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We investigate solutions of the five-dimensional rotating Einstein-Vlasov system with an R × SUð2Þ ×
Uð1Þ isometry group. In a five-dimensional spacetime, there are two independent planes of rotation; thus,
considering Uð1Þ symmetry on each rotation plane, we may impose an R ×Uð1Þ ×Uð1Þ isometry to a
stationary spacetime. Furthermore, when the values of the two angular momenta are equal to each other, the
spatial symmetry gets enhanced to R × SUð2Þ × Uð1Þ symmetry, and the spacetime has a cohomogeneity-1
structure. Imposing the same symmetry to the distribution function of the particles of which the Vlasov
system consists, the distribution function can be dependent on three mutually independent and
commutative conserved charges for particle motion [energy, total angular momentum on SUð2Þ and
Uð1Þ angular momentum]. We consider the distribution function which exponentially depends on the Uð1Þ
angular momentum and reduces to the thermal equilibrium state in spherical symmetry. Then, in this paper,
we numerically construct solutions of the asymptotically anti–de Sitter Einstein-Vlasov system.
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I. INTRODUCTION

General relativistic self-gravitating collisionless many-
particle systems, which are often called Einstein-Vlasov
systems, have long been investigated in astrophysics. In
particular, spherically symmetric systems have been studied
in detail, and a great deal of research has been done on
the existence of solutions [1–4] and the stability of the
systems [5–10] (see also a review [11]). To realize a specific
configuration of the Einstein-Vlasov system, it is necessary
to impose an appropriate ansatz on the distribution function.
For example, to give a static configuration surrounding a
black hole, we have to assume a distribution with a lower
cutoff of the angular momentum [12]. If we assume a
Maxwell-Jüttner distribution, we can realize a thermal
equilibrium state of the self-gravitating system. However,
there are no thermal equilibrium states with finite mass in
asymptotically flat spacetimes because gravity is a long-
range interaction. Antonov investigated the nonrelativistic
many-particle systems with finite mass by introducing an
adiabatic wall confining the particles [13], and the proper-
ties of those systems have been generalized and investigated
in detail by Lynden-Bell and Wood [14].
The thermodynamical instability of self-gravitating sys-

tems is often called the gravothermal catastrophe, which
also applies to relativistic cases. It should be noted that,
however, since the thermal equilibrium states have infinite

mass with a vanishing cosmological constant, the analyses
of the gravothermal catastrophe in asymptotically flat
spacetime always require an artificial wall to confine the
system. On the other hand, in a system with a negative
cosmological constant, the anti–de Sitter (AdS) barrier
confines the particle system, allowing it to naturally be in a
thermal equilibrium state. Some of the authors have
constructed a thermal equilibrium state of such a system
confined by the AdS barrier under the assumption of static
spherical symmetry and analyzed its stability [15,16].
Properties of the Einstein-Vlasov system in static

and spherically symmetric cases have been intensively
studied, but there are still few studies on systems with
rotation [17–21]. The properties of a system, such as
stability, generally depend on the presence of angular
momentum because the total angular momentum may
prevent the system from collapsing. In the case of a self-
gravitating many-particle system, it is expected that the
instability associated with gravitational collapse may be
inhibited by the angular momentum of the system.
However, the existence of the nonzero angular momentum
inevitably reduces the spacetime symmetry, and the analy-
ses become much more difficult. To avoid this technical
difficulty, we focus on five-dimensional spacetimes because
it is known that the spacetime can have a cohomogeneity-1
structure even with nonzero angular momentum in five-
dimensional spacetimes. That is, we can construct a
spacetime with finite angular momentum solving a set of
ordinary differential equations for unknown variables
depending only on a radial coordinate. More specifically,
in a five-dimensional spacetime, if the values of the angular
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momenta on the two independent rotation planes are equal
to each other, the spacetime symmetry can be enhanced to
R × SUð2Þ ×Uð1Þ. The corresponding black hole solution
is called the Myers-Perry (AdS) black hole with equal-
angular momenta [22–26]. Due to its high symmetry, this
spacetime is often used in the analyses of gravitational
perturbations and phenomena specific to rotating systems.
In this paper, we consider rotating solutions for the

Einstein-Vlasov system with an R × SUð2Þ × Uð1Þ isom-
etry group appropriately setting the distribution function of
the Vlasov field. A negative cosmological constant is
introduced for the realization of the stationary solutions
with finite total mass and angular momentum. In general, a
resultant spacetime has an asymptotically locally AdS
structure, whose spatial geometry is given by the foliation
of squashed S3 hypersurfaces even at spatial infinity. The
squashing parameter at spatial infinity can be set to zero by
tuning the boundary condition at the center, and the
spacetime can be asymptotically AdS without squashing
of S3 at spatial infinity. We note that a similar situation has
been reported in the vacuum cases [27].
The purpose of introducing a negative cosmological

constant is not only for the construction of a physical
solution with finite mass. Recently, asymptotically AdS
spacetimes have attracted much attention in the context of
the AdS=CFT correspondence [28–30] and the gravitational
turbulent instability [31]. The conditions for the onset of the
instability have not yet been clarified [32–45], and there are
still few clues to the final state. The system provided in this
paper may be treated as a macroscopic model of the final
state of a system complicated by turbulent phenomena, and
we expect that our analyses will be helpful to get useful
insights into the final state of turbulent instability. In
addition, the instability in the Einstein-Vlasov system is
also discussed in Refs. [8,46,47], and the possible relation
with the Hawking-Page transition has been pointed out in
Refs. [48,49]. Another related phenomenon is the super-
radiant instability of rotating black holes in asymptotically
AdS spacetime, for which the existence of finite angular
momentum is essential. The final fate of the superradiant
instability has not been also clarified yet. In order to
approach the superradiant instability through the construc-
tion of a macroscopic model with the Einstein-Vlasov
system, the introduction of finite angular momentum is a
necessary step to be performed.
This paper is organized as follows. In Sec. II, we provide

the metric ansatz of the spacetime with an R × SUð2Þ ×
Uð1Þ isometry group. We also define the conserved
quantities along the geodesic of a particle and list the
conditions which we impose on the metric functions for
technical and practical reasons. In Sec. III, a specific form
of the distribution function, we show the explicit forms for
the energy-momentum tensors (detailed calculations are
shown in Appendix A). We write down the Einstein field
equations for our system in Sec. IV and numerically solve

them in Sec. V. Section VI is devoted to a summary and
conclusion.
Throughout this paper, we use the geometrized units in

which both the speed of light and gravitational constant in
5-dimension are unity, c ¼ G ¼ 1.

II. METRIC ANSATZ AND CONSERVED
QUANTITIES

A. Metric ansatz with an R × SUð2Þ × Uð1Þ
isometry group

We start with the following form of the metric:

g ≔− e2μðrÞdt2 þ e2νðrÞdr2

þ r2

4

�
ðσ1Þ2 þ ðσ2Þ2 þ ðσ3Þ2

�

þ hðrÞ
�
dt −

aðrÞ
2

σ3
�

2

; ð2:1Þ

where σi are one-forms defined as

σ1 ≔ − sinϕdθ þ sin θ cosϕdψ ; ð2:2aÞ

σ2 ≔ − cosϕdθ − sin θ sinϕdψ ; ð2:2bÞ

σ3 ≔ dϕþ cos θdψ ; ð2:2cÞ

satisfying the Maurer-Cartan equation dσiþ 1
2
ϵijkσj∧

σk¼0. The ranges of the coordinate variables are given
by t ∈ ð−∞;∞Þ, r ∈ ½0;∞Þ, θ ∈ ½0; π�, ϕ ∈ ½0; 4πÞ and
ψ ∈ ½0; 2πÞ. The third term in the metric,

γ ≔
1

4

�
ðσ1Þ2 þ ðσ2Þ2 þ ðσ3Þ2

�

¼ 1

4
ðdθ2 þ dϕ2 þ dψ2 þ 2 cos θdϕdψÞ; ð2:3Þ

describes the metric on S3.
The three-sphere S3 has two sets of SUð2Þ generators

fξigi∈f1;2;3g and fσigi∈f1;2;3g written in the form

ξ1 ¼ − sinψ∂θ þ csc θ cosψ∂ϕ − cot θ cosψ∂ψ ; ð2:4aÞ

ξ2 ¼ − cosψ∂θ − csc θ sinψ∂ϕ þ cot θ sinψ∂ψ ; ð2:4bÞ

ξ3 ¼ ∂ψ ; ð2:4cÞ

and

σ1 ¼ − sinϕ∂θ − cot θ cosϕ∂ϕ þ csc θ cosϕ∂ψ ; ð2:5aÞ

σ2 ¼ − cosϕ∂θ þ cot θ sinϕ∂ϕ − csc θ sinϕ∂ψ ; ð2:5bÞ

σ3 ¼ ∂ϕ: ð2:5cÞ
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The SUð2Þ generators fξi; σig satisfy the following
commutation relations:

½ξi;ξj� ¼ ϵij
kξk; ½σi;σj� ¼ ϵij

kσk; ½ξi;σj� ¼ ½σi;ξj� ¼ 0;

ð2:6Þ

or equivalently

Lξiξ
j¼ ϵi

j
kξ

k; Lσiσ
j ¼ ϵi

j
kσ

k; Lξiσ
j ¼ 0: ð2:7Þ

The Killing vectors fξig and σ3 on the three-sphere are also
the Killing vectors on the spacetime due to Eq. (2.7). On the
other hand, neither σ1 nor σ2 is the Killing vector on the
spacetime due to the last term in Eq. (2.1) unless aðrÞ ¼ 0
everywhere. Since the vector σ3 generates a Uð1Þ isometry
group and the metric has a timelike Killing vector η ¼ ∂t,
the spacetime has the Rt × SUð2Þξ ×Uð1Þσ isometry
group. The black hole solutions which have the same
symmetry are known as the Myers-Perry black holes with
equal-angular momenta [24,25]. It would be worth noting
that the angular coordinates θ, ϕ and ψ are related to the
Hopf coordinates θ̃, ϕ̃ and ψ̃ through θ ¼ 2θ̃, ψ ¼ −ϕ̃þ ψ̃
and ϕ ¼ ϕ̃þ ψ̃ . Then the two equal angular momenta are
the conserved charges associated with the Killing vectors
∂ϕ̃ and ∂ψ̃ .
In this paper, to avoid possible technical problems, we

focus on the cases satisfying the following four conditions:
(1) Nondegeneracy: det g < 0,
(2) No horizon: r · r > 0,
(3) Timelike Killing vector exists everywhere: η · η < 0,

and
(4) Timelike unit normal exists everywhere: n · n < 0,

where r ≔ jgrrj−1
2dr and n ≔ −jgttj−1

2dt are the unit normal
to the r ¼ const: and the t ¼ const: hypersurfaces, respec-
tively. Condition 3 implies that the spacetime has no
ergoregion.1 Conditions 1–4 yield

e2μðrÞ −hðrÞ; e2νðrÞ; FðrÞ; GðrÞ> 0; ð2:8Þ

for any r>0, whereGðrÞ≔ r2þa2h andFðrÞ≔ e2μG−hr2.

B. Conserved quantities for the geodesic motion

The symmetry of the spacetime indicates the existence of
conserved quantities for the geodesic motion in the form of
the inner product between the Killing vector and the
momentum of a particle. Then we can consider the
following mutually independent conserved quantities for
the metric (2.1):

ε ¼ −p · η ¼ −pt; ð2:9aÞ

Jξ1 ¼ p · ξ1 ¼ −pθ sinψ þ pϕ csc θ cosψ − pψ cot θ cosψ ;

ð2:9bÞ

Jξ2 ¼ p · ξ2 ¼ −pθ cosψ − pϕ csc θ sinψ þ pψ cot θ sinψ ;

ð2:9cÞ

Jξ3 ¼ p · ξ3 ¼ pψ ; ð2:9dÞ

jσ ¼ p · σ3 ¼ pϕ; ð2:9eÞ

where p is the momentum of the particle and “·” denotes the
inner product concerning g. The total angular momentum
Jξ ≥ 0 of the SUð2Þξ sector can be defined as

Jξ2 ≔
X3
i¼1

Jξi
2 ¼ 1

4
γμνpμpν; ð2:10Þ

where we have defined γμν as γμν ≔ 4
P

i σi
μσi

ν. Then ε, jσ
and Jξ are mutually commutative conserved charges and
can be used as independent coordinates in the phase space.
The momentum of the particle must satisfy the on-shell

condition: p2 þm2 ¼ 0, which can be rewritten as follows:

e−2νG
F

�
ε−

2ah
G

jσ

�
2

− e−2ν
�
m2þ 4

r2

�
Jξ2−

a2h
G

jσ2
��

¼ ðprÞ2: ð2:11Þ

We note that the left-hand side of Eq. (2.11) can be
regarded as the effective potential for the geodesic motion.
Here we impose that the momentum is future pointing
n · p < 0. Then the positivity of the local energy of the
particle is ensured:

ε −
2ah
G

jσ > 0: ð2:12Þ

The allowed region in the momentum space for the particle
is the subspace satisfying the conditions (2.11) and (2.12).

III. MODEL AND PHYSICAL QUANTITIES

A. Distribution function and the
energy-momentum tensor

Considering a collisionless many-particle system, the
particles follow the geodesic motion. Therefore the dis-
tribution function f satisfies the Vlasov (collisionless
Boltzmann) equation:

pμ∇μf ¼ pμ ∂f
∂xμ

− Γi
μνpμpν ∂f

∂pi ¼ 0; ð3:1Þ1In Ref. [20], the solution with an ergoregion is constructed in
a four-dimensional asymptotically flat spacetime.
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which implies the conservation of the distribution function
along the geodesic. If the distribution function is written in
the form

f ¼ fðε; Jξ; jσÞ; ð3:2Þ

the Vlasov equation (3.1) is automatically satisfied because
ε, Jξ and jσ are conserved quantities along the geodesic.
In this paper, as a simple specific model, we assume the

following distribution function:

fðε; jσÞ ¼ exp½α − βðε −ΩjσÞ�; ð3:3Þ

with constants α ∈ R, β > 0 and Ω > 0. The distribution
function (3.3) reduces to the Maxwell-Jüttner distribution,
which describes the relativistic thermal equilibrium states
in static cases, with Ω ¼ 0. Thus the system with this
distribution function can be regarded as an extension of the
thermal equilibrium state to the system with a finite
angular momentum. The Maxwell-Jüttner distribution is
derived by extremizing the entropy of the system fixing the
total mass and the total particle number in static cases. On
the other hand, in rotating cases, it is not clear how to
determine the most probable rotating state. Therefore the
functional form (3.3) should be regarded as a working
assumption for Ω ≠ 0.
Given a one-particle distribution function f, the energy-

momentum tensor Tμν is given by

Tμν ≔
Z

dVppμpνfðxμ; piÞ; ð3:4Þ

where dVp is the integral measure in the momentum space:

dVp ≔ −
2δðp2 þm2ÞΘðε − 2ahjσ=GÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det g
p dpt

∧ dpr ∧ dpθ ∧ dpϕ ∧ dpψ : ð3:5Þ

Here the delta function δ and Heaviside’s step function Θ
describe the conditions (2.11) and (2.12), respectively.
To obtain numerical solutions, we have to know the local

expressions of energy-momentum tensor by integrating
over the momentum space. In spherical cases, we can
perform the integration analytically and obtain explicit
expressions because the metric is diagonal and the on-shell
condition is simple as shown in Refs. [15,16]. On the other
hand, in rotating cases, we cannot perform analytical
integrations due to the off-diagonal components of the
metric and the cross term in Eq. (2.11). As is shown in
Appendix A, we can reduce it to one-dimensional integrals
of the normalized energy under the ansatz (3.3). That is, we
can obtain the values of the energy-momentum tensor at
each radial coordinate r by performing one-dimensional
numerical integration. The explicit expressions are shown
in Appendix A.

B. Komar integral and total particle number

Before solving the Einstein equations, let us define
global conserved quantities characterizing the system in
terms of the Komar integrals.
We define the total mass of the system by the Komar

mass:

MK ≔
Z

dΣnμTμ
νη

ν; ð3:6Þ

where dΣ ¼ 2π2r2eν
ffiffiffiffi
G

p
dr is the invariant volume element

on a t ¼ const: hypersurface. In our formulation, Eq. (3.6)
becomes

MK ¼ 2π2
Z

dr
r2eνffiffiffiffi
F

p ðGTtt þ 2ahTtϕÞ: ð3:7Þ

We note that the Komar mass for the distribution (3.6) can
be finite due to the potential wall for massive particles
associated with a negative cosmological constant Λ < 0.
We also define the total angular momentum of the

system by

Jϕ ≔ −
Z

dΣ nμTμ
νσ3

ν: ð3:8Þ

Similarly to the Komar mass, in our formulation, we obtain
the expression

Jϕ ¼ −2π2
Z

dr
r2eνffiffiffiffi
F

p ðGTtϕ þ 2ahTϕϕÞ: ð3:9Þ

Since the Komar integrals associated with the Killing
vectors conserve, we can choose them as quantities
characterizing the system.

IV. EINSTEIN EQUATIONS

A. Field equations

For a five-dimensional spacetime, the Einstein field
equations Gμν þ Λgμν ¼ 8πTμν with Λ < 0 can be rewrit-
ten as

Rμν ¼ 8π

�
Tμν −

T
3
gμν −

gμν
2πL2

�
; ð4:1Þ

where L ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
−6=Λ

p
is the AdS radius.

For numerical analyses, we rewrite the equations by
dimensionless variables. We define l ≔ ð8πTttð0ÞÞ−1=2 and
consider normalized variables x ≔ r=l and λ ≔ L=l. As
alternative functions, we introduce the following dimen-
sionless metric functions:

y1ðxÞ≔
ah
l
; y2ðxÞ≔

a2h
l2

; y3ðxÞ≔e2μ−h; y4ðxÞ≔e2ν:

ð4:2Þ
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We also define f1ðxÞ ≔ G=l2 ¼ x2 þ y2 and f2ðxÞ ≔
F=l2 ¼ y12 þ f1y3 for a notational simplicity.
Defining

sμν ≔
1

Tttð0Þ
�
Tμν −

T
3
gμν −

1

2πL2
gμν

�
; ð4:3Þ

relevant components of the Einstein equations are as
follows:

y001 ¼
2xðy01y3−y03y1Þ

f2
þf1y01y

0
3þy021 y1þy01y

0
2y3−y02y

0
3y1

f2

þ4stϕy4þ
y01ðf3y4−2Þ

2x
þ2y01y2y4

x3
þ4f1y1y4

x4
; ð4:4aÞ

y002 ¼
4xðy01y1þy02y3Þ

f2

þy022 y3−f1y021 þ2y01y
0
2y1−4ðy12þy2y3Þ

f2

þf4y4þ
y02ðf3y4−2Þ

2x
þ2y2y4

x2

�
6þy02

x
þ2y2

x2

�
; ð4:4bÞ

y003 ¼
f1y023 −y021 y3þ2y01y

0
3y1

f2

þ2stty4þ
y03ðf3y4−2Þ

2x
þ2y03y2y4

x3
−
4y12y4
x4

; ð4:4cÞ

y04 ¼ y4

�
2xy3
f2

þf1y03þ2y01y1þy02y3
f2

þf3y4þ2

x
þ4y2y4

x3

�
;

ð4:4dÞ

where 0 ≔ d=dx, f3 ≔ −4ð1þ sϕϕÞ þ γμνsμν and f4 ≔
−12sϕϕ þ γμνsμν. We can show the other components of
the Einstein equations are redundant by using Eq. (4.4) and
continuity equations.

B. Asymptotic behaviors and boundary conditions

Let us consider the boundary conditions for Eq. (4.4) to
realize asymptotically AdS spacetimes. We can rewrite the
metric as

l−2g¼−
f2
f1

dt2þy4dx2

þx2

4

�
ðσ1Þ2þðσ2Þ2þf1

x2

�
σ3−

2y1
f1

dt

�
2
�
: ð4:5Þ

Setting Tμν ¼ 0 and expanding the metric functions in the
vicinity of the boundary, we obtain the following asymp-
totic solutions:

f2
f1

¼ x2

λ2
þ 1 − sþOðx−1Þ; ð4:6aÞ

1

y4
¼ x2

λ2
þ 1 −

3

5
sþOðx−1Þ; ð4:6bÞ

f1
x2

¼ 1þ s − 2sð1þ sÞ λ
2

x2
þOðx−3Þ; ð4:6cÞ

2y1
f1

¼ ωþOðx−3Þ; ð4:6dÞ

where s and ω can be regarded as free parameters for the
asymptotic solution, and the coordinates t and r are fixed so
that the pure AdS metric can be realized for s ¼ ω ¼ 0. The
leading term ω of 2y1=f1 can be eliminated by employing
the corotating coordinate ϕ̂ ≔ ϕ − ωt. Then we can intro-
duce one-forms σ̂i at the boundary by replacing ϕ with ϕ̂.
Using these one-forms, we can write

l−2g ¼ −
f2
f1

dt2 þ y4dx2 þ
x2

4

�
ðσ̂1Þ2 þ ðσ̂2Þ2 þ f1

x2
ðσ̂3Þ2

�
:

ð4:7Þ

As we can see from Eqs. (4.6) and (4.7), the parameter s
should vanish so that the spacetime has the asymptotically
AdS structure. We note that the contribution of the finite
value of s corresponds to the squashing of S3 at infinity as
is reported in Ref. [27] for vacuum cases.
Next, let us investigate the asymptotic behavior around

the center by expanding the metric functions as

y1ðxÞ ≃ x2
�
z1ð0Þ þ z1ð1Þxþ

z1ð2Þ

2
x2 þOðx3Þ

�
; ð4:8aÞ

y2ðxÞ ≃ x2
�
z2ð0Þ þ z2ð1Þxþ

z2ð2Þ

2
x2 þOðx3Þ

�
; ð4:8bÞ

y3ðxÞ ≃ y3ð0Þ þ y3ð1Þxþ
y3ð2Þ

2
x2 þOðx3Þ; ð4:8cÞ

y4ðxÞ ≃ y4ð0Þ þ y4ð1Þxþ
y4ð2Þ

2
x2 þOðx3Þ; ð4:8dÞ

with coefficients z1ðiÞ, z2ðiÞ, y3ðiÞ and y4ðiÞ. As regularity
conditions, first we assume the metric components for the

Cartesian coordinates ðt; x1; x2; x3; x4Þ2 to be gtt ¼ −yð0Þ3 ,

2The spatial Cartesian coordinates can be defined by

x1¼ rsin

�
θ

2

�
cos

�
1

2
ðϕ−ψÞ

�
; x2¼ rsin

�
θ

2

�
sin

�
1

2
ðϕ−ψÞ

�
;

x3¼ rcos

�
θ

2

�
cos

�
1

2
ðϕþψÞ

�
; x4¼ rcos

�
θ

2

�
sin

�
1

2
ðϕþψÞ

�
:

ð4:9Þ
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gxixi ¼ 1þOðx2Þ, and Oðx2Þ for other components. Then,
we require all the Ricci tensor components Rμν to be
Rμν ¼ const:þOðxÞ. As a result, we obtain

z1ð0Þ ¼ z1ð1Þ ¼ z2ð0Þ ¼ z2ð1Þ ¼y3ð1Þ ¼0; y4ð0Þ ¼1; ð4:10Þ

and y3ð0Þ is kept as a free parameter. As is shown in
Appendix B, the system has another free parameter z2ð2Þ.
When we solve the Einstein equations from the center, in

general, we obtain the solution with finite values of s andω.
As will be shown later, we obtain a finite value of s at
infinity without fine-tuning for the boundary condition at
the center. In other words, we can set s ¼ 0 at infinity by
tuning z2ð2Þ appropriately the same as Ref. [27]. Therefore,
we can construct an asymptotically AdS Einstein-Vlasov

system by tuning the parameters yð0Þ3 and z2ð2Þ. As a whole,
the system has one free parameter yð0Þ3 corresponding to the
linear scaling of the time coordinate, one tuning parameter
z2ð2Þ and three physical parameters ðβ;Ω; λÞ.
To obtain a solution, we solve Einstein equations (4.4)

with boundary conditions (4.10) at the center and a parameter
set ðβ;Ω; λÞ. However, for a finite value of Ω, the integral

(A25) cannot be performed analytically. Therefore we need
to numerically integrate the integral (A25) at each step of
solving the differential equations (4.4). In our numerical
simulations, we used fourth-order Runge-Kutta methods in
numerical integrations of Eqs. (A25) and (4.4).

V. RESULTS

A. Static and spherically symmetric cases

First, we investigate the parameter dependence for the
spherically symmetric cases with z2ð2Þ ¼ 0, which corre-
sponds to s ¼ 0. Figure 1 shows the normalized energy-
density profile for the matter sector ρðxÞ ≔ −Tt

t=Tttð0Þ as
a function of x for Ω ¼ 0. In the spherically symmetric
cases, the system is characterized by the two parameters
ðβ; λÞ. The parameter β corresponds to the inverse temper-
ature of the system and it characterizes the depth of the
gravitational potential. Thus, increasing the value of β for a
fixed value of λ, the density distribution gets sharper and
the value of the total mass increases as is shown in Fig. 1(a)
and Fig. 2, respectively. Figure 2 shows the quasilocal mass
given by the Komar integral as a function of x. For all the
cases, the mass increases as MK ∝ x4 for x ≪ 1 and
asymptotes to a constant value for x ≫ λ. Since the AdS

FIG. 1. Parameter dependence of the distribution of the energy density for the spherically symmetric cases. As the parameter β
increases, the gravitational potential gets deeper and the system gets more compact. As the parameter λ decreases, the system gets more
compact because the value of λ characterizes the radius of the potential wall associated with the negative cosmological constant.

FIG. 2. Parameter dependence of the Komar mass for the spherically symmetric cases. The system with relatively small β (i.e., high-
temperature system) has a large total mass, which implies a deep gravitational potential wall. Since the parameter λworks like the size of
the system, the Komar mass takes a smaller value for smaller λ.
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radius λ gives the characteristic radius of the potential wall
which confines the Vlasov matter, the Komar mass gets
larger for large λ if the parameter β is fixed.

B. Stationary and rotating case

We investigate the nonspherically symmetric cases by
setting finite values of Ω. Since the dependence on β and λ
is similar to the spherically symmetric cases, we focus on
the Ω dependence and the distribution of the angular
momentum density of the system. Figure 3 shows the
profile of the angular momentum density jϕ ≔ Tt

ϕ and the

Komar angular momentum Jϕ for z2ð2Þ ¼ 0, β ¼ 0.01 and
λ ¼ 10. For Ω ≠ 0, the spherical symmetry is broken and
the system has a finite angular momentum. Since the
angular momentum is carried by the Vlasov matter, the
distribution of the angular momentum density also starts to
decay around the AdS radius x ¼ λ. Therefore, as is shown
in Fig. 3, the angular momentum density increases as x
increases up to a certain value and then it decreases and
vanishes asymptotically.
Let us check the functions f1=x2 and 2y1=f1 which

characterize the squashing of S3 and the frame-dragging

FIG. 3. Angular momentum density jϕ ¼ Tt
ϕ and the total angular momentum in the Komar expression for β ¼ 0.02 and λ ¼ 10.

FIG. 4. Functions f1=x2 and 2y1=f1 for z2ð2Þ ¼ 0, β ¼ 0.001 and λ ¼ 10. Both of the functions asymptote to constants.

FIG. 5. z2ð2Þ dependence of the functions f1=x2 and 2y1=f11 with fixed Ω ¼ 0.1, β ¼ 0.001 and λ ¼ 10. We can construct solutions
with f1=x2 ¼ 0 at infinity keeping 2y1=f1 finite by tuning z2ð2Þ.
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effect, respectively. Figure 4 shows the functions f1=x2 and
2y1=f1 for z2ð2Þ ¼ 0, β ¼ 0.001 and λ ¼ 10. Unlike the
Ω ¼ 0 case, S3 is squashed at infinity even if we set
z2ð2Þ ¼ 0. This is because of the contribution of the rotating
Vlasov matter. Figure 5 shows the z2ð2Þ dependence of the
functions f1=x2 and 2y1=f1 for Ω ¼ 0.1, β ¼ 0.001 and
λ ¼ 10. As we can see from Fig. 5(a), we can choose the
value of f1=x2 at infinity by tuning z2ð2Þ. On the other hand,
the value of 2y1=f1 at infinity is kept finite in general
although it can be eliminated at infinity by taking the
corotating frame. As in this example, we can always
construct an asymptotically AdS solution that is not
squashed at infinity with a finite angular momentum by
tuning z2ð2Þ.

VI. CONCLUSION

We have constructed rotating Einstein-Vlasov systems
with the Rt × SUð2Þξ × Uð1Þσ isometry group imposing
the exponential form of the distribution function as
∼ exp ½βðε −ΩjσÞ� with ε and jσ being the conserved
energy- and angular momentum for the particle motion.
Under this assumption, the system reduces to the thermal
equilibrium state in the limit Ω → 0. Since we assume the
cosmological constant is negative, we can construct sta-
tionary solutions with finite mass without any artificial wall
due to the confined structure of the AdS potential. The
distribution of the angular momentum density also decays
towards infinity because the angular momentum is carried
by the Vlasov matter. Therefore we can construct the
system with finite mass and total angular momentum by
setting Ω ≠ 0 and solving the Einstein equations.
Even if we set Ω ¼ 0, the system has an additional

degree of freedom describing the squashing of S3 at
infinity. We can control the squashing parameter s at

infinity to vanish by tuning the free parameter zð2Þ2 for
the boundary conditions at the center. For Ω ¼ 0 cases, we

can construct nonsquashed solutions by setting zð2Þ2 ¼ 0

because the spherical symmetry is trivially kept with

zð2Þ2 ¼ 0. On the other hand, for Ω ≠ 0, each spatial
hypersurface of a given value of radial coordinate r is

nontrivially squashed with zð2Þ2 ¼ 0 due to the contribution
of the nonspherical distribution of the Vlasov matter.
Therefore the parameter z2ð2Þ has to be adjusted for the
solution with s ¼ 0 and the spacetime to be asymptotically
AdS with finite total angular momentum. We have explic-
itly demonstrated that this fine-tuning is possible for a
specific parameter set.
In this paper, we have assumed that the distribution

function of the particles is dependent on only ðε; jσÞ as a
simple model. The system has, however, one more con-
served quantity Jξ so we can construct solutions with Jξ
dependence keeping the system having the same symmetry.
If we assume an appropriate ansatz, we may construct

rotating-shell solutions with finite total angular momentum
with/without a central black hole. Although it is hard to
analyze such a system in a four-dimensional spacetime
without spherical symmetry, similar analyses would be
relatively easier for a five-dimensional spacetime with
respecting the symmetry of Rt × SUð2Þξ ×Uð1Þσ .
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APPENDIX A: INTEGRATION OVER THE
MOMENTUM SPACE

In this appendix, we derive the expressions (A27). In A 1,
to obtain expressions available in massless cases, we do not
set the particle mass to unity. On the other hand, in A 2, we
set m ¼ 1 because we restrict the distribution function
to Eq. (3.3).

1. Integral measure

First, let us rewrite the integral measure in the momen-
tum space:

dVp ¼ −
16δðp2 þm2ÞΘðε − 2ahjσ=GÞ

r2
ffiffiffiffi
F

p
eν sin θ

dpt

∧ dpr ∧ dpθ ∧ dpϕ ∧ dpψ ; ðA1Þ

in terms of the conserved quantities. Since the definition of
the total angular momentum Jξ (2.10) can be rewritten as

ðJξ2 − jσ2Þsin2θ ¼ ðpθ sin θÞ2 þ ðpψ − pϕ cos θÞ2; ðA2Þ

the variables ðJξ; jσÞ satisfy Jξ2 ≥ jσ2. Introducing the
variable χ defined as

Rcosχ ¼ pθ sinθ; R sinχ ¼ pψ −pϕ cosθ; ðA3Þ

with R2 ≔ ðJξ2 − jσ2Þsin2θ, we obtain

dpθ ∧ dpϕ ∧ dpψ ¼ R csc θdR ∧ djσ ∧ dχ

¼ Jξ sin θdJξ ∧ djσ ∧ dχ: ðA4Þ

Defining alternative quantities as
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ε̃ ≔ ε −
2ah
G

jσ; J̃2 ≔ Jξ2 −
a2h
G

jσ2; ðA5Þ

we can simplify the on-shell condition (2.11) as

G
F
ε̃2 −

�
m2 þ 4J̃2

r2

�
¼ q2; ðA6Þ

and the positive-energy condition as ε̃ ≥ 0. Using this
condition, we can eliminate the delta function. Solving
Eq. (A6) with respect to q ≔ eνpr, we obtain

qðε; Jξ; jσÞ ¼
�
G
F

�
ε −

2ah
G

jσ

�
2

−
�
m2 þ 4

r2

�
Jξ2 −

a2h
G

jσ2
���1

2 ðA7Þ

for positive q. Using the fact that the integrand is an even
function of q due to the ansatz of the distribution function
(3.2), we obtain

−2
Z

δðp2 þm2Þdpt ∧ dpr ¼
2eνdε

qðε; Jξ; jσÞ
: ðA8Þ

As a result, the integral measure in the momentum space
dVp becomes

dVp ¼ 16Θðε̃ÞJξ
r2qðε; Jξ; jσÞ

ffiffiffiffi
F

p dε ∧ dJξ ∧ djσ ∧ dχ: ðA9Þ

By the definition of ðε̃; J̃Þ, it can be rewritten as

dVp¼
16θðε̃ÞJ̃
r2

ffiffiffiffi
F

p
�
G
F
ε̃2−

�
m2þ4J̃2

r2

��
−1
2

dε̃∧dJ̃∧djσ ∧dχ:

ðA10Þ

We consider the domain of tilded variables based on the
on-shell condition (A6). Since jσ satisfies jσ2 ≤ Jξ2 ¼
J̃2 þ a2h

G jσ2, the region of jσ becomes

−
ffiffiffiffi
G

p

r
J̃ ≤ jσ ≤

ffiffiffiffi
G

p

r
J̃: ðA11Þ

With a fixed value of ε̃, the angular momentum J̃ is
bounded by Jmax:

J̃2 ¼ r2

4

�
G
F
ε̃2 − ðm2 þ q2Þ

�
≤
r2

4

�
G
F
ε̃2 −m2

�
≕ Jmax

2;

ðA12Þ

then, we obtain 0 ≤ J̃ ≤ Jmax.
The variable ε̃ takes the minimum value m

ffiffiffiffiffiffiffiffiffiffi
F=G

p
when

jσ and J̃ vanish. Since ε̃ does not have an upper bound, the
variable ε̃ takes the range

m

ffiffiffiffi
F
G

r
≤ ε̃ < ∞: ðA13Þ

For the massive particles, we can normalize the variable ε̃
by the rest mass. Then we can define the variables as

ε̄ ≔
ffiffiffiffi
G
F

r
ε̃

m
; J̄ ≔

J̃
Jmax

; |̄ ≔
rffiffiffiffi
G

p jσ
Jmax

: ðA14Þ

If we treat a massless particle system, we should replace
ε̃=m with ε̃ so ε̄ has the dimension of energy. The integral
regions of these variables are

ε̄∈ ½1;∞Þ; J̄ ∈ ½0;1�; and |̄∈ ½−J̄; J̄�; ðA15Þ

and the integral measure becomes

dVp ¼ 2Θðε̄Þk2J̄ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J̄2

p dε̄ ∧ dJ̄ ∧ d|̄ ∧ dχ; ðA16Þ

where k ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
ε̄2 − 1

p
is the local kinetic energy of the

particle.

2. Performing the integration

We set the particle mass to unity in this subsection. In our
system, the relevant components of pμpν are as follows:

ðptÞ2 ¼
F
G

�
ε̄2 þ 2ahffiffiffiffi

F
p ε̄k|̄þ a2h2

F
k2|̄2

�
; ðA17aÞ

ptpϕ ¼ −εjσ ¼ −
ffiffiffiffi
F

p

2

�
ε̄k|̄þ ahffiffiffiffi

F
p k2|̄2

�
; ðA17bÞ

ðpϕÞ2 ¼ jσ2 ¼
G
4
k2|̄2; ðA17cÞ

ðprÞ2 ¼ e2νk2ð1 − J̄2Þ; ðA17dÞ

γμνpμpν ¼ 4Jξ ¼ r2
�
k2J̄2 þ a2h

r2
k2|̄2

�
; ðA17eÞ

gμνpμpν ¼ −1 ðA17fÞ

in the coordinate system defined by (A14). Similarly, the
distribution function can be rewritten as

fðε; jσÞ ¼ exp½α − β̄ðε̄ − Ω̄k|̄Þ�: ðA18Þ

The integration of (A17) is expressed in the form

2

Z
∞

1

dε̄
Z

1

0

dJ̄
Z

J̄

−J̄
d|̄ ε̄ikje−β̄ ε̄ · J̄mþ1ð1 − J̄2Þ�1

2 · |̄neς|̄;

ðA19Þ
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where ς ≔ β̄ Ω̄ k ¼ β̄ Ω̄
ffiffiffiffiffiffiffiffiffiffiffiffi
ε̄2 − 1

p
with integers m and n. To

perform the integration over the momentum space, we
divide the integrations into the angular momentum sector
and the energy sector. The angular momentum sector in
Eq. (A19) is expressed as

J �
m;nðςÞ ¼ 2

Z
1

0

dJ̄ J̄mþ1ð1 − J̄2Þ�1
2

Z
J̄

−J̄
d|̄ |̄neς|̄: ðA20Þ

For the even number m, since the integrand of Eq. (A20) is
an even function, it can be rewritten as

J �
m;nðςÞ ¼

Z
1

−1
dJ̄ J̄mþ1ð1 − J̄2Þ�1

2Knðς; J̄Þ; ðA21Þ

where Knðς; J̄Þ is defined by

Knðς; J̄Þ ¼
Z

J̄

−J̄
d|̄ |̄neς|̄: ðA22Þ

Explicit forms of Eq. (A22) for some specific values
of n are

K0ðς; J̄Þ ¼
eςJ̄ − e−ςJ̄

ς
; ðA23aÞ

K1ðς; J̄Þ ¼ −
eςJ̄ − e−ςJ̄

ς2
þ J̄ðeςJ̄ þ e−ςJ̄Þ

ς
; ðA23bÞ

K2ðς; J̄Þ ¼
ð2þ ς2J̄2ÞðeςJ̄ − e−ςJ̄Þ

ς3
−
2J̄ðeςJ̄ þ e−ςJ̄Þ

ς2
;

ðA23cÞ

which appear in the expression of the energy-momentum
tensor. In addition, after integration over J̄, we obtain

J −
0;0ðςÞ ¼

2πI1ðςÞ
ς

; ðA24aÞ

J −
0;1ðςÞ ¼

2πI2ðςÞ
ς

; ðA24bÞ

J −
0;2ðςÞ ¼

2πðI2ðςÞ þ ςI3ðςÞÞ
ς2

; ðA24cÞ

J −
2;0ðςÞ ¼

2πð3I2ðςÞ þ ςI3ðςÞÞ
ς2

; ðA24dÞ

J þ
0;0ðςÞ ¼

2πI2ðςÞ
ς2

; ðA24eÞ

where IνðςÞ is the modified Bessel function of the first kind.
The integration for ε cannot be analytically performed

and we perform it numerically when we solve the Einstein

equations. For notational simplicity, let us define the
function I i;j;νðβ̄; Ω̄Þ as

I i;j;νðβ̄; Ω̄Þ

¼
Z

∞

1

dε̄ ε̄i
� ffiffiffiffiffiffiffiffiffiffiffiffi

ε̄2− 1
p �

j
Iν

�
β̄ Ω̄

ffiffiffiffiffiffiffiffiffiffiffiffi
ε̄2− 1

p �
expð−β̄ ε̄Þ;

ðA25Þ

where i, j and ν are non-negative integers, IνðzÞ is the
modified Bessel function of the first kind, and

β̄ðrÞ ≔ β

ffiffiffiffi
F
G

r
; Ω̄ðrÞ ≔ G

2
ffiffiffiffi
F

p
�
Ω −

2ah
G

�
: ðA26Þ

Then, the resulting forms are given as follows:

Ttt ¼
4π2eαF

G

�
I2;1;1

β̄ Ω̄
þ2ahffiffiffiffi

F
p I1;2;2

β̄ Ω̄
þa2h2

F

�
I0;2;2

β̄2Ω̄2
þI0;3;3

β̄ Ω̄

��
;

ðA27aÞ

Ttϕ¼−2π2eα
ffiffiffiffi
F

p �
I1;2;2

β̄Ω̄
þ ahffiffiffiffi

F
p

�
I0;2;2

β̄2Ω̄2
þI0;3;3

β̄Ω̄

��
; ðA27bÞ

Tϕϕ ¼ π2eαG

�
I0;2;2

β̄2Ω̄2
þ I0;3;3

β̄ Ω̄

�
; ðA27cÞ

Trr ¼ 4π2eαe2ν
I0;2;2

β̄2Ω̄2
; ðA27dÞ

γμνTμν ¼ 4π2eαr2
��

3þ a2h
r2

�
I0;2;2

β̄2Ω̄2
þ
�
1þ a2h

r2

�
I0;3;3

β̄ Ω̄

�
;

ðA27eÞ

gμνTμν ¼ −4π2eα
I0;1;1

β̄ Ω̄
: ðA27fÞ

Performing the integral with respect to ε̄ at each r, we can
obtain the local expression of the energy-momentum tensor.

APPENDIX B: ASYMPTOTIC SOLUTIONS
AROUND THE CENTER

In this appendix, we investigate the asymptotic behavior
around the center in detail and obtain the asymptotic
solutions with Vlasov matter. That is, we determine the
coefficients of metric functions in Eq. (4.8) recursively and
confirm that z2ð2Þ is a free parameter in our system.
Substituting Eq. (4.8) to Eq. (A26), we obtain

β̄ðxÞ ≃ βc

�
1þ uð2Þ

4
x2 þ uð3Þ

12
x3 þOðx4Þ

�
; ðB1aÞ

Ω̄ðxÞ ≃ 1

2
Ωcx

�
1 −

uð2Þ þ wð2Þ

4
x2
�
þOðx4Þ; ðB1bÞ
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where βc ≔ β
ffiffiffiffiffiffiffiffiffi
y3ð0Þ

p
, Ωc ≔ Ω=

ffiffiffiffiffiffiffiffiffi
y3ð0Þ

p
,

uðiÞ ≔
y3ðiÞ

y3ð0Þ
and wðiÞ ≔

4z1ðiÞ

Ωc

ffiffiffiffiffiffiffiffiffi
y3ð0Þ

p − z2ðiÞ ðB2Þ

are constants. Then we have

IνðukÞ expð−β̄ ε̄Þ

≃
e−βc ε̄

Γð1þ νÞ
�
βcΩc

4
kx

�
ν
�
1þ ζ2

4
x2 þ ζ3

12
x3 þOðx4Þ

�

ðB3Þ

with

ζ2≔
βc

2Ωc
2

4ð1þνÞk
2−βcuð2Þε̄−νwð2Þ; ζ3≔−βcuð3Þε̄−νwð3Þ:

ðB4Þ

Therefore we can obtain the asymptotic expression as

I i;j;ν ≃
1

Γð1þ νÞ
�
βcΩc

4
x

�
ν
Z

∞

1

dε̄ ε̄ikjþνe−βc ε̄
�
1þ ζ2

4
x2

þ ζ3
12

x3 þOðx4Þ
�
: ðB5Þ

Using this asymptotic expression, the central value of Ttt
becomes

Tc
tt ¼

4π2eαð2þ βcÞð6þ 3βc þ βc
2Þ

βc
5

y3ð0Þe−βc : ðB6Þ

Thus we can expand the matter sector in the Einstein
equations as

sμν¼
X∞
n¼0

sðnÞμν

n!
xn; γμνsμν¼

X∞
n¼0

sðnÞγ

n!
xn; gμνsμν¼

X∞
n¼0

sðnÞ

n!
xn:

ðB7Þ

We can calculate the relevant nonvanishing components of
them as

sð0Þtt ¼
�
2ð18þβcð18þβcð7þβcÞÞÞ
3ð2þβcÞð6þβcð3þβcÞÞy3ð0Þ

þ 4

λ2

�
y3ð0Þ; ðB8aÞ

sð0Þrr ¼ 9þ βcð9þ βcð4þ βcÞÞ
3ð2þ βcÞð6þ βcð3þ βcÞÞy3ð0Þ

−
4

λ2
; ðB8bÞ

sð0Þ ¼ 2βc
2ð1þ βcÞ

3ð2þ βcÞð6þ βcð3þ βcÞÞy3ð0Þ
−
20

λ2
; ðB8cÞ

sð2Þtϕ ¼ −
15þ βcð15þ 6βc þ βc

2Þ
2ð2þ βcÞð6þ 3βc þ βc

2Þ
ffiffiffiffiffiffiffiffiffi
y3ð0Þ

p Ωc; ðB8dÞ

and sð2Þγ ¼ 12sð2Þϕϕ ¼ 3sð0Þrr at the leading order. Substituting
these expressions into the Einstein equations and solving
them order by order, we obtain

z1ð2Þ ¼ −
15þ βcð15þ 6βc þ βc

2Þ
6ð2þ βcÞð6þ 3βc þ βc

2Þ
ffiffiffiffiffiffiffiffiffi
y3ð0Þ

p Ωc; ðB9Þ

y3ð2Þ ¼
18þ βcð18þ βcð7þ βcÞÞ
3ð2þ βcÞð6þ βcð3þ βcÞÞ

þ 2

λ2
y3ð0Þ; ðB10Þ

y4ð2Þ ¼ z2ð2Þ þ
1

3y3ð0Þ
−

2

λ2
; ðB11Þ

at the leading order. The value of z2ð2Þ is not fixed in this
expression and is regarded as a free parameter. All other
coefficients can be determined by the equations recursively.
Therefore, the boundary conditions of the system are
Eq. (4.10) and the parameters are ðy3ð0Þ; z2ð2Þ; β;Ω; λÞ as
a whole.
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