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We establish the Einstein-Euler-Heisenberg system of field equations with cosmological constant
(EEH-Λ) for type-D metrics within the null tetrad formalism. Then we determine all type-D solutions to
the EEH-Λ equations; among the derived solutions are the Einstein-Euler-Heisenberg-Λ generalizations of
the Bertotti-Robinson, Reissner-Nordström, Newman-Unti-Tamburino-B ðNUT-BÞ ðþÞ, andKerr-Newman
solutions. Moreover it is shown that the (static) C–metric is not compatible with the Euler-Heisenberg
electrodynamics.
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I. INTRODUCTION

Nowadays black holes are of utmost importance to be
investigated theoretically [1], since they can give insight
into matters like quantum gravity, the holographic corre-
spondence and statistical new perspectives, among others.
But equally interesting is their astrophysical relevance related
to observations of their shadows [2,3]. Also the dynamics of
stars in the neighborhood of the galactic centers [4,5] is
associated with the presence of supermassive black holes.
Moreover gravitational waves observations has lead to a
catalog of compact objects binaries [6]. These scenarios can
be approached bymeans of solutions in the framework of the
Einstein general relativity and last decades have witnessed
the development of techniques to determine solutions to the
Einstein field equations coupled to a variety of fields in
spacetimes with two Killing vectors related to stationarity
and axisymmetry, or to staticity and spherical symmetry, like
the Petrov type-D metrics [7], a class of solutions charac-
terized by two double principal null directions.
On the other hand, the QED effective theory after

one-loop of nonperturbative quantization is the Euler-
Heisenberg nonlinear electrodynamics [8]. The vacuum
is treated as a specific type of medium, the polarizability

properties of which are determined by clouds of virtual
charges surrounding the real ones. It accounts for vacuum
corrections to the Maxwell-Lorentz theory. These effects
become significant when the electromagnetic field
strengths approach the critical values Ecr ≈m2

ec3=ðeℏÞ ≈
1016 V=cm or Bcr ≈ 109 T. The situation of strong mag-
netic fields has astrophysical interest since neutron stars
and magnetars can generate magnetic fields in the range of
106–109 T, then processes like photon splitting and pair
conversion are expected to occur in their vicinity [9,10].
Efforts are currently in progress for measuring some

nonlinear electromagnetic effects, we mention just a few of
them: Light-light interactions can be studied using heavy
ion collisions; the electromagnetic (EM) field strengths
produced, for example by a lead (Pb) nucleus would be up
to 1025 Vm−1 and it has been measured light by light
scattering in Pbþ Pb collisions at the Large Hadron
Collider [11]. Other experimental proposals include the
measurement of photon splitting in strong magnetic
fields [12,13], the search for vacuum polarization with
laser beams crossing magnetic fields and the detection of
vacuum birefringence with intense laser pulses [14,15].
There is a suggestion for the detection of QED vacuum
nonlinearities using waveguides [16]. Vacuum pair pro-
duction, known as the Sauter-Schwinger effect [17], was a
prediction of the Euler-Heisenberg (EH) nonlinear electro-
dynamics. However, the necessary electric field strength,
Ecr, corresponding to a critical laser intensity of about
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Icr ¼ 4.3 × 1029 W=cm2 [18–20], is at least four orders
of magnitude larger than the presently feasible laser
experimental arrangements. Moreover, the phase velocity
of an electromagnetic wave traveling through intense EM
fields will be altered due to vacuum polarization. Light
trajectories can be determined by means of the effective
optical metric [21,22] and there are theoretical proposals to
measure these effects with a Michelson interferometer [23].
Therefore, it is interesting to couple EH nonlinear

electromagnetic fields with Einstein general relativity,
particularly with typeDmetrics whose most general metric
was derived by Plebański and Demiański [7].
In this paper we establish the Einstein-Euler-Heisenberg

equations with cosmological constant (EEH- Λ) for
type D metrics using the null tetrad formalism; first we
focus on the static solutions, that include as particular cases
the Schwarzschild, Bertotti-Robinson (BR), Reissner-
Nordström (RN), and the Levi-Civita or C-metric.
Regarding the stationary branch of the type D metrics
there are the Carter family that includes the NUT-BðþÞ, the
Kerr and the Kerr-Newman solutions that we generalize to
include the EH electromagnetic field and the cosmological
constant that can be positive (de Sitter) or negative (anti–de
Sitter). We also show the impossibility of coupling the
(static) C-metric geometry [24] with the EH electromag-
netic field. Some static EEH solutions were previously
addressed, for instance the solutions derived by Ruffini
et al. [25] corresponding to electric [26] and magnetic
monopoles, as well as for dyonic black holes [27]. The
stationary EEH solutions were addressed only recently, and
in [28] the EEH generalization of the Kerr-Newman
solution has been derived.
The organization of the paper is as follows: In Sec. II

generalities of the EH nonlinear electrodynamics (NLED)
are revisited. In Sec. III we present the type D metric
and the electromagnetic field in the null tetrad formalism,
the alignment of the eigenvectors of the electromagnetic
field with the real vectors of the null tetrad allows to
have only two nonvanishing components of the electro-
magnetic field. In Sec. IV, we address the four possible
cases of static solutions, i.e., the BR, RN, anti-RN,
and the C-metric, we prove that the latter one is not
compatible with the Euler-Heisenberg nonlinear electro-
dynamics. In Sec. V we focus on the stationary type D and
determine the EEH generalization of the NUT-BðþÞ and of
the Kerr-Newman solutions. Conclusions are presented in
Sec. VI and we include an Appendix with the explicit
expression of the Ricci tensor for the type D metrics.

II. EULER-HEISENBERG THEORY

From the study of the Dirac’s positron theory W.
Heisenberg and H. Euler [8] proposed in 1936 a nonlinear
electrodynamics theory. They derived a Lagrangian that
depends in nonlinear way of the two Maxwell-Lorentz
electromagnetic invariants constructed with the Faraday

tensor Fμλ, i.e., F ¼ −FμλFμλ=4 ¼ ðE2 − B2Þ=2 and
G ¼ −F̃μλFμλ=4 ¼ B⃗ · E⃗, with the Faraday dual tensor
defined by F̃μν ¼ 1

2
ffiffiffiffi−gp ϵμνρσFρσ and is given by

LEHðF;GÞ ¼ F þ μ

2

�
F2 þ 7

4
G2

�
; ð1Þ

where for shortness we use μ as the nonlinearity parameter
of the EH theory that in terms of the fine structure constant,
α ¼ e2=cℏ, reads

μ ¼ 16α2

45m4
e
; ð2Þ

in terms of the critical fields it is of the order
μ ¼ 20α=225πE2

cr. The linear electromagnetic Maxwell-
Lorentz theory is recovered if μ ¼ 0, LMaxwellðFÞ ¼ F.
The four dimensional action of general relativity with

cosmological constant Λ coupled to EH-NLED is given
by [29],

S ¼ 1

4π

Z
M4

d4x
ffiffiffiffiffiffi
−g

p �
1

4
ðR − 2ΛÞ − LEHðF;GÞ

�
; ð3Þ

where g is the determinant of the metric tensor, R is the
Ricci scalar, LEHðF;GÞ is the EH Lagrangian given
in Eq. (1).
Regarding NLED there are two possible frameworks,

one is the usual F-framework in terms of the Faraday
electromagnetic field tensor Fμν. The other one is the
P-framework in terms of the Legendre dual tensor Pμν as
the main field, defined by

dLEHðF;GÞ ¼ −
1

2
PμνdFμν; ð4Þ

Pμν coincides with Fμν for the linear Maxwell theory. In
general it reads

Pμν ¼ LFFμν þ LGF̃μν; ð5Þ

where the subscript X in L denotes the derivative,
LX ¼ dL=dX. In our EH case it reads

Pμν ¼ ð1þ μFÞFμν þ
7μ

4
GF̃μν: ð6Þ

The tensor Pμν corresponds to the electric field strength D
and the magnetic fieldH and Eqs. (5) are the constitutive or
material relations between D, and H with the electric field
E and the magnetic field strength B. The Legendre trans-
formation of LEH defines the structural function H as [29],

Hðs; tÞ ¼ 1

2
PμνFμν þ LEH: ð7Þ
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The two independent invariants s and t associated to the
P-framework are defined as

s ¼ 1

4
PμνPμν; t ¼ −

1

4
P̃μνPμν: ð8Þ

with P̃μν ¼ 1
2
ffiffiffiffi−gp ϵμνρσPρσ.

Neglecting second and higher order terms in μ, the
structural function for the EH theory takes the form

Hðs; tÞ ¼ sþ μ

2

�
s2 þ 7

4
t2
�
: ð9Þ

The electromagnetic Faraday-Maxwell equations, in the
absence of sources are given by [29],

∇μPμν ¼ 0; ∇μF̃μν ¼ 0; ð10Þ

where ∇μ is the covariant derivative. Working with the
structural function Hðs; tÞ one has the technical advantage
that Pμν satisfies (10) and Fμν is given directly by the
material equations as a function of Pμν,

Fμν ¼ HsPμν þHtP̃μν ¼ Pμν − μ

�
sPμν þ

7

4
t�Pμν

�
: ð11Þ

The gravitational field equations are given by

Gμν ¼ 8πTμν þ Λgμν; ð12Þ

where the energy momentum tensor Tμν for the EH theory
in the P-framework is given by

4πTμν¼ðPβ
·μPνβþgμνsÞð1−μsÞþgμν

μ

2

�
s2þ7

4
t2
�
: ð13Þ

III. TYPE-D METRICS AND THEIR IMPORTANCE
IN GR AND ASTROPHYSICS

The interest in Petrov type-D metrics relies on
their physical relevance; as we already mentioned,
Schwarzschild, Reissner-Nordström, Kerr, Kerr–Newman
solutions belong to the type-D metrics family; also are
included the metrics describing two accelerating sources as
the C-metric [24], and the nonexpanding Kundt’s class,
among others [30–32].
Since in this work we aim to look for the space-time

created by compact gravitating objects, we will determine
all static and some stationary type-D metrics with cosmo-
logical constant with the Euler-Heisenberg matter as a
source. We use the type-D metric as an ansatz and
determine then if the Euler-Heisenberg nonlinear electro-
magnetic field can be coupled to the corresponding
geometry. This is not always the case, as we shall see
for the Levi-Civita or C-metric. We shall employ in the

search for the type-D EEH-Λ solutions the null tetrad
formalism. The most general type-D metric, which allows
for aligned gravitational and electromagnetic fields, in the
coordinates ðx; y; τ; σÞ is given by [7],

ds2 ¼ 1

Ω2

�
Σ
P
dx2 þ P

Σ
½dτ þ pðyÞdσ�2 þ Σ

Q
dy2

−
Q
Σ
½dτ þmðxÞdσ�2

�
; ð14Þ

where Ω ¼ Ωðx; yÞ, P ¼ PðxÞ, Q ¼ QðyÞ and Σ ¼
mðxÞ − pðyÞ. Type–D metrics are distinguished by pos-
sessing two obvious symmetries, stationarity and axisym-
metry or staticity and spherical symmetry, associated to the
two Killing vectors ∂τ and ∂σ . But also there are hidden
symmetries related to the existence of Killing tensors.
Those symmetries are associated with the integrability of
geodesics and the separability of Hamilton-Jacobi and
Klein-Gordon equations [33].
In terms of the null tetrad ea, the line element can be

written as

ds2 ¼ 2e1 ⊗ e2 þ 2e3 ⊗ e4; e1 ¼ ē2;

e3 ¼ ē3; e4 ¼ ē4; ð15Þ

where the upper bar means complex conjugate and we
denote the quantities in the null tetrad formalism with latin
letters, a; b; c; :…, sub(super)scripts, while tensors in
coordinate frame are denoted with greek sub(super)scripts.
The null tetrad for the type-D metric (14) is given by

e1 ¼ 1

Ω
ffiffiffi
2

p
� ffiffiffiffi

Σ
P

r
dxþ i

ffiffiffiffi
P
Σ

r
½dτ þ pðyÞdσ�

�
¼ ē2;

e3;4 ¼ 1

Ω
ffiffiffi
2

p
� ffiffiffiffi

Σ
Q

r
dy�

ffiffiffiffi
Q
Σ

r
½dτ þmðxÞdσ�

�
: ð16Þ

A. The conformal factor

Following [34] the metric functions Ωðx; yÞ; mðxÞ and
pðyÞ have to be determined from

Σðm;xx − p;yyÞ − ðm;xÞ2 − ðpyÞ2 ¼ 0;

4ΣΩ;xx ¼ Ωðm;xx þ p;yyÞ;
4ΣΩ;yy ¼ −Ωðm;xx þ p;yyÞ;

2ΣΩ;xy −m;xΩ;y þ p;yΩ;x ¼ Ωðm;xx þ p;yyÞ;
2m;xΩ;x þ 2p;yΩ;y ¼ Ωðm;xx þ p;yyÞ: ð17Þ

The stationary solutions correspond to the three cases:
(i) m;x ¼ 0;p;y ≠ 0, (ii) m;x ≠ 0;p;y ¼ 0, and (iii) m;x ≠ 0;

p;y ≠ 0, while static cases are m;x ¼ 0 ¼ p;y, i.e., m and p
are constant, that we shall assume to be m ¼ 1=2 and
p ¼ −1=2, then Σ ¼ 1.
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B. The electromagnetic equations

For type-D solutions one can always align the directions of
the real null vectors e3 and e4 along the double Debever-
Penrose (DP) vectors or principal null directions, such that
the only nonzero curvature components ofCðaÞ; a ¼ 1;…; 5,
which characterizes the conformal curvature tensor,Cabcd, is
Cð3Þ [7]. It is convenient for electromagnetic solutions that
the eigenvectors of the electromagnetic field tensor Fab be
aligned along the principal null directions as well. Hence
the nonvanishing components of Fab are F12 and F34,
correspondingly P12 and P34; the dual in the null tetrad
formalism is given by P̃ab ¼ − 1

2
εabcdPcd then P̃12 ¼ P34

and P̃34 ¼ P12.
The electromagnetic Faraday-Maxwell equations are

∇aPab ¼ 0 and ∇aF̃ab ¼ 0; Fab and P̃ab are curls and
then can be written as the gradient of an electromagnetic
potential; these equations are comprised in dω ¼ 0, where
the electromagnetic two-form ω is given by

ω ¼ 1

2
ðFab þ P̃abÞea ∧ eb: ð18Þ

Considering the eigenvectors of the electromagnetic field
aligned along the real null vectors e3 and e4 then gives

ω ¼ ðF12 þ P34Þe1 ∧ e2 þ ðF34 þ P12Þe3 ∧ e4: ð19Þ

By aligning the eigenvectors of the electromagnetic field
along the real null vectors e3 and e4 we can parametrize the
electromagnetic components as [34]

F12¼ iB; F34¼E; P12¼ iH; P34¼D; ð20Þ

where B, E, H, and D are real. Since F12 and F34, and
correspondingly P12 and P34, are the only nonvanishing
electromagnetic components, the corresponding invariants
s and t read

s ¼ 1

2
ðH2 −D2Þ; t ¼ iH⃗ · D⃗: ð21Þ

where P0i ¼ Di and P̃0i ¼ Hi. The electromagnetic two-
form ω can be expressed in terms of the fields E, B, D and
H as

ω ¼ ðiBþDÞe1 ∧ e2 þ ðEþ iHÞe3 ∧ e4: ð22Þ

The constitutive or material relations for the EH structural
function H in (9) are given by

F12 ¼ ð1þ μsÞP12 þ
7

4
μtP34

F34 ¼ ð1þ μsÞP34 þ
7

4
μtP12: ð23Þ

With the parametrization (20) and the substitution of the
invariants (21) the material relations read

E ¼
�
1 −

μ

2

�
D2 þ 5

2
H2

��
D ¼ κ1D;

B ¼
�
1þ μ

2

�
H2 þ 5

2
D2

��
H ¼ κ2H: ð24Þ

In the spirit of the Lorentz theory of electrons we can write

D ¼ ϵ0E ¼
�
1þ μ

2
ðH2 þD2Þ þ 3

4
μH2

�
E ¼ E

κ1

H ¼ B
μ0

¼
�
1 −

μ

2
ðH2 þD2Þ − 3

4
μD2

�
B ¼ B

κ2
; ð25Þ

so that ðκ1Þ−1 can be interpreted as an electric permittivity
ϵ0 and κ2 as a magnetic permeability μ0 of an effective
material that is a result of the vacuum polarization. Note
also that the second term in ϵ0 and μ0 is proportional to the
energy density ρ ¼ ðH2 þD2Þ=ð8πÞ of the electromagnetic
field,

ϵ0 ¼
�
1þ 4πμρþ 3

4
μH2

�

μ0 ¼
�
1þ 4πμρþ 3

4
μD2

�
; ð26Þ

that turns out to be greater than the linear vacuum value.
Besides the energy density term, the electric permitivity ϵo
has a magnetic correction in the last term, 3μH2=4, while
the magnetic permeability μ0 has an electric correction
from the term 3μD2=4. When the EH nonlinear parameter
μ ¼ 0 the linear vacuum values, ϵ0 ¼ 1 and μ0 ¼ 1, are
recovered, hence B ¼ H, and D ¼ E. If we substitute the
wedge products e1 ∧ e2 and e3 ∧ e4 for the null tetrad (16),

e1 ∧ e2 ¼ {
Ω2

½dτ þ pðyÞdσ� ∧ dx ð27Þ

e3 ∧ e4 ¼ 1

Ω2
½dτ þmðxÞdσ� ∧ dy; ð28Þ

then the Faraday-Maxwell equations for the field strengths
and excitations given by Eq. (20) in case of a type-Dmetric
are given by

∂x

�
Dκ1 þ iH

Ω2

�
¼ i∂y

�
Dþ iHκ2

Ω2

�
;

∂x

�
mðxÞDκ1 þ iH

Ω2

�
¼ i∂y

�
pðyÞDþ iHκ2

Ω2

�
: ð29Þ

This is a set of four equations to determine Dðx; yÞ and
Hðx; yÞ, for a given conformal factor Ω determined

BRETON, LÄMMERZAHL, and MACÍAS PHYS. REV. D 107, 064026 (2023)

064026-4



from (17). The fields E and B are given by the material
relations (24).

C. Einstein-Euler-Heisenberg-Λ equations
for type-D metrics

The energy–momentum tensor Tab for the EH field is
given in Eq. (13), and remembering that 8πTM

ab ¼
PacPb·

c − gabs is the energy-momentum tensor of the
Maxwell theory, then Tab can be written as

8πTab ¼ ð8πTM
abÞð1 − μsÞ þ μ

�
s2 þ 7

4
t2
�
gab; ð30Þ

where s and t are the electromagnetic invariants defined
in (21). In the null tetrad formalism the components
different from zero of the energy momentum tensor are
T12 and T34. With the adopted parametrization, and the
energy-momentum tensor of the Maxwell theory being
8πTM

12 ¼ −ðD2 þH2Þ and 8πTM
34 ¼ D2 þH2, the nonvan-

ishing components of the energy–momentum tensor are

8πT12 ¼ −ðD2 þH2Þ þ μ

4
ð3D4 −H4 þ 5H2D2Þ

8πT34 ¼ ðD2 þH2Þ þ μ

4
ð3H4 −D4 þ 5H2D2Þ: ð31Þ

Let us now consider the Einstein equations with cosmo-
logical constant Λ and with the EH nonlinear electromag-
netic field as a source

Rab −
1

2
Rgab ¼ 8πTab þ Λgab: ð32Þ

The expression for the scalar curvature R is

R ¼ −4Λ − 4μ

�
s2 þ 7

4
t2
�

ð33Þ

and with (31) and using that −8πTM
12 ¼ ðD2 þH2Þ ¼

8πTM
34, the nonvanishing components of the Ricci tensor

Rab are R12 and R34. Then the field equations (32) reduce to

R12 ¼ −ðD2 þH2Þ þ μ

4
ð3D4 −H4 þ 5H2D2Þ − Λ

R34 ¼ ðD2 þH2Þ þ μ

4
ð3H4 −D4 þ 5H2D2Þ − Λ: ð34Þ

For completeness, the expressions for R12 and R34 for the
type D metric (14) are outlined in the Appendix. The
equations to be solved are then the gravitational field
equations (34) together with the Maxwell-Faraday
equations (29).

IV. STATIC EINSTEIN-EULER-HEISENBERG-Λ
SOLUTIONS

The static case of the type-D metrics (14) corresponds to
m;x ¼ 0 ¼ p;y. That means, mðxÞ and pðyÞ being constant
in (17), while the conformal factor is of the form Ω ¼
aþ bxþ cy with integration constants a, b, and c. The
principal null directions e3 and e4 are geodesic, shear-free
and twist-free. Additionally, for Ω ¼ ΩðxÞ, the principal
directions are non-expanding, while for Ω ¼ ΩðyÞ, the
principal congruences are expanding. We assume m ¼ 1=2
and p ¼ −1=2what gives Σ ¼ 1. The line element (14) will
be expressed in new coordinates, ðτ; σÞ ↦ ðt;ϕÞ given by
dϕ ¼ dτ − dσ=2 and dt ¼ dτ þ dσ=2, so that the metric
can be written in diagonal form

ds2 ¼ 1

Ω2

�
dx2

P
þ Pdϕ2 þ dy2

Q
−Qdt2

�
: ð35Þ

Then the electromagnetic two-form ω in (22) is

ω¼ i
Ω2

ðDþ iκ2HÞdϕ∧ dxþ 1

Ω2
ðDκ1þ iHÞdt∧ dy; ð36Þ

then the Faraday-Maxwell equations (29) reduce to

∂x

�
Dκ1 þ iH

Ω2

�
¼ 0; ∂y

�
Dþ iκ2H

Ω2

�
¼ 0: ð37Þ

While using the expressions for R12 and R34 (see the
Appendix) the EEH-Λ equations for the static case are
given by

P;xxþ
2Q;y

y
−
2QðyÞ
y2

¼−2y2
�
D2þH2þμ

4
ð3H4−D4þ5H2D2ÞþΛ

�

Q;yy−
2Q;y

y
þ2QðyÞ

y2

¼ 2y2
�
D2þH2−

μ

4
ð−H4þ3D4þ5H2D2Þ−Λ

�
: ð38Þ

Now we shall integrate the four cases of the form of
Ωðx; yÞ corresponding to mðxÞ and pðyÞ being constant:
(A) The Bertotti-Robinson metric with Ω ¼ 1, (B) the
Reissner-Nordström metric with Ω ¼ y, (C) the anti
Reissner-Nordström metric with Ω ¼ x, and (D) the
C-metric or Levi-Civita metric with Ω ¼ xþ y.

A. EH generalization of the Bertotti-Robinson solution

If b ¼ 0 ¼ c and a ¼ 1, then Ω ¼ 1, and the Faraday-
Maxwell (FM) Eqs. (37) reduce to

∂xH ¼ 0 ∂yðκ2HÞ ¼ 0 ð39Þ
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∂yD ¼ 0 ∂xðκ1DÞ ¼ 0; ð40Þ

whose solution is H ¼ C1 and D ¼ C2, C1, C2 being
constants to be determined from the EEH-Λ Eqs. (38) that
amount to:

P;xx¼−2ðD2þH2Þ−μ

2
ð3H4−D4þ5D2H2Þ−2Λ

Q;yy¼ 2ðD2þH2Þ−μ

2
ð3D4−H4þ5D2H2Þ−2Λ: ð41Þ

Since P ¼ PðxÞ andQ ¼ QðyÞ, then the right-hand side of
the equations cannot depend on both coordinates ðx; yÞ,
leaving then for the electromagnetic fields that the only
acceptable solutions are D ¼ const and H ¼ const, in
agreement with MF equations; then the metric functions
PðxÞ and QðyÞ are second degree polynomials given by

PðxÞ ¼ α1 þ βxþ γ1x2

QðyÞ ¼ α2 þ δyþ γ2y2; ð42Þ

where α1; α2; β and δ are arbitrary constants, and γ1 and γ2
are determined from the EEH-Λ equations, Eqs. (41), as

γ1 ¼ −ðD2 þH2Þ − μ

4
ð3H4 −D4 þ 5D2H2Þ − Λ

γ2 ¼ ðD2 þH2Þ − μ

4
ð3D4 −H4 þ 5D2H2Þ − Λ: ð43Þ

The EH generalization of the Bertotti-Robinson solution
with cosmological constant Λ consists then in the line
element (35) with the metric functions (42) and (43), with
D and H being uniform electric and magnetic fields,
respectively. In the case μ ¼ 0 we recover the linear
Bertotti-Robinson solution consisting of the spacetime
generated by two uniform electric and magnetic fields E
and B [35], with the metric functions PðxÞ and QðyÞ given
in (42) with γ1 ¼ −ðE2 þ B2Þ and γ2 ¼ ðE2 þ B2Þ.

B. Reissner-Nordström generalization with EH field

The Reissner-Nordström metric, that represents a
charged black hole, is the type-D metric, Eq. (35) charac-
terized by the conformal factor Ω ¼ y. It is convenient to
change variables y ↦ 1=y; then the Maxwell-Faraday
equations reduce to

∂x½ðDκ1 þ iHÞy2� ¼ 0;

∂y½ðDþ iκ2HÞy2� ¼ 0: ð44Þ

Considering the electromagnetic field generated by electric
and magnetic charges, Qe and Qm, respectively, also called
the dyonic solution, the D and H fields are given by

D ¼ Qe

y2
; H ¼ Qm

y2
; ð45Þ

then E and B are given through the material relations
Eqs. (24) by

E ¼ Qe

y2

�
1 −

μ

2

Q2
e

y4
−
5

4
μ
Q2

m

y4

�

B ¼ Qm

y2

�
1þ μ

2

Q2
m

y4
þ 5

4
μ
Q2

e

y4

�
: ð46Þ

Substituting the electromagnetic fieldsD andH in (38) and
solving we find

PðxÞ ¼ αþ βx − ϵx2 ð47Þ

QðyÞ ¼ ϵy2 − 2My −
Λ
3
y4 þQ2

e þQ2
m

−
μ

20y4
ðQ4

e þQ4
m þ 5Q2

mQ2
eÞ; ð48Þ

where α and β are constants, ϵ ¼ −1; 0; 1, and M can be
identified as the BH mass. The metric function QðyÞ can
also be written in terms of the screened electric and
magnetic charges Q̂e and Q̂m as

QðyÞ ¼ ϵy2 − 2My −
Λ
3
y4 þ Q̂2

e þ Q̂2
m ð49Þ

with

Q̂2
eðyÞ ¼ Q2

e

�
1 −

μQ2
e

20y4
−
μQ2

m

8y4

�

Q̂2
mðyÞ ¼ Q2

m

�
1 −

μQ2
m

20y4
−
μQ2

e

8y4

�
: ð50Þ

To recover the canonical form of the RN solution we have
to change y, x coordinates as y ↦ r and x ↦ cos θ; then
with α ¼ 1, β ¼ 0, ϵ ¼ 1, P ¼ ð1 − x2Þ ↦ sin2 θ, then the
line element (35) is

ds2 ¼ r2ðdθ2 þ sin2 θdϕ2Þ þ dr2

QðrÞ −QðrÞdt2; ð51Þ

with QðrÞ given by

QðrÞ ¼ 1 −
2M
r

−
Λ
3
r2 þ Q̂2

eðrÞ
r2

þ Q̂2
mðrÞ
r2

; ð52Þ

To determine the purely electric or magnetic case we make
Qm ¼ 0 orQe ¼ 0, respectively in the previous solution. In
the case Λ ¼ 0 this solution reduces to the dyonic solution
derived from the Lagrangian formalism in [25].
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C. Anti-Reissner-Nordström generalization
with EH field

Following the samemethod as in SubsectionB the solution
corresponding to Ω ¼ x (anti-Reissner-Nordström) can be
derived. However it is simpler to obtain the EH anti-Reissner-
Nordström from the EH Reissner-Nordström solution by a
coordinate transformation: x ↦ y, y ↦ x, τ ↦ iτ, and
σ ↦ iσ. Redefining the electromagnetic charges, such that
the electric charge becomes themagnetic one and conversely,
the mass parameter becomes the NUT parameter or magnetic
mass, n [34]. Since this solution lacks of horizon it does not
admit a BH interpretation. In order not to be redundant we
omit this derivation.

ds2 ¼ x2

P
dx2 þ P

x2
dt2 þ x2

�
1

Q
dy2 −Qdϕ2

�
;

QðyÞ ¼ αþ βy − ϵy2;

PðxÞ ¼ ϵx2 þ 2nx −
Λ
3
x4 − ðQ2

e þQ2
mÞ

−
μ

20x4
ðQ4

e þQ4
m þ 5Q2

mQ2
eÞ: ð53Þ

and the electromagnetic fields are given by

∂y½ðDκ1 þ iHÞx2� ¼ 0

∂x½ðDþ iκ2HÞx2� ¼ 0: ð54Þ

the D and H fields are given by

D ¼ Qm

x2
; H ¼ Qe

x2
; ð55Þ

while E and B are given through the material relations (24).

D. There is not EH generalization of the Levi-Civita
or C-metric

The case with the conformal factor given by Ω ¼ xþ y
is the Levi-Civita or C-metric and it admits the interpre-
tation of the field produced by the motion of two accel-
erated charges [24]. We will show that the C-metric does
not admit the EH generalization, and the only acceptable
solution is the linear Maxwell one. The electromagnetic
equations (37) are in this case

∂x

�
Dκ1 þ iH
ðxþ yÞ2

�
¼ 0; ∂y

�
Dþ iκ2H
ðxþ yÞ2

�
¼ 0; ð56Þ

with κ1 and κ2 given by (24). Then (56) implies

D ¼ ðxþ yÞ2hðxÞ; H ¼ ðxþ yÞ2gðyÞ;
Dκ1 ¼ ðxþ yÞ2fðyÞ; Hκ2 ¼ ðxþ yÞ2jðxÞ; ð57Þ

where the functions hðxÞ, gðyÞ, fðyÞ, and jðxÞ are arbitrary.
Using the definitions of κ1 and κ2 andEqs. (57)weobtain that

κ1 ¼ 1 −
μ

2
D2 −

5

4
μH2 ¼ fðyÞ

hðxÞ

κ2 ¼ 1þ μ

2
H2 þ 5

4
μD2 ¼ jðxÞ

gðyÞ ; ð58Þ

that using D ¼ ðxþ yÞ2hðxÞ and H ¼ ðxþ yÞ2gðyÞ can be
written as

fðyÞ ¼ hðxÞ
�
1 −

μ

2
ðxþ yÞ4

�
hðxÞ2 þ 5

2
gðyÞ2

��

jðxÞ ¼ gðyÞ
�
1þ μ

2
ðxþ yÞ4

�
gðyÞ2 þ 5

2
hðxÞ2

��
: ð59Þ

These equations can only be satisfied if hðxÞ, gðyÞ, fðyÞ, and
jðxÞ are constants and μ ¼ 0, thereforeD ¼ C1ðxþ yÞ2 and
H ¼ C2ðxþ yÞ2, being C1 and C2 constants and κ1 ¼ 1
and κ2 ¼ 1 that is actually the Maxwell case. For complete-
ness we include the metric functions PðxÞ and QðyÞ of the
linear case [24], that is the line element (35) with

PðxÞ¼ γ−
Λ
6
þp1xþp2x2þp3x3−ðQ2

eþQ2
mÞx4

QðyÞ¼−γ−
Λ
6
þp1y−p2y2þp3y3þðQ2

eþQ2
mÞy4; ð60Þ

where γ; p1; p2; p3 are constants and Qe, Qm are the
electric and magnetic charges, respectively, sources of
the electromagnetic fields E ¼ D ¼ Qeðxþ yÞ2 and B ¼
H ¼ Qmðxþ yÞ2
Then we conclude that the EH electromagnetic field is not

compatiblewith the C-metric geometry. The reasonmight be
that the preferred direction given by the motion of the
charged BHs breaks the spherical symmetry, being then
impossible to couple the C-metric spacetime with the
electromagnetic field as was done in cases (A), (B), and (C).

V. STATIONARY TYPE-D SOLUTIONS OF THE
EINSTEIN-EULER-HEISENBERG EQUATIONS

It is worthwhile to stress the fact that these stationary
solutions cannot be obtained from the static ones by means
of complex translations, since this method does not work
for nonlinear sources. This issue is addressed in detail
in [36].
The class of stationary metrics arises as solutions of the

EEH system with the metric Eq. (14) in the case that mðxÞ
and pðyÞ are not simultaneously constant. This includes the
Plebański class of metrics, and the most important solution
in this class is the Kerr-Newman one. It is worth to mention
that solutions to the Einstein-Born-Infeld equations, both
static and stationary, were derived in [34]. Stationary
solutions within NLE with a Lagrangian given in terms
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of the coordinates has been derived by García-Díaz in [37]
and the EEH generalization of the Kerr-Newman solution
was presented in [28].

A. The EEH generalization of the NUT-Bð+ Þ metric

The importance of this metric has been related to the
magnetic monopole, however the rod singularity, associ-
ated to the NUT parameter l, has made that some people
disregard its importance, however see [33,38]. It is also
worthwhile to mention that the Born-Infeld nonlinear
generalization of the NUT-BðþÞ metric was presented
in [34] and analyzed in [39].
This solution arises for p;y ¼ 0 and m;x ≠ 0, and with

mðxÞ ¼ −2lx. The metric is of the form

ds2 ¼ ðl2 þ y2Þ
�
PðxÞdσ2 þ dx2

PðxÞ
�

þ ðl2 þ y2Þ
QðyÞ dy2 −

QðyÞ
ðl2 þ y2Þ ðdτ − 2lxdσÞ2: ð61Þ

The electromagnetic two-form ω reads

ω ¼ iðl2 þ y2ÞðDþ iHκ2Þdσ ∧ dx

þ ðDκ1 þ iHÞðdτ − 2lxdσÞ ∧ dy: ð62Þ

The closure of the electromagnetic two-form, dω ¼ 0 in
this case amounts to the equations

∂xðDκ1 þ iHÞ ¼ 0;

∂y½Dðl2 þ y2Þ� þ 2lH ¼ 0;

∂y½κ2Hðl2 þ y2Þ� − 2lDκ1 ¼ 0: ð63Þ

From the first equation we know then that D ¼ DðyÞ and
H ¼ HðyÞ; while the second equation is satisfied by

D ¼ Qe
ðl2 − y2Þ
ðl2 þ y2Þ2 ; H ¼ Qe

2ly
ðl2 þ y2Þ2 : ð64Þ

In the stationary case even if the BH only possesses electric
charge, the rotation induces a magnetic dipole moment,
linked to the NUT parameter l. While the third equation is
satisfied to first order in μ by the screened fields

Ẽ ¼ D

�
1 −

μ

2
D2 þ 9

4
μH2

�

B̃ ¼ H

�
1þ μ

2
H2 −

9

4
μD2

�
: ð65Þ

On the other hand the Einstein equations, Eqs. (34),
reduce for this metric to

−P;xx−
2yQ;y

ðl2þy2Þþ
2QðyÞ
ðl2þy2Þ

¼ 2ðl2þy2Þ
�
ðD2þH2Þð1−μsÞþμ

�
s2þ7

4
t2
�
þΛ

�

−Q;yyþ
2yQ;y

ðl2þy2Þ−
2QðyÞ
ðl2þy2Þ

¼ 2ðl2þy2Þ
�
−ðD2þH2Þð1−μsÞþμ

�
s2þ7

4
t2
�
þΛ

�
:

ð66Þ

Summing and subtracting the previous equations lead to the
equivalent system of equations,

−P;xx−Q;yy¼ 2Σ
�
2Λþ2μ

�
s2þ7

4
t2
��

P;xxþ
2yQ;y

ðl2þy2Þ−
2QðyÞ
ðl2þy2Þ

¼ 2Σ
�
−ðD2þH2Þð1−μsÞ−Λ−μ

�
s2þ7

4
t2
��

; ð67Þ

with Σ ¼ l2 þ y2. Since the functions involved in the
previous equations depend on y, it must be that
PðxÞ;xx ¼ −2ϵ, where the parameter ϵ ¼ 1; 0;−1
determines the geometry of the metric sector g2 ¼
dx2=Pþ Pdσ2.
The metric function QðyÞ is given by

QðyÞ ¼ ϵðy2 − l2Þ − 2My − Λ
�
y4

3
þ 2l2y2 − l4

�

þQ2
e þ μF ðyÞ; ð68Þ

where F ðyÞ should satisfy

F ðyÞ00 ¼ −4Σ
�
s2 þ 7

4
t2
�
; ð69Þ

after integration we obtain

F ðyÞ ¼ 1

3

�
s2 þ 7

4
t2
�
ð−Σ2 þ l4 − 4l2y2Þ þ const; ð70Þ

and adjusting the constant from the second equation, one
has that

P;xx þ
2yQ;y

ðl2 þ y2Þ −
2QðyÞ

ðl2 þ y2Þ

¼ 2Σ
�
−
Q2

e

Σ2
ð1 − μsÞ − Λ − μ

�
s2 þ 7

4
t2
��

; ð71Þ

then the metric function Q turns out to be
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QðyÞ ¼ ϵðy2 − l2Þ − 2My

− Λ
�
y4

3
þ 2l2y2 − l4

�
þQ2

eð1 − μsÞ

þ μ

�
s2 þ 7

4
t2
��

−
y4

3
− 2l2y2 þ l4

�
: ð72Þ

In order to obtain the screening, one should remember
that

s ¼ 1

2
ðD2 −H2Þ ¼ Q2

e

2Σ4
ðΣ2 − 8l2y2Þ;

s2 þ 7

4
t2 ¼ 1

4
ðD4 þH4 þ 5H2D2Þ

¼ Q4
e

4Σ4

�
1þ 12l2y2

Σ4
ðy2 − l2Þ2

�
; ð73Þ

Regarding the physical properties of the NUT-BðþÞ
solution it is worth to mention that the also called Taub–
NUT solution, first derived by Taub (1951) [40] and then
by Newman et al. (1963) [41], has been the object of
interest in many aspects. Derived by a generalization of the
Schwarzschild metric to include the NUT parameter,
several interpretations of this parameter have arisen and
still are under debate, for instance it has been related to the
gravomagnetic monopole strength, or the twist of an
electromagnetic universe [42].
The NUT (also called Taub–NUT) solution is stationary

and axisymmetric but it is not globally asymptotically flat
because it has one semi-infinite singularity on the sym-
metry axis at θ ¼ π, and Bonnor [43] interpreted this
singularity as a semi-infinite massless source endowed with
a nonzero angular momentum. Misner [44] addressed as
well NUT spaces discovering that either closed timelike
geodesics appear or there is the singularity also called the
“Misner string.” These aspects and geodesic incomplete-
ness at the horizons were addressed in [45] as well as the
complete set of analytical solutions of the geodesic equa-
tion in Taub-NUT space-times in terms of the Weierstrass
elliptic functions were derived.
NUT spaces has also been explored in connection with

the AdS=CFT conjecture [46]. Besides, NUT–Reissner–
Nordstrom spaces that are asymptotically de Sitter (dS)
have given counterexamples to the dS=CFT paradigm [47].
Regarding thermodynamics studies, the entropy of the
Taub–NUT solution has also been relevant in the context
of Euclidean solutions or instantons [48,49]. Moreover, it
has been shown that in NUT spaces the entropy/area
relationship does not hold [50,51]. Hawking [52] was also
interested in elucidating the role of the NUT charge in the
context of quantum gravity. Questions like if hairy black
holes possessing a magnetic mass do exist or the new
effects that arise due to the presence of a NUT charge were
addressed in [53]. In [54] it was pointed out the importance

of the NUT charge in the context of low energy string
theory, and how some symmetries remain unnoticed if the
NUT charge is not included [55].
In a proposal by Atiyah, Manton, and Schroers [56] as a

generalization of the Skyrme model, they assigned a geo-
metrical and topological interpretation to the electric charge
and baryon and lepton numbers, static particles are described
in terms of gravitational instantons, where the electrically
charged particles correspond to noncompact asymptotically
locally flat instantons; in this context the Taub–NUT instan-
ton is a model for the electron. The geometry of the Taub–
NUT skyrmion has been addressed in [57].
The case NUT-Bð−Þ corresponds top;y ≠ 0 andm;x ¼ 0,

withpðyÞ ¼ 2ly. The EEH generalization of the NUT-Bð−Þ
metric can be obtained following a similar method.

B. The EH generalization of the
Kerr-Newman metric

The Plebański class of metrics is characterized by
p;y ≠ 0 and m;x ≠ 0, that without loss of generality can
be given by pðyÞ¼−y2 andmðxÞ¼x2, whileΩ ¼ aþ bxy.
As already mentioned, the most important solution of this
class is the Kerr-Newman one with a ¼ 1 and b ¼ 0. The
importance of Kerr metric cannot be exaggerated, since it
represents a rotating black hole and observations of stars
trajectories near the center of our galaxy agree with the
geodesics of test particles in a Kerr spacetime [5]. Its
charged version is the Kerr-Newman solution and its
generalization considering uniform nonlinear EH electro-
magnetic fields, arising from QED after one loop of
nonperturbative quantization, has been recently derived
in [28], that we now generalize to include the cosmological
constant Λ. The metric is of the form of Eq. (14), with
pðyÞ ¼ −y2, mðxÞ ¼ x2, and Ωðx; yÞ ¼ 1, it is given by

ds2 ¼ Σ
P
dx2 þ P

Σ
ðdτ − y2dσÞ2 þ Σ

Q
dy2

−
Q
Σ
ðdτ þ x2dσÞ2; ð74Þ

where Σ ¼ x2 þ y2, P ¼ PðxÞ, and Q ¼ QðyÞ.
The electromagnetic field equations, Eq. (29), now read

∂xðDκ1 þ iHÞ ¼ i∂yðDþ iHκ2Þ;
∂x½x2ðDκ1 þ iHÞ� ¼ −i∂y½y2ðDþ iHκ2Þ�; ð75Þ

since we know the solutions for μ ¼ 0, i.e., the Kerr-
Newman electromagnetic field, we make the ansatz,

D ¼ Qe
ðy2 − x2Þ
ðx2 þ y2Þ2 ; H ¼ −Qe

2xy
ðx2 þ y2Þ2 ; ð76Þ

while the metric function satisfy the Einstein equations (34)
in terms of the electromagnetic invariants
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PðxÞ
Σ2

−
QðyÞ
Σ2

−
xP;x

Σ2
þyQ;y

Σ2
þP;xx

2Σ

¼−ðD2þH2ÞþμsðD2þH2Þ−μ

�
s2þ7

4
t2
�
−Λ

−
PðxÞ
Σ2

þQðyÞ
Σ2

þxP;x

Σ2
−
yQ;y

Σ2
þQ;yy

2Σ

¼ðD2þH2Þ−μsðD2þH2Þ−μ

�
s2þ7

4
t2
�
−Λ; ð77Þ

or since D2 þH2 ¼ Q2
e=Σ2 they reduce to

PðxÞ
Σ2

−
QðyÞ
Σ2

−
xP;x

Σ2
þ yQ;y

Σ2
þ P;xx

2Σ

¼ −
Q2

e

Σ2
ð1 − μsÞ − μ

�
s2 þ 7

4
t2
�
− Λ

−
PðxÞ
Σ2

þQðyÞ
Σ2

þ xP;x

Σ2
−
yQ;y

Σ2
þQ;yy

2Σ

¼ Q2
e

Σ2
ð1 − μsÞ − μ

�
s2 þ 7

4
t2
�
− Λ; ð78Þ

that, as can be check, have a solution of the form

PðxÞ ¼ a2 − ϵx2 −
Λ
3
x4

QðyÞ ¼ a2 þQ2
e − 2Myþ ϵy2 −

Λ
3
y4 þ μGðyÞ; ð79Þ

where GðyÞ should satisfy

GðyÞ00 ¼ −4Σ
�
s2 þ 7

4
t2
�

GðyÞ − yGðyÞ0 ¼ −Σ2

�
Q2

e

Σ2
s −

�
s2 þ 7

4
t2
��

; ð80Þ

The above equations are solved by

GðyÞ ¼
�
s2 þ 7

4
t2
��

−
y4

3
− 2y2x2 þ x4

�
−Q2

es; ð81Þ

that then gives the metric function QðyÞ as

QðyÞ ¼ a2 − 2Myþ ϵy2 −
Λ
3
y4 þQ2

eð1 − μsÞ

þ μ

�
s2 þ 7

4
t2
��

−
y4

3
− 2y2x2 þ x4

�
; ð82Þ

To get the screening remember that

s ¼ 1

2
ðD2 −H2Þ ¼ Q2

e

2Σ4
ðΣ2 − 8x2y2Þ;

s2 þ 7

4
t2 ¼ 1

4
ðD4 þH4 þ 5H2D2Þ

¼ Q4
e

4Σ4

�
1þ 12x2y2

Σ4
ðy2 − x2Þ2

�
; ð83Þ

The determined solution for the Kerr-like metric with a EH
nonlinear electromagnetic source does coincide with the
solution presented in [28], as we show in what follows.
From Eq. (92) in [28] we have

m0ðrÞ ¼ Q2
e

2r2
ð1 − μsÞ þ μ

�
s2 þ 7

4
t2
��

Σ2

2r2

�
; ð84Þ

and integrating we obtain

mðrÞ ¼M−
Q2

e

2r
ð1− μsÞ

−
μ

2r

�
s2 þ 7

4
t2
��

−
r4

3
− 2r2a2 cos2 θþ a4 cos4 θ

�
;

ð85Þ

such that

−2rmðrÞ¼−2MrþQ2
eð1−μsÞ

þμ

�
s2þ7

4
t2
��

−
r4

3
−2r2a2cos2θþa4cos4θ

�
;

ð86Þ

and the metric component gtt is given by

gttðr; cos θÞ ¼ 1 −
2rmðrÞ

Σ
: ð87Þ

While from our Eqs. (79) in the Kerr-like metric Eq. (74)
the gττ component is given by

gττðx; yÞ ¼
PðxÞ −QðyÞ

Σ
; ð88Þ

that substituting the explicit form of PðxÞ and QðyÞ from
Eqs. (70) and (73), respectively,

gττðx; yÞ ¼ −ϵþ Λ
3
ðy2 − x2Þ

þ 1

Σ

�
2My −Q2

eð1 − μsÞ

− μ

�
s2 þ 7

4
t2
��

−
y4

3
− 2y2x2 þ x4

��
; ð89Þ

then we notice that making ϵ ¼ 1, Λ ¼ 0, y ↦ r,
x ↦ a cos θ, τ ↦ t and σ ↦ ϕ, we obtain the line element
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in [28], that in fact we have generalized introducing the
cosmological constant Λ.

VI. CONCLUSIONS

In this paper, using the null tetrad formalism, the most
important type-D spacetimes that can be coupled to the
Euler-Heisenberg nonlinear electrodynamics with cosmo-
logical constant are determined. For type-D solutions one
can always align the directions of the real null vectors e3

and e4 along the principal null directions. The most
convenient setting is to align the eigenvectors of the
electromagnetic field tensor Pab with e3 and e4. Then
the nonvanishing components of Pab are P34 and P12, that
we parametrize as the electric field strength D and the
magnetic field H, respectively. Correspondingly, for Fab
the nonvanishing components are F12 and F34, parame-
trized as the electric field E and the magnetic field strength
B, respectively. We work in the frame of the structural
function Hðs; tÞ which is a function of the electromagnetic
invariants associated to Pab. This scheme has the advantage
that the electromagnetic fields ðD;HÞ satisfy the equation,
∇aPab ¼ 0, and through the constitutive equations we
determined the electric field and the magnetic field strength
ðE;BÞ. All the static type-D solutions (commuting Killing
vectors) are generalized with the EH nonlinear electromag-
netic field and cosmological constant and include the
Bertotti-Robinson and the Reissner-Nordström solutions
with both electric and magnetic charges. The anti-Reissner-
Nordström solution can be obtained from the correspond-
ing EEH-Λ RN by means of a coordinate transformation.

Moreover, it is shown that, due to the form of the conformal
factor that depends on two coordinates, it is impossible to
couple the C-metric to the EH electromagnetic field. We
have also determined the EEH-Λ generalization (de Sitter
and anti–de Sitter) of the most important stationary
solutions, namely, the NUT-BðþÞ and Kerr-Newman
metrics, the former was unknown so far and the latter
was already presented in [28]. These solutions have a BH
interpretation and are important in view of the recent
improved observations of BH and compact objects [3].
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APPENDIX: RICCI TENSOR
FOR TYPE-D METRICS

The nonvanishing components of the Ricci tensor for the
type D metrics (14), that are the input into Eqs. (34) are
given by
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