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We show that asymptotically de Sitter black holes of negative mass can exist in Lovelock gravity.
Such black holes have horizon geometries with nonconstant curvature and are known as exotic black holes.
We explicitly examine the case of Gauss-Bonnet gravity. We briefly discuss the positive mass case where
we show how the transverse space geometry affects whether a black hole will exist or not. For negative
mass solutions we show how three different black hole spacetimes are possible depending on the transverse
space geometry. We also provide closed form bounds for the geometric parameters to ensure that a black
hole spacetime is observed. We close with a discussion of the massless case, where there are many different
spacetimes that are permitted.
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I. INTRODUCTION

In general relativity, the simplest black hole solution is
that provided by the Schwarzschild metric [1], where the
only parameter of the solution is the massm. Less than half
a century later a more general solution was obtained [2],
which describes a black hole with three parameters: mass,
angular momentum, and charge. The introduction of a
cosmological constant admits further solutions, as do other
matter sources.
In four dimensions the assumption that the metric has

radial symmetry restricts black hole solutions to have
horizons of constant curvature in Einstein gravity. These
can be spherical, planar, or hyperbolic if a negative
cosmological constant Λ < 0 is introduced [3–5]. If the
geometry is hyperbolic then these black holes can have
negative mass [6] and can form from gravitational col-
lapse [7]. However if Λ ≥ 0 then the situation is notably
different. While it has recently been shown that de Sitter–
Schwarzschild spacetimes with negative mass in [8,9]
can exist in Einstein gravity, these solutions consist of
spacetime bubbles. No negative mass black hole vacuum
solutions have been obtained.
We show in this paper that asymptotically de Sitter black

hole vacuum solutions of negative mass exist in Lovelock
gravity. This somewhat unexpected finding arises from a
feature recently pointed out for black holes in higher-
curvature gravity: Their event horizons need not be of
constant curvature [10–16]. The transverse space of the
(potential) black hole solution need only be an Einstein

space admitting horizon geometries of increasing complex-
ity as the spacetime dimension increases. For this reason
these have been referred to as exotic black holes (EBHs).
We demonstrate that static asymptotically de Sitter

Lovelock EBHs can have negative mass. We explicitly
illustrate this for Gauss-Bonnet gravity, but it is clear
that this will occur in higher-order Lovelock gravity and
we expect in more general higher-curvature theories as
well. Lovelock gravity is a particular subclass of higher-
curvature gravity theories, which have garnered much
attention since quantum gravity induces such higher-order
corrections to the standard Einstein-Hilbert gravitational
action [17]. Furthermore, renormalization properties are
improved for such theories [18]. The Lovelock class [19] is
of particular interest: it is regarded as the most natural
higher-curvature generalization of Einstein gravity whose
field equations are of second order in the metric functions.
Research of EBHs has been of recent interest particu-

larly in the thermodynamics of asymptotically anti–
de Sitter (AdS) black holes. The geometry of the event
horizon was shown to greatly affect the thermodynamic
phenomena [20–23]. While investigation of black holes in
AdS space has been of great interest since the discovery the
AdS/conformal field theory correspondence [24,25], inter-
est in de Sitter black holes is motivated primarily by
cosmological considerations [26], though some motivation
comes from considerations of holographic duality [27].
We begin with a brief review of Lovelock gravity and

EBHs before moving on to Gauss-Bonnet solutions. We
provide general polynomial equations which determine the
horizon locations as well as the Kretschmann scalar, which
will function as a diagnostic for finding spacetime singu-
larities. We then discuss the positive mass case and how

*b2hull@uwaterloo.ca
†rbmann@uwaterloo.ca

PHYSICAL REVIEW D 107, 064027 (2023)

2470-0010=2023=107(6)=064027(8) 064027-1 © 2023 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.064027&domain=pdf&date_stamp=2023-03-13
https://doi.org/10.1103/PhysRevD.107.064027
https://doi.org/10.1103/PhysRevD.107.064027
https://doi.org/10.1103/PhysRevD.107.064027
https://doi.org/10.1103/PhysRevD.107.064027


horizon geometry can dictate whether or not a black hole
may exist. We then provide an analysis of the negative mass
case, where we obtain a bound on the minimum allowed
mass for a black hole. We also present a closed form
expression that dictates the bounds on the horizon geom-
etry for which a negative mass black hole is admitted as a
vacuum solution. We show that it is possible to obtain
massless de Sitter black holes with the proper set of
parameters, and discuss this in the penultimate section
before summarizing our work.

II. LOVELOCK GRAVITY AND EXOTIC
BLACK HOLES

For a Lovelock theory of gravity the Lagrangian density
is given by

L ¼ 1

16πGN

XK
k¼0

α̂kLðkÞ; ð2:1Þ

where α̂k are the Lovelock coupling constants and LðkÞ are
the Euler densities with dimension 2k, which are

LðkÞ ¼ 1

2k
δa1b1…akbk
c1d1…ckdk

Rc1d1
a1b1

…Rckdk
akbk

ð2:2Þ

with δ representing the generalized fully antisymmetric
Kronecker delta. The first few terms are

Lð0Þ ¼ 1; Lð1Þ ¼R; Lð2Þ ¼R2−4RabRabþRabcdRabcd

with R the Ricci scalar and Lð2Þ the Gauss-Bonnet term.
From the Lagrangian density (2.1) we may construct
an action

S ¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
1

16πGN

XK
k¼0

α̂kLðkÞ þ Lm

�
ð2:3Þ

including a matter term Lm. Variation with respect to the
metric gab yields the field equations

XK
k¼0

α̂ðkÞG
ðkÞ
ab ¼ 8πGNTab; ð2:4Þ

where Tab is the stress energy tensor of the matter field and

GðkÞ
ab are the Lovelock tensors

GðkÞa
b ¼ −

1

2ðkþ1Þ δ
ac1d1…ckdk
be1f1…ekfk

Re1f1
c1d1

…Rekfk
ckdk

: ð2:5Þ

We will consider only vacuum solutions with Lm ¼ 0
henceforth, so the field equations will be (2.4) with the
stress energy being set to zero. The parameter K ≤ d−1

2
,

where d is the dimension of spacetime, and sets the
maximal degree of nonlinearity in the curvature. Values
of K larger than this make no contribution to the field
equations and are topological invariants in the action.

The metric ansatz we will make use of is

ds2 ¼ gijdyidyj þ γαβdxαdxβ

¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΣ2
d−2; ð2:6Þ

where yi ¼ ðt; rÞ and gij ¼ diagð−fðrÞ; 1
fðrÞÞ. The line

element dΣ2
d−2 of the base manifold (or transverse space)

has metric γαβ and coordinates xα. We shall assume it to be
compact, with volume Σd−2, the analog of the volume of a
unit sphere. If this space is not compact then quantities such
as M=Σd−2 will be regarded as finite.
The only other condition on the transverse space is that it

is an Einstein space, Rαβ ∝ γαβ. The most commonly
studied special case is when the base space has constant
curvature, with curvature parameter κ ¼ ð−1; 0; 1Þ, which
corresponds to negative, flat, and positive curvature respec-
tively. Solutions in which this latter condition is relaxed, so
that the transverse space is only an Einstein space [11],
shall be referred to as exotic black holes [10,28].
Introducing this metric into the field equations yields a

resulting polynomial equation for fðrÞ [10]
XK
n¼0

bn
r2n

�XK
k¼n

αk

�
k
n

��
−fðrÞ
r2

�
k−n

�
¼ 16πGNM

ðd − 2ÞΣd−2rd−1
;

ð2:7Þ
whereM represents the mass of the black hole and Σd−2 the
volume of the base space. The quantities αk are rescaled
Lovelock couplings defined as

α0 ¼
α̂0

ðd − 1Þðd − 2Þ ; α1 ¼ α̂1;

αk ¼ α̂k
Y2k
n¼1

ðd − nÞ for k ≥ 2: ð2:8Þ

The cosmological constant is defined through the zeroth
Lovelock coupling constant Λ ¼ − α̂0

2
.

Imposing only the condition that the transverse space is
an Einstein space admits the following possibilities:

ĜðnÞα
β ¼ −

ðd − 3Þ!bn
2ðd − 2n − 3Þ! δ

α
β;

L̂ðnÞ ¼ ðd − 2Þ!bn
ðd − 2n − 2Þ! ð2:9Þ

for its Lovelock tensor and associated intrinsic Euler density
respectively. The constants bn we refer to as topological
terms, and can take any value inR. They define the topology
of the base manifold and the geometry of the event horizon
from the condition fðrþÞ ¼ 0 that defines the horizon
location rþ. Without loss of generality we set b0 ¼ 1; to
recover Einstein gravity in the proper limit of vanishingαk≥2,
we will set α1 ¼ 1. The mass M is defined through the
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Hamiltonian formalism, and is the conserved charge of the
timelike Killing vector of the background spacetime. When
the dimension is d ¼ 2K þ 1 the transverse space is
restricted to be of constant curvature [29,30].
The Kretschmann scalar for a metric of the form (2.6) is

RabcdRabcd ¼
�
d2fðrÞ
dr2

�
2

þ 2
ðd− 2Þ

r2

�
dfðrÞ
dr

�
2

þ 2
ðd− 2Þðd− 3ÞfðrÞ2

r4
− 4

R½γ�fðrÞ
r4

þK½γ�
r4

;

ð2:10Þ
where R½γ� and K½γ� are the Ricci and Kretschmann scalars
of the transverse space respectively.
We pause to make a brief comment before considering

solutions to (2.7). The transverse space given in (2.6) is not
of constant curvature. Hence the solutions we obtain are,
strictly speaking, not asymptotically de Sitter. However
(as we will see) they do resemble asymptotically de Sitter
solutions insofar as their cosmological horizon properties
are concerned. With this in mind, we shall continue to refer
to our solutions as de Sitter black holes.

III. GAUSS-BONNET SOLUTIONS

Setting K ¼ 2 in (2.7) yields

α2f2

r4
þ
�
−
1

r2
−
2b1α2
r4

�
fþα0þ

b1
r2
þb2α2

r4
¼ 16πM
ðd−2ÞΣd−2rd−1

ð3:1Þ
with the solutions

f ¼ f�ðmÞ

≡ r2 þ 2b1α2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb21 − b2Þ4α22 þ r4ð1− 4α2α0Þ þ 8mα2

rd−5

q
2α2

;

ð3:2Þ
where we have written

m≡ 8πM
ðd − 2ÞΣd−2

: ð3:3Þ

The two solutions are distinguished by their behavior in the
α2 → 0 limit. The f− branch is referred to as the Einstein
branch as it has a smooth α2 → 0 limit, giving

lim
α2→0

f−ðmÞ ¼ α0r2 þ b1 −
2m
rd−3

; ð3:4Þ

whereas the fþ solution does not have a smooth limit as
α2 → 0; it is referred to as the Gauss-Bonnet branch.
For the remainder of this paper we will only consider the

Einstein branch for analysis; we will also choose b1 ¼ 1, so
that as α2 → 0 we recover the standard Schwarzschild
(anti–) de Sitter solution. We will only examine solutions
with d ≥ 6, since the d ¼ 5 case only admits constant
curvature solutions in the transverse space. The cosmo-
logical constant is

Λ ¼ −
α̂0
2
¼ −

α0ðd − 1Þðd − 2Þ
2

ð3:5Þ

and we shall set α0 < 0 since we are interested in
asymptotically de Sitter solutions. This allows us to write

f−¼
r2þ2α2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−b2Þ4α22þr4ð1þ4α2

2Λ
ðd−1Þðd−2ÞÞþ8mα2

rd−5

q
2α2

;

ð3:6Þ
where we note Λ > 0. In the large r limit, the function (3.6)
has the same features as the metric function of an
asymptotically de Sitter spacetime.
It is convenient at this point to introduce a set of

dimensionless variables

r ¼ x
ffiffiffiffiffi
α2

p
; Λ ¼ ðd − 1Þðd − 2Þz

2α2
;

m ¼ mα
d−3
2

2 ; z > 0 ð3:7Þ
so that

f ¼ 1þ x2

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4zÞx4 þ 4ð1 − b2Þ þ 8m

xd−5

q
2

: ð3:8Þ

The horizon(s) are located at the roots of f, which can be
found from solving the polynomial

xd−1z−xd−3−b2xd−5þ2m¼0 with d≥6; z>0: ð3:9Þ
For a black hole solution we must have fðxÞ > 0 for
x > xþ for some range of x, where xþ locates the outermost
event horizon of the black hole.
Superficially it appears that there will be two or zero

positive roots to this polynomial from Descartes’s rule of
signs. However if we allow both b2 and m to be either
positive or negative the number of possible positive roots
are then the following:

If m > 0; then two roots → ðxc; xþÞ or zero roots for any b2;

if m < 0 and b2 > 0; then one root → xc;

if m < 0 and b2 < 0; then three roots → ðx−; xþ; xcÞ or one root → xc; ð3:10Þ
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where xc is the cosmological horizon, x− is the inner
horizon, and xþ is the outer horizon of the black hole.

A. Positive mass

Consider first positive mass. We plot the behavior of f in
Fig. 1 for sample values: b2 ¼ −2.5, z ¼ 0.05, and d ¼ 6,
while varying m. For small nonzero m we have an
asymptotically de Sitter black hole (left diagram in
Fig. 1) whereas for sufficiently large m there is no static
black hole solution and we have an expanding spacetime
with r and t interchanging roles (middle diagram). As m
increases from small to large values, there is one value ofm
where f has a double root and the horizons merge,
illustrated in the right diagram in Fig. 1. This is a
Gauss-Bonnet generalization of the Nariai solution. This
structure is the same in all dimensions d ≥ 6. Only
quantitative differences are seen as we increase the dimen-
sion: The spread between xþ and xc increases and the

maximum value of f slightly increases. Consequently we
will illustrate our results in six dimensions unless otherwise
stated.
We may also examine what happens when we hold all

the parameters fixed except for b2, which is seen in Fig. 2.
For a fixed mass m and cosmological parameter z increas-
ing the value of b2 will shift f upward. In this manner the
geometry of the horizon plays an important role regarding
the existence of a black hole solution, namely that a
minimum allowed value of b2 is required. This minimum
value occurs when f has a double root, corresponding to a
Nariai type of black hole solution. In de Sitter space this is
referred to as the maximum allowed mass a black hole can
have, other parameters being fixed. To determine the value
of xþ ¼ xc for the Nariai-type solution, the equations

f ¼ 0;
∂f
∂x

¼ 0 ð3:11Þ

FIG. 1. Positive mass black hole b2 ¼ −2.5; z ¼ 0.5; d ¼ 6. Left: black hole with massm ¼ 1 showing two distinct real roots. Center:
mass m ¼ 5, showing no roots, and a naked singularity. Right: mass m ¼ 4.0638 showing a double root.

FIG. 2. Positive mass m ¼ 1, z ¼ 0.1, d ¼ 6. Left: naked singularity with b2 ¼ −2 showing no real roots. Right: de Sitter black hole
with b2 ¼ 2 showing a cosmological horizon and event horizon xc > xþ.

BRAYDEN R. HULL and ROBERT B. MANN PHYS. REV. D 107, 064027 (2023)

064027-4



must be simultaneously solved. In six dimensions there is
no closed form solution since the latter equation is a quintic
polynomial in x. For the parameters in Fig. 2 we obtain
numerically b2min

≈ −1.62. For b2 less than this the space-
time will have a naked singularity at the origin.
We can also make another observation, shown in Fig. 3.

That is, for a certain set of parameters f can become
discontinuous for some range of x. This discontinuity is due
to the argument inside the square root becoming negative.
Whenever this occurs the Kretschmann scalar (2.10)
diverges, yielding a spacetime singularity. Solutions to
the following polynomial

ð4 − 4b2Þxd−5 þ ð4zþ 1Þxd−1 þ 8m ¼ 0 ð3:12Þ

yield the singularity location(s). From Descartes’s rule of
signs this will only have a root when b2 > 1. This is a
necessary but not sufficient condition; as illustrated in the
right image of Fig. 3, increasing the value of z allows the

two discontinuous branches to join, yielding a smooth
continuous metric function f. If we hold all parameters
fixed, increasing z shifts f down vertically and reduces the
spread between the black hole and cosmological horizons,
allowing the possibility of a smooth metric function
between them.

B. Negative mass

Negative mass solutions have more interesting behavior,
since if b2 < 0 there can now be three roots to (3.9). We
illustrate this in Fig. 4. The left image depicts three
horizons, while the center and right images show the
two possible cases where horizons can merge. In the center
image xc ¼ xþ (a Nariai-type solution) and in the right
x− ¼ xþ (an extremal black hole with a cosmological
horizon). These latter two extremes constrain the range
of allowed values of b2 < 0 that yield black hole solutions
of negative mass. For the case illustrated in Fig. 4, we
approximately have −1.3 ≥ b2 > −3.

FIG. 3. Positive mass m ¼ 1, d ¼ 6, b2 ¼ 3.5. Left: z ¼ 0.1 two discontinuous branches with two spacetime singularities. Right:
z ¼ 0.3 de Sitter black hole.

FIG. 4. Negative mass: m ¼ −0.3, z ¼ 0.09, d ¼ 6. Left: b2 ¼ −2 showing three distinct horizons. Center: b2 ¼ −3 showing one
double root depicting a Nariai-like solution. Right: b2 ¼ −1.3 showing an extremal black hole with a distinct cosmological horizon.
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We also find that as x → 0, f does not have a smooth
limit, and instead becomes complex at some finite positive
value of x. For m < 0 and b2 < 0 there is only one sign
change in the coefficients of the terms in (3.12) and hence
this equation has only one positive root, at which point the
Kretschmann scalar (2.10) diverges. For the admissible
range of b2, this singularity is always behind a horizon as
can be seen in Fig. 4. For the more generic 3-horizon case
shown in the left diagram in Fig. 4, the solution to (3.12)
is x ¼ 0.1999637662.

1. Allowed values of b2 for valid negative mass
black hole solutions

To determine the range of b2 that allows for a valid black
hole solution of negative mass in any dimension, we must
solve the following set of equations:

f¼ 0;
∂f
∂x

¼ 0 for b2;x with fx;b2j∈R> 0g: ð3:13Þ

The first equation is given by (3.9) and yields

b2 ¼ x4þz − x2þ þ 2x5−dþ m; ð3:14Þ

where xþ solves

2xd−1þ z − xd−3þ −mðd − 5Þ ¼ 0 ð3:15Þ

from the former equation. There is no analytic solution to
this set of equations except in certain dimensions.
For d ¼ 6 Eq. (3.15) is a quintic, and there is no analytic

solution for arbitrary m, z. For the parameters used in
Fig. 4, we obtain numerically

fx1þ ¼ 0.6897087623; b2max
¼ −1.325264590g;

fx2þ ¼ 2.328863088; b2min
¼ −3.033847194g ð3:16Þ

refining the values given above.
In seven dimensions however, we can find a closed form

expression. The equations become

b2 ¼
x6þz − x4þ þ 2m

x2þ
; ð3:17Þ

2x6þz − x4þ − 2m ¼ 0; ð3:18Þ

which admits analytic solutions for arbitrarym, z. The latter
equation is a cubic in x2þ; writing m ¼ −jmj we get

2y3z − y2 þ 2jmj ¼ 0 with y ¼ x2þ; z > 0: ð3:19Þ

Now through Descartes’s rule of signs, the possible number
of distinct positive roots is either two or zero, while the
number of negative roots will always be one; this latter case
is inadmissible since we must have y > 0.

To have two distinct positive real roots for y (and thus the
same number of distinct positive values for xþ), we require
the discriminant

Δ3 ¼ 8jmjð1 − 54z2jmjÞ > 0 ð3:20Þ

for (3.19), implying

−
1

54z2
< m < 0: ð3:21Þ

This condition must be satisfied to have three distinct roots.
Writing (3.19) as a depressed cubic, the solutions (for x) are
easily written as

xk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3z
cos

�
1

3
arccos ð1 − 108jmjz2Þ − 2πk

3

�
−

1

6z

s

k ¼ 0; 1; 2: ð3:22Þ

For all values ofm satisfying (3.20), only k ¼ 0, 1 yield real
solutions, where x0 > x1. The value x0 corresponds to the
location of the Nariai-like black hole solution whereas x1
locates the extremal black hole of negative mass. From
(3.17), the respective minimal and maximal values of b2 are

b2min
¼ 8cosðAÞ3−432jmjz2−36cosðAÞ2þ30cosðAÞ−7

72z2 cosðAÞ−36z
;

A¼ 1

3
arccosð1−108jmjz2Þ;

b2max
¼ 8cosðBÞ3−432jmjz2−36cosðBÞ2þ30cosðBÞ−7

72z2 cosðBÞ−36z
;

B¼ 1

3
arccosð1−108jmjz2Þ−2π

3
; ð3:23Þ

and provided b2max
> b2 > b2min

, there will be a valid
negative mass black hole with two horizons and a de
Sitter cosmological horizon.
We can make a further interesting observation about

(3.20). If we saturate the inequality (3.21) from above,
setting set m ¼ 0, a range of interesting phenomena can
occur. It is possible to have a black hole, a Nariai-like black
hole, pure de Sitter space, or a naked singularity. These
scenarios are analyzed in the next section.

IV. MASSLESS BLACK HOLES

The saturation of (3.21) from above allows for the
possibility of zero mass exotic black holes. An intriguing
feature of these possible black holes is that they are
independent of the dimension of the spacetime. Taking
(3.8) and setting the mass to zero gives us

f ¼ 1þ x2

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4zÞx4 þ 4 − 4b2

p
2

: ð4:1Þ
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The root equation (3.15) is now

x4z − x2 − b2 ¼ 0 ð4:2Þ
which is a quadratic equation in x2 so it can be written as

y2z − y − b2 ¼ 0: ð4:3Þ
We may again analyze the roots of this polynomial by
Descartes’s rule of signs. Assuming z > 0, then

for b2 < 0; two or zero roots;

for b2 ≥ 0; one root: ð4:4Þ
As a quadratic the discriminant is immediately written
down asΔ2 ≡ 4zb2 þ 1. For a valid black hole solution, we
must have Δ2 ≥ 0. The saturation of this inequality yields
the Nariai solution. The unsaturated inequality gives us,
similar to the negative mass case, a condition on b2 as a
function of z that must be satisfied for a black hole to exist:
− 1

4z < b2 < 0. If b2 is not within these bounds there will be
a naked singularity located at the origin.
For b2 > 0 the space is pure de Sitter, provided (3.12)

has no solutions so as to avoid singularities. These
equations are easily solved for any d, yielding

x ¼
ffiffiffi
2

p ðb2 − 1Þ1=4
ð1þ 4zÞ1=4 ; ð4:5Þ

and so we conclude that we must have 0 ≤ b2 < 1 to obtain
a pure de Sitter space without any naked singularities. The
naked singularity that would occur for b2 ≥ 1 is at a finite
value of x given by (4.5). The different scenarios are
outlined in Fig. 5. The three leftmost images display
negative values of b2 respectively showing a naked singu-
larity, Nariai black hole, and de Sitter black hole. The two
rightmost images are for zero and positive values of b2
respectively, with the former being pure de Sitter space and

the latter a naked singularity outside of the origin. For
increasing values of b2 > 0 the termination point of f at
x ¼ 0 moves up the vertical axes until it reaches a
maximum point at fðx; b2; zÞ → fð0; 1; 0.1Þ ¼ 1.

V. CONCLUSION

We have shown that metrics of the form (2.6), with γαβ
being the metric of an arbitrary Einstein space, can possess
both negative mass and massless asymptotically de Sitter
black hole solutions in Gauss-Bonnet gravity. TheseM ≤ 0
black holes are all exotic black holes, and their existence
depends on the relative values of the parameters b2, z, and
m. For the massless case, there is a direct relationship
between b2 and z with b2 being bounded from below by z.
For M < 0 black holes there are more restrictions on the
parameters. The range of m is bounded by z, as given
by (3.21). There is also a minimum and maximum allowed
value of b2 admitting such solutions.
We close by noting that the existence of such horizon

geometries is still an open question. This is due to the fact
that field equations for the transverse space are an over-
constrained partial differential equation system, where
certain topological parameters bn may not provide a
solution. However we are not aware of any theorem
forbidding the existence of nontrivial solutions to (2.9).
With the discovery of negative mass black holes in de

Sitter space interesting questions arise. These include the
behavior of geodesics, formation from gravitational col-
lapse, and possible pair production in the early Universe of
such objects. Their thermodynamic behavior is also likely
to yield interesting surprises in comparison to their anti–
de Sitter counterparts [20,21].
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FIG. 5. Massless solutions z ¼ 01. From left to right the b2 values are −3, −2.5, −1, 0, 2. It depicts a naked singularity at the origin, a
Nariai-like black hole, a de Sitter black hole, pure de Sitter space, and then a nontrivial naked singularity outside of the origin,
respectively.
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