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Gravitational waves (GWs) from tens of millions of compact binaries in our Milky Way enter the
millihertz band of space-based detection. The majority of them cannot be resolved individually, resulting in
foreground confusion noise for the Laser Interferometer Space Antenna (LISA). The concept of the Taiji
mission is similar to LISA’s with slightly better sensitivity, which means that Galactic GW signals will also
affect detection with Taiji. Here, we generate GW signals from 29.8 million Galactic binaries for Taiji and
subtract the “resolvable” sources. The confusion noise is estimated and fitted in an analytic form with
6-month, 1-year, 2-year, and 4-year observation times. We find that the full sensitivity curve is slightly
lower for Taiji than for LISA at frequencies of ≤0.8 mHz and around 2 mHz. For a 4-year lifetime, more
than 29 thousand sources are resolvable with Taiji. Compared to LISA, Taiji can subtract ∼20% more
sources, and the distribution of them in our MilkyWay is consistent with that of the resolvable sources with
LISA. At frequencies around 2 mHz or with the chirp masses ranging from 0.2 to 0.4 M⊙, more sources
become resolvable with Taiji.
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I. INTRODUCTION

Space-based gravitational wave (GW) detectors, such as
LISA, Taiji, and TianQin, will open the millihertz window
for GWastronomy in the 2030s [1–3]. Sources with a wide
range of masses and mass ratios may enter the frequency
band from 0.1 mHz to 0.1 Hz, which include massive black
hole binaries, compact binaries in the Milky Way, extreme
mass ratio inspirals (EMRIs), stellar-origin black hole
binaries, etc. [4–13].
Another crucial goal for space-based detection is sto-

chastic GW backgrounds of different origins. In the
millihertz band, GW backgrounds may come from the
early Universe such as cosmological phase transitions,
inflationary reheating, the interactions of cosmic string,
etc. [13–18]. From signals observed by LIGO and Virgo,
extragalactic binary black holes and binary neutron stars
also contribute a power-law stochastic GW background for
space-based detection [19,20]. Furthermore, since the
detection rate of EMRIs is very uncertain [9], under the
most optimistic astrophysical assumptions, the population
of unresolved EMRIs could produce a stochastic back-
ground exceeding the instrument noise of LISA [21].

Based on astrophysical population models [22,23], tens
of millions of compact binaries in our Milky Way, so-called
Galactic binaries (GBs), may simultaneously emit GWs in
the frequency band from 0.1 to 10 mHz [24–27]. Only a
small number of them, about ten or 20 thousand, are
resolvable with LISA [25–27]. The majority of these
sources are unresolved and form a stochastic “Galactic
foreground” or “confusion noise” for LISA [25–28]. The
detection of the signals from our Galaxy may provide
information about the evolution and distribution of compact
binaries in the Milky Way, which is one of the main targets
of space-based detection [1,2,13,29,30].
The simulations and analyses for LISA have shown that

the confusion noise is dominant over the instrument noise
around 1 mHz [25–27]. Since the detection frequency band
of TianQin is slightly higher than that of LISA and Taiji,
the effect of the Galactic confusion noise can be largely
ignored for TianQin [31]. The triangle configuration of
Taiji is similar to LISA’s but with a longer arm length and
different heliocentric orbit [2,32]. The centroid of the
constellation leads Earth by 20°, but for LISA the centroid
trails Earth by 20° [1,32]. In addition, the noise level of
Taiji is slightly lower than LISA’s [1,32]. The differences
in the concept of the two detectors indicate that the
confusion noise from GBs for Taiji should be investigated
separately.
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In this paper, we use a catalog of GBs [22] to generate
the signals from our Galaxy for Taiji and subtract the
resolvable sources from it. Then, the confusion noise for
Taiji is fitted in an analytic form for different observation
times in Sec. II. In Sec. III, we compare the number and the
distribution of the frequencies, chirp masses, and sky
locations of the resolvable sources for Taiji with those of
the sources for LISA. Finally, we summarize our results in
Sec. IV. Here, we use units with c ¼ 1, where c is the speed
of light.

II. CONFUSION NOISE FOR TAIJI

We follow the procedurewidely used for LISA [26,27,33]
to simulate the foreground signals and estimate the confusion
noise for Taiji. For the population of GBs, we use the catalog
of the LISA data challenge (LDC) Radler dataset, which
contains about 29.8 million GB sources in the millihertz
band [22,34].
At first, the instrument noise of Taiji is generated from

the analytic target model [32,35]:
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where Pdp is the power spectral density (PSD) of the
displacement noise and Pacc is the PSD of the acceleration
noise. In the source frame, the time domain waveform of a
GB can be written as [34,36]

hþðtÞ ¼ Að1þ cos2 ιÞ cos ðΦðtÞÞ; ð3Þ

h×ðtÞ ¼ −2A cos ι sin ðΦðtÞÞ; ð4Þ

ΦðtÞ ¼ ϕ0 þ 2πftþ π _ft2; ð5Þ

whereA is the amplitude, ι is the inclination angle,Φ is the
orbital phase of the binary, ϕ0 is the initial phase, and f and
_f are the frequency and the derivative of the frequency of
GWs, respectively. The technique of time delay interfer-
ometry (TDI) is proposed for space-based detection to
suppress the laser frequency noise [37–39]. With the
implementation of TDI, the signals from different channels
are combined into new TDI channels [38]. To generate the
signals of 29.8 million GBs in the first-generation TDI
channels X, Y, and Z, the rigid adiabatic approximation is
used to calculate the Taiji response with a 4-year mission
lifetime [33,40–42]. All the GW signals are added to the
instrument noise to get the whole signal whose PSD is
estimated by using the BayesLine algorithm [43]. Based on

the PSD, we calculate the signal-to-noise ratio (SNR) of
each source and subtract the resolvable sources whose
SNR > 7 from the whole signal data. Here, we assume that
the sources can be removed perfectly without residuals, but
in real data analysis this would not happen and subtraction
errors should be considered [44,45]. After the subtraction,
the PSD is reestimated and updated. Then we repeat the
procedure of subtracting resolvable sources and reestimat-
ing the PSD. After ten iterations, the number of subtracted
sources is less than ten, and the PSD is almost unchanged.
The final PSD of the data containing the confusion noise
and instrument noise is obtained; see Fig. 1. In this figure,
only the X channel is shown. From Fig. 1, it is clear that
after removing the resolvable sources the residual con-
fusion noise for Taiji is dominant over the instrument noise
around 1 mHz, with a spectrum similar to the case for
LISA [26,27].
We also simulate the first-generation TDI signals for

different mission durations. To get the confusion noise, we
convert the spectrum of XYZ channels into the effective
noise PSD in the sensitivity curve [41,46]. Figure 2 shows
the confusion noise for different observation times Tobs ¼ 6
months, 1 year, 2 years, and 4 years. The number of

FIG. 1. The amplitude spectral density in the X channel of Taiji
with a 4-year mission duration. The blue curve shows the
estimated smoothed spectrum obtained from the BayesLine
algorithm. The instrument noise is also shown for comparison
(dotted curve).

FIG. 2. The confusion noise for different observation times.
The dashed gray curve represents the sensitivity curve of Taiji.
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resolvable sources increases with observation time, and the
level of confusion noise goes down, especially for frequen-
cies above 1 mHz. We use a polynomial function to fit the
confusion noise ScðfÞ in the logarithmic scale as

ScðfÞ ¼ exp

�X5
i¼0

ai

�
log

�
f

mHz

��
i
�

Hz−1: ð6Þ

The fitting works only for 0.1 mHz < f < 10 mHz, and
the parameters ai for different observation times are shown
in Table I.
In Fig. 2, the design sensitivity curve Sn of Taiji is also

plotted for comparison. For space-based GW detectors,
such as LISA and Taiji, the sensitivity curve Sn for the two
Michelson-style data channels can be written as [46]

SnðfÞ ¼
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where f� ¼ 1=ð2πLÞ and L is the arm length. For Taiji,
L ¼ 3 × 109 m. To include the confusion noise, one needs
to add Sc to the sensitivity curve Sn. Figure 3 shows the full
sensitivity curves of Taiji and LISA [46]. The noise model
of LISA can be found in the LISA science requirements
document [47] or Ref. [46]. For LISA, the arm length is
2.5 × 109 m, and the displacement noise

PdpL ¼ ð15 × 10−12 mÞ2
�
1þ

�
2 mHz

f

�
4
�

Hz−1: ð8Þ

The acceleration noise is the same as that of Taiji. To
generate the full sensitivity curve of LISA, we use the
empirical fitting model of the confusion noise for LISA
from Ref. [27]. In Fig. 3, we can see that the confusion
noise is slightly weaker for Taiji than for LISA at the
frequency of ≤ 0.8 mHz and around 2 mHz. This is due to
the fact that Taiji’s arm length is longer than LISA’s and the
instrument noise level is slightly lower than LISA’s. But at
the frequency of ∼1 mHz, the confusion noise is nearly
identical for both. Because it is much stronger than the
instrument noise at 1 mHz, the effect of the different
configurations is negligible.

III. RESOLVABLE SOURCES

In our analysis, the sources whose SNR > 7 are marked
as resolvable as in Refs. [26,27]. Table II lists the number of
resolvable sources for different observation times. With
increasing observation time, more sources become resolv-
able. As pointed out in Ref. [27], using different smoothing
methods to estimate the PSD, one will get slightly different
results. In Ref. [27], two methods were used to smooth the
PSD: running median and running mean. Here, we use a
different one: the BayesLine algorithm, which is the same
as in Ref. [26]. To compare with our results for Taiji, we
perform the same analysis for LISA following the pro-
cedure described in Sec. II and obtain the resolvable
sources, as shown in Table II. The number of resolvable
sources for LISA is consistent with the results of Ref. [27].
It is larger than the number from the running median
method and smaller than the result from the running mean
method (see Table I in Ref. [27]). As shown in Table II,
Taiji allows one to subtract ∼20%more sources than LISA.
This is because the instrument sensitivity of Taiji is better

TABLE I. Fitting parameters of the confusion noise ScðfÞ in Eq. (6) for different observation times Tobs.

Tobs a0 a1 a2 a3 a4 a5

6 months −85.3498 −2.64899 −0.0699707 −0.478447 −0.334821 0.0658353
1 year −85.4336 −2.46276 −0.183175 −0.884147 −0.427176 0.128666
2 years −85.3919 −2.69735 −0.749294 −1.15302 −0.302761 0.175521
4 years −85.5448 −3.23671 −1.64187 −1.14711 0.0325887 0.187854

FIG. 3. The sensitivity curves of Taiji and LISA. The dashed
curves represent the design sensitivities. The confusion noises for
the 4-year observation are included in the solid curves to show the
full sensitivity curves. Here, we plot the dimensionless character-
istic strain sensitivity

ffiffiffiffiffiffiffiffi
fSn

p
.

TABLE II. The number of resolvable GBs with Taiji and LISA
for different observation times Tobs.

Tobs Taiji LISA

6 months 7083 4697
1 year 11439 8830
2 years 18500 14939
4 years 29633 24780
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than LISA’s. A recent work [48] has shown that the network
of two space-based detectors can resolve ∼75% more
confirmed sources than a single one.
In Fig. 4, we show the distributions of the GW

frequencies, chirp masses, and distances of the detected
GBs resolvable with Taiji and LISA. Taiji can subtract more
sources than LISA around 2 mHz, at which Taiji has
slightly better sensitivity. The middle panel in Fig. 4 shows
that more sources with the chirp masses ranging from 0.2 to
0.4 M⊙ can be resolvable with Taiji. The number of GBs is
relatively large near the center of the Milky Way (∼8 kpc),
where more sources are resolvable with Taiji (see the
bottom panel in Fig. 4).
Moreover, we find that all the sources resolvable with

LISA are also resolvable with Taiji. Figure 5 shows the sky
positions of the resolvable sources for a 4-year observation.

The cyan points correspond to the 24780 sources resolvable
with LISA and Taiji, and the yellow points correspond to
the 4853 sources resolvable only with Taiji. Since Taiji and
LISA have similar constellation designs, the distributions
of the yellow points and the cyan points in Fig. 5 are very
similar.
The performance of the parameter estimation for the

resolvable sources with Taiji is an interesting topic for
future work.

IV. SUMMARY

We use the catalog of 29.8 million GBs provided by
LDC to simulate the foreground signals for Taiji. The
sources with SNR larger than 7 are treated as resolvable and
can be subtracted from the data. With Taiji for a 4-year
lifetime, more than 29 thousand sources are resolvable, and
the residual signal produces an effective confusion noise.
For different observation times Tobs ¼ 6 months, 1 year,
2 years, and 4 years, we fit the confusion noise ScðfÞ by
using polynomial functions on a log-log scale. With longer
observation time, the confusion noise becomes signifi-
cantly lower at the frequency above 1 mHz, as in the case of
LISA [26]. To get the full sensitivity of Taiji, the confusion
noise Sc should be added to the instrument noise. The full
sensitivity curve is slightly lower for Taiji than for LISA at
the frequency of ≤0.8 mHz and around 2 mHz.
The number of resolvable sources increases with the

duration of observation. Compared to LISA, Taiji can
subtract ∼20% more sources. Their distribution in our
Milky Way is consistent with that of the resolvable sources
with LISA. And at frequencies around 2 mHz or with the
chirp masses ranging from 0.2 to 0.4 M⊙, more sources
become resolvable with Taiji. Taiji can subtract more
sources near the Galactic Center.
Here, we assume perfect subtraction of the resolvable

signals, which means that the parameters of the sources can
be perfectly estimated so that the true waveform can be
removed from the data stream. For real data analysis,

FIG. 4. The distributions of the GW frequencies, chirp masses,
and distances of the detected GBs resolvable with Taiji and LISA
for a 4-year observation.

FIG. 5. Sky positions of the resolvable sources in the ecliptic
coordinate system for a 4-year observation. The cyan points
correspond to the sources resolvable with LISA and Taiji, and the
yellow points indicate the sources resolvable only with Taiji. The
Galactic Center is marked by the purple star.
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imperfect subtraction will introduce residuals into the
data [44,45]. In this case, the global fit is required
which models all the sources together for parameter
estimation [49,50].
In addition, we regard the confusion noise to be stationary

across different observation periods. In reality, as the space-
based detector rotates around the Sun, the response function
concerning the sources in the Milky Way varies over time.
As a result, the Galactic foreground varies throughout the
year and yields a cyclostationary noise [51,52].We shall add
this effect in our future work for Taiji.
The catalog of GBs we used is based on binary

population synthesis provided by LDC [22,34]. Recent
studies based on the observationally driven population
indicate that the shape of the confusion noise will be
different [23]. The updated population can be included in
future work.
For now, since all planned space-based detectors have

not yet been launched, the data analysis methods are

developed by using mock data. The Taiji confusion noise
we obtain here will assist researchers in investigating the
capability of more realistic data analysis methods for the
Taiji mission.
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