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In the recent proposal [S. W. Wei et al., Black Hole Solutions as Topological Thermodynamic Defects,
Phys. Rev. Lett. 129, 191101 (2022).], the black holes were viewed as topological thermodynamic defects
by using the generalized off shell free energy. In this paper, we follow such proposal to study the local and
global topological natures of the Gauss-Bonnet black holes in anti–de Sitter (AdS) space. The local
topological natures are reflected by the winding numbers, where the positive and negative winding numbers
correspond to the stable and unstable black hole branches. The global topological natures are reflected by
the topological numbers, which are defined as the sum of the winding numbers for all black hole branches
and can be used to classify the black holes into different classes. When the charge is present, we find that
the topological number is independent on the values of the parameters, and the charged Gauss-Bonnet AdS
black holes can be divided into the same class of the Reissner-Nordström anti-de Sitter black hole black
holes with the same topological number 1. However, when the charge is absent, we find that the topological
number has certain dimensional dependence. This is different from the previous studies, where the
topological number is found to be a universal number independent of the black hole parameters.
Furthermore, the asymptotic behaviors of curve τðrhÞ in small and large radii limit can be a simple criterion
to distinguish the different topological number. We find a new asymptotic behavior as τðrh → 0Þ ¼ 0 and
τðrh → ∞Þ ¼ 0 in the black hole system, which shows topological equivalency with the asymptotic
behaviors τðrh → 0Þ ¼ ∞ and τðrh → ∞Þ ¼ ∞. We also give an intuitional proof of why there are only
three topological classes in the black hole system under the condition ð∂rhSÞP > 0.
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I. INTRODUCTION

Since the pioneering works proposed in [1–4], the black
hole thermodynamics has made significant progress in
recent years. A famous example is the Hawking-page
phase transition occurring in the anti–de Sitter (AdS)
space, where a first-order phase transition has been
found between the large AdS black hole and the thermal
radiation [5]. The subsequent researches showed that the
Hawking-Page phase transition can be interpreted as the
confinement/deconfinement phase transition in the context
of AdS/CFT correspondence [6]. In the canonical ensemble
with fixed charge, the free energy of a charged AdS black
hole shows a swallowtail behavior, which means a first-
order phase transition can also occur between the small
black hole (SBH) and the large black hole (LBH) [7,8].
Furthermore, the Q −Φ (charge-chemical potential) dia-
gram of the charged AdS black holes was found to be

similar to the P − v (pressure-volume) diagram of the van
de Waals (vdW) fluids [7,8].
Recently, the remarkable analogies between the charged

AdS black hole and the vdW fluids have been restudied in
the extended phase space [9–14]. In the extended phase
space, the cosmological constant plays the role of the
thermodynamic pressure whose conjugate quantity is the
thermodynamic volume, and the black hole mass is
interpreted as the enthalpy rather than the internal energy
[9–11]. After treating the cosmological constant as the
thermodynamic pressure, the first law of black hole
thermodynamics should involve the cosmological constant,
and the consistent Smarr relation was held [9–11]. It was
found that the charged AdS black hole and the vdW fluids
not only behave analogously in the phase diagram, but also
have the similar equations of state and the same critical
exponents [12,13]. Furthermore, the mesoscopic structure
revealed by the radial distribution function were found to be
same between the small/large charged AdS black holes and
the liquid/gas systems [15].
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The phase behaviors have also been studied in the
extended phase space of Gauss-Bonnet black holes in
the AdS space when d ≥ 5 dimensions [16,17]. When the
geometry of the black hole horizon is Ricci flat (k ¼ 0) or
hyperbolic (k ¼ −1), it was found that there was no critical
point and thus no phase transition to occur. Only when the
geometry of the black hole horizon is spherical (k ¼ 1) can
the phase transition take place. However, in the case of
spherical horizon, the charged Gauss-Bonnet black holes
show different phase behaviors in different dimensions.
When d ¼ 5 or d ≥ 7, a small/large black hole phase
transition which is similar to that of the vdW fluids has
been found.Whend ¼ 6, the phase behaviors of the charged
Gauss-Bonnet black holes are extremely abundant. There is
not only the SBH/LBH phase transition which behaves like
that of the vdW fluids, but also the SBH/IBH/LBH (small/
intermediate/large black hole) phase transition which
behaves like the solid/liquid/gas phase transition, and the
triple point can be found [17].
The free energy G can be generalized from the standard

definition of the free energy G ¼ H − THS, where the
enthalpy H represents the mass of the black hole in the
extended phase space, S is the entropy and TH is the Hawking
temperature [18–20]. Recently, the concept of generalized free
energy has been extended to the five-dimensional
Schwarzschild black holes in the canonical ensemble [19].
In particular, the generalized free energy can be derived from
the Einstein-Hilbert action of the Euclidean gravitational
instanton with the conical singularity [20]. In the free energy
landscape, one can consider a canonical ensemble composed
of various black hole states with different radii at fixed
temperature. The Hawking temperature TH is then replaced
by the ensemble temperatureT, and the free energy becomes a
continuous function of the black hole radius. Namely, the free
energy is defined not only on the on shell states which satisfy
the stationary Einstein field equation, but also on the off shell
stateswhich do not obey the stationary Einstein field equation.
However, the extremal points of the free energy landscape
exactly correspond to the on shell black holes. Based on the
free energy landscape, one can have an intuitive picture on the
thermodynamic stability of different on shell black holes at
fixed temperature. Namely, the local minimum or maximum
point on the free energy landscape represents the local stable
and unstable black holes, and the global minimum point
represents the global stable black hole. Recently, research has
shown that the free energy landscape is not only beneficial for
the black hole thermodynamics, but also can be used to
analyze the dynamics of the black hole phase transition, where
the off shell states play a vital role in revealing the dynamical
process during the phase transition [21–23].
In [24,25], a special vector was constructed by means of

the null geodesics, where the light ring of the black hole is
located at the zero point of the vector field. The topological
argument shows that there exists at least one standard
light ring outside the black hole horizon for each rotation

sense of the four-dimensional stationary, axisymmetric,
asymptotically-flat black hole with a nonextremal, topologi-
cally-spherical Killing horizon. Following such a topological
argument and the topological-current ϕ-mapping theory,
each critical point of the phase transition was associated
with a topological charge and the critical points were divided
into two classes [26–29]. On the other hand, the black hole
solutions were treated as defects in the thermodynamic
parameter space by means of the generalized off shell free
energy [30]. Namely, a new vector was constructed where
the on shell black holes were located exactly at the zero point
of the vector field. Following similar methods of the
topological classification of the critical points, the positive
and negative winding numbers corresponding to the defect
indicate the local thermodynamical stable and unstable black
hole solutions, respectively. Furthermore, the topological
number is defined as the sum of the winding numbers for all
black hole branches, which can be used to classify the black
holes to different classes. Recently, the topology in black
hole thermodynamics has attracted a lot of attention and
been used in different black holes [31–40].
In this paper, we study the topological classification of the

Gauss-Bonnet AdS black with different geometries of the
black hole horizons in different dimensions. The motivations
are as follows: (1) The geometry of the black hole horizon in
AdS space can be Ricci flat, spherical, or hyperbolic—how
would that change the topological number? (2) When the
black hole horizon is spherical, the phase behaviors of the
charged Gauss-Bonnet AdS black in d ¼ 6 dimensions are
very different from those in other dimensions—how would
that change the topological number? (3) How would the
higher derivative terms of curvature in the form of Gauss-
Bonnet gravity change the topology number? (4) The topo-
logical numbers are different from the Schwarzschild black
holes to the RN black holes—how would the charge change
thetopologicalnumberof theGauss-BonnetAdSblackholes?
The paper is organized as follows. In Sec. II, we

introduce the thermodynamics of the Gauss-Bonnet AdS
black hole and the topology. In Sec. III, we study the
topological natures of the Gauss-Bonnet AdS black holes
when the charge is present, where the cases of Ricci flat,
hyperbolic, and spherical horizons are discussed. We find
the topological number to be independent of the black hole
parameter when the charge is present, and that the charged
Gauss-Bonnet AdS black holes can be divided into the
same class of the Reissner-Nordström anti-de Sitter black
hole (RNAdS) black holes. In Sec. IV, the topological
properties will be restudied when the charge is absent.
When the geometry of the horizon is spherical, a new
asymptotic behavior of curves τðrhÞ is found for d ≥ 6,
whose topological number is different from that in d ¼ 5.
In [30], the topological number was found to be a universal
number independent of the black hole parameter. However,
our results show the topological number has dimensional
dependence in certain cases. In Sec. V, we will present an
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intuitional proof of why there are only three classes of black
holes under the condition ð∂rhSÞP > 0. In Sec. VI, we
present the conclusions.

II. THERMODYNAMICS OF GAUSS-BONNET AdS
BLACK HOLE AND THE TOPOLOGY

A. The thermodynamics of d-dimensional
Gauss-Bonnet AdS black hole

Beginning with the metric of the d-dimensional Gauss
Bonnet AdS black hole [16,17],

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2hijdxidxj; ð1Þ

where hijdxidxj represents the line element of a (d − 2)-
dimensional maximally-symmetric Einstein space with
constant curvature ðd − 2Þðd − 3Þk and volume Σk.
k ¼ 0, −1, or 1 represents the Ricci flat, hyperbolic, and
spherical horizons, respectively. The metric function fðrÞ is
given by

fðrÞ ¼ kþ r2

2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 64παM

ðd − 2ÞΣkrd−1
−

2αQ2

ðd − 2Þðd − 3Þr2d−4 −
64παP

ðd − 1Þðd − 2Þ

s �
; ð2Þ

where M is the black hole mass, Q is the charge, and α is
associated with the positive Gauss-Bonnet coefficient αGB
by α ¼ ðd − 3Þðd − 4ÞαGB. As discussed in the Introduc-
tion, the cosmological constant Λ is considered as a
dynamical variable in the extended phase space, which
is interpreted as the pressure P by P ¼ − Λ

8π due to the
realization that the negative cosmological constant induces
a positive vacuum pressure in spacetime. Without loss of
generality, we set α and Σk as 1 for simplification.
The thermodynamic quantities can be expressed in terms

of the horizon radius rh which is determined by the largest
real root of the equation fðrÞ ¼ 0, we list the thermody-
namic quantities as follows:

M ¼ ðd − 2Þrhd−3
16π

�
kþ k2

rh2
þ 16πPrh2

ðd − 1Þðd − 2Þ
�

þ Q2

8πðd − 3Þrhd−3
; ð3Þ

TH ¼
16πPrh4

d−2 þ ðd − 3Þkrh2 þ ðd − 5Þk2 − 2Q2

ðd−2Þrh2d−8

4πrhðrh2 þ 2kÞ ; ð4Þ

S ¼ rhd−2

4

�
1þ 2ðd − 2Þk

ðd − 4Þrh2
�
: ð5Þ

In the extended phase space, the black hole mass M is
interpreted as the enthalpy rather than the internal energy,
so the Gibbs free energy is given by

G ¼ M − THS: ð6Þ

We should note that there are certain constraints as
discussed in [16]. The first constraint comes from the
metric function (2), where a well-defined vacuum solution
with M ¼ Q ¼ 0 requires

0 ≤ P ≤
ðd − 1Þðd − 2Þ

64πα
: ð7Þ

Another constraint comes from the non-negative definite-
ness of the black hole entropy in Eq. (5), which requires

rh2 þ 2kþ 4k
d − 4

≥ 0: ð8Þ

The heat capacity CP at fixed pressure P can reflect the
local thermodynamic stability, i.e., the positive or negative
heat capacity corresponds to the stable and unstable system,
respectively. The heat capacity CP is defined as

CP ¼ TH

�
∂S
∂TH

�
P
¼ TH

�
∂rhS

∂rhTH

�
P
: ð9Þ

By using the equation of entropy (5), we complete the
calculation of ð∂rhSÞP, which gives the result as

�
∂S
∂rh

�
P
¼ d − 2

4
rhd−5ðrh2 þ 2kÞ: ð10Þ

The constraint (8) ensures that Eq. (10) can not be negative.
By means of Eq. (9), the sign of the heat capacity CP at
fixed pressure is found to be the same as the sign
of ð∂rhTHÞP.

B. The topology

As discussed in the Introduction, in order to generalize
the on shell free energy to off shell, we consider a canonical
ensemble which is composed of various black hole states
with different radii at a fixed temperature. The generalized
free energy can be obtained by replacing the Hawking
temperature TH with the ensemble temperature T in Eq. (6).
Following the Euclidean path integral approach [41],
the ensemble temperature T is equal to 1=τ, where
the parameter τ is the Euclidean time period [42–44].
The generalized Gibbs free energy can then be given by
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G ¼ M −
S
τ

¼ ðd − 2Þrhd−3
16π

�
kþ k2

rh2
þ 16πPrh2

ðd − 1Þðd − 2Þ
�

þ Q2

8πðd − 3Þrhd−3
−
rhd−2

4τ

�
1þ 2ðd − 2Þk

ðd − 4Þrh2
�
: ð11Þ

Only when τ ¼ τH ¼ 1=TH, the generalized free energy is
on shell. If τ ≠ τH, the subspace of the Euclidean manifold
has the geometry of a cone with a nonzero deficit angle
2πð1 − τ=τHÞ, such a manifold is not regular and has a
conical singularity near the horizon. When τ ¼ τH, the
deficit angle vanishes, so the geometry becomes a disk and
the manifold recovers to be regular [42–44].
In [30], a vector ϕ is constructed as

ϕ ¼
�
∂G
∂rh

;− cotΘ cscΘ
�
; ð12Þ

where 0 ≤ Θ ≤ π and 0 ≤ rh ≤ ∞. The introduction of the
new parameter Θ is for the purpose of axial limit, where the
component ϕΘ is divergent and the direction of the vector
points outward when Θ ¼ 0 and π [30–32]. Then, the
topological numberW is determined by the direction of the
vector ϕ at rh ¼ 0 and ∞ [30–32]. Furthermore, as
discussed in the Introduction, the extremal points of the
free energy landscape exactly correspond to the on shell
black holes, so the zero point of the component ϕrh exactly
meets the black hole solution. The component ϕΘ ¼ 0 will
yield Θ ¼ π=2.
By using the vector ϕ, a topological current can be

introduced as [26–28,30]

jμ ¼ 1

2π
ϵμνρϵab∂νna∂ρnb; μ;ν;ρ¼ 0;1;2; a;b¼ 1;2;

ð13Þ
where ∂ν ¼ ∂

∂xν and xν ¼ ðτ; rh;ΘÞ. The unit vector n is

given by n ¼ ðn1; n2Þ, where n1 ¼ ϕrh

kϕk and n2 ¼ ϕΘ

kϕk. It is
easy to show that the topological current is conserved, i.e.,
∂μjμ ¼ 0. Following the ϕ-mapping theory, it can then be
proven that [26–28] (See Appendix for the details)

jμ ¼ δ2ðϕÞJμ
�
ϕ

x

�
; ð14Þ

where the vector Jacobi is given by

ϵabJμ
�
ϕ

x

�
¼ ϵμνρ∂νϕ

a
∂ρϕ

b: ð15Þ

When μ ¼ 0, the vector Jacobi recovers the usual Jacobi as

J0ðϕxÞ ¼ ∂ðϕ1;ϕ2Þ
∂ðx1;x2Þ . Equation (14) shows that jμ is zero except

at ϕ ¼ 0. After some calculations, we can find that the
topological number or the total chargeW can be derived as
[26–28] (See Appendix for the details)

W ¼
Z
Σ
j0d2x ¼

XN
i¼1

βiηi ¼
XN
i¼1

wi; ð16Þ

where the positive integer βi is the Hopf index counting the
number of the loops that ϕ makes when xu goes around the
zero point zi, ηi ¼ signðJ0ðϕxÞziÞ ¼ �1 is the Brouwer
degree, and wi is the winding number for the ith zero
point of ϕ in the whole parameter space Σ.
Let us make a brief summary about the topological

current theory. Given a vector ϕ, the normalized vector n ¼
ϕ=kϕk has singularities when ϕ ¼ 0. These singularities
can be treated as the topological defects, and a topological
current jμ can be constructed in Eq. (13). The conserved
current jμ possesses a peculiar property that jμ is nonzero
only when ϕ ¼ 0, which leads to the interesting inner
structure of the total charge (or topological number) W in
Eq. (16). Namely, the total charge is the sum of the
contributions of N isolated points zi vanishing the vector
ϕ. Furthermore, the contribution of each zero point zi is the
winding number wi ¼ βiηi. Thus, the isolated points zi in
topological current theory play the similar role of holes
in topology.
The positive or negative winding number can reflect the

different local topological natures, which is conjectured to
be related to the thermodynamic stability, i.e., the positive
or negative winding number corresponds to the stable and
unstable black hole branches respectively [30]. However,
we note that such correspondence is strict, and we will give
the proof as follows.
First, we choose a ¼ 1, b ¼ 2, and μ ¼ 0 in Eq. (15),

and obtain

J0
�
ϕ

x

�
¼ ∂ϕ1

∂x1
∂ϕ2

∂x2
−
∂ϕ1

∂x2
∂ϕ2

∂x1

¼ ∂
2G
∂r2h

�
1þ cos2 Θ
sin3 Θ

�
; ð17Þ

where ðx1; x2Þ ¼ ðrh;ΘÞ and ðϕ1;ϕ2Þ ¼ ð∂G
∂rh

;
− cotΘ cscΘÞ in our paper. Eq. (14) tells us that ju is
nonzero only when ϕ vanishes. On the one hand, ϕ1 ¼ 0

will yield ∂G
∂rh

¼ 0, which represents the on shell black hole

solutions. On the other hand, ϕ2 ¼ 0 will yield Θ ¼ π
2
, and

then ð1þcos2Θ
sin3Θ Þ ¼ 1. Thus, Eq. (17) can be rewritten as
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J0
�
ϕ

x

�����
zi

¼ ∂
2G
∂r2h

����
zi

: ð18Þ

Furthermore, δ2ðϕÞ can be expanded as

δ2ðϕÞ ¼
XN
i¼1

1

jJ0ðϕxÞjzi
δ2ðx − ziðtÞÞ; ð19Þ

Inserting Eqs. (18), (19), and (14) into Eq. (16), we
obtain

W ¼
XN
i¼1

sign

�
∂
2G
∂r2h

�����
zi

; ð20Þ

In Eq. (20), we can find that the winding number wi for

each on shell black hole is equal to sign
�
∂
2G
∂r2h

	
jzi in the

corresponding extremal point (or the on shell black hole) in
the free energy landscape. Thus, there is always a corre-
spondence between the sign of the winding number and the
thermodynamic stability.
Furthermore, the topological numberW is defined as the

sum of the winding number in the whole parameter space,
which reflects the global topological nature and can be used
to classify the black holes to different classes [30]. In [30],
the authors speculate that there are only three classes of
black holes by means of the topological number. Although
more and more examples show that such conjecture seems
to be right [30,33,36,37,39,40], a strict proof is still absent.
In Sec. V we give a proof in part, which is based on the
condition ð∂rhSÞP > 0. The proof beyond the condition
ð∂rhSÞP > 0 deserves the further considerations. If we
arbitrarily choose the area Σ, Eq. (16) calculates a quantity
named topological charge ϒ. When Σ covers the whole
parameter space, the topological charge ϒ is actually the
total chargeW (the topological number), which reflects the
global topological nature. When Σ only encloses a zero
point zi, the topological charge ϒ is actually the winding
number and reflects the local topological nature. If two
loops ∂Σ1 and ∂Σ2 enclose the same zero points of ϕ, they
have the same topological charge. So, we can arbitrarily
choose the contour enclosing the same zero point of ϕ to
calculate the topological charge. A convenient choice of the
contour C is [30]

rh ¼ a cos θ þ r0;

Θ ¼ b sin θ þ π

2
; ð21Þ

where 0 ≤ θ ≤ π, a, b and r0 can be arbitrarily chosen for
the different needs of calculations.

In the previous studies, the topological number of the
vector ϕ can be calculated as [30–32]

W ¼ 1

2π

I
C
dA; ð22Þ

where A ¼ arctanðϕ2

ϕ1Þ. However, the relationship between

Eqs. (22) and (16) has not been given. We will show that
they are equivalent, i.e., we derive Eq. (22) from Duan’s
topological current theory.
At first, we choose μ ¼ 0 in Eq. (13), we can obtain

j0 ¼ 1

2π
ϵijϵab∂ina∂jnb

¼ ∂i

�
1

2π
ϵijϵabna∂jnb

�
−

1

2π
ϵijϵabna∂i∂jnb

¼ ∂1

�
1

2π
ϵabna∂2nb

�
− ∂2

�
1

2π
ϵabna∂1nb

�
;

i; j; a; b ¼ 1; 2; ð23Þ

where 1
2π ϵ

ijϵabna∂i∂jnb vanishes due to ϵij ¼ −ϵji.
Inserting Eq. (23) into Eq. (16), we can obtain

W ¼
Z
Σ
∂1

�
1

2π
ϵabna∂2nb

�
− ∂2

�
1

2π
ϵabna∂1nb

�
dx1dx2

¼ 1

2π

I
C
ϵabna∂inbdxi

¼ 1

2π

I
C
dA; ð24Þ

where we have used the divergence theorem and

A ¼ arctan
�
n2

n1

	
¼ arctan

�
ϕ2

ϕ1

	
. Then, a quantity which

measures the angle deflection of the vector ϕ along the
given contour is introduced by [30–32]

ΩðθÞ ¼
Z

θ

0

ηabna∂θnbdθ; ð25Þ

where the topology charge obeys [31,32]

ϒ ¼ Ωð2πÞ
2π

: ð26Þ

III. WHEN THE CHARGE IS PRESENT

A. k= 0

At first, we discuss the simplest case when the horizon is
Ricci flat. The generalized Gibbs free energy in the case
k ¼ 0 can be written as
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G ¼ Prhd−1

d − 1
þ Q2

8πðd − 3Þrhd−3
−
rhd−2

4τ
: ð27Þ

Then the component ϕrh can be calculated as

ϕrh ¼ ∂G
∂rh

¼ Prhd−2 −
Q2

8πrhd−2
−
d − 2

4τ
rhd−3: ð28Þ

By solving ϕrh ¼ 0, we can obtain

τ ¼ 2πðd − 2Þ
8πPrh − Q2

rh2d−5

: ð29Þ

When we fix the ensemble temperature T, the Euclidean
time period τ is then fixed by τ ¼ 1

T. As discussed in the
Introduction and Sec. II, the extremal points of the Gibbs
free energy landscape correspond to the on shell black hole
branches, where the ensemble temperature is equal to the
Hawking temperature. So, the number of the solutions of
the Eq. (29) in a fixed τ is equal to the number of on shell
black holes in a fixed temperature T. Obviously, τ mono-
tonically decreases with the horizon radius rh, which
implies that there is only one on shell black hole in
arbitrarily fixed temperature and no phase transition can
occur. Furthermore, we have analyzed that the sign of the
heat capacity CP is same as the sign of ð∂rhTHÞP in Sec. II,
which means CP is positive and the only one black hole is
thermodynamic stable. We should note such nature is
independent of the dimensions.
In Fig. 1, we have plotted the curve of Eq. (29) at d ¼ 6,

Q ¼ 0.2, and P ¼ 0.02, where the pressure satisfies the
constraint (7). From the figure, we can clearly see that there
is only one on shell black hole for an arbitrarily fixed τ.
Without loss of generality, we choose τ ¼ 10 to study the
topological properties. In Fig. 2(a), we have plotted the unit
vector field n. We observe only one zero point ZP1 which
is located at rh ¼ 5 and Θ ¼ π=2. For the contours C1 and
C2 in Fig. 2(a), they are plotted by Eq. (21) with a ¼ 0.5,
b ¼ 0.3, r0 ¼ 5, and a ¼ 0.3, b ¼ 0.5, r0 ¼ 6. Then, the
deflections of the vector field n along the contours C1 and

C2 can be calculated by Eq. (25), which have been shown
in the Fig. 2(b). By means of the Eq. (26), we can calculate
the topological charge ϒ. The results show that the contour
C1 enclosing the zero point ZP1 gives a topological charge
1, and the contour C2 which does not enclose ZP1 gives a
topological charge 0. The positive winding number means
that the on shell black hole is thermodynamic stable, which
is consistent with our analysis from the point of heat
capacity CP. Because there is only one on-shell black hole,
the topological numberW is equal to the winding numberw
as W ¼ w ¼ 1. For the different dimensions, there is
always only one stable on-shell black hole, which means
the topological number is always equal to 1 without
dependence of the dimensions. Such results suggest that
the topological number should be independent on the
dimensions.

B. k= − 1
In the case of k ¼ −1, the generalized Gibbs free energy

is given by

G ¼ ðd − 2Þrhd−3
16π

�
−1þ 1

rh2
þ 16πPrh2

ðd − 1Þðd − 2Þ
�
þ Q2

8πðd − 3Þrhd−3
−
rhd−2

4τ

�
1 −

2ðd − 2Þ
ðd − 4Þrh2

�
: ð30Þ

By solving ϕrh ¼ ∂G
∂rh

¼ 0, we obtain

τ ¼ 4πðd − 2Þrhd−3 − 8πðd − 2Þrhd−5
−ðd − 2Þðd − 3Þrhd−4 þ ðd − 2Þðd − 5Þrhd−6 þ 16πPrhd−2 − 2Q2rh2−d

¼ 4πðd − 2Þrhðrh2 − 2Þ
−ðd − 2Þðd − 3Þrh2 þ ðd − 2Þðd − 5Þ þ 16πPrh4 − 2Q2

rh2d−8

: ð31Þ
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FIG. 1. The curve of Eq. (29) in k ¼ 0 with d ¼ 6, Q ¼ 0.2,
and P ¼ 0.02. Each point in the curve corresponds to an on shell
black hole.
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In [16], it was found that there is no critical point or phase
transition in the case of d ¼ −1. The monotonicity of the
curve τðrhÞ is not easy to analyze and may depend on the
parameters. Thus, we plot the curve τðrhÞ under fixed
parameters. In Fig. 3, we have plotted the curve of
Eq. (31) at d ¼ 6, Q ¼ 0.2, and P ¼ 0.02. From the figure
we can clearly see that τ monotonically decreases with the
horizon radius rh, which implies that there is only one on
shell black hole for an arbitrarily fixed τ and no phase
transition to occur. The sign of ð∂rhTHÞP is positive, so the
heat capacity is also positive and the black hole is stable.
Without loss of generality, we set τ ¼ 10 to study the
topological properties. In Fig. 4(a), we have plotted the
unit vector field n. We can observe that only one zero point
ZP1 which is located at rh ¼ 6.57 and Θ ¼ π=2. The

contours C1 and C2 in Fig. 4(a) are plotted by Eq. (21)
witha ¼ 0.2, b ¼ 0.3, r0 ¼ 6.57, anda ¼ 1,b ¼ 1, r0 ¼ 6,
respectively. In the Fig. 4(b), we have plotted the deflections
along the contoursC1 andC2. Then, the topological charges
ϒ of contoursC1 andC2 can be calculated as the same to 1,
which means that the different contours enclosing the same
zero point of ϕ possess the same topological charge.
Because there is only one zero point, the winding number
w is equal to the topological number W as 1.

C. k= 1

In this section, we will discuss the case of k ¼ 1. In the
previous studies, it was found that there is only SBH/LBH
phase transition for d ¼ 5 and d ≥ 7 [17]. However, d ¼ 6
is an exception, where the triple point, the SBH/LBH and
SBH/IBH/LBH phase transitions can be found [17]. Thus,
we wonder whether such an exception will change the
global topological nature, i.e., the topological number.
Because the phase behaviors of d ¼ 5 and d ≥ 7 are
similar, we only discuss the case of d ¼ 5 and divide
the section into two subsections of d ¼ 5 and d ¼ 6.
In the case of k ¼ 1, the generalized Gibbs free energy is

given by

G ¼ ðd − 2Þrhd−3
16π

�
1þ 1

rh2
þ 16πPrh2

ðd − 1Þðd − 2Þ
�

þ Q2

8πðd − 3Þrhd−3
−
rhd−2

4τ

�
1þ 2ðd − 2Þ

ðd − 4Þrh2
�
: ð32Þ

By solving ϕrh ¼ ∂G
∂rh

¼ 0, we can obtain

τ ¼ 4πðd− 2Þrhðrh2 þ 2Þ
ðd− 2Þðd− 3Þrh2 þ ðd− 2Þðd− 5Þ þ 16πPrh4 − 2Q2

rh2d−8

:

ð33Þ
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FIG. 2. The figures are plotted in d ¼ 6, Q ¼ 0.2, P ¼ 0.02, and τ ¼ 10. The parameters of C1 and C2 are a ¼ 0.5, b ¼ 0.3, r0 ¼ 5,
and a ¼ 0.3, b ¼ 0.5, r0 ¼ 6. (a) The blue arrows show the unit vector field n, and the red point ZP1 locating at ð5; π=2Þ represents the
zero point of ϕ. (b) The deflection Ω as a function of θ for contours C1 and C2, respectively.
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FIG. 3. The curve of Eq. (31) in k ¼ −1 with d ¼ 6, P ¼ 0.02,
and Q ¼ 0.2. Each point in the curve corresponds to an on shell
black hole.
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1. d = 5

In the case of d ¼ 5, the generalized Gibbs free energy is
given by

G¼ 3rh2

16π

�
1þ 1

rh2
þ 4πPrh2

3

�
þ Q2

16πrh2
−
rh3

4τ

�
1þ 6

rh2

�
;

ð34Þ

and the on shell black holes satisfy

τ ¼ 6πrh5 þ 12πrh3

8πPrh6 þ 3rh4 −Q2
: ð35Þ

In [17], it was found that there is a critical pressure Pc
depending on the charge Q. When P < Pc, the SBH/LBH
phase transition can occur. However, there is no phase
transition when P > Pc. We choose Q ¼ 0.2 and plot the
curves of Eq. (35) for P ¼ 0.006 < Pc and P ¼ 0.01 > Pc
in Fig. 5. From the figure we can see there are three on shell
black hole branches with two stable and one unstable black
holes in certain regions of τ when P < Pc, but there is only
one stable black hole for all τ when P > Pc. In Fig. 6, we
plotted the unit vector field and the deflections along the
contours C1, C2, C3, and C4 when P < Pc. The topo-
logical charges of C1, C2, C3, and C4 are 1, −1, 1, and 1,
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FIG. 4. The figures are plotted in d ¼ 6, Q ¼ 0.2, P ¼ 0.02, and τ ¼ 10. The parameters of C1 and C2 are a ¼ 0.2, b ¼ 0.3,
r0 ¼ 6.57, and a ¼ 1, b ¼ 1, r0 ¼ 6. (a) The blue arrows show the unit vector field n, and the red point ZP1 locating at ð6.57; π=2Þ
represents the zero point of ϕ. (b) The deflection Ω as a function of θ for contours C1 and C2, respectively.
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FIG. 5. The curves of Eq. (35) in k ¼ 1 and d ¼ 5, where the stable and unstable black hole branches are plotted in solid lines and
dashed line respectively. The left figure (a) is plotted withQ ¼ 0.2 and P ¼ 0.006 < Pc. The right figure (b) is plotted withQ ¼ 0.2 and
P ¼ 0.01 > Pc.
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where the positive winding number 1 of C1 and C3
represents the stable black hole branches and the negative
winding number −1 of C2 represents the unstable black
hole branch. The topological charge of C4 is the topologi-
cal number, which is equal to the sum of all the winding
numbers asW ¼ 1þ ð−1Þ þ 1 ¼ 1. An similar calculation
of the topological number can also be applied to the region
in P > Pc, which shows the topological numbers in
P < Pc and P > Pc are the same as 1. The results suggest
that the topological number is independent on the value of
positive pressure P, even though there are different phase
behaviors in different region of P.

2. d = 6

The charged Gauss-Bonnet AdS black hole in d ¼ 6
dimensions is very different from those in other dimen-
sions. The generalized Gibbs free energy in d ¼ 6 is written
as

G ¼ rh3

4π

�
1þ 1

rh2
þ 4πPrh2

5

�
þ Q2

24πrh3
−
rh4

4τ

�
1þ 4

rh2

�
;

ð36Þ

and the on shell black holes satisfy

τ ¼ 8πrh7 þ 16πrh5

6rh6 þ 2rh4 þ 8πPrh8 −Q2
: ð37Þ

In [17], it was found that there are three critical points for
Q < QB ¼ 0.2018 and only one critical point for
Q > QB ¼ 0.2018. For Q < QB, we denoted the pressures
of the three critical points as Pc1, Pc2, and Pc3, which are

dependent on the charge Q. When P < Pc1, there are at
most three on-shell black holes. When Pc1 < P < Pc2,
there are at most five on shell black holes. When
Pc2 < P < Pc3, there are at most three on shell black
holes. When P > Pc3, there is only one on shell black hole.
For Q > QB, there is only one critical point with critical
pressure Pc, and the critical pressure is also dependent on
the chargeQ. There are at most three on shell black holes in
P < Pc and one on shell black hole in P > Pc. As
suggested in section III C 1, we believe the topological
number should be independent on the values of the positive
pressure P. Thus, we only discuss Pc1 < P < Pc2 for Q <
QB and P < Pc for Q > QB, where there are at most five
and three on shell black holes respectively.
In Fig. 7, we have plotted the curves of Eq. (37) for

Q < QB, Pc1 < P < Pc2 in (a) andQ > QB, P < Pc in (b).
From the figure, we can see that there are at most five on
shell black holes with three stable and two unstable in (a)
and three on shell black holes with two stable and one
unstable in (b). In order to study their local and global
topological natures, we choose τ ¼ 8.91 in Fig. 7(a) and
τ ¼ 9.3 in Fig. 7(b), such that there are five and three on
shell black holes branches, respectively. In Figs. 8 and 9,
we plotted the unit vector fields and the deflections along
the different contours. For Fig. 8, it shows that the
topological charges of the contours C1, C2, C3, C4, and
C5 are 1, −1, 1, −1, and 1, which is consistent with the
speculation that the positive or negative winding number
corresponds to the stable and unstable black hole branches.
The topological charge of the contour C6 is the topological
number, which is equal to the sum of all the winding
numbers as W ¼ 1þ ð−1Þ þ 1þ ð−1Þ þ 1 ¼ 1. For
Fig. 9, it shows that the topological charges of the contours
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FIG. 6. The figures are plotted with d ¼ 5, Q ¼ 0.2, P ¼ 0.006 < Pc, and τ ¼ 15.8. The parameters of C1, C2, C3, and C4 are
a ¼ 0.6, 0.4, 1.2, 2.9, b ¼ 0.5, 0.4, 0.8, 1.5, and r0 ¼ 1.4, 2.58, 4.3, 3.5. (a) The blue arrows show the unit vector field n, and the points
represent the zero points of ϕ. The points from left to right are ð1.70; π=2Þ, ð2.58; π=2Þ, and ð3.64; π=2Þ, where the red points represent
the stable on shell black holes and the black point represents the unstable on shell black hole. (b) The deflection Ω as a function of θ for
contours C1, C2, C3, and C4, where the blue, black, red, and green curves represent C1, C2, C3, and C4, respectively.
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C1, C2, and C3 are 1, −1, and 1, where the positive or
negative winding numbers correspond to the stable and
unstable black holes branches. The topological charge of
the contours C4 is the topological number, which also
satisfies W ¼ 1þ ð−1Þ þ 1þ 1 ¼ 1. The results suggest
that the values of nonzero charge will not change the
topological number, even though there are different phase
behaviors in different region of the charge. Furthermore,
d ¼ 6 is an exception in the phase transition of charged
Gauss-Bonnet AdS black hole with spherical horizon,
however, the topological number in d ¼ 6 is the same as

that in d ¼ 5, and the topological number is still indepen-
dent of the dimensions.

IV. WHEN THE CHARGE IS ABSENT

In [30], it was suggested that the different black holes
possessing the same vanishing/diverging behaviors of the
curves τðrhÞ at the small rh and large rh limits have the
same topological number, and can be divided to the same
class. The equivalence between the asymptotic behavior
and the topological number is a conjecture, and the proof
needs the future considerations. At first, we examine such
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FIG. 8. The figures are plotted in d ¼ 6, Q ¼ 0.18, Pc1 ¼ 0.01927 < P ¼ 0.01955 < Pc2 ¼ 0.01974, and τ ¼ 8.91. The parameters
a and b of C1, C2, C3, C4, and C5 are chosen as 0.1, and r0 is 0.65, 0.89, 1.24, 1.46 and 1.94. ForC6, a, b, and r0 are 0.8, 1.5, and 1.33.
(a) The blue arrows show the unit vector field n, and the points represent the zero points of ϕ. The points from left to right are
ð0.65; π=2Þ, ð0.89; π=2Þ, ð1.24; π=2Þ, ð1.46; π=2Þ, and ð1.94; π=2Þ, where the red points represent the stable on shell black holes and the
black points represent the unstable on shell black holes. (b) The deflectionΩ as a function of θ for contours C1, C2, C3, C4, C5, and C6,
where the blue, yellow, red, magenta, black, and green curves represent C1, C2, C3, C4, C5, and C6, respectively.
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FIG. 7. The curves of Eq. (37) in k ¼ 1 and d ¼ 6, where the stable and unstable black hole branches are plotted in solid lines and
dashed line respectively. The left figure (a) is plotted with Q ¼ 0.18 < QB and Pc1 ¼ 0.01927 < P ¼ 0.01955 < Pc2 ¼ 0.01974. The
right figure (b) is plotted with Q ¼ 0.3 > QB and P ¼ 0.015 < Pc ¼ 0.01956. Beyond the regions of rh plotted in (a) and (b), the
curves are monotonic.
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conjecture in the cases discussed in the previous sections,
i.e., when the charge is present. Then, we will discuss the
case when the charge is absent.
When the charge is present, we should note the lower

limits of rh in Eqs. (29), (31), and (33) are rex rather than
zero, where rex represents the horizon radius of the
extremal black hole with zero temperature. Although the
lower bound of rh of the vector field n is always zero, rh in
the equation τ represents the radius of a physical on-shell
black hole with non-negative temperature. When the
temperature is zero, it is exactly the extremal black hole.
It is easy to find that τ possesses the same asymptotic
behaviors in k ¼ 0, k ¼ −1, and k ¼ 1 as

τ → ∞ rh → rex;

τ → 0 rh → ∞: ð38Þ
It coincides with our previous calculations that the black
holes in k ¼ 0, k ¼ −1 and k ¼ 1 possess the same
topological number 1, so those black holes can be divided
into the same class as RNAdS black hole [30]. We should
note that such asymptotic behaviors are independent on the
dimensions, positive pressure and nonzero charge, just the
same as we have discussed about the topological number in
the previous section.
If the charge is absent, the equation of τ (29) in k ¼ 0 is

rewritten as

τ ¼ 2πðd − 2Þ
8πPrh

: ð39Þ

τ is still monotonically diminishing with rh, so the heat
capacity CP is still positive and there is only one on-shell

stable black hole. Therefore, the winding number is equal
to the topological number as 1. The lower bound of rh in
Eq. (39) is zero, and the asymptotic behaviors of τ in small
and large rh limit are shown as

τ → ∞ rh → 0;

τ → 0 rh → ∞; ð40Þ

which are same as the cases when the charge is present.
For the case of zero charge in k ¼ −1, the equation

of τ (31) can be rewritten as

τ ¼ 4πðd − 2Þrhðrh2 − 2Þ
16πPrh4 − ðd − 2Þðd − 3Þrh2 þ ðd − 2Þðd − 5Þ ;

ð41Þ

where τ ¼ ∞ (or TH ¼ 0) can be satisfied if

P < ðd−2Þðd−3Þ2
64πðd−5Þ . It is easy to find that ðd−3Þ2

d−5 > d − 1, so

there is always a lower bound rex corresponding to the
extremal black hole for the pressure satisfying constraint
(7). Then the asymptotic behaviors of τ in rh → rex and
rh → ∞ limits can be calculated and were found to be the
same as those in the previous cases.
For the case of zero charge in k ¼ 1, the equation of τ

(33) is rewritten as

τ ¼ 4πðd − 2Þrhðrh2 þ 2Þ
ðd − 2Þðd − 3Þrh2 þ ðd − 2Þðd − 5Þ þ 16πPrh4

;

ð42Þ
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FIG. 9. The figures are plotted in d ¼ 6,Q ¼ 0.3 > QB, P ¼ 0.015 < Pc ¼ 0.01956, and τ ¼ 9.3. The parameters of C1,C2, C3, and
C4 are chosen as a ¼ 0.3, 0.3, 0.5, 2.2, b ¼ 0.4, 0.4, 0.5, 1.4, and r0 ¼ 0.74, 1.71, 4.01, 2.4. (a) The blue arrows show the unit vector
field n, and the points represent the zero points of ϕ. The points from left to right are ð0.74; π=2Þ, ð1.71; π=2Þ, and ð4.01; π=2Þ, where the
red points represent the stable on shell black holes and the black point represents the unstable on shell black hole. (b) The deflectionΩ as
a function of θ for contours C1, C2, C3, and C4, where the blue, black, red and green curves represent C1, C2, C3, and C4, respectively.
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where the lower bound of rh is always zero. Obviously, the
asymptotic behaviors of τ in d ≥ 6 are different from d ¼ 5.
When d ¼ 5, τ → ∞ for rh → 0 and τ → 0 for rh → ∞,
which is the same as the previous cases. However, for
d ≥ 6, we obtain

τ → 0 rh → 0;

τ → 0 rh → ∞; ð43Þ

such asymptotic behavior does not occur in the previous
cases and the studies in [30]. In Fig. 10, we have chosen

d ¼ 6 and P ¼ 0.01 to plot the curve of τðrhÞ in Eq. (42).
From the figure, we can see that there are two on shell black
holes, where the one with larger radius is stable and the
other one is unstable. Furthermore, we can see clearly that
τ → 0 when rh → 0 and∞. In Fig. 11, we have plotted the
unit vector fields and the deflections along the different
contours. The winding number of C1 (or C2) enclosing the
unstable (or stable) black hole branch is −1 (or 1), and the
topological number satisfies W ¼ 1þ ð−1Þ ¼ 0. Such a
topological number is equal to that of the RN black hole,
but the asymptotic behaviors of τ in RN black hole behave
as τ → ∞ for rh → rex and τ → ∞ for rh → ∞ [30]. Thus,
we suggest that the black holes with such two different
asymptotic behaviors belong to the same topological class.
There are totally three types of topological classes, which
correspond to the four kinds of asymptotic behaviors:
(1) rh → 0 or ∞, both τ → 0 or both τ → ∞; (2) τ → 0
for rh → 0, τ → ∞ for rh → ∞; (3) τ → ∞ for rh → 0,
τ → 0 for rh → ∞.
In conclusion, if the horizon is Ricci flat or hyperbolic,

all the results are the same with the cases when the charge is
present. However, in the case of spherical horizon, the
topological number in d ≥ 6 dimensions is different from
that in d ¼ 5 dimensions. When d ¼ 5 dimensions, the
topological number is the same with the previous cases as
1. When d ≥ 6 dimensions, the topological number is 0,
which is equal to the topological number of the RN black
holes. Actually, the differences in the phase behaviors
between d ¼ 5 dimensions and d ≥ 6 dimensions have
been found in the previous studies [16,45]. In the case of
d ¼ 5, the small/large black hole phase transition can
always occur. While in the case of d ≥ 6, there may be
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FIG. 10. The curves of Eq. (42) in k ¼ 1, d ¼ 6, P ¼ 0.01,
where the stable and unstable black hole branches are plotted in
solid lines and dashed lines, respectively.
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FIG. 11. The figures are plotted in d ¼ 6, Q ¼ 0, P ¼ 0.01, and τ ¼ 9. The parameters of C1, C2, and C3 and C4 are chosen as
a ¼ 0.6, 1.8, 6.8, b ¼ 0.5, 0.4, 1.5, and r0 ¼ 1.2, 8.6, 7.0. (a) The blue arrows show the unit vector field n, and the points represent the
zero points of ϕ. The points from left to right are ð0.85; π=2Þ and ð8.63; π=2Þ, where the red point represents the stable on shell black
hole and the black point represents the unstable on-shell black hole. (b) The deflection Ω as a function of θ for contours C1, C2 and C3,
where the blue, red and green curves represent C1, C2, and C3, respectively.
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no phase transition. Although the phase behaviors cannot
be a criterion to distinguish the different topological
numbers, while our studies show that the differences in
phase behaviors between the black holes in d ¼ 5 and
d ≥ 6 dimensions may come from the different topologies,
which are different from the other types of different phase
behaviors, such as d ¼ 6 and d ≠ 6 in the charged cases.
The values of the nonzero charge will not change the
topological number, while having zero or nonzero charge
will affect the topological number. When we turn off the
charge of the RN black holes, the topological number will
change from 0 to −1 [30]. However, our studies show the
topological number will not always change when we turn
off the charge, it may not necessarily change in some
regions of the parameters.
In the case of the spherical horizon and zero charge, we

find that the topological number shows certain dimension
dependence, i.e., the differences between d ¼ 5 and d ≥ 6,
which is different from the previous studies. So, a specific
calculation of the topological number in different black
holes is required. However, a simpler method can be
applied. We have examined the methods proposed
in [30], where the asymptotic behaviors of the curve
τðrhÞ in small and large radii limits can be used
as a criterion to distinguish the different topological
numbers, and find that it is always accurate.

Furthermore, we find a new asymptotic behavior as
τðrh → 0Þ ¼ 0 and τðrh → ∞Þ ¼ 0, which does not appear
in the previous studies of the black hole systems. In the next
section, under the condition ð∂rhSÞP > 0, we will give an
intuitive proof of why there are only three topological
classes and why two kinds of the asymptotic behaviors
belong to the same topological class.

V. WHY THERE ARE ONLY THREE
TOPOLOGICAL CLASSES OF BLACK HOLES

If the condition ð∂rhSÞP > 0 is satisfied, namely CP has
the same sign of ð∂rhTHÞP. Then, we can give an intuitional
proof of why there are only three classes of black holes.
There are four types of combinations between τðrh →

rminÞ ¼ 0=∞ and τðrh → ∞Þ ¼ 0=∞, where we denote the
minimum value of rh as rmin, it can be 0 or rex. In Fig. 12,
we have plotted the simplest types of the curves with these
four asymptotic behaviors, where the solid lines represent
the stable black hole branches and the dashed lines
represent the unstable black hole branches. We denote
the four curves with the different asymptotic behaviors as
Type 1. τðrh → rminÞ ¼ 0 and τðrh → ∞Þ ¼ ∞; Type 2
τðrh → rminÞ ¼ ∞ and τðrh → ∞Þ ¼ 0; Type 3. τðrh →
rminÞ ¼ ∞ and τðrh → ∞Þ ¼ ∞; Type 4. τðrh → rminÞ ¼ 0
and τðrh → ∞Þ ¼ 0. Because the winding numbers of the
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FIG. 12. Four types of the asymptotic behaviors, where the solid lines represent the stable on shell black hole branches and dashes for
unstable black hole branches.
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stable or unstable black holes are 1 and −1 respectively, the
topological numbers as the sum of the winding numbers
can be calculated. For Type 1,W ¼ −1. For Type 2,W ¼ 1.
For Type 3, W ¼ 1þ ð−1Þ ¼ 0. For Type 4,
W ¼ ð−1Þ þ 1 ¼ 0. For different black holes, τðrhÞ is
always a continuous function of rh, so every τðrhÞ curve
belongs to four types,

Type 1þ n × Type 3;

Type 2þ n × Type 4;

Type 3þ n × Type 3;

Type 4þ n × Type 4; ð44Þ

where n represents the non-negative integer. Because the
topological numbers of Type 3 and Type 4 are zero, the
topological numbers of all τðrhÞ curves (or all on shell
black holes) can only be 1, −1, and 0. We note the curves of
Type 3 and Type 4 have different asymptotic behaviors but
possess the same topological number 0, so we suggest that
the black holes with the asymptotic behaviors Type 3
½τðrh → rminÞ ¼ ∞; τðrh → ∞Þ ¼ ∞� and Type 4 ½τðrh →
rminÞ ¼ 0; τðrh → ∞Þ ¼ 0� are topologically equivalent.

VI. CONCLUSION

In this paper, we have studied the local and global
topological natures of the Gauss-Bonnet black hole in AdS
space. The local topological features are reflected by the
winding number, where the positive or negative winding
number always corresponds to the stable and unstable
black hole branches, respectively. We find that such
correspondence is strict, and we have given the proof.
The global topological features are reflected by the
topological number, which is defined as the sum of the
winding number, and can be used to classify the different
black holes into different topological classes. We have also
given a proof of this conjecture in part based on the
condition ð∂rhSÞP > 0.

In Table I, we have combined our results with those in
[30], and five interesting properties can be concluded.
Firstly, The higher-derivative terms of curvature in the form
of Gauss-Bonnet gravity will not change the topological
number. This conclusion is conjectured from the fact that
the RN-AdS black hole and the charged Gauss-Bonnet AdS
black hole possess the same topological number. Secondly,
the topological number is conjectured to be independent on
the size of P and Q, but be dependent on whether P and Q
are zero. Thirdly, the topological number of the charged
Gauss-Bonnet AdS black hole is found to be independent
of the geometry of the black hole horizon. Fourthly, the
topological number may have parameter dependence in
some special cases. For Q ¼ 0 Gauss-Bonnet AdS black
hole with spherical horizon, the topological numbers are
different between d ¼ 5 and d ≥ 6. Such dimensional
dependence is against for the conjecture in [30] that the
topological number is independent of the black hole
parameters. Fifthly, a new asymptotic behavior of τðrhÞ
is found as τ → 0 for rh → rmin and as τ → 0 for rh → ∞,
which is conjectured to be topological equivalent with the
asymptotic behavior as τ → ∞ for rh → rmin and as τ → ∞
for rh → ∞. Furthermore, such equivalence has been
proved based on the condition ð∂rhSÞP > 0 in our paper.
The proof beyond the condition ð∂rhSÞP > 0 deserves the
future considerations.
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APPENDIX: THE TOPOLOGICAL
CONSTRUCTION

In the Appendix, we will introduce the topological
current theory reported in [26–30].

TABLE I. The topological number W and the asymptotic behaviors of τðrhÞ for the different black holes.

Black holes Topological number Asymptotic behavior

d ¼ 4 Sch BH [30] W ¼ −1 τ → 0 for rh → rmin,
τ → ∞ for rh → ∞

RN-AdS BH [30]

W ¼ 1
τ → ∞ for rh → rmin,
τ → 0 for rh → ∞

Charged GB-AdS BH
Q ¼ 0, k ¼ 0 or −1 GB-AdS BH

Q ¼ 0, k ¼ 1, d ¼ 5 GB-AdS BH

Q ¼ 0, k ¼ 1, d ≥ 6 GB-AdS BH
W ¼ 0

τ → 0 for rh → rmin,
τ → 0 for rh → ∞

d ¼ 4 RN BH [30]
τ → ∞ for rh → rmin,
τ → ∞ for rh → ∞
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Beginning with a vector field ϕ ¼ ðϕr;ϕθÞ, the normal-
ized vectors are defined as

na ¼ ϕa

kϕk ; a ¼ 1; 2; ðA1Þ

where ϕ1 ¼ ϕr, ϕ2 ¼ ϕθ, and kϕk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕ1Þ2 þ ðϕ2Þ2

p
.

Then, one can introduce a superpotential as

Vμν ¼ 1

2π
ϵμνρϵabna∂ρnb; μ; ν; ρ ¼ 0; 1; 2; ðA2Þ

where ∂ρ ¼ ∂

∂xρ and xρ ¼ ðt; r; θÞ. By using the super-
potential Vμν, a topological current can be defined as

jμ ¼ ∂νVμν ¼ 1

2π
ϵμνρϵab∂νna∂ρnb; ðA3Þ

where the term 1
2π ϵ

μνρϵabna∂ν∂ρnb in ∂νVμν vanishes due to
ϵμνρ ¼ −ϵμρν. Note Vμν ¼ −Vνμ, one can find that the
topological current is conserved, i.e., ∂μjμ ¼ 0. Thus, the
total charge (also called topological number) in the whole
parameter space Σ is obtained as

W ¼
Z
Σ
j0d2x: ðA4Þ

The topological current in Eq. (A3) can be rewritten as

jμ ¼ 1

2π
ϵμνρϵab∂ν

�
ϕa

kϕk
�
∂ρ

�
ϕb

kϕk
�

¼ 1

2π
ϵμνρϵab

∂

∂ϕc

�
ϕa

kϕjj2
�
∂νϕ

c
∂ρϕ

b

¼ 1

2π
ϵμνρϵab

∂

∂ϕc

�
∂

∂ϕa ln kϕk
�
∂νϕ

c
∂ρϕ

b; ðA5Þ

where we have used ∂ν

�
ϕa

kϕk
	
¼ ∂

∂ϕc

�
ϕa

kϕk
	
∂νϕ

c

and ∂ ln kϕk
∂ϕa ¼ ϕa

kϕjj2.
The vector Jacobian is defined as

ϵabJμ
�
ϕ

x

�
¼ ϵμνρ∂νϕ

a
∂ρϕ

b; μ; ν; ρ ¼ 0; 1; 2; ðA6Þ

where

J0
�
ϕ

x

�
¼ ∂1ϕ

1
∂2ϕ

2 − ∂2ϕ
1
∂1ϕ

2 ¼ ∂ðϕ1;ϕ2Þ
∂ðx1; x2Þ ðA7Þ

is the usual Jacobian denoted as JðϕxÞ.

Inserting (A6) into (A5), we have

jμ ¼ 1

2π
ðΔϕa

ln kϕkÞJμ
�
ϕ

x

�
; ðA8Þ

where Δϕa
¼ ∂

2

∂ϕa
∂ϕa. Based on the two-dimensional

Laplacian Green’s function in ϕ-mapping space, we have
Δϕa

ln kϕk ¼ 2πδ2ðϕÞ and Eq. (A8) can be rewritten as

jμ ¼ δ2ðϕÞJμ
�
ϕ

x

�
: ðA9Þ

Thus, the topological current jμ is nonzero only when
ϕ ¼ 0, i.e.,

ϕaðx0; x1; x2Þ ¼ 0; a ¼ 1; 2: ðA10Þ

Considering that there are N zero points of ϕ and the

usual Jacobian J
�
ϕ
x

	
is nonzero, the solutions of Eq. (A10)

can be rewritten as

x0 ¼ t;

xi ¼ zinðtÞ; n ¼ 1; 2;…; N; i ¼ 1; 2: ðA11Þ

In terms of jμ in Eq. (A9), we can simplify it and the
characteristic property of the topological current can be
revealed. On the one hand, δ2ðϕÞ can be expanded as

δ2ðϕÞ ¼
XN
n¼1

1

jJ
�
ϕ
x

	
jzn

βnδ
2ðx − znðtÞÞ; ðA12Þ

where βn is the Hopf index which measures the numbers of
the loops that ϕa makes when x goes around the zero point
zn. On the other hand, an equation is satisfied as

Jμ
�
ϕ
x

	
jzn

J0
�
ϕ
x

	
jzn

¼ dxμ

dx0

����
zn

; ðA13Þ

which can be proved as follows. At first, we rewrite the
vector Jacobian in Eq. (A6) as

Jμ
�
ϕ

x

�
dx0 ¼ 1

2
ϵabϵ

μνρ
∂νϕ

a
∂ρϕ

bdx0: ðA14Þ

When μ ¼ 0, it is obvious that Eq. (A13) is satisfied. When
μ ¼ 1, we consider the case that Eq. (A14) locates at x ¼ zn
and yields
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J1
�
ϕ

x

�
jzndx0jzn ¼

1

2
ϵabϵ

1νρð∂νϕaÞjznð∂ρϕbÞjzndx0jzn

¼ 1

2
ϵabf−ϵ012ð∂0ϕadx0Þjznð∂2ϕbÞjzn − ϵ021ð∂2ϕaÞjznð∂0ϕbdx0Þjzng

¼ 1

2
ϵabfϵ012ð∂iϕadxiÞjznð∂2ϕbÞjzn þ ϵ021ð∂2ϕaÞjznð∂iϕbdxiÞjzng

¼ 1

2
ϵabðϵ012∂1ϕa

∂2ϕ
b þ ϵ021∂2ϕ

a
∂1ϕ

bÞjzndx1jzn

¼ J0
�
ϕ

x

�
jzndx1jzn ; ðA15Þ

where we have used ð∂μϕadxμÞjzn ¼ 0, i.e. ð∂0ϕadx0Þjzn ¼
−ð∂iϕadxiÞjzn ; i ¼ 1, 2. This results from the use of the
implicit function theorem in Eq. (A10) [30,46]. The same
procedure can be applied for μ ¼ 2, and Eq. (A13)
can be proved. Notice jμ is nonzero only when
x ¼ znðtÞ, we can insert Eqs. (A12) and (A13) into Eq. (A9)
and yield

jμ ¼
XN
n¼1

ηnβnδ
2ðx − znðtÞÞ

dxμ

dx0

����
zn

; ðA16Þ

where ηn ¼ J0ðϕxÞjzn
jJ0ðϕxÞjzn

is the Brouwer degree at zero point zn.

Thus, the topological number W in Eq. (A4) can be
rewritten as

W ¼
XN
n¼1

ηnβn; ðA17Þ

Equation (A17) reflects the inner structure of the total charge
W. Namely, the total charge is the sumof the contributions of
N isolated zero points of ϕ. For each zero point, its
contribution to the charge is thewinding numberwn ¼ ηnβn.

[1] J. M. Bardeen, B. Carter, and S. Hawking, The four laws of
black hole mechanics, Commun. Math. Phys. 31, 161
(1973).

[2] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7,
2333 (1973).

[3] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975).

[4] S. W. Hawking, Black holes and thermodynamics, Phys.
Rev. D 13, 191 (1976).

[5] S. W. Hawking and D. N. Page, Thermodynamics of black
holes in anti-de Sitter space, Commun. Math. Phys. 87, 577
(1983).

[6] E. Witten, Anti-de Sitter space and holography, Adv. Theor.
Math. Phys. 2, 253 (1998).

[7] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers,
Charged AdS black holes and catastrophic holography,
Phys. Rev. D 60, 064018 (1999).

[8] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers,
Holography, thermodynamics and fluctuations of charged
AdS black holes, Phys. Rev. D 60, 104026 (1999).

[9] D. Kastor, S. Ray, and J. Traschen, Enthalpy and the
mechanics of AdS black holes, Classical Quantum Gravity
26, 195011 (2009).

[10] B. P. Dolan, The cosmological constant and black-hole
thermodynamic potentials, Classical Quantum Gravity 28,
125020 (2011).

[11] B. P. Dolan, Pressure and volume in the first law of black
hole thermodynamics, Classical Quantum Gravity 28,
235017 (2011).

[12] D. Kubiznak and R. B. Mann, P-V criticality of charged
AdS black holes, J. High Energy Phys. 07 (2012) 033.

[13] D. Kubiznak, R. B. Mann, and M. Teo, Black hole chem-
istry: Thermodynamics with Lambda, Classical Quantum
Gravity 34, 063001 (2017).

[14] E. Spallucci and A. Smailagic, Maxwell’s equal area law for
charged Anti-de Sitter black holes, Phys. Lett. B 723, 436
(2013).

[15] C. H. Liu and J. Wang, The radial distribution function
reveals the underlying mesostructure of the AdS black hole,
J. High Energy Phys. 10 (2022) 171.

[16] R. G. Cai, L. M. Cao, L. Li, and R. Q. Yang, P-V criticality
in the extended phase sapce of Gauss-Bonnet black holes in
AdS space, J. High Energy Phys. 09 (2013) 005.

[17] S.W.Wei and Y. X. Liu, Triple points and phase diagrams in
the extended phase space of charged Gauss-Bonnet black
holes in AdS space, Phys. Rev. D 90, 044057 (2014).

CONGHUA LIU and JIN WANG PHYS. REV. D 107, 064023 (2023)

064023-16

https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/BF01208266
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1103/PhysRevD.60.064018
https://doi.org/10.1103/PhysRevD.60.104026
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/28/12/125020
https://doi.org/10.1088/0264-9381/28/12/125020
https://doi.org/10.1088/0264-9381/28/23/235017
https://doi.org/10.1088/0264-9381/28/23/235017
https://doi.org/10.1007/JHEP07(2012)033
https://doi.org/10.1088/1361-6382/aa5c69
https://doi.org/10.1088/1361-6382/aa5c69
https://doi.org/10.1016/j.physletb.2013.05.038
https://doi.org/10.1016/j.physletb.2013.05.038
https://doi.org/10.1007/JHEP10(2022)171
https://doi.org/10.1007/JHEP09(2013)005
https://doi.org/10.1103/PhysRevD.90.044057


[18] J. W. York, Black-hole thermodynamics and the Euclidean
Einstein action, Phys. Rev. D 33, 2092 (1986).
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