transitions then have parameters which differ
from Oð10−2Þ, with the exception of the ones defined by
black holes which differ at maximum of Oð10−3Þ, being
found with a more refined method as wewill explain shortly.
Considering that the phase diagram ismore informative at the
qualitative level than at the quantitative level, we can safely
say that the two independent analyses are in agreement and
confirm each other. The solutions have been classified in
terms of the behavior of the two functions

χhðrÞ ¼ r
h0ðrÞ
hðrÞ ; χfðrÞ ¼ r

f0ðrÞ
fðrÞ ð15Þ

evaluated close to the origin which are expected to match the
values s, t of the corresponding family inTable I. In particular
we evaluated the χf=hðrÞ functions at the radius rO ¼ 10−2.
Wormholes and black holes are found anytime it is not
possible to integrate the e.o.m. to the origin. In those caseswe
performed a more detailed analysis by solving a boundary
value problem: as external boundary conditions we used
again the linearized solutions (13), while as internal con-
ditions we used the specific series expansion of the worm-
hole/black hole family. For a large radiuswe opted for a value
r∞ ¼ 18 in order to have Yukawa corrections bigger than the
tolerance threshold. The wormhole/black hole series has
been evaluated at rT=h þ 10−3, where rT=h is either the radius
of the wormhole throat or the black hole horizon. The
boundary value problem is solved by implementing the
shooting method to a fitting point, where a globally con-
vergent Broyden’s method with a tolerance of 10−6 in the
FORTRAN code and 10−4 in theWOLFRAMone is used in order
to obtain continuity of the metric functions and their
derivatives. The precise value of the fitting radius does not
affect the accuracy of the shooting method, but is important
for obtaining convergence efficiently. In particular a fitting
radius rfit ¼ rh þ 0.3 for black holes and rfit ¼ rT þ 0.05

has been found optimal. As we will see in the following
section, the shooting method allowed us to determine the
precise position of black holes and wormholes on the phase
diagram, as well as to continue the integration behind the
horizon/throat radius.Moreover it has been possible to extract
the relevant physical properties of the solutions around rT=h in
function of the gravitational parameters at large distances.

III. SOLUTIONS OF EINSTEIN-WEYL GRAVITY

In this section we summarize the main properties of the
different families of solutions. We recap the metric behav-
ior shown in previous works, as in [13,14,21,24,26,27], and
briefly sketch their physical behavior. We start with
vacuum solutions, and in the last section we consider also
the case of nonzero stress-energy tensor.

A. Type I: ð− 1;− 1Þ10 solutions

The first class of solution found, namely type I solutions,
are characterized by values of ðχfðrÞ; χhðrÞÞ between −0.8
and −1.4 for both the metric functions. This suggests that
such solutions should be given by the ð−1;−1Þ10 family i.e.

ds2 ¼ −
�
h−1
r

þ h0 þOðrÞ
�
dt2

þ 1
f−1
r þ f0 þOðrÞ dr

2 þ r2dΩ2: ð16Þ

However we have found relevant discrepancies from the
expected value χf=hðrÞ ¼ −1 even at radii smaller than
rO ¼ 10−2. Moreover these solutions cover most of the solu-
tion space, while the number of free parameters reported in
Table I suggests that they should occupy a one-dimensional
region. These considerations make evident that type I
solutions should actually belong to some correction of the
ð−1;−1Þ10 family but with the same leading order. In [28] a
non-Frobenius family that shares the same leading order of
the ð−1;−1Þ10 family, but with logarithmic corrections and
with one additional free parameter, has been found in the full
quadratic theory, but in Einstein-Weyl gravity nothing of this
family has been discovered.
Despite the analytical form of such solutions being still

unknown, we can extract some physical information from
our results. Type I solutions have the same curvature
invariants scaling of ð−1;−1Þ10

RμνRμν ∼
r→0

Oðr−6Þ;
RμνρσRμνρσ ∼

r→0
Oðr−6Þ; ð17Þ

hence the causal structure of such solutions is the one of a
spacetime with naked singularity, since no horizon appears,
as it is shown on the left of Fig. 2. In the positive mass
region of the solution space, the type I spacetime has
an attractive gravitational potential at large distances that
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reaches a minimum and then becomes repulsive around
the singular origin, since the temporal component hðrÞ
diverges with a positive sign.

B. Type II: ð− 2;2Þ10 solutions

Type II solutions are characterized by values of
ðχfðrÞ; χBðrÞÞ close to ð−2; 2Þ around the origin. This
suggests that type II solutions belong to the ð−2; 2Þ10 family
and, in contrast with type I solutions, the area populated by
these solutions agrees with the number of free parameters
of the ð−2; 2Þ10 family. Therefore the metric around the
origin can be safely approximated by the expansion

ds2 ¼ −ðh2r2 þOðr3ÞÞdt2

þ
�

1

f−2
r2 þOðr3Þ

�
dr2 þ r2dΩ2: ð18Þ

These solutions are characterized by a vanishing metric in
r ¼ 0 as is shown in green in Fig. 1, with an attractive
singularity characterized by the following invariant

RμνRμν ∼
r→0

Oðr−8Þ;
RμνρσRμνρσ ∼

r→0
Oðr−8Þ: ð19Þ

The origin turns out to be an infinite redshift point, but
when solving the geodesic equation it is possible to
prove that a distant observer can communicate with the
origin in a finite time interval. Hence the causal
structure of such solutions is again one of a naked
singularity shown on the left in Fig. 2. In the positive
mass region, type II solutions have an attractive gravi-
tational potential in all the space due to the monoto-
nicity of hðrÞ. Such solutions have been studied by
Holdom [27] as possible candidates for the internal
solutions of ultracompact matter sources.

C. Type III: Nonsymmetric wormholes

Type III solutions corresponds to nonsymmetric worm-
hole solutions (no-sy WH). The metric around the throat
radius is given by the ð1; 0Þ2rT family

FIG. 1. Vacuum solutions of Einstein-Weyl gravity with massM ¼ 0.6. The Schwarzschild BH in dashed black has S−2 ¼ 0, the non-
Schwarzschild BH in orange has S−2 ¼ 0.101, the type I solution in red has S−2 ¼ 0.2, the type II solution in green has S−2 ¼ 0.075, and
the type III solution in dotted and solid blue has S−2 ¼ −0.2.

FIG. 2. Conformal diagrams of a naked singularity (on the left), of a no-sy WH (in the center) and of a black hole (on the right); the
dotted lines indicate surfaces of constant time and the radius. The conformal diagram of a no-sy WH is taken from [26].
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ds2 ¼ −h0ð1� h1=2ðr − rTÞ12 þOðr − rTÞÞdt2

þ 1

f1ðr − rTÞ �Oððr − rTÞ32Þ
dr2 þ r2dΩ2: ð20Þ

The different sign corresponds to the two patches of
spacetime connected at the throat. Indeed, the wormhole
nature of these type of solution is manifest after the
coordinate transformation ρ ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffi
r − rT

p
. The metric

written in terms of ρ is indeed well behaved in ρ ¼ 0,
and geodesics can be smoothly extended from ρ > 0 to
ρ < 0 [14]. This type of spacetime consists of two regions
both mapped by r ∈ ½rT;þ∞Þ corresponding to positive or
negative ρ. In contrast with a standard wormhole, the metric
is not symmetric under the transformation ρ → −ρ. The
peculiar properties of these wormholes have been described
in detail in [26]. In particular it is shown that a non-
asymptotically flat behavior is present in the second patch
of the spacetime, which at large radii is given by

ds2 ¼ −Chr2e−a rð1þOðe−a rÞÞdt2
þ Cfr2e−a rð1þOðe−a rÞÞdr2 þ r2dΩ2; ð21Þ

where a, Ch and Cf are constant positive parameters. An
example of no-sy WH is shown in Fig. 1, with the
asymptotically flat patch shown in solid blue, and the
asymptotically vanishing in dotted blue. The behavior (21)
is singular for r → þ∞, which actually results in a region
located at a finite proper distance from the throat radius.
The metric results asymptotically vanish for r → þ∞ in the
second patch, similar to the ð−2; 2Þ10 solutions in the origin.
However, by solving the geodesic equation it can be seen
that a distant observer can communicate with the singular
region only in an infinite amount of time. Therefore, the
conformal diagram of such solutions is the one shown on
the right in Fig. 2 in which the singularity is naked only in
its infinite past. The gravitational potential of such sol-
utions results is always attractive in the direction of the
singularity, i.e. attractive in the direction of the throat in the
asymptotically flat side and repulsive in the asymptotically
vanishing side.

D. Black holes

Black hole solutions, i.e. solutions with an horizon, are
given by the ð1; 1Þ1rh expansion around the radius rh

ds2 ¼ −h1ðr − rT þOððr − rTÞ2ÞÞdt2

þ 1

f1ðr − rTÞ þOððr − rTÞ2Þ
dr2 þ r2dΩ2: ð22Þ

As already discussed in [15,29] both Schwarzschild and
non-Schwarzschild black holes are present, and in [24]
their metric has been completely characterized. These new
black holes have different thermodynamical properties than

Schwarzschild ones, in particular their energy and entropy
decrease as the horizon grows until they reach negative
values. The presence of such negative values is related to
the ghost nature of the Weyl term. The sign of the Yukawa
charge determines different behavior at the origin, as shown
in [24]: negative Yukawa BHs have a divergent metric that
goes like type I solutions in the origin, while positive
Yukawa ones have a vanishing metric that goes like
type II solutions. The casual structure is the same of the
Schwarzschild solution since both type of BHs are char-
acterized by one single horizon with an internal spacelike
singularity of either the ð−1;−1Þ10 or ð−2; 2Þ10 type.

E. Nonvacuum solutions

In order to study nonvacuum solutions we consider
the stress-energy tensor (6) that had been set to zero in
the previous cases. The pseudoconservation equation
∇μTμν ¼ 0 is simplified by the symmetries as

p0ðrÞ ¼ −
h0ðrÞ
2hðrÞ ðρðrÞ þ pðrÞÞ; ð23Þ

and together with an equation of state (e.o.s.) p ¼ PðρÞ and
Eq. (7), they form a system of ordinary differential equa-
tion in hðrÞ, fðrÞ, ρðrÞ, pðrÞ. As equations of state we
considered polytropes

pðrÞ ¼ k0ρðrÞΓ; ð24Þ

with polytropic exponents Γ ¼ 2; 5=3; 4=3, and different
values of k0; the physical value of k0 is scale depen-
dent, and therefore we simply considered values between
½2 × 10−2–2 × 10−1� in code units. In order to integrate the
equations we built a shooting code which interpolates
between the weak field expansion (13) at large distances
and a regular metric in the origin, and which is a solution of
the ð0; 0Þ10 family. The integration is performed from the
origin to a fitting radius in presence of ρðrÞ and pðrÞ,
while the external region is integrated in the vacuum. The
continuity of the metric function, their derivatives and of
ρðrÞ and pðrÞ is imposed at the fitting radius that, matching
the vacuum and nonvacuum integration, is identified as the
surface radius; a more detailed explanation can be found
in [21]. Having a more complicated system of differential
equations, it is necessary to relax the precision of the
integration at 10−9, while we kept the tolerance for the root-
finding algorithm at 10−6.
As described in [21], the compact star solutions found in

Einstein-Weyl gravity have no particular difference from
the ones found in general relativity at the level of metric or
curvature invariant behavior. The main effect due to the
presence of the quadratic correction is a massive weakening
of the gravitational interaction, with the same pressure
being able to sustain much more massive stars than in
general relativity. As it can be seen in Fig. 3, where we
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introduced physical units to have a better comparison with
the results from GR, this effect has a strong impact in the
mass-radius relation, with an increase both in the maximum
mass and radius of stars with the same equation of state.
This increase is tightly linked with the effective radius of
interaction of the Yukawa particle l2 ¼ 1=m2 ¼

ffiffiffiffiffiffiffiffiffiffi
2α=γ

p
,

which however is always smaller than the star surface.

IV. THE PHASE DIAGRAM
OF EINSTEIN-WEYL GRAVITY

While the existence of type I, type II, no-sy WHs and
black hole solutions in Einstein-Weyl gravity was already
known, the gap left in the literature that we aim to fill in this
work is the relation between the gravitational properties of
the solutions and their nonlinear nature. In Fig. 4 we then
present the phase diagram of Einstein-Weyl gravity, where
we show the families of solutions present for each pair of
values of the M and S−2 parameters of the gravitational
potential.
This diagram is mainly populated by type I, type II

and no-sy WHs, while black holes are located on the
one-dimensional region between wormholes and type II
solutions, that corresponds to the Schwarzschild line
S−2 ¼ 0;M > 0, and to the non-Schwarzschild black hole
curve. Being on a zero-measure region, the first thing
emerging from this diagram is that black holes are not
expected to be the general vacuum solutions of Einstein-
Weyl gravity, unless specific arguments are taken into
account. Stressing the phase diagram analogy, we can
interpret them instead as a transition between type II
solutions and no-sy WHs.
The second important feature shown in Fig. 4 is that the

positive mass region is mainly populated by type I and

wormhole solutions. We note that, for arbitrary large mass
values, the phase diagram suggests that type I, type II and
no-sy WHs appear, so it can be expected that such solutions
can appear also with astrophysical mass values. However,
while no-sy WHs are present for any negative value of the
Yukawa charge in this limit, for a positive value there is a
qualitative difference in having very small values of S−2 ,
which would lead to a type II solution, or a larger value,
which instead implies the presence of a type I solution.
Regarding non-Schwarzschild black holes, instead, they are
present in the positive mass region only for limited values
of the ADM mass, of the Yukawa charge, and of the
horizon radius, suggesting that they can be relevant only at
microscopic scales. In the small mass region in fact we find
a different configuration in which type II solutions are
present for a negative Yukawa charge, and no-sy WHs for
positive Yukawa charge. We also mention that in this region
appears the unique symmetric and asymptotically flat
wormhole on both sides of the spacetime of the theory
at the point M ≃ 0.61, S−2 ≃ 0.11, which is, aside the
Minkowski spacetime, the unique vacuum solution with
regular curvature invariants in all the available space by
an observer.
We find all the three types of solutions also in the

negative mass region, where there is a dominance of type I
solutions, but also a greater presence of type II solutions
with respect to the positive mass region. For a positive
value of the Yukawa charge type I solutions are the only

FIG. 3. Mass-radius relation for polytropic stars in Einstein-
Weyl gravity; the equation of state is taken with Γ ¼ 2 and
k0 ¼ 6.51185 × 10−17 cm3=g and the scale is fixed in terms of
the length unit l2 ¼ 1=m2 and the Sun Schwarzschild radius.

FIG. 4. Phase diagram of vacuum solutions of Einstein-Weyl
gravity; the areas populated by type I, II and III solutions are
indicated with three different colors, Schwarzschild black holes
are indicated with a black dashed line, while non-Schwarzschild
black holes are indicated by the blue and red solid lines. The
separation between type I and II and III solutions are indicated
with a dashed and dotted gray lines.
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family present in the phase diagram, while for negative
values of S−2 there is a relevant presence of type II for
smaller absolute values of the mass, and of no-sy WHs for
even smaller values. It has to be noted, however, that the
line that delimits the transition between type I and type II is
sensitive to the specific value of the radius in which we
choose to evaluate the functions (15), and then has to be
taken with care.
Stressing even more the phase diagram analogy, we see

that at the border of the transition line between type I
solutions and no-sy WHs, two triple points appear; we
highlight these two points in Fig. 5. The first triple point
corresponds to the Minkowski spacetime M ¼ 0, S−2 ¼ 0,
while the second one, which we will call massive triple
point from now on, is located at M ≃ 0.623, S−2 ≃ 0.102 in
our numerical units. Both triple points are at the border of
the areas populated by type I, type II, black holes and
wormholes. Moreover, the Minkowski one corresponds to
the point where the horizon of Schwarzschild black holes
goes to zero, while the massive triple point is where the
horizon of non-Schwarzschild black holes goes to zero.
This fact corresponds also to a vanishing value for various
quasilocal masses definition evaluated at the horizon, i.e. a
vanishing value of the energy enclosed inside the horizon.
Taking into account these properties, it seems that the
Minkowski flat space is not unique as it is in general
relativity, and could not be the only “true vacuum” of the
theory; the presence of this massive triple point suggests
that there might be a sort of ghost condensate vacuum that
might have relevant consequences on the study of quantum
fluctuations.

A. The phase diagram in presence of matter

The location of nonvacuum solutions in the phase
diagram is shown in Fig. 6. The change of the parameter

k0 in the e.o.s. (24) results in a scale transformation in the
parameter space, as expected by its relation to the energy
scales of the fluid, while the change in the polytropic
exponent Γ modifies the behavior of the M-S−2 relation.
Nonetheless there are some important common features:

(i) The nonvacuum solutions are present only in the
area populated by type I solutions.

(ii) As the star radius decreases, the solutions converge
to the massive triple point of the phase diagram.

The main qualitative difference is that the solutions with
Γ ¼ 2, for which a vanishing central pressure is reached
at a finite radius and with vanishing mass, converge also
to the Minkowski triple point, while the solutions with
Γ ¼ 4=3; 5=3, for which a vanishing central pressure
instead is reached in the large star radius limit and with
a constant mass, seem to have a divergent value of the
Yukawa charge. We have to note, however, that for very
large star radii the integration becomes unstable, due to the
fact that the weak field limit is not reliable anymore.
The two common features, however, highlight the main

physical aspects of Fig. 6. The location of the nonvacuum
solution in the phase diagram sheds new light on type I
solutions, that did not had a physical interpretation until
now. They appear in fact as the external field of compact
objects, and therefore are a candidate to be the generic
observed solution in a quadratic theory of gravity. We note
that there is an indication that this might not be true in
the full quadratic theory [23] but, as said in the introduc-
tion, the complete integration of this theory is still not

FIG. 5. The two triple points of the phase diagram; the first one
(Minkowski triple point) is located at the origin of the M-S−2
plane, while the second one (massive triple point) is located at
M ≃ 0.623, S−2 ≃ 0.102, which is the end point of the non-
Schwarzschild black hole line.

FIG. 6. Location of nonvacuum solutions in Einstein-Weyl
gravity; the dashed lines indicate solutions with polytropic
equations of state with Γ ¼ 2, with different colors for different
values of k0, while the solid and dotted black lines indicate
solutions with an equation of state with Γ ¼ 5=3 and Γ ¼ 4=3,
respectively.
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completely understood. The second aspect is that the two
triple points of vacuum solutions play a special role also for
nonvacuum solutions. While the Minkowski flat space
remains an attractive point for solutions which vanish
for vanishing energy density (a property which is not true
for all the equations of state in general relativity), the
massive triple point is an attractor for stars with a divergent
central energy density independently of the equations of
state of the fluid. While the role of this massive triple point
is still not clear, we believe that there is much evidence that
indicates that it might be relevant and should be studied
with care.

B. Phenomenological consequences

As already stated before, the main advantage of having
pictured the phase diagram of the theory is to have a direct
link between the precise form of the gravitational field and
the small scale nature of the solutions. However, an explicit
measure of the strength of the Yukawa term might be
problematic, and it would also be strongly model depen-
dent. Nonetheless is possible to approach the phenomenol-
ogy of quadratic gravity in a different way: that is, to model
the discrepancies in the results of different experiments
made using standard techniques of general relativity, as
discussed in [21].
As a toy-model example we can imagine to measure the

mass of an object with the redshift of a photon emitted at a
radius r̄ by some gas using

MNðr̄Þ ¼
1

2
rð1 − hðr̄ÞÞ ¼ 1

2
r

�
1 −

1

ð1þ zðr̄ÞÞ2
�
; ð25Þ

where z is the redshift, or by the transit of a satellite,
assuming that in some limit we can use Kepler’s third law,
using

MKðr̄Þ ¼
1

2
r2h0ðrÞ ¼

�
2π

T

�
2

r̄3; ð26Þ

where T is the orbital period. Both measurements will
coincide with the ADM mass parameter M at infinity, but
will have discrepancies when evaluated at finite radii. In
Fig. 7 we show how these mass definitions differ from the
asymptotic value if measured at a radius r̄ ¼ 3M, which is
the radius of the photon sphere for a Schwarzschild black
hole; we have removed the area of the phase diagram
populated by no-syWHs with throat radius greater than 3M
which, however, is not relevant in the large mass limit. As
could be expected, the discrepancy increases for small
masses but is still present at any scale. In particular, in the
limit in which the spacetime at r̄ is already in the linearized
regime, the differences become

M −MNðr̄Þ ¼ S−2 e
−m2 r̄;

M −MKðr̄Þ ¼ S−2 e
−m2 r̄ð1þm2 r̄Þ: ð27Þ

While both measurements will be exponentially sup-
pressed, is still noticeable the linear dependence from
the Yukawa charge S−2 , which means that an experiment
which measures the mass close to the object will see a
larger mass for negative S−2 and a smaller one for positive
S−2 . In the large mass limit, this directly translate in the
presence of a no-sy WH or of a type I naked singularity.
Similar arguments were made in the context of compact

star phenomenology in [21,23], in which stars with differ-
ent equations of state having different discrepancies in the
mass definitions is discussed. This argument could be of
great interest for the study of neutron stars, opening the
possibility of discriminating different equations of state
using only gravitational measurements, and without having
to evaluate the surface radius of the star.

FIG. 7. Differences in observable masses measured at infinity and at r̄ ¼ 3M; in the left panel the massMN is measured by the redshift
of a photon, while in the right panel the massMK is measured using Kepler’s third law. The white region is removed, being populated by
wormholes with throat radius rT > 3M.
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V. CONCLUSIONS

In this paper we give a complete description of the
solution space of Einstein-Weyl gravity. We use the
analytical approximation of the solutions known, which
at large radius are given by a Newtonian potential plus a
Yukawa massive correction characterized by the ghost mass
of the theory, while at finite radius are given in series form.
We connect the finite and large radius regimes by means of
numerical integrations together with a shooting method in
case of black hole and wormhole solutions. We review the
main type of vacuum solution found in previous work and
we show the behavior of their gravitational potential and
their causal structure in relation with their position on the
solution space. We present the solution space of the theory
in the form of phase diagram, in which the type of vacuum
solution is shown in function of the asymptotic parameter,
i.e. the mass and the Yukawa charge. The phase diagram
shows that, for an arbitrary positive large mass, we
find Schwarzschild black holes confined on the one-
dimensional region with zero Yukawa charge, nonsym-
metric wormholes on the two dimensional region with
negative Yukawa charge, type II solutions (attractive naked
singularity) for small positive Yukawa charge and type I
solutions (repulsive naked singularity) for large positive
Yukawa charge. Therefore we expect that all these types of
solution can appear also with astrophysical size, showing
that the static spherically symmetric vacuum solutions of
quadratic gravity admit a large variety of candidates
together with black holes. On the other hand, the non-
Schwarzschild black hole curve appears only in the small
mass region and in the negative mass region, suggesting
that such solutions can appear only with microscopical size.
The previous considerations open up the question of what is
the final state of a collapsing mechanism in quadratic
gravity since, without any further assumption, it is rea-
sonable to consider the solution families covering two-
dimensional regions as more available candidates than
black holes. In the small mass region, which corresponds
to solutions with a mass value comparable with the mass of
the ghost, we find a different configuration of the types of

solution, and two triple points appear. The first one
corresponds to the Minkowski spacetime while the second
one can be interpreted as a second vacuum of the theory
constituted by a ghost condensate. The coupling with a
matter source is studied by considering a perfect fluid stress-
energy tensor with a polytropic equation of state. The
resulting gravitational field always has positive mass and
positive Yukawa charge, always corresponding to the field
of type I vacuum solutions. Recalling that the type I vacuum
family has an attractive field at large distance but repulsive
around the origin, when coupling with matter, the resulting
field is still attractive but much weaker than their general
relativity counterpart. This gives a different mass-radius
relation that makes the same pressure being able to sustain
moremassive stars. The second common feature emerging is
that, as the star radius decreases, the solutions converge to
the ghost triple point of the phase diagram. The link between
the gravitational potential and the small scale nature of the
solutions given by the phase diagramopens the possibility of
having a phenomenological signature of quadratic gravity.
In particular a mass measurement made close to an isolated
object will have a different value than a measurement made
at infinity, and thanks to the phase diagram we could use
such differences to made a prediction on the physical nature
of the solution. For compact stars, such a prediction would
be on the equations of state of the fluid. These considerations
add new information about the classical solution of Einstein-
Weyl gravity and their physical relevance. In order tomake a
further step in this direction, we will consider in the
future both the stability of the solutions and the result
of a collapsing mechanism, which are both crucial to
understandwhat kinds of astrophysical objects are predicted
by quadratic gravity together with (or in substitution of)
black holes.
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