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The origin and formation of stellar-mass binary black holes remains an open question that can be
addressed by precise measurements of the binary and orbital parameters from their gravitational wave
signal. Such binaries are expected to circularize due to the emission of gravitational waves as they approach
merger. However, depending on their formation channel, some binaries could retain a non-negligible
eccentricity when entering the frequency band of current gravitational wave detectors, which will decay as
the binary inspirals. In order to meaningfully measure the eccentricity in an observed gravitational wave
signal, two main ingredients are then necessary; an accurate waveform model that describes binaries on
eccentric orbits, and an estimator to measure the noncircularity of the orbit as a function of frequency. In
this work we first demonstrate the efficacy of the improved TEOBResumS waveform model for eccentric
coalescing binaries with aligned spins. We validate the model against mock signals of aligned-spin binary
black hole mergers and quantify the impact of eccentricity on the estimation of other intrinsic binary
parameters. We then perform a fully Bayesian reanalysis of GW150914 with the eccentric waveform
model. We find (i) that the model is reliable for aligned-spin binary black holes and (ii) that GW150914 is
consistent with a noneccentric merger although we cannot rule out small values of initial eccentricity at a
reference frequency of 20 Hz. Secondly, we present a systematic, model-agnostic method to measure the
orbital eccentricity and its evolution directly from the gravitational-wave posterior samples. This method
mitigates against the contamination of eccentricity measurements through the use of gauge-dependent
quantities and has the advantage of allowing for the direct comparison between different analyses, as the
definition of eccentricity may differ between models. Our scheme can be applied even in the case of small
eccentricities and can be adopted straightforwardly in postprocessing to allow for direct comparison
between analyses.

DOI: 10.1103/PhysRevD.107.064024

I. INTRODUCTION

Compact binary black holes (BBHs) emit gravitational
waves (GWs) during the last stages of their coalescence.
During this process the system loses energy and angular
momentum, causing the orbit to both shrink and progres-
sively circularize [1]. This motivates the analysis of
gravitational wave signals with theoretical templates that
are generated by waveform models using the quasicircular
approximation. However, recent studies highlight how
accurate measurements of eccentricity can provide vital
astrophysical information that could, for example, help
discriminate between different binary formation channels
[2–7]. Consequently, there has been a growing interest in
analyzing the GWevents detected by LIGO and Virgo with
inspiral-merger-ringdown (IMR) waveform models that

include eccentricity [8–11]. For example, the GW transient
GW190521 [12] has recently been analyzed under the
hypothesis that it originated from a hyperbolic capture that
resulted in a highly eccentric merger [13]; other studies
claim moderate eccentricity and spin-induced precession as
evidence for dynamical formation [14], a possible head-on
collision [15] or large eccentricity and strong spin-induced
precession [8].
One of the most promising approaches towards modeling

the full GW signal emitted by compact binaries on
arbitrarily eccentric orbits is the effective-one-body frame-
work (EOB) [16–19]. Early attempts at incorporating
eccentricity within the EOB framework were presented
in [20–22] but have seen numerous improvements over
recent years [23–31]. In addition to EOB, there have also
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been numerous developments using alternative approaches
towards modeling the complete IMR signal from eccentric
binaries, including numerical relativity (NR) surrogates
[32,33] and hybrid models that blend post-Newtonian (PN)
evolutions with NR simulations [34–37]. A key limitation
of these approaches, however, is that they are often con-
strained by the availability of accurate numerical relativity
simulations that span the full parameter space and—in the
case of surrogates—by the length of the simulations
themselves, which often do not cover the early inspiral
of the system. Conversely, models based on analytical PN
and scattering calculations [38–43] can deliver representa-
tions of signals from long-lasting inspirals, but they lack a
description of the strong-field merger and are only valid for
moderate eccentricities.
We are particularly interested in the TEOBResumS

model [44–46] and the extension to eccentricity
[23,24,47] that is built on the idea of dressing the circular
azimuthal component of radiation reaction with the lead-
ing-order (Newtonian) noncircular correction [23]. This
approach has been subsequently extended to each multipole
in the waveform and was further improved by incorporating
higher-order post-Newtonian information in an appropri-
ately factorized and resummed form [25]. In particular, [25]
extended the noncircular waveform up to 2PN using results
that partially build on [48]. Whilst several proposals exist
for incorporating radiation reaction, a detailed survey of
these schemes was conducted in [27] concluding that the
Newtonian factorization complete with 2PN corrections
demonstrated the best agreement with results in the test-
mass limit. This paradigm was further extended in [28].
In this work we focus on TEOBResumS and study

the performance of its circular and eccentric versions
(TEOBResumS-GIOTTO and TEOBResumS-Dalí,
respectively) when applied to GW parameter estimation.
We do so with the aim of validating the model and gauging
possible biases due to eccentricity (or lack thereof). We
dedicate special attention to the study of the quasicircular
limit of TEOBResumS-Dalí, and investigate how its
structural differences with respect to TEOBResumS-
GIOTTO—quantified in terms of unfaithfulness against
numerical relativity waveforms—reflect on GW data analy-
sis of synthetic signals and GW150914. We then introduce
a method to estimate the eccentricity directly from GW
observations and determine its evolution as a function of
frequency. This procedure is efficient and suitable to be
applied to any eccentric waveform model in postprocess-
ing. Furthermore, it is advantageous for comparing differ-
ent eccentric analysis of GW events.
The paper is organized as follows: In Sec. II we summarize

the main elements of the EOB waveform model used here. In
Sec. III we present a brief review of the elements of Bayesian
inference needed for our analysis. Section IV is devoted to
the validation of the waveform model via specific injection
and recovery analyses. The model is then used to analyze

GW150914 data in Secs. Vand VI is dedicated to presenting
our method to estimate the eccentricity evolution of a
coalescing BBHs system in postprocessing. Concluding
remarks are reported in Sec. VII. Throughout we use G ¼
c ¼ 1 unless stated otherwise.

II. QUASICIRCULAR AND ECCENTRIC
WAVEFORM MODEL: TEOBRESUMS

All analyses presented in this paper are performed
with TEOBResumS, either in its native quasicircular
version, TEOBResumS-GIOTTO [46], or in its eccentric
version, TEOBResumS-Dalí [24]. In this section we
describe in some detail the features of the two models,
highlighting their structural differences and quantifying
their (dis)agreement as measured by the unfaithfulness (or
mismatch) defined as

F̄ ¼ 1 − F ¼ 1 −max
t0;ϕ0

hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p ; ð1Þ

where ðt0;ϕ0Þ are the initial time and phase of coalescence,
and hh1jh2i is the noise-weighted inner product between
two waveforms

hh1jh2i ¼ 4ℜ
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df; ð2Þ

where SnðfÞ denotes the power spectral density (PSD) of
the detector strain noise and h̃1ðfÞ and h̃2 are the Fourier
transforms of the time domain waveforms h1 and h2.

A. Quasicircular model: TEOBResumS-GIOTTO

TEOBResumS-GIOTTO is a semianalytical state-of-
the-art EOB model for spinning coalescing compact
binaries [44–46,49–51]. The conservative sector of the
model includes analytical post-Newtonian information,
resummed via Padé approximants. Spin-orbit effects are
included in the EOB Hamiltonian via two gyrogravitomag-
netic terms [49], while even-in-spin effects are accounted
for through the centrifugal radius [49]. Numerical relativity
(NR) data is used to inform the model through an effective
5PN orbital parameter, ac6, and a next-to-next-to-next-to
leading order (NNNLO) spin-orbit parameter, c3 [44]. In
the dissipative sector, waveform multipoles up to l ¼ 8
are factorized and resummed according to the prescription
of [45]. Next-to-quasicircular (NQC) corrections ensure a
robust transition from plunge to merger, and a phenom-
enological NR-informed ringdown model completes the
model for multipoles up to l ≤ 5. Although we focus here
on BBH systems, we note that TEOBResumS-GIOTTO
can also generate waveforms for binary neutron star
coalescences, see [44] and references therein.
Waveforms built from TEOBResumS-GIOTTO

employing only the dominant multipole l ¼ jmj ¼ 2
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have been tested against the entire catalog of spin-aligned
waveforms from the Simulating-eXtreme-Spacetimes
(SXS) Collaboration [52], and were shown to be consis-
tently more than 99% faithful to NR [46]. When higher
modes are included in the dissipative sector of the model,
the EOB/NR unfaithfulness always lies below the 0.3%
threshold when considering waveforms constructed only
with the l ¼ jmj ¼ 2 mode, and below 3% for waveforms
with modes up to l ¼ 4 if the system has total mass smaller
than 120M⊙ [45].

B. Eccentric model: TEOBResumS-Dalí

The eccentric generalization of TEOBResumS,
TEOBResumS-Dalí [23,24], builds on the features of
the quasicircular model detailed above but differs in few
key aspects. First, the quasicircular Newtonian prefactor
that enters the factorized waveform multipoles is replaced
by a general expression obtained by computing the time
derivatives of the Newtonian mass and current multipoles,
as described in [24]. The same approach is implemented for
the azimuthal radiation reaction force. Second, for eccentric
binaries, the radial radiation reaction force F r that con-
tributes to the time evolution of the radial EOB momentum
can no longer be neglected [23]. Third, the initial con-
ditions must be specified in a different manner with respect
to the quasicircular case; instead of employing the post-
adiabatic procedure of [53], TEOBResumS-Dalí com-
putes adiabatic initial conditions and always starts the
evolution of the system at the apastron, see Appendix A for
further details. These conservative eccentric initial con-
ditions, however, do not reduce to the quasicircular initial
conditions in the limit of small eccentricity. To partially
correct for this issue, the quasicircular initial conditions are
manually imposed for e0 < 10−3. Finally, the values of a6
and c3 were modified in order to ensure that the model
remains faithful to its quasicircular limit [24].

1. Quasicircular limit of TEOBResumS-Dalí

All of the modifications above allow TEOBResumS-
Dalí to provide waveforms and dynamics that are faithful
to mildly eccentric SXS simulations [23,24], scattering
angle calculations [24] and highly eccentric test-mass
waveforms [54]. At the same time, however, because of
these structural differences, the quasicircular limit of the
eccentric model TEOBResumS-Dalí does not exactly
reduce to the TEOBResumS-GIOTTO model. In order to
quantify the agreement of TEOBResumS-Dalí with NR
simulations and TEOBResumS-GIOTTO, respectively, we
calculate the unfaithfulness defined in Eq. (1).
In Fig. 1 we show the unfaithfulness of TEOBResumS-

Dalí against almost all1 noneccentric, spin-aligned NR

simulations in the SXS catalog [55] using the designed
power spectral density (PSD) of Advanced LIGO [56]. This
figure complements, with many more simulations, Fig. 3
of [24]. Let us remind the reader that the corresponding plot
for TEOBResumS-GIOTTO is centered around 10−3 with
maxðF̄EOBNRÞ ≤ 9 × 10−3 with only a few outliers above
3 × 10−3 (see Fig. 4 of [46]). We thus see here that
TEOBResumS-Dalí and TEOBResumS-GIOTTO are
two EOB models, similarly informed by NR simulations,
that perform differently with respect to quasicircular NR
simulations, though both are clearly below the usual
threshold of 3% unfaithfulness. It is therefore interesting
to understand how this difference translates in terms of
biases on parameters. This will be discussed in Sec. IV.

III. METHODS

A. Bayesian inference

The measurement of the parameters that describe the
GW emitting binary is carried out within the framework of
Bayesian inference, which relies on Bayes’ theorem [57]

pðθjd; HÞ ¼ pðdjθ; HÞpðθjHÞ
pðdjHÞ ; ð3Þ

where pðθjd; HÞ is the posterior probability of a set of
parameters θ given the data d assuming a specific modelH,
pðθjHÞ is the prior, pðdjθ; HÞ is the likelihood and pðdjHÞ
is the evidence or marginalized likelihood. The evidence
can be expressed as

Z ¼ pðdjHÞ ¼
Z

pðdjθ; HÞpðθjHÞdθ; ð4Þ

50 100 150 200

10-4

10-3

10-2

10-1

FIG. 1. EOB/NR unfaithfulness using TEOBResumS-Dalí

with einj0 ¼ 10−8 over the nonprecessing and noneccentric SXS
catalog. See text for more details.

1We exclude the following simulations due to large numerical
errors: SXS:BBH:0002, SXS:BBH:1110, SXS:BBH:1141, SXS:
BBH:1142.
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where the integral extends over the entire parameters space.
The evidence assumes the role of an overall normalization
constant but plays an important role in Bayesian model
selection. Given two competing hypothesesHA andHB, the
Bayes’ factor is defined as the ratio of evidences

BB
A ¼ pðdjHBÞ

pðdjHAÞ
; ð5Þ

where the hypothesisHB is favoured by the data overHA if
BB
A > 1. The expectation value of a parameter θi ∈ θ can be

estimated through the likelihood as

E½θi� ¼
Z

θipðθijd; HÞdθi; ð6Þ

where pðθijd; HÞ is the marginalized posterior distribution
for the parameter θi.

B. Gravitational wave parameter estimation

The GW signal emitted by an eccentric coalescing binary
black hole system is fully described by 17 parameters,

θCBC ¼ fm1; m2; χ 1; χ 2; DL; ι; α; δ;ψ ; t0;ϕ0; e0; f0g; ð7Þ

where m1;2 denotes the (detector-frame) masses of the two
black holes such that m1 ≥ m2, χ 1;2 are the dimensionless
spin angular momenta vectors with three spatial compo-
nents, DL is the luminosity distance to the source, ι is the
inclination angle, fα; δg are the right ascension and
declination and define the sky location of the source, ψ
is the polarization angle, ft0;ϕ0g are the reference time and
phase, and fe0; f0g are the initial eccentricity magnitude
and the average frequency between the apastron and
periastron, respectively.
In this work we utilize the bajes package for Bayesian

inference [58] employing the nested sampling [59] algo-
rithm dynesty [60] in order to extract the posterior
probability density functions (PDFs) and to estimate the
evidence.

1. Likelihood

We are interested in the joint likelihood between N
detectors in a GW detector network

pðdjθ; HSÞ ¼
YN
i¼1

pðdijθ; HSÞ; ð8Þ

where HS denotes the hypothesis that the data contains a
GW signal. Under the assumption of Gaussian, stationary
noise that is uncorrelated between each detector, and
assuming a time domain signal model h≡ hðt; θCBCÞ
and data set d≡ dðtÞ, the likelihood is given by

pðdjθCBC; HSÞ ∝ e−
1
2

P
N
i¼1

hh−dijh−dii; ð9Þ

where h·j·i is the noise-weighted inner product as defined
in Eq. (2),

hh − dijh − dii ¼ 4Re
Z

∞

0

jh̃ðfÞ − d̃iðfÞj2
SnðfÞ

df; ð10Þ

where SnðfÞ is the PSD of the detector strain noise, and
h̃ðfÞ and d̃ denote the Fourier transform of h and d
respectively.

2. Priors

For the analyses presented in Sec. IV we adopt priors that
broadly follow [58,61] and are given as follows:

(i) The prior distribution for the masses is chosen to
be flat in the components masses fm1; m2g and can
be written in terms of the chirp mass Mc ¼
ðm1m2Þ3=5=ðm1 þm2Þ1=5 and the mass ratio q ¼
m1=m2 ≥ 1 as

pðMc; qjHSÞ ¼
Mc

ΠMc
Πq

�
1þ q
q3

�
2=5

; ð11Þ

where ΠMc
and Πq are the prior volumes, as defined

in Sec. V B of [58] delimited by the prior bounds of
Mc and q.

(ii) To aid the comparison with results from analyses
that allow for precessing spins, we assume priors
that correspond to the projection of a uniform and
isotropic spin distribution along the ẑ-direction as
proposed by Veitch [58,62],

pðχijHSÞ ¼
1

2χmax
ln

���� χmax

χi

����; ð12Þ

where χi is the magnitude of each black hole spin
and χmax is the maximum spin magnitude.

(iii) The prior distribution for the luminosity distanceDL
is specified by a lower and an upper bound and its
analytic form is defined by a uniform distribution
over the sphere centred around the detectors,

pðDLjHSÞ ¼
3D2

L

D3
max −D3

min

: ð13Þ

(iv) The prior distributions for α and δ, defining the sky
location, are taken to be isotropic over the sky with
α ∈ ½0; 2π�, δ ∈ ½−π=2;þπ=2� and

pðα; δjHSÞ ¼
cos δ
4π

: ð14Þ
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(v) Analogously, for the inclination we have

pðι; HSÞ ¼
sin ι
2

; ð15Þ

where ι ∈ ½0; π�.
(vi) For fψ ; t0;ψ0g, the prior distributions are taken to be

uniform within the given bounds.
(vii) The prior on fe0; f0g are taken to be uniform or

logarithmic-uniform within the provided bounds that
are [0.001, 0.2] and [18, 20.5], respectively.

IV. VALIDATION OF THE WAVEFORM MODEL

In this section, we test the consistency of
TEOBResumS-Dalí with TEOBResumS-GIOTTO
(and vice versa) by performing Bayesian inference on
simulated GW signals (injections). The aim of this analysis
is to give a more quantitative meaning to the standard EOB/
NR unfaithfulness figures of merit discussed above. To do
so, we inject mock signals into a zero-noise realization
with a signal-to-noise ratio (SNR) of ∼42 in the Advanced
LIGO and Advanced Virgo network. We employ the
Advanced LIGO and Advanced Virgo design sensitivity
PSDs [56,63,64]. All injections are performed at the same
GPS time, tGPS ¼ 1126259462.4 s. We analyze segments
of 8 s in duration with a sampling rate of 4096 Hz. We use
dynesty to sample the posterior distributions, using the
following setting: 3000 live points to initialize the MCMC
chains, a maximum of 104 MCMC steps, a stopping
criterion on the evidence of Δ lnZ ¼ 0.1, and we require
five autocorrelation times before accepting a point. For all
our analyses, we restrict the waveform model to only the
ð2; j2jÞ-mode, allowing us to analytically marginalize over
the phase.

A. Quasicircular limit of the eccentric model

As mentioned above, TEOBResumS-Dalí is structur-
ally different to the quasicircular TEOBResumS-GIOTTO
model. Moreover, despite having been informed by the
same NR simulations, its unfaithfulness to NR is larger than
that of TEOBResumS-GIOTTO. To better understand how
this difference in the unfaithfulness translates into param-
eter biases, we perform an unequal mass injection in the
quasicircular limit, as detailed in Table I. More precisely,
the injected waveform is generated with TEOBResumS-
GIOTTO from a fixed initial frequency of 20 Hz, and it is
recovered with either the same model (Prior 1) or with
TEOBResumS-Dalí assuming a fixed initial eccentricity
of e0 ¼ 10−8 at 20 Hz (Prior 2). In Fig. 2 we show the one-
dimensional and joint-posterior distributions forMc,

2 q and
the effective spin

χeff ¼
m1χ1z þm2χ2z

m1 þm2

; ð16Þ

where the two spins are taken to be aligned along the
ẑ-direction; χ1z ¼ χ1 and χ2z ¼ χ2. The median values of
Mc, χeff and q recovered with TEOBResumS-GIOTTO
and TEOBResumS-Dalí are shown, with their 90%
credibility interval, respectively in the first and second

FIG. 2. Testing the quasicircular limit of TEOBResumS-
Dalí. We inject a quasicircular waveform generated with
TEOBResumS-GIOTTO and recover it with either TEOBRe-
sumS-GIOTTO (blue) or with TEOBResumS-Dalí with fixed
initial eccentricity at e0 ¼ 10−8 (teal). The injected values are
indicated by the solid lines. We find that the parameters recovered
with TEOBResumS-Dalí are slightly biased. See text for
discussion.

TABLE I. Parameters of the circular injection and two different
priors. The prior distributions are described in Sec. III B 2. The
sky location corresponds to the maximum sensitivity for the
Advanced LIGO Hanford detector.

Parameter Injected value Prior 1 Prior 2

McðM⊙Þ 24.33 [18, 45] [18, 45]
q 2 [1, 3] [1, 3]
χ1 0 ½−0.8; 0.8� ½−0.8; 0.8�
χ2 0 ½−0.8; 0.8� ½−0.8; 0.8�
DLðMpcÞ 800 [50, 2000] [50, 2000]
cos ι 0 ½−1; 1� ½−1; 1�
αðradÞ 0.37 ½0; 2π� ½0; 2π�
δðradÞ 0.81 ½−π=2; π=2� ½−π=2; π=2�
ψðradÞ 0 Uð0; πÞ Uð0; πÞ
t0ðsÞ 0 Uð−1; 1Þ Uð−1; 1Þ
ϕ0ðradÞ 0 ... ...
e0 0 0 10−8

f0ðHzÞ 20 20 20

Model GIOTTO GIOTTO DALI

2We note that we quote the detector-frame chirp mass
throughout the paper.
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column of Table VI in Appendix B. Comparing the results,
we notice that the median values of the parameters
recovered with TEOBResumS-GIOTTO are in good agree-
ment with the injected ones, while those recovered with the
quasicircular limit of TEOBResumS-Dalí are slightly
biased towards higher values. This is not surprising given
the different analytical structures (dissipative sectors and
NR-informed parameters) of the two models and the fact
that TEOBResumS-Dalí is less NR faithful than
TEOBResumS-GIOTTO by, on average, one order of
magnitude (∼10−2 vs 10−3) (see Figs. 1 and 4 of [46]).
Moreover, when comparing the two models with each
other, we also find an average unfaithfulness of 2–3%,
which increases slightly with the total mass of the binary.

B. Testing the eccentric model

In the EOB framework, the dynamics of a system of
coalescing binaries is evolved from initial conditions. For
the TEOBResumS-Dalí model, this is done by defining
an initial eccentricity e0 and an initial frequency f0 and,
through Eq. (A1)–(A5), determining (r0, p0

φ, p0
r�). The

degree to which the initial frequency f0 has an impact on
Bayesian inference and our ability to constrain this param-
eter from the observations is poorly understood. In previous
similar analyses, comparable quantities, such as the argu-
ment of the periapsis or mean anomaly, have typically been
ignored. However, recent studies [9,32] suggest that the
mismatches can degrade as we vary these parameters for a
given eccentricity. It is therefore useful to quantify the
impact of f0 on Bayesian inference. To do so we perform a
noneccentric injection with e0 ¼ 0 and f0 ¼ 20 Hz and
recover with TEOBResumS-Dalí either sampling on e0
and f0 (Prior 1) or only on e0 (Prior 2). The details of the
injection and the priors are listed in Table II. For the other
parameters, the injected values and prior ranges are the
same as in Table I.
Figures 3 and 4 show the one-dimensional and joint-

posterior distributions obtained with the two different
priors. In Fig. 3, we show the posterior distributions for
Mc, χeff , q, and e0 obtained using the first prior choice
(orange) and the second prior choice (teal). The median
values, at 90% credibility, are shown in the third (Prior 1)
and fourth (Prior 2) columns of Tab. VI in Appendix B. We

do not observe any significant differences between the two
analyses and we find that the posterior on f0 is weakly
correlated with e0 about its true value as can be seen from
Fig. 4. This is in broad agreement with the conclusions
of [10], who found that the argument of periapsis is only
likely to be resolvable for the loudest events. However, as
also discussed in Refs. [10,11,65], we could potentially see
biases if we fix f0 to a frequency that effectively corre-
sponds to the argument of the periapsis being out of phase

TABLE II. Injected values for e0 and f0 and their priors.
Two choices of recovery are made to perform this first testing
analysis of TEOBResumS-Dalí. We choose to sample in both
parameters in one case (Prior 1) and only in e0 in the other case
(Prior 2).

Parameter Injected value Prior 1 Prior 2

e0 0 Uð0.001; 0.2Þ Uð0.001; 0.2Þ
f0ðHzÞ 20 Uð18; 20.5Þ 20 (fixed)

Model ... DALI DALI

FIG. 3. Injection with TEOBResumS-GIOTTO and recovery
with TEOBResumS-Dalí. The posterior distributions are ob-
tained by sampling in ðe0; f0Þ (orange) or by sampling only in e0
while keeping f0 fixed (teal). The injected values are represented
by the solid lines. We do not find appreciable biases in the
reconstructed parameters when sampling only in e0.

FIG. 4. Two-dimensional eccentricity and frequency posterior
distributions for the same TEOBResumS-GIOTTO injection and
recovery with TEOBResumS-Dalí as in Fig. 3. We do not
observe any significant correlation between e0 and f0.
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with the true value. In the e0 → 0 limit, however, one may
expect f0 to become increasingly degenerate with the
coalescence phase.
We note that although the injected value for e0 is not

contained within the priors, we do not see evidence that this
impacts the inferred results. But we find a prior dependence
in the posterior of e0 (see Fig. 5 and the discussion below),
in addition to the systematic differences between the two
models in the circular limit already highlighted in Fig. 2.
We next inject mock signals with two different values of

e0 and recover them using TEOBResumS-GIOTTO and
TEOBResumS-Dalí respectively. The details of the
injected values for e0 and f0 and their priors are described
in Table III. The injected values and priors for the
other parameters are the same as before as given in
Table I. Figure 5 shows the one- and two-dimensional
posterior distributions for Mc, χeff and q (left) and the one-
dimensional posterior distribution for e0 (right) for a
noneccentric injection recovered with TEOBResumS-
Dalí with two different choices of prior distributions:
logarithmic-uniform (teal), uniform (orange). The recov-
ered median values corresponding to the Prior 1 (orange)
are shown in the third column while the one corresponding

to the Prior 2 (teal) are shown in the fifth column of
Table VI in Appendix B. We observe that for eccentricities
comparable to zero, the mass and spin measurements are
robust and independent of the choice of eccentricity prior.
In the right panel of Fig. 5, we observe that when using a
logarithmic-uniform prior for the eccentricity, the recov-
ered median value of the eccentricity is pushed to smaller
values as a result of the priors.
In Fig. 6, instead, we show the posterior distributions for

an injection with e0 ¼ 0.05 (TEOBResumS-Dalí) and
recovered with both the models, TEOBResumS-GIOTTO
and TEOBResumS-Dalí. The median values of the
parameters recovered with TEOBResumS-GIOTTO
(orange) are indicated in the first column of Table VII
in Appendix B, while the ones recovered with
TEOBResumS-Dalí (teal) are indicated in the second
column of the same Table. In the left figure, we observe a
stronger correlation between mass and spin parameters
when we recover with TEOBResumS-GIOTTO. Previous
studies have pointed out correlations between the chirp
mass, the effective inspiral spin and the eccentricity
[11,34,65]. As our recovery model neglects eccentricity,
biases in the mass and spin parameters are anticipated to

FIG. 5. Injection with TEOBResumS-GIOTTO and recovery with TEOBResumS-Dalí. Left: the posterior distribution for the
ðMc; q; χeffÞ. Right: the posterior distribution for the initial eccentricity using two different choices of priors; uniform (teal) and
logarithmic-uniform (orange).

TABLE III. Second test of TEOBResumS-Dalíwith an eccentric recovery. First column: injected values for e0 and f0 and their prior
limits for an injection with e0 ¼ 0 injection recovered with TEOBResumS-Dalí with two different prior choices. Second column:
injected values for e0 and f0 and their prior limits for an injection with e0 ¼ 0.05 recovered with TEOBResumS-Dalí and
TEOBResumS-GIOTTO.

Parameter Injection 1 Prior 1 Prior 2 Injection 2 Prior 1 Prior 2

e0 0 Uð0.001; 0.2Þ Log-uniform(0.001, 0.2) 0.05 Uð0.001; 0.2Þ 0 (fixed)
f0ðHzÞ 20 Uð18; 20.5Þ Uð18; 20.5Þ 20 Uð18; 20.5Þ 20 (fixed)

Model ... DALI DALI DALI DALI GIOTTO
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compensate for this. Lastly, we draw our attention on
the right figure of the bottom panel, where it is shown
how excellently the recovery of the eccentricity is accom-
plished pointing out the robustness and accuracy of the
model.
In terms of model selection, we find that for the non-

eccentric injection, the recovery with TEOBResumS-
GIOTTO is preferred with respect to the one with
TEOBResumS-Dalí with an estimated logarithmic
Bayes’ factor of lnBecc

circ ∼ 9. Similarly, for the eccentric
injection, the eccentric model TEOBResumS-Dalí is
preferred with respect to the quasicircular model
TEOBResumS-GIOTTO with an estimated logarithmic
Bayes’ factor of lnBcirc

ecc ∼ 5 in the case of the uniform
eccentricity prior, and lnBcirc

ecc ∼ 10 when using the log-
uniform prior. The difference in Bayes’ factor between
the two priors can be attributed to the 1=e0-scaling for
the log-uniform prior, which a priori favors smaller
values of eccentricity. The investigations presented in
this section demonstrate that TEOBResumS-Dalí is a
reliable waveform model to analyze spin-aligned, eccen-
tric binaries.

V. ANALYSIS OF GW150914

In this section, we reanalyze GW150914 with the
TEOBResumS-Dalí and TEOBResumS-GIOTTO
waveform models. The strain data and PSDs are obtained
from the GW Open Science Center [66]. We analyze an
8s-long data stretch centered around the GPS time of the
event tGPS ¼ 1126259462.4 s sampled at a sampling rate of
4096 Hz. For the inference, we use dynesty choosing the
same settings discussed in Sec. IV.

A. Quasicircular analysis of GW150914

First, we analyze GW150914 under the assumption of
a quasicircular binary black holes system. To do so, we
perform two analyses, either using TEOBResumS-
GIOTTO or TEOBResumS-Dalí, fixing initial EOB
eccentricity to e0 ¼ 10−8, as described in Table IV. In
both cases we recover a maximum likelihood SNR of ∼26
corresponding to ∼20 in LIGO-Hanford and ∼18 in
LIGO-Livingston. In Fig. 7 we show the marginalized
one-dimensional and two-dimensional posterior distribu-
tions for ðMc; χeff ; qÞ obtained with TEOBResumS-Dalí
(teal) and TEOBResumS-GIOTTO (blue). The recovered

FIG. 6. Injection with TEOBResumS-Dalí with fixed EOB eccentricity e0 ¼ 0.05 at 20 Hz and recovery with TEOBResumS-
GIOTTO (blue) or TEOBResumS-Dalí (teal). When the analysis is performed with the latter, all recovered parameters look consistent
with the injected ones. Conversely, neglecting eccentricity leads to biases in the mass ratio and effective spin posterior distributions.

TABLE IV. Choice of priors for the analysis of GW150914 to
test the quasicircular limit of TEOBResumS-Dalí. The prior
distributions are described in detail in Sec. III B 2.

Parameter Prior

McðM⊙Þ [12, 45] [12, 45]
q [1, 3] [1, 3]
χ1z ½−0.8; 0.8� ½−0.8; 0.8�
χ2z ½−0.8; 0.8� ½−0.8; 0.8�
DLðMpcÞ [50, 2000] [50, 2000]
cos ι ½−1; 1� ½−1; 1�
αðradÞ ½0; 2π� ½0; 2π�
δðradÞ ½−π=2; π=2� ½−π=2; π=2�
ψðradÞ Uð0; πÞ Uð0; πÞ
t0ðsÞ Uð−1; 1Þ Uð−1; 1Þ
ϕ0ðradÞ ... ...
e0 0 (fixed) 10−8 (fixed)
f0ðHzÞ 20 (fixed) 20 (fixed)

Model TEOBResumS-GIOTTO TEOBResumS-Dalí
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median values are reported in the second and third
column of Table V. We observe that the values recovered
with TEOBResumS-GIOTTO are consistent with the
values for GW150914 reported in GWTC-1 [61],
while the median values for the chirp mass and effective
inspiral spin found with TEOBResumS-Dalí with
fixed e0 ¼ 10−8 are slightly higher in comparison to
GWTC-1, but still consistent at the 90% credible level.
In terms of Bayes’ factors we find that the analysis with
TEOBResumS-GIOTTO is favored with a lnBcirc

ecc;10−8 ∼ 1.
Based on the results for mock signals presented in
Sec. II B 1, this is not surprising because of the structural
difference between the two models and the influence of
initial conditions on the quasicircular limit as discussed
extensively in Sec. II B.

B. Eccentric analysis of GW150914

Finally, we reanalyze GW150914 with the eccentric
model TEOBResumS-Dalí sampling in both the initial
eccentricity e0 and f0 (see Table V for prior details). For the
eccentricity we use two different priors; one uniform in e0
and the other one logarithmic-uniform which occupies a
larger prior volume at low eccentricities. All other priors
and settings are identical to the quasicircular analysis of
Sec. VA. Consistently with this, we estimate a network
SNR of ∼26 with ∼20 in LIGO-Hanford and ∼18 in LIGO-
Livingston for the maximum likelihood parameters. In
Fig. 8 we show the one-dimensional and joint-posterior
distributions together with the median values reported in
GWTC-1 [61] or calculated from [67] (solid lines). The
median values for ðMc; χeff ; qÞ are given in Table V. The
two eccentric analyses give consistent results for the mass
and spin parameters, i.e., we do not find any appreciable
difference between the results for the two different choices
of the eccentricity prior. We do, however, find differences
in the e0 posterior under the two different prior assumptions
as shown in the bottom panel of Fig. 8. While both
posteriors are consistent with small values of initial
eccentricity, we find that the e0-posterior peaks at ∼0.05
for the uniform e0-prior, which is in mild tension with other
results [68,69]. However, we note that this may be due to
the uniform prior, which may not sufficiently explore low
values of eccentricity. By contrast, when choosing the
logarithmic-uniform prior, lower values of e0 are preferred
in full agreement with other analyses. We find that the
maximum 90% upper limit is e0 ≲ 0.08, which is consistent
with the results based on NR simulations presented in [70],
where it was shown that the log-likelihood drops sharply as
the eccentricity grows beyond ∼0.05 at about 20 Hz. For
the other parameters (see Figs. 12 and 13 in Appendix C)
we find broad agreement with the exception of the right
ascension, where a different mode is preferred. In com-
parison to the quasicircular analysis, the eccentric analyses
give slightly higher median values for Mc and χeff in
agreement with [68,69].

FIG. 7. One-dimensional and two-dimensional posterior dis-
tributions for Mc, q, and χeff obtained with the quasicircular
model TEOBResumS-GIOTTO (blue) and the eccentric TEO-
BResumS-Dalí in the quasicircular limit [i.e., e0 fixed to 10−8

(teal)]. The solid lines indicate the values from the quasicircular
analysis presented in GWTC-1 [61].

TABLE V. Results for the different analysis of GW150914 with TEOBResumS-GIOTTO or TEOBResumS-Dalí. The prior ranges
for e0 and f0 for each analysis are indicated. We give the median values and symmetric 90% credible interval for Mc, χeff , and q. Our
results are contrasted by the values obtained from the noneccentric, precessing analysis presented in GWTC-1 [61] shown in the last
column.

GW150914 Analysis

Model TEOBResumS-GIOTTO TEOBResumS-Dalí TEOBResumS-Dalí TEOBResumS-Dalí GWTC-1
e0-prior e0 ¼ 0ðfixedÞ e0 ¼ 10−8 (fixed) Uð0.001; 0.2Þ Log-uniform(0.001, 0.2) ...
f0-prior f0 ¼ 20 Hz (fixed) f0 ¼ 20 Hz (fixed) Uð18; 20.5Þ Uð18; 20.5Þ ...

McðM⊙Þ 31.33þ0.75
−0.52 32.53þ0.84

−1.08 31.54þ0.92
−1.19 31.79þ1.12

−0.94 31.23þ1.08
−0.96

χeff 0.01þ0.05
−0.03 0.13þ0.06

−0.08 0.06þ0.06
−0.10 0.08þ0.08

−0.07 −0.01þ0.12
−0.11

q 1.14þ0.14
−0.10 1.15þ0.15

−0.10 1.18þ0.17
−0.11 1.21þ0.19

−0.14 1.16þ0.19
−0.11

e0 ... ... 0.05þ0.03
−0.02 0.02þ0.03

−0.01 ...
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In terms of model selection we find that TEOBResumS-
GIOTTO is favoured over TEOBResumS-Dalí with an
estimated Bayes’ factor of lnBcirc

ecc ∼ 2 irrespective of the
prior. This is in agreement with the results reported in
[68], but differs from the ones in [69]. However we
note that Ref. [69] uses higher-order modes while in
our analysis we only employ the dominant multipole
l ¼ jmj ¼ 2 in the waveform. We conclude that, while the
hypothesis of a quasicircular BBH merger is preferred
for GW150914, we cannot exclude a small value of
eccentricity at 20 Hz. All three analyses, however, give
consistent results for the intrinsic parameters at 90% con-
fidence. Our results are in agreement with previous
analyses [11,61,68].

VI. MODEL-AGNOSTIC ESTIMATE OF THE
ECCENTRICITY EVOLUTION

Bayesian inference allows us to determine the posterior
distributions of binary parameters at a certain reference
frequency. Certain parameters are, however, frequency
dependent and hence change over time. One of these
parameters is the eccentricity of the orbit, which decays
due to the emission of GWs. In Sec. V B we determined
the posterior distribution of the initial eccentricity e0 of the
EOB model measured at a (varying) reference average
frequency f0. We now devise a scheme to determine the
evolution of the eccentricity as a function of frequency
using a previously introduced eccentricity estimator [71].
Gravitational radiation at future null infinity is expected
to be manifestly gauge invariant, motivating the use of
an estimator based on the relative oscillations in the
gravitational-wave frequency. This mitigates against the
contamination of eccentricitymeasurements through the use
of gauge dependent quantities [72]. This has the additional
advantage of allowing for the direct comparison between
different eccentric analyses, which often use different
definitions of eccentricity [73].3 Our scheme is computa-
tionally efficient and applicable to any eccentric waveform
model in postprocessing. A benefit of this way of estimat-
ing the eccentricity in postprocessing is that it can be
calculated directly from the GW signal in contrast to
definitions inferred from the dynamics.4 In addition, it
also reduces to the Newtonian definition of eccentricity,
even in the high eccentricity limit [34,71].
To calculate the eccentricity evolution, we employ the

eccentricity estimator first introduced by Mora et al. [71],

eωðtÞ ¼
ωpðtÞ1=2 − ωaðtÞ1=2
ωpðtÞ1=2 þ ωaðtÞ1=2

; ð17Þ

where ωpðtÞ and ωaðtÞ are fits to the GW frequency of the
(2, 2)-mode at the periastron and the apastron, respectively.
We note that this eccentricity estimator is also used in other
works, e.g., either based on the orbital [32,34,74] or the
GW frequency [23,24].
To calculate ωpðtÞ and ωaðtÞ, we first generate the

TEOBResumS-Dalí waveform for each posterior sample
and compute the GW frequency as ωðtÞ ¼ _ϕðtÞ, where ϕðtÞ
is the phase of the (2, 2)-mode defined as h22 ¼ AðtÞe−iϕðtÞ

FIG. 8. Analyses of GW150914 with TEOBResumS-GIOTTO
(blue) and TEOBResumS-Dalí with a uniform e0-prior (teal)
and a logarithmic-uniform e0-prior (orange). Upper panel:
Joint-posterior distributions with 90% and 50% credibility
interval and median values reported in GWTC-1 [61] (solid
lines). Bottom panel: Marginalized one-dimensional posterior
distributions and median values of e0 (dashed lines) for the two
eccentric analyses.

3We remind the reader that in general relativity one does not
have a unique, Newtonian-like definition of orbital eccentricity;
due to periastron precession elliptic orbits do not generally close,
even in the absence of dissipation caused by GW. Moreover, and
most importantly, eccentricity is not a gauge invariant quantity,
but rather it depends on the specific choice of coordinates. A
detailed discussion on this topic can be found in e.g., [39].

4Nonetheless, we note that since we also have at hand the EOB
dynamics, the same approach could be applied to the EOB orbital
frequency.
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with AðtÞ being the amplitude of the waveform. We then
identify the maxima (periastron) and the minima (apastron)
of the second time-derivative of the GW frequency. We use
the second derivative in order to amplify the peaks such that
the identification of the maxima and minima is more robust
for small eccentricities.
Once the minima and maxima are identified, we fit fðtÞ ¼

ωðtÞ=ð2πÞ using cubic spline interpolation. An example of
this is shown in the upper panel of Fig. 9, where the red
curve shows the GW frequency with clearly visible eccen-
tricity-induced oscillations and the green and orange curves
show the fits to the maxima and minima respectively. From
Eq. (17) we calculate eωðtÞ for each posterior sample to find
the corresponding eccentricity evolution, as shown in the
bottom panel of Fig. 9. We note that the eccentricity
estimated at the initial time eωðt ¼ 0Þ can differ from the
initial EOB eccentricity e0 defined by the EOB dynamics as
the eccentricity at the average frequency between apastron
and periastron, as explained by Eq. (A3).
Since we are interested in determining how the eccentricity

decays as the GW frequency increases towards merger, we
need to map t → f. Due to the nonmonotonic behavior of the
GW frequency, such a mapping is not unique and hence we
introduce the average GW frequency f̄ðtÞ instead,

f̄ðtÞ ¼ 1

2
ðfpðtÞ þ faðtÞÞ; ð18Þ

where fpðtÞ ¼ ωpðtÞ=ð2πÞ and faðtÞ ¼ ωaðtÞ=ð2πÞ, and
use linear interpolation to infer the eccentricity as a function
of f̄ throughout the inspiral.

As we mentioned before, this method benefits of the fact
that it allows the eccentricity to be calculated directly from
the GW signal and it reduces to the Newtonian definition of
eccentricity, even in the high-eccentricity limit; however,
the method also has some limitations. A caveat to the
correct calculation of eωðtÞ is, in fact, that it requires the
inspiral to be sufficiently long such that many periastron
and apastron peaks can be resolved. In particular, for short
waveforms where we only have one or two maxima and
minima available, this method is expected to become
inefficient and inaccurate [34]. A way to circumvent this
situation is to generate the EOB waveforms from a lower
starting frequency but at the cost of increasing the wave-
form generation time and hence the time taken for a
Bayesian inference run to complete. Similarly, in the
low-eccentricity limit, we may also expect peak-finding
algorithms to become numerically unstable. While strate-
gies to amplify the peaks, such as the use of the second
derivative of the frequency, help to isolate the stationary
points, in practice we found that the peaks can still be
poorly resolved for a small subset of the samples. However,
by cutting the frequencies at sufficiently small times
(t ¼ 0.4 s), we found the eccentricity estimator to be
numerically robust with only a small percentage of samples
ð≲0.03%Þ potentially suffering from pathologies. For those
samples, we can adjust the cutoff time/frequency to
produce an estimate of the eccentricity.
In Fig. 10 we show the 90% upper limit of the

eccentricity evolution eωðf̄Þ as a function of the average
frequency for the simulated eccentric signal with e0 ¼ 0.05

FIG. 9. Upper panel: Illustration of the fitting procedure to
determine the maxima (teal) and minima (orange) of the GW
frequency (red). Bottom panel: Evolution of the eccentricity eωðtÞ
calculated using the method described in the text for a BBH with
Mc ¼ 24.74, χeff ¼ 0, and q ¼ 1.5.

FIG. 10. Upper limit of the 90% credibility interval for the
estimated eccentricity evolution eωðf̄Þ for an injection with
e0 ¼ 0.05. The upper limit is calculated estimating eωðf̄Þ for
all the posterior samples, interpolating it at different values of f̄
and then taking the 90% credibility interval of the of the data. The
black triangles represent the injection. We note that the estimated
initial eccentricity is slightly lower than e0 ¼ 0.05, where e0 is
defined from the EOB dynamics.
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and f0 ¼ 20 Hz, as discussed in Sec. IV B. In addition, we
also show the eccentricity evolution for the injected wave-
form itself (black triangles). We see that it is always
contained within the 90% upper limit.
Finally, we apply the same method to calculate the

eccentricity evolution for GW150914 from the posterior
samples obtained using the eccentric TEOBResumS-Dalí
model as outlined in Sec. V B. Figure 11 shows the 90%
upper limit of eωðf̄Þ obtained for the uniform e0-prior
distribution (blue) as well as for the log-uniform e0-prior
distribution (orange). We obtain an upper limit of eωðf̄Þ at
∼20 Hz of ∼0.075 for the analysis with the uniform e0-prior
and∼0.055 for the analysis with the logarithmic-uniform e0-
prior. This is comparable with Fig. 7 of [70] where it was
found that GW150914 is unlikely to have an eccentricity
higher than ∼0.05 at about 20 Hz at 90% credibility. We also
see that while we cannot exclude small values of eccen-
tricities at low frequencies, once an average frequency of
∼30 Hz is reached, any residual eccentricity eωðf̄Þ can no
longer be distinguished from zero.

VII. DISCUSSION

In this work we present a Bayesian validation of the
TEOBResumS-Dalí waveform model [24] for eccentric
coalescing binary black holes with aligned spins, a fully
Bayesian reanalysis of GW150914 and a systematic
method to estimate the eccentricity in postprocessing.
Our study explores the potential of TEOBResumS-
Dalí and allows us to test its reliability. Our work is an
extension of our previous study [24] and demonstrates

the efficacy of the model in distinguishing between circular
and eccentric GW signals. In particular, we find that
the differences between the quasicircular limit of
TEOBResumS-Dalí and its quasicircular companion
TEOBResumS-GIOTTO are relevant, and lead to clear
(though small) biases in the recovered parameters.
We attribute these biases to differences between the
two models in both the dynamics (and especially in the
radiative sector) and the waveform itself. When performing
parameter estimation with small fixed eccentricity5 this
results in appreciable differences in the posteriors of
numerous parameters. This indicates that the original
TEOBResumS-Dalímodel needs improvements, notably
to recover a quasicircular limit that is as accurate as the one
of TEOBResumS-GIOTTO. Some work in this direction
has been done [47] (see in particular Fig. 8 therein) but
more investigations are needed to improve the model in the
nearly equal-mass regime.6

After testing TEOBResumS-Dalí for quasicircular
binaries, we validate the model on injections with non-
zero initial eccentricity. In particular we find that
TEOBResumS-Dalí excellently recovers the injected
value of eccentricity. In addition, we quantify the impact
of eccentricity on the estimation of the intrinsic parameters
of the binary; notably, we observe that the correlations
between parameters became less strong when introducing
eccentricity. If neglecting eccentricity, however, we see
biases in the mass and spin parameters to compensate for it.
We then perform Bayesian inference with

TEOBResumS-Dalí on the first GW event,
GW150914. We find that the circular analysis is preferred
with respect to the eccentric ones with lnBcirc

ecc ∼ 2.
However, we also find that we cannot exclude small values
of eccentricities at low frequencies, and that once an
average frequency of ∼30 Hz is reached, any residual
eccentricity becomes indistinguishable from zero.
Lastly we perform the calculation of the eccentricity

evolution using an eccentricity estimator deduced from the
instantaneous GW frequency. After testing the calculation
on mock signals, we apply the method to the data of
GW150914 finding that, at about 20 Hz, the maximum
eccentricity allows for the system is ∼0.075 for a uniform
prior and ∼0.055 for a logarithmic-uniform prior on the
initial eccentricity. This is quantitatively comparable with
the findings of [70]. In the late stages of the preparation of

FIG. 11. Upper limit of the 90% credibility interval for the
estimated eccentricity evolution eωðf̄Þ for the two eccentric
analyses of GW150914 with TEOBResumS-Dalí. The upper
limit is calculated estimating eωðf̄Þ for all the posterior samples,
interpolating it at different values of f̄ and then taking the 90%
credible interval of the data. This result is agreement with
previous results [70].

5We note that if the initial eccentricity is sufficiently small the
setup of the initial data is identical in both models.

6We also note that the TEOBResumS strategy is rather
different from the one followed by the SEOBNRv4EHM model
[29] that substantially limits itself at changing initial conditions,
without touching the structural elements of the dynamics.
Although this choice guarantees, by construction, an excellent
quasicircular limit, it introduces inaccuracies for eccentric dy-
namics, as highlighted in Ref. [27].
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this manuscript we became aware of related but indepen-
dent work on eccentricity definitions [75].
Given current BBH merger rate estimates [76] and the

sensitivity of the LIGO-Virgo-KAGRA detector network
[77], future detections of eccentric binaries will signifi-
cantly constrain the lower limit of mergers that result from
clusters and other dynamical channels [6]. The possibility
of several eccentric BBH candidates [9,69] makes it crucial
to have a reliable method to infer the eccentricity directly
from observations. For the first time we present a system-
atic method to infer the eccentricity evolution directly from
observations of GWs from coalescing BBHs that can be
used in the future to robustly measure the eccentricity and
make meaningful comparisons between different models.
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APPENDIX A: QUASICIRCULAR AND
ECCENTRIC INITIAL CONDITIONS

For quasicircular binaries,TEOBResumS applies Kepler’s
law to the initial frequency of the orbit to compute the initial
separation r. Then, the initial values of the EOB angular and
radial momenta pφ, pr� are estimated via an iterative process
(known as postadiabatic expansion, “PA” henceforth) in
which the right-hand side of the Hamilton equations is solved
analytically under the assumption that pr� ∼ 0 [53,81]. At
zeroth PA order, one assumes that pr� ¼ 0 exactly. Then, by
evaluating ∂rĤEOB ¼ 0 one can analytically find the circular
angular momentum j0ðrÞ at the requested initial separation.
Neglecting terms of Oðp2

r�Þ, one can then use dpφ=dr ¼
F̂φ _r−1 to computepr� at the first PAorder. This procedure can
then be repeated any number of times, with even (odd) PA
orders providing corrections topφ (pr�).Correctly computing
the initial conditions of the systems and having pr� different
fromzero at the initial separation is crucial to avoid effects due
to spurious eccentricity.
For eccentric binaries, initial conditions necessarily need to

be specified in a different manner. Let us denote with e the
eccentricity of the ellipse that the system would orbit along
assuming no GWemission. Similarly, let us denote with p its
semilatus rectum and with ξ its anomaly. A generic point on
the ellipse has radial coordinate r ¼ p=ð1þ e cos ξÞ. To find
adiabatic initial conditions for our EOB dynamics we need to
find a way to map ðf0; e; ξÞ into ðr0; p0

φ; p0
r�Þ. In practice, for

convenience, the initial orbital frequency Ω0 is always
assumed to correspond either to the apastron (r0 ¼
p0=ð1 − eÞ), periastron (r0 ¼ p0=ð1þ eÞ) or to the average
frequency between the two points.We then solve numerically

∂pφ
Hðr0ðp0Þ; j0ðp0Þ; pr� ¼ 0Þ ¼ Ω0; ðA1Þ

where j0 is the adiabatic angular momentum computed using
energy conservation

Ĥ0
effðp0; j0; ξ ¼ 0Þ ¼ Ĥ0

effðp0; j0; ξ ¼ πÞ; ðA2Þ

and estimate the semilatus rectumof theobitp0. The evolution
of the system is then always started at the apastron, so that

r0 ¼
p0

ð1 − eÞ ; ðA3Þ

p0
φ ¼ j0; ðA4Þ

p0
r� ¼ 0: ðA5Þ

This adiabatic procedure can be generalized to higher PA
orders.7 We leave a discussion of such initial conditions to
future work.

71PA eccentric initial conditions have been implemented in the
public TEOBResumS code in commit eb5208a.
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APPENDIX B: TABLES

In this section we report the posteriors for Mc, χeff and q for two injections and different recoveries performed.

TABLE VI. Posterior distribution functions for Mc, χeff and q for a circular injection (einjω ¼ 0 and f0 ¼ 20 Hz) with different
recoveries using TEOBResumS-GIOTTO and TEOBResumS-Dalí.

Circular injection

Model TEOBResumS-GIOTTO TEOBResumS-Dalí TEOBResumS-Dalí TEOBResumS-Dalí TEOBResumS-Dalí
e0-prior e0 ¼ 0 (fixed) e0 ¼ 10−8 (fixed) Uð0.001; 0.2Þ Uð0.001; 0.2Þ Log-uniform(0.001, 0.2)
f0-prior f0 ¼ 20 Hz (fixed) f0 ¼ 20 Hz (fixed) Uð18; 20.5Þ f0 ¼ 20 Hz Uð18; 20.5Þ
McðM⊙Þ 24.38þ0.17

−0.16 24.53þ0.18
−0.17 24.32þ0.18

−0.19 24.33þ0.18
−0.21 24.35þ0.17

−0.16

χeff 0.010.03−0.03 0.04þ0.03
−0.03 0.00þ0.03

−0.03 0.00þ0.03
−0.03 0.00þ0.02

−0.02

q 2.00þ0.22
−0.19 2.08þ0.18

−0.20 2.00þ0.14
−0.19 2.02þ0.17

−0.18 1.97þ0.17
−0.20

e0 ... ... 0.01þ0.01
−0.01 0.01þ0.01

−0.01 0.00þ0.01
−0.01

TABLE VII. Posterior distribution functions for Mc, χeff , and q for an eccentric injection (einjω ¼ 0.05 and f0 ¼ 20 Hz) with different
recoveries using TEOBResumS-GIOTTO and TEOBResumS-Dalí.

Eccentric injection

Model TEOBResumS-GIOTTO TEOBResumS-Dalí
e0-prior e0 ¼ 0 (fixed) Uð0.001; 0.2Þ
f0-prior f0 ¼ 20 Hz (fixed) Uð18; 20.5Þ
McðM⊙Þ 24.34þ0.17

−0.17 24.43þ0.19
−0.24

χeff −0.03þ0.03
−0.03 −0.03þ0.03

−0.03

q 1.84þ0.19
−0.21 1.97þ0.17

−0.20

e0 ... 0.05þ0.01
−0.01
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FIG. 12. One-dimensional and join-posterior distributions for the intrinsic parameters in addition with e0 and f0 recovered with the
two eccentric analyses of GW150914. The analysis using a uniform eccentricity prior is represented in teal, the one utilizing a
logarithmic-uniform prior for the eccentricity is shown in orange.

APPENDIX C: FULL CORNER PLOTS FOR THE GW150914 ECCENTRIC ANALYSIS

In this section we report the full corner plots showing the posterior distributions of the intrinsic and extrinsic parameters
relative to the eccentric analysis of GW150914.
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