
Robin boundary conditions in acoustic BTZ black holes

Christyan C. de Oliveira ,1,* Ricardo A. Mosna ,2,† and João Paulo M. Pitelli 2,‡

1Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas,
13083-859 Campinas, São Paulo, Brazil

2Departamento de Matemática Aplicada, Universidade Estadual de Campinas,
13083-859 Campinas, São Paulo, Brazil

(Received 24 October 2022; accepted 27 January 2023; published 9 March 2023)

We introduce an analog model for the conformally coupled scalar field on the BTZ black hole. The
model is based on the propagation of acoustic waves in a Laval nozzle. Since the BTZ black hole is not a
globally hyperbolic spacetime, the dynamics of the scalar field is not well defined until extra boundary
conditions are prescribed at its spatial infinity. We show that quasinormal modes (QNMs) satisfying
Dirichlet, Neumann, and Robin boundary conditions in the BTZ black hole can be interpreted in terms
of ordinary QNMs defined with respect to an appropriately extended nozzle. We also discuss the stability of
our model with respect to small perturbations.
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I. INTRODUCTION

It is well known that acoustic waves propagating in an
inviscid fluid mimic scalar waves in a black hole back-
ground. This was first shown by Unruh in 1981 [1] and,
since then, physicists have found many other systems
exhibiting this same feature (see [2] for an extensive list).
In particular, the past decades have witnessed the emer-
gence of an increasing number of such analog gravity
models designed to probe a variety of phenomena in black
hole backgrounds. For instance, a number of experiments
have been performed to observe the analog of rotational
superradiance [3], quasinormal ringing [4,5] and Hawking
radiation [6–11].
Aside from experimental tests, analog models are also

important for theoretical purposes, since they provide new
insights for many kinds of problems in different geom-
etries. A particularly interesting class of geometries is
that given by nonglobally hyperbolic spacetimes. In these
spaces, a deterministic time evolution is not well defined
until extra boundary conditions are prescribed [12–14].
This occurs because information can reach (or come from)
spatial infinity in finite time. Hence, information coming
from infinity can influence the spacetime bulk dynamics.
Ilustrative examples where analog models are used to
provide theoretical insights about nonglobally hyperbolic
spacetimes were given in Refs. [15,16].
A particularly interesting example of nonglobally hyper-

bolic space is the Bañados, Teitelboim and Zanelli (BTZ)

black hole [17], which is an asymptotically anti-de Sitter
solution for three-dimensional general relativity (GR) with
a negative cosmological constant [18]. For this spacetime,
the effective potential describing scalar wave propagation
does not vanish at spatial infinity so that the solution does
not behave like a plane wave there. Hence, the usual
outgoing boundary condition used to define quasinormal
modes (QNMs) in asymptotically flat spacetimes cannot be
fulfilled [19–21]. Thus, for the BTZ black hole, QNMs will
depend not only on the effective potential, but also on the
boundary condition at infinity.
In this work, we introduce an analog model for the

conformally coupled scalar field on a BTZ black hole based
on a Laval nozzle, which is a convergent-divergent nozzle
with a throat in the middle, usually employed to accelerate
air [22]. By establishing a sufficiently strong difference
of pressure between the nozzle ends, a transonic flow
regime can be achieved. On one side of the nozzle, there is a
subsonic flow; on the other side, a supersonic flow is
established. The sonic point (where air velocity equals
sound velocity) is located at the nozzle throat.
We find that the obtained nozzle has a finite length, with

its end corresponding to the spatial infinity of the BTZ
spacetime, so that our analog model effectively maps the
exterior region of the BTZ black hole into a finite region of
the Laval nozzle. Since the effective potential governing the
wave propagation does not vanish at the nozzle end (which
corresponds to the BTZ spatial infinity), we still cannot
impose plane wave outgoing boundary conditions to find
QNMs. In order to circumvent this problem, we consider
a family of extensions for the nozzle. We choose the
extensions in such a way that the corresponding effective
potentials go to zero in the new end. By doing this,
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we recover the plane wave behavior and we can thus
impose outgoing boundary conditions and find the ordinary
QNMs of the extended nozzle (corresponding to BTZ
spacetimeþ extension). In this way, we interpret the
QNMs of the conformally coupled scalar field on the
BTZ black hole (which do not obey outgoing boundary
conditions at spatial infinity) in terms of ordinary QNMs of
acoustic waves in the nozzle (which do obey the usual
outgoing boundary conditions). We find that the ordinary
QNMs can be sorted according to their parity and show that
odd ordinary QNMs correspond to QNMs in the black hole
which satisfy a Dirichlet boundary condition; and even
ordinary QNMs correspond to black hole QNMs obeying
Neumann or Robin boundary conditions.
Finally, we use a result from the dynamics of the scalar

field in the BTZ black hole [21] to discuss the stability of
our model under linear perturbations.
This paper is organized as follows. In Sec. II, we briefly

review the equations of acoustics in the Laval nozzle,
and apply the method of [23] to find the nozzle for which
acoustic waves correspond to those of a conformally
coupled field on the BTZ black hole. In Sec. III, we
consider continuations of the effective potential of Sec. II to
find extensions for the nozzle previously obtained. We also
show how one may use the ordinary QNMs of acoustic
waves to emulate QNMs obeying Dirichlet, Neumann and
Robin boundary conditions at BTZ spatial infinity. After
that, we discuss the stability of our model under small
perturbations. Finally, we discuss our results in Sec. IV.

II. THE NOZZLE ANALOG
TO THE BTZ BLACK HOLE

A. Wave propagation in the BTZ black hole

The scalar field Ψ conformally coupled to the BTZ
geometry is governed by the equation [24,25]

�
□þ 3

4l2

�
Ψ ¼ 0; ð1Þ

where the d’Alembertian operator, □ ¼ ∇μ∇μ, is calcu-
lated with respect to the spacetime metric

ds2 ¼ −
�
−M þ r2

l2

�
dt2 þ

�
−M þ r2

l2

�−1
dr2 þ r2dϕ2:

ð2Þ

Here, M stands for the black hole mass (which is dimen-
sionless for this spacetime) and l is the radius of the
associated three-dimensional anti-de Sitter space (AdS3).
Separating variables by

Ψðt; r;ϕÞ ¼ ψðrÞ
r1=2

e−iωteimϕ; ð3Þ

the equation of motion (1) yields

−
d2ψðr�Þ
dr2�

þ VBTZðr�Þψðr�Þ ¼ ω2ψðr�Þ; ð4Þ

where the tortoise coordinate is taken as

r� ¼ −
lffiffiffiffiffi
M

p arcoth

�
r

l
ffiffiffiffiffi
M

p
�
; ð5Þ

and the effective potential is given by

VBTZðr�Þ ¼
ð4m2 þMÞ

4l2
sech2

� ffiffiffiffiffi
M

p
r�

l

�
: ð6Þ

The black hole horizon r ¼ l
ffiffiffiffiffi
M

p
corresponds to

r� ¼ −∞ and the conformal boundary at r ¼ ∞ is
mapped to r� ¼ 0. For later convenience, we rescale r�
and ω to the dimensionless quantities r̂� ¼ ð ffiffiffiffiffi

M
p

=lÞr� and
ω̂ ¼ ðl= ffiffiffiffiffi

M
p Þω. The radial equation of motion, Eq. (4),

then becomes

−
d2ψðr̂�Þ
dr̂2�

þ V̂BTZðr̂�Þψðr̂�Þ ¼ ω̂2ψðr̂�Þ; ð7Þ

with the dimensionless effective potential

V̂BTZðr̂�Þ ¼
�
4m2 þM

4M

�
sech2r̂�: ð8Þ

We intend to simulate the scalar field propagation
determined by the effective potential V̂BTZðr̂�Þ in terms
of acoustic waves propagating in an appropriately designed
Laval nozzle. In order to achieve this, we need to know how
the shape of the nozzle determines the wave propagation.
In what follows, we review the fundamental equations
of fluid dynamics in the Laval nozzle and show how the
cross-sectional area determines the effective potential for
acoustic waves.

B. Wave propagation in the Laval nozzle

Let us take the x coordinate along the axial direction of
the nozzle. We consider air as a perfect fluid flowing in a
quasi-one-dimensional regime, where physical quantities
vary along the x axis only. The equations of motion are then
the continuity and Euler’s equations,

∂tðρAÞ þ ∂xðρvAÞ ¼ 0; ð9Þ

ρð∂t þ v∂xÞv ¼ −∂xp; ð10Þ

where ρ is the air density, p is the pressure, v is the
air velocity and A is the nozzle cross-sectional area.
Furthermore, we shall assume the gas is isentropic,
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p ∝ ργ; ð11Þ

where γ ¼ 7=5 stands for the heat capacity ratio of air.
Assuming an irrotational flow, v ¼ ∂xΦ, and defining the

specific enthalpy hðρÞ ¼ R
ρ−1dp, Eq. (10) can be reduced

to the Bernoulli’s equation

∂tΦþ 1

2
ð∂xΦÞ2 þ hðρÞ ¼ 0: ð12Þ

To derive the linearized wave equation for sound, we first
rewrite ðρ;ΦÞ as the sum of a contribution corresponding to
the background flow ðρ̄; Φ̄Þ and a contribution correspond-
ing to the acoustic disturbance ðδρ;ϕÞ. The background and
perturbation satisfy

ρ ¼ ρ̄þ δρ; ρ̄ ≫ jδρj;
Φ ¼ Φ̄þ ϕ; j∂xΦ̄j ≫ j∂xϕj: ð13Þ

Following [26], we define the auxiliary quantities

g ¼ ρ̄A
cs

¼ ρ̄Affiffiffiffiffiffiffiffiffiffi
γp̄=ρ̄

p ; ð14Þ

fðxÞ ¼
Z jvjdx

c2s − v2
; ð15Þ

Hω ¼ g1=2
Z

dteiω½t−fðxÞ�ϕðt; xÞ; ð16Þ

x� ¼ cs0

Z
dx

csð1 −M2Þ ; ð17Þ

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
∂p=∂ρ

p ¼ ffiffiffiffiffiffiffiffiffiffi
γp̄=ρ̄

p
is the local sound speed,

cs0 is the stagnation sound speed, constant over the
isentropic flow, and M ¼ jvj=cs is the Mach number. In
terms of these quantities, the wave equation reduces to

−
d2Hω

dx2�
þ Vðx�ÞHω ¼ κ2Hω; ð18Þ

where

κ ¼ ω

cs0
; ð19Þ

and the effective potential is given by

Vðx�Þ ¼
1

g2

�
g
2

d2g
dx2�

−
1

4

�
dg
dx�

�
2
�
: ð20Þ

The effective potential Vðx�Þ characterizes the dynamics
of acoustic waves in the gas flow. For a transonic flow
in a Laval nozzle, all the nondimensional quantities
ðρ=ρ0; p=p0;M;…Þ are uniquely determined by the

function Aðx�Þ=Ath, where Ath is the cross-sectional area
at the throat of the nozzle [22,26]. In particular, the function
gðx�Þ and the effective potential Vðx�Þ are also completely
determined by Aðx�Þ=Ath. On the other hand, A (and hence
all other physical quantities) can be fully determined in
terms of g by the equations relating the physical variables in
the nozzle.
Let us see more closely how one can express the physical

quantities in terms of g. First, we note that it follows from
Eqs. (11) and (14) that

g ∝
ρ̄A

ρ̄ðγ−1Þ=2
; ð21Þ

and from [22] we have

�
A
Ath

�
−1

¼ 1

ηγ

�
1 −

�
ρ̄

ρ0

�ðγ−1Þ�1=2 ρ̄

ρ0
; ð22Þ

where ρ0 is the stagnation density and

ηγ ¼
ffiffiffiffiffiffiffiffiffiffi
γ − 1

2

r �
2

γ þ 1

� γþ1

2ðγ−1Þ
: ð23Þ

Since Eq. (18) is invariant under rescalings of g, we take
the coefficient in Eq. (21) so that

g ¼
A

ηγAth

ρ̄
ρ0

2ð ρ̄ρ0Þðγ−1Þ=2
: ð24Þ

With the assumptions above, we can implement the
same reasoning of [23] to find the physical variables in
terms of g:

A
Ath

¼
ηγ

ffiffiffi
2

p h
2g2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−2

p �i
1=ðγ−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−2

pq ; ð25Þ

�
ρ̄

ρ0

�
1−γ

¼ 2g2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−2

q �
; ð26Þ

cs ¼
cs0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−2

p �r ; ð27Þ

M2 ¼ 2

γ − 1

�
2g2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−2

q �
− 1

�
: ð28Þ

For convenience, we rescale x� and ω to dimensionless
quantities x̂� and ω̂ such that

x̂� ¼
x�
L
; ð29Þ
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and

κ ¼ ω

cs0
¼ ω̂

cs0T
¼ ω̂

L
; ð30Þ

where L is a characteristic length in the nozzle and a
characteristic time interval was chosen as T ¼ L=cs0.
Equation (18) then yields

−
d2Hω

dx̂2�
þ V̂ðx̂�ÞHω ¼ ω̂2Hω; ð31Þ

where the dimensionless effective potential is given by

V̂ðx̂�Þ ¼
1

g2

�
g
2

d2g
dx̂2�

−
1

4

�
dg
dx̂�

�
2
�
: ð32Þ

C. Inverse problem

The calculations above show how the nozzle shape,
given by Aðx�Þ, determines the wave propagation in the
nozzle by means of the effective potential V̂ðx�Þ. We now
want to find a nozzle shape which mimics the effective
potential V̂BTZ for perturbations in the BTZ black hole
background.
As mentioned before, all physical quantities describing

the flow in the Laval nozzle can be determined from the
cross section A. On the other hand, given an effective
potential, say V̂ ¼ V̂BTZ, we should be able to find g by
solving Eq. (32). This in turn determines the shape of the
nozzle by means of Eq. (25). A boundary condition for g is
given by imposing that the air and sound velocities are
equal at the acoustic horizon, jvj ¼ cs, so that, from
Eq. (28),

gjhorizon ¼
γ þ 1

2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffi
γ − 1

p ¼ 3ffiffiffi
5

p : ð33Þ

Before equating V̂BTZ to the effective potential in the
nozzle, we need to relate the radial coordinate r of the BTZ
spacetime to the coordinate along the nozzle x. In order to
achieve this, we identify the respective tortoise coordinates,
dr̂� ¼ dx̂�. From Eqs. (17), (27) and (28), we have

dr̂� ¼ dx̂� ¼
cs0dx̂

csð1 −M2Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−2

p �r
dx̂

1 − 2
γ−1

h
2g2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−2

p �
− 1

i ; ð34Þ

so that

dx̂
dr̂�

¼
1 − 2

γ−1

h
2g2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−2

p �
− 1

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−2

p �r ; ð35Þ

where x̂ is the nondimensional coordinate related to the
coordinate along the nozzle by x̂ ¼ x=L.
Since the tortoise coordinates for the nozzle and for the

BTZ spacetime were made identical, we can now equate the
effective potentials, Eqs. (32) and (8), to obtain

g00ðr̂�Þ
2gðr̂�Þ

−
g0ðr̂�Þ2
4gðr̂�Þ2

¼ V̂BTZðr̂�Þ; ð36Þ

where the prime indicates differentiation with respect
to r̂�, g0 ¼ dg=dr̂�. This equation can be simplified by
the substitution [27]

gðr̂�Þ ¼ h2ðr̂�Þ ð37Þ

that yields

−h00ðr̂�Þ þ V̂BTZðr̂�Þhðr̂�Þ ¼ 0: ð38Þ

To obtain the configuration of the nozzle corresponding
to the effective potential in Eq. (8), we have to solve
Eq. (38) and use Eq. (37) and the boundary condition
Eq. (33) to determine g. Then, by Eqs. (25) and (35) we can
find the cross section A as a function of the coordinate x
along the nozzle, such that the sound propagation now
mimics a scalar field propagating on the BTZ spacetime.

D. The Laval nozzle for the conformal scalar field
propagating on the BTZ black hole

To keep the calculations as simple as possible, we are
going to consider the mode solution with angular momen-
tum m ¼ 0 (the case m ≠ 0 can be treated in a similar
fashion and is briefly discussed in Sec. IV). For this case,
the general solution to the differential equation (38) can be
expressed as a linear combination1

hðr�Þ ¼ c1h1ðr�Þ þ c2h2ðr�Þ; ð39Þ

where c1, c2, are constants and

h1ðr�Þ ¼ P−1
2
ðtanh r�Þ; ð40Þ

h2ðr�Þ ¼ Q−1
2
ðtanh r�Þ: ð41Þ

Here PμðzÞ and QμðzÞ stand for the Legendre functions of
the first and second kinds, respectively [28].

1Hereafter, we will drop the hat in r̂� to keep the notation
simpler.
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The boundary condition Eq. (33) requires hðr�Þ to be
finite at the acoustic horizon (r → −∞). Since h1ðr�Þ goes
to infinity at r → −∞, we should take c1 ¼ 0 and c2 so that

hðr�Þ ¼
2

π

ffiffiffiffiffiffiffi
3ffiffiffi
5

p
s

Q−1
2
ðtanh r�Þ: ð42Þ

Having obtained hðr�Þ, we use Eqs. (37), (25), and (35)
to find the cross section A as a function of the coordinate
along the nozzle. The lateral section of the resulting nozzle
is represented by the black solid curve in Fig. 1, where we
also plotted the effective potential (red dashed curve). The
exterior region of the BTZ black hole corresponds to the
subsonic region (x > 0).
Figure 2 shows the relation between the x coordinate

along the nozzle and the radial coordinate r of the BTZ
black hole. We observe that x has a finite upper limit, at
xend ≅ 0.417306. Hence, the obtained nozzle has a finite
length, with the upper limit of x being mapped into the
spatial infinity of the BTZ black hole. In other words, this
means that the exterior region of the BTZ black hole is
mapped into a finite region in the laboratory, with the
spatial infinity of the BTZ spacetime being mapped into the
right end of the nozzle.
It follows that, in order to completely determine the

acoustic wave propagation in the nozzle, it is necessary to
prescribe a boundary condition at its right end. At the BTZ
spacetime level, the necessity for a boundary condition
at spatial infinity comes from its lack of global hyper-
bolicity [12–14,25]. Therefore, via the correspondence
found above, our model simulates the needed boundary
conditions at the conformal boundary of the BTZ spacetime
by appropriate boundary conditions at the nozzle (finite)
right end.

The boundary conditions that are compatible with
sensible dynamics for the scalar field propagating in the
BTZ spacetime were studied in [25]. In particular, for the
conformally coupled scalar field, Garbaz et al. found that
Robin boundary conditions (RBCs),

dψ=dr�
ψ

				
r�¼0

¼ β; ð43Þ

lead to an unambiguous time evolution. In this case,
β ¼ �∞ corresponds to the Dirichlet boundary condition
at infinity, ψ jr�¼0 ¼ 0, and β ¼ 0 corresponds to the
Neumann boundary condition, dψ=dr�jr�¼0 ¼ 0. Aside
from that, in [21], Dappiaggi et al. calculated the effect
of RBCs on the quasinormal modes of the scalar field in the
BTZ black hole. In the next section, we propose a nozzle
configuration appropriate to realize QNMs obeying RBCs
in the BTZ black hole.

III. ROBIN BOUNDARY CONDITIONS
IN THE BTZ ANALOG NOZZLE

A. Nozzle extension

We have seen above that the nozzle which mimics the
BTZ spacetime would abruptly end at a finite distance
from the throat, at x ¼ xend ≅ 0.417306. In what follows
we continue the nozzle in such a way that the usual
boundary condition for QNMs at its far right, x → ∞,
induces RBCs at xend. In the r� coordinate, this corre-
sponds to extending the potential VBTZðr�Þ to the region
r� > 0 (recall that the original range of the coordinate r�
is from −∞ to 0).

FIG. 1. (Black curve) Lateral section of the Laval nozzle
corresponding to the conformally coupled scalar field. The region
x̂ > 0 (x̂ < 0) corresponds to subsonic (supersonic) flow. The
sonic point (where the fluid velocity equals the sound velocity) is
located at the throat x̂ ¼ 0. (Red dashed line) Nondimensional
effective potential for acoustic waves in the subsonic region.

FIG. 2. The nondimensional coordinate along the nozzle x̂
as a function of the nondimensional radial coordinate r̂ of the
BTZ spacetime. The coordinate x̂ has a finite upper limit,
x̂end ≅ 0.417306, which means that the corresponding nozzle
has a finite length. The upper limit in the coordinate x̂ is mapped
into the spatial infinity of the BTZ spacetime.
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We will consider the following extension of VBTZðr�Þ
for r� ≥ 0:

Veffðr�Þ ¼
�
4m2 þM

M

�
sech2r� þ aδðr�Þ; ð44Þ

where δðr�Þ is the Dirac delta function, a is a constant,
and −∞ < r� < ∞. We note that, for −∞ < r� < 0, this
effective potential reduces to Eq. (8). Moreover, for
r� → ∞, Veff goes to zero and we recover the plane
wave behavior, typical for asymptotically flat spacetimes,
for the field (i.e., ψ ∼ e�iωr� , when r� → ∞). In particular,
this implies that usual outgoing boundary conditions for
QNMs can now be imposed in the extended model. The
delta function term has the effect of producing a shape
change in AðxÞ at x ¼ 0 (see Fig. 3), which will be
explored in what follows to implement the RBCs in the
BTZ spacetime.
Let us calculate the shape of the extended nozzle which

corresponds to the extended potential above. We do this by
solving Eq. (38) with Vðr�Þ given by Eq. (44).
For r� < 0, the calculations are identical to the case

treated in the previous section. Thus, the corresponding
solution is given by Eq. (42). For convenience, we now
denote this solution by hð<Þðr�Þ,

hð<Þðr�Þ ¼
2

π

ffiffiffiffiffiffiffi
3ffiffiffi
5

p
s

Q−1
2
ðtanh r�Þ: ð45Þ

For r� > 0, we have

hð>Þðr�Þ ¼ c1h1ðr�Þ þ c2h2ðr�Þ; ð46Þ

with h1ðr�Þ and h2ðr�Þ given by Eqs. (40) and (41). We
now have to match these solutions at r� ¼ 0 to find the
constants c1, c2. First, continuity requires

hð<Þðr� → 0−Þ ¼ hð>Þðr� → 0þÞ: ð47Þ
The other boundary condition is obtained by integrating
Eq. (38) inside an arbitrarily small neighborhood of r� ¼ 0,
which leads to

dhð>Þ

dr�

				
r�¼0þ

−
dhð<Þ

dr�

				
r�¼0−

¼ a hð0Þ: ð48Þ

This equation shows that a characterizes the shape change
of the nozzle at x ¼ 0 (see Fig. 3).
Using Eqs. (47) and (48), we find

c1 ¼ −

ffiffiffiffiffiffiffi
3ffiffiffi
5

p
s

π2a
2Γð3

4
Þ4 ; ð49Þ

c2 ¼
ffiffiffiffiffiffiffi
3ffiffiffi
5

p
s �

2

π
þ πa
Γð3

4
Þ4
�
; ð50Þ

so that

hðr�Þ ¼
ffiffiffiffiffiffiffi
3ffiffiffi
5

p
s

Q−1
2
ðtanh r�Þθð−r�Þ

þ
ffiffiffiffiffiffiffi
3ffiffiffi
5

p
s 


−
π2a

2Γð3
4
Þ4 P−1

2
ðtanh r�Þ

þ
�

πa
Γð3

4
Þ4 þ

2

π

�
Q−1

2
ðtanh r�Þ

�
θðr�Þ; ð51Þ

FIG. 3. Lateral section of the extended Laval nozzle with different values of parameter a. Each value determines a different extension
for the effective potential. Since the wave phenomena is mainly determined by the effective potential, different values of a will lead to
different quasinormal spectra. Notice that we have translated the x̂ axis by x̂ → x̂ − x̂end so that now the origin x̂ ¼ 0 corresponds to BTZ
spatial infinity and the horizon corresponds to x̂h ¼ −x̂end ≅ −0.417306.
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where θðr�Þ stands for the Heaviside step function. The
nozzle shape can then be determined by following the steps
discussed in Sec. II. Figure 3 shows nozzle extensions
obtained for some values of the parameter a.
We note that the diverging behavior of the cross-sectional

area as x → ∞ does not spoil the one-dimensional character
of the motion because one can always make AðxÞ vary as
slowly as desired by suitably choosing units for x. As pointed
out in [23], this is equivalent to “pulling” the nozzle along its
axis. In the present case, such a pulling means that we
consider a BTZ black hole with a larger ratio l=

ffiffiffiffiffi
M

p
.

B. Quasinormal modes of the extended nozzle

Quasinormal modes are characteristic vibrations that
describe the energy loss of a system after a perturbation
[29–31]. In principle, they can appear in any physical
context involving open systems (not only black holes) [32].
Quasinormal modes in a black hole background are
usually defined as mode solutions satisfying ingoing
boundary conditions at the horizon (ψω ∼ e−iωr� , as
r� → −∞), and outgoing boundary conditions at spatial
infinity (ψω ∼ eiωr� , as r� → ∞). This definition works
perfectly well for asymptotically flat spacetimes, since the
effective potential coupled to the field vanishes at infinity.
However, for asymptotically curved spacetimes, the effec-
tive potential is not zero at infinity, and one cannot
distinguish ingoing from outgoing modes there [19–21].
As mentioned before, in contrast with the situation in

asymptotically curved spacetimes, the effective potential of
our extended nozzle vanishes at r� → þ∞. Hence, one can
define QNMs by the usual asymptotic behavior

ψω ∼ e−iωr� ; r� → −∞; ð52Þ

ψω ∼ eþiωr� ; r� → þ∞: ð53Þ

The asymptotic conditions (52) and (53) completely
determine the acoustic QNMs in the Laval nozzle. We
will refer to modes satisfying Eqs. (52) and (53) as ordinary
quasinormal modes.
Quasinormal modes obeying Robin boundary conditions

in the BTZ black hole were previously analyzed in [21].
In what follows, we are going to use the ordinary QNMs
of acoustic waves in the nozzle to emulate QNMs of the
conformal scalar field obeying RBCs in the BTZ black
hole. In order to achieve this, we now calculate the former
explicitly.
Let us denote by ψ< and ψ> the solutions of

−
d2ψωðr�Þ

dr2�
þ Veffðr�Þψωðr�Þ ¼ ω2ψωðr�Þ; ð54Þ

with effective potential given by Eq. (44), for r� < 0 and
r� > 0, respectively. The general solution of Eq. (54) can
be expressed as a linear combination of

ψ1ðr�Þ ¼ Piω
−1
2

ðtanh r�Þ; ð55Þ

ψ2ðr�Þ ¼ Qiω
−1
2

ðtanh r�Þ; ð56Þ

where Pμ
νðzÞ and Qν

μðzÞ stand for the associated Legendre
functions of the first and second kind, respectively [28].
For r� < 0, the boundary condition (52) implies

ψ ð<Þ
ω ðr�Þ ¼ ω sinhðπωÞΓð−iωÞψ1ðr�Þ

−
2iω
π

coshðπωÞΓð−iωÞψ2ðr�Þ: ð57Þ

For r� > 0, we have

ψ ð>Þ
ω ðr�Þ ¼ c1ψ1ðr�Þ þ c2ψ2ðr�Þ: ð58Þ

Before considering the behavior at r� → ∞, we match ψ ð<Þ
ω

and ψ ð>Þ
ω at r� ¼ 0. Continuity requires

ψ ð<Þ
ω ðr� → 0−Þ ¼ ψ ð>Þ

ω ðr� → 0þÞ: ð59Þ

We also require that

dψ ð>Þ
ω

dr�

				
r�¼0þ

−
dψ ð<Þ

ω

dr�

				
r�¼0−

¼ aψð0Þ; ð60Þ

which is the condition obtained by integrating Eq. (54)
inside an arbitrarily small neighborhood of r� ¼ 0.
Solving Eqs. (59) and (60), we find the constants c1 and

c2 as functions of the parameter a. After that, we expand

ψ ð>Þ
ω near r� → þ∞,

ψ ð>Þ
ω ðr�Þ ∼Dðω; aÞe−iωr� þ Eðω; aÞeiωr� : ð61Þ

The coefficients of the asymptotic expansion Eq. (61) are

Dðω; aÞ ¼ πcschðπωÞΓð−iωÞ
2iΓðiωÞ

�
22iωπa

Γð3
4
− iω

2
Þ4 þ

2

Γð1
2
− iωÞ2

�
;

ð62Þ

Eðω;aÞ¼−icschðπωÞ− ia
4
½cschðπωÞ− i�Γð

1
4
− iω

2
Þ2

Γð3
4
− iω

2
Þ2 : ð63Þ

Hence, the quasinormal frequencies of the extended Laval
nozzle are given by solutions of

Dðω; aÞ ¼ 0: ð64Þ

From Eq. (62), we see that ordinary quasinormal
frequencies can be divided into two sets. First, since the
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Gamma function has poles at negative integers, the
frequencies

ωn ¼ −
i
2
ð4nþ 3Þ; n ¼ 0; 1; 2; 3;… ð65Þ

satisfy Eq. (64) for any value of a. The second set of
quasinormal frequencies is given by the solutions of

a ¼ −
21−2iωΓð3

4
− iω

2
Þ4

πΓð1
2
− iωÞ2 : ð66Þ

In the following we analyze the resulting quasinormal
modes for both cases, Eqs. (65) and (66). For convenience,
we will divide the case of Eq. (66) in (i) a ¼ 0
and (ii) a ≠ 0.

1. Dirichlet quasinormal modes

Let us first consider the QNMs with frequencies given

by Eq. (65). Using the expressions for ψ ð<Þ
ω and ψ ð>Þ

ω ,
Eqs. (57) and (58), we find

ψ ðDÞ
n ðr�Þ ¼ −Γ

�
−2n −

1

2

�
P
2nþ3

2

−1
2

ðtanh r�Þ; ð67Þ

which is defined in −∞ < r� < ∞. From the transforma-
tion formula [28]

P
2nþ3

2

−1
2

ðtanh r�Þ ¼ Cn sinh r�cosh2nþ
1
2r�

× F

�
−n;−n;

3

2
; tanh2r�

�
; ð68Þ

where F stands for the standard hypergeometric function
and

Cn ¼
ð−1Þn22nþ5

2Γðnþ 3
2
Þffiffiffi

π
p

Γð−n − 1
2
Þ ; ð69Þ

we see that

ψ ðDÞ
n ðr� ¼ 0Þ ¼ 0: ð70Þ

Since ψ ðDÞ
n is a solution of Eq. (54) obeying ingoing

boundary conditions at the horizon r� ¼ −∞, it follows
from Eq. (70) that, when restricted to −∞ < r� ≤ 0, the

ordinary QNM ψ ðDÞ
n can be interpreted as a QNM satisfying

a Dirichlet boundary condition at BTZ spatial infinity.
Moreover, we note that these modes are odd functions with
respect to the tortoise coordinate r�, and do not depend on
the value of the parameter a. We also mention that the
frequencies given by Eq. (65) are the known Dirichlet
quasinormal frequencies in the BTZ background [21,33].

Figure 4 shows ψ ðDÞ
n for n ¼ 0, 1, 2.

2. Neumann quasinormal modes

For a ¼ 0, the frequencies solving Eq. (66) are given by

ωk ¼ −
i
2
ð2kþ 1Þ; k ¼ 0; 1; 2; 3;…: ð71Þ

When k is odd, k ¼ 2nþ 1, these frequencies reduce to
Dirichlet frequencies, Eq. (65), and the corresponding
modes are given by Eq. (67). On the other hand, when k
is even, k ¼ 2n, we have

ωn ¼ −
i
2
ð4nþ 1Þ: ð72Þ

The mode solutions in this case are given by

ψ ðNÞ
n ðr�Þ ¼ Γ

�
1

2
− 2n

�
P
2nþ1

2

−1
2

ðtanh r�Þ; ð73Þ

and are defined in−∞ < r� < ∞. Using the transformation
formula [28]

P
2pþ1

2

−1
2

ðtanh r�Þ ¼ Cncosh2nþ
1
2r�

× F
�
−n;−n;

1

2
; tanh2r�

�
; ð74Þ

where

Cn ¼
22nþ1

2Γðnþ 1
2
Þ2

π3=2
; ð75Þ

FIG. 4. Spatial part of the ordinary quasinormal modes of
acoustic waves in the extend nozzle as functions of the non-
dimensional tortoise coordinate, and frequencies given by
Eq. (65). These QNMs are odd functions with respect to r̂�.
For −∞ < r̂� ≤ 0, these mode solutions can be interpreted as
QNMs of conformally coupled scalar waves obeying a Dirichlet
boundary condition at spatial infinity of the BTZ spacetime. Note
that these modes do not depend on the parameter a. Legend: the
red dashed line represents the QNM with n ¼ 0, the green dotted
line represents the QNMwith n ¼ 1, and the blue dot-dashed line
represents the QNM with n ¼ 2.
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we see that ψ ðNÞ
n is an even function with respect to the

coordinate r�. Moreover, from the expressions above it can
be shown that

dψ ðNÞ
n

dr�

				
r�¼0

¼ 0: ð76Þ

Hence, when restricted to −∞ < r� ≤ 0, the ordinary

QNMs, ψ ðNÞ
n , correspond to QNMs satisfying a Neumann

boundary condition at the spatial infinity of the BTZ black
hole. We note that frequencies given by Eq. (72) are the
Neumann quasinormal frequencies for the conformally
coupled scalar field in the BTZ background found

in [21]. Figure 5 shows ψ ðNÞ
n for n ¼ 0, 1, 2.

3. Robin quasinormal modes

For a ≠ 0, we cannot exactly solve Eq. (66) for ω.
Nevertheless, we still can show that the corresponding
QNMs are even functions with respect to r�. Initially we
use Eq. (57), and substitute Eq. (66) into Eq. (58) to find

dψ ð>Þ
ω

dr�

				
r�¼0þ

¼−
dψ ð<Þ

ω

dr�

				
r�¼0−

¼−
ffiffiffi
π

p
21þiωΓð1− iωÞ
Γð1

4
− iω

2
Þ2 : ð77Þ

Let us define ϕðr�Þ in 0 ≤ r� < ∞ by ϕðr�Þ ¼ ψ ð<Þ
ω ð−r�Þ.

Since the effective potential is even, it follows that ϕðr�Þ is
a solution of Eq. (54) in 0 ≤ r� < ∞. Moreover, we have

ϕð0þÞ ¼ ψ ð<Þ
ω ð0−Þ; ð78Þ

dϕ
dr�

				
r�¼0þ

¼ −
dψ ð<Þ

ω

dr�

				
r�¼0−

: ð79Þ

Then, by uniqueness of the solution of Eq. (54) obeying

conditions (78) and (79), we conclude that ψ ð<Þ
ω ð−r�Þ ¼

ϕðr�Þ ¼ ψ ð>Þ
ω ðr�Þ. The solution in the entire interval

−∞ ≤ r� < ∞ can then be written as

ψ ðRÞ
ω ðr�Þ ¼ ψ ð<Þ

ω ðr�Þθð−r�Þ þ ψ ð<Þ
ω ð−r�Þθðr�Þ; ð80Þ

from where it follows directly that ψ ðRÞ
ω ðr�Þ is an even

function.

Another property of ψ ðRÞ
ω is found by substituting

Eq. (77) into Eq. (60),

β ¼ ðdψ ð<Þ
ω =dr�Þ
ψ ð<Þ
ω

				
r�¼0−

¼ −
a
2
: ð81Þ

Hence, when restricted to −∞ < r� ≤ 0, we can interpret

the ordinary QNM, ψ ðRÞ
ω , as a QNM in the BTZ black hole

satisfying a Robin boundary condition at spatial infinity
with β ¼ −a=2.
Let us analyze Eq. (81) more closely. First, using

Eq. (66) we can rewrite it as

β ¼ 2−2iωΓð3
4
− iω

2
Þ4

πΓð1
2
− iωÞ2 : ð82Þ

Taking into account the formula [28]

Γð2zÞ ¼ π−1=222z−1ΓðzÞΓ
�
zþ 1

2

�
ð83Þ

with z ¼ 3=4 − iω=2, we find

Γ
�
1

2
− iω

�
¼ π−1=22−iω−

1
2Γ
�
1

4
−
iω
2

�
Γ
�
3

4
−
iω
2

�
: ð84Þ

Substituting Eq. (84) into Eq. (82), it follows that

β ¼ 2Γð3
4
− iω

2
Þ2

Γð1
4
− iω

2
Þ2 ; ð85Þ

which agrees with the expression found in [21] for
frequencies of quasinormal modes obeying RBCs.2

FIG. 5. Spatial part of the ordinary quasinormal modes of
acoustic waves in the extend nozzle as functions of the non-
dimensional tortoise coordinate, and frequencies given by
Eq. (72). These QNMs are even functions with respect to r̂�.
For −∞ < r̂� ≤ 0, these mode solutions can be interpreted as
QNMs of conformally coupled scalar waves obeying a Neumann
boundary condition at spatial infinity of the BTZ spacetime,
β ¼ a ¼ 0. Legend: the red dashed line represents the QNM with
n ¼ 0, the green dotted line represents the QNM with n ¼ 1, and
the blue dot-dashed line represents the QNM with n ¼ 2.

2The case of the m ¼ 0 mode of the conformally coupled
scalar field in the static BTZ black hole corresponds to parameters
k ¼ 0 and μ2 ¼ −3=4 in [21]. The parameter β for RBCs used
here relates to the parameter ζ in [21] by β ¼ − cot ζ.
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Figure 6 shows some ordinary QNM modes of the
extended nozzle with a ¼ 4 and frequencies given by
solutions of Eq. (66). The quasinormal frequencies
are ω0 ¼ 0.628244–1.21348i, ω1 ¼ 0.711933–2.69836i,
ω2 ¼ 0.501734–4.54024i. These ordinary QNMs corre-
spond to QNMs satisfying a RBC in the BTZ spacetime
with β ¼ −a=2 ¼ −2.
Summarizing the results in this section, we calculated

the ordinary QNMs of acoustic waves in the extended
nozzle and showed that all of them have definite parity:
odd ordinary QNMs correspond to QNMs in the BTZ
black hole satisfying Dirichlet boundary condition; even
ordinary QNMs correspond to QNMs in the BTZ black
hole satisfying Neumann or Robin boundary conditions.
This provides (at least in principle) a nice way to realize
Robin boundary conditions at the conformal boundary
of the BTZ black hole by means of an analog model.
Notice that, since for arbitrary initial data both types
of QNMs (odd and even) allowed by Eq. (64) will be
excited, in order to observe mode solutions correspond-
ing to QNMs obeying, say, Robin or Neumann boundary
conditions, one has to consider time evolution of even
initial data.
Hence, we can interpret the QNMs as modes with

(complex) frequencies having definite parity. This is
expected by the way the nozzle is extended. Such an
extension has a resulting even effective potential given by
Eq. (44) so that, with the asymptotic behavior given by
Eqs. (52) and (53), parity is respected. Moreover, Eqs. (78)
and (79) show that this extension represents two images of
the same Cauchy problem with boundary conditions

ψω ∼ eiωr� ; r� → ∞;

dψω

dn
ðr�Þ þ

a
2
ψωðr�Þ ¼ 0; r� → 0;

where d=dn represents the normal derivative pointing
toward r� ¼ 0. In this way, the quasinormal frequencies
obtained in such “extended configuration” are precisely the
ones found in the BTZ spacetime with the correspondence
a ¼ −2β in Eq. (43).
Before closing this section, we mention that the lack of

smoothness at the junction of the extended nozzle, resulting
from the Dirac delta in the effective potential, is an
idealization that could be removed, for instance, by con-
sidering a finite potential barrier in Eq. (44). In fact, taking
a sufficiently small ϵ > 0, a barrier with width 2ϵ and
height a=2ϵ leads to a smooth nozzle with quasinormal
frequencies arbitrarily close to the frequencies calculated
via Eqs. (65) and (66). This means that the Dirac delta in
the effective potential and the resulting nonsmooth nozzle
do not represent a significant limitation of our model.

C. Stability

For black holes in asymptotically flat spacetimes, mode
solutions growing exponentially in time (Im½ω� > 0)
appear as a result of energy extraction from the background
spacetime by the mechanism of superradiance [34].
In the case of the rotating BTZ black hole, Dappiaggi

et al. showed that exponentially growing modes occur for a
subset of RBCs [21]. There are two types of such modes:
(i) modes corresponding to superradiant instabilities, which

FIG. 6. Spatial part of the ordinary quasinormal modes of acoustic waves in the extend nozzle as functions of the nondimensional
tortoise coordinate, and with frequencies given by solutions of Eq. (66). These QNMs are even functions with respect to r̂�. For
−∞ < r̂� ≤ 0, these mode solutions can be interpreted as QNMs of conformally coupled scalar waves obeying a Robin boundary
condition with β ¼ −a=2 ¼ −2, at spatial infinity of the BTZ spacetime. The frequencies were calculated numerically and sorted by
increasing magnitude of the imaginary parts. Legend: the red dashed line represents the least-damped QNM, with frequency given by
ω0 ¼ 0.628244–1.21348i; the green dotted line represents the QNM with frequency ω1 ¼ 0.711933–2.69836i; the blue dot-dashed line
represents the QNM with frequency ω2 ¼ 0.501734–4.54024i.
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extract energy from the black hole; and (ii) modes arising
from AdS3 bulk instabilities [35], which do not extract
energy from the black hole. In both cases angular momen-
tum is extracted from the black hole.
Because our model does not account for black hole

rotation, no superradiant modes occur in the quasinormal
spectrum determined by Eq. (64). On the other hand, since
in the analog spacetime there exists exponentially growing
modes that are not superradiant, we still have reason to
ask if, for some value of a, such modes are allowed in
our model.
According to [21], modes with Im½ω� > 0 occur for

RBCs with β greater than a critical value βc,

β > βc; ð86Þ

which in our case is given by.3

βc ¼
2Γ2ð3=4Þ
Γ2ð1=4Þ : ð87Þ

In terms of a, this means that unstable modes are expected
to appear when

a < −
4Γ2ð3=4Þ
Γ2ð1=4Þ ¼ −

2

π2
Γ4

�
3

4

�
; ð88Þ

where we have used Euler’s reflection formula,
ΓðzÞΓð1 − zÞ ¼ π csc πz, with z ¼ 3=4, to establish the
last equality.
From the perspective of the Laval nozzle, the expression

under the square root in Eq. (25) shows that the sectional
area is well defined only for g ≥ 1. One can see that this is
in fact the case when r� ≤ 0 by noting that hð<Þ is a strictly
increasing function in the interval −∞ < r� < 0, and has a
minimum at r� → −∞. Since

lim
r�→−∞

Q−1
2
ðtanh r�Þ ¼

π

2
; ð89Þ

we see that this minimum is given by

lim
r�→−∞

hð<Þðr�Þ ¼
3ffiffiffi
5

p > 1: ð90Þ

Thus, we conclude that gðr�Þ > 1 in −∞ < r� ≤ 0, for any
value of a.
For r� > 0, there are two cases to consider:

ðiÞ a < −
2

π2
Γ4

�
3

4

�
; ð91Þ

ðiiÞ a ≥ −
2

π2
Γ4

�
3

4

�
: ð92Þ

In the Appendix we show that for the case (i) there always
exist r̃� such that gðr̃�Þ < 1 and, hence, our model is not
well defined when a obeys inequality (91). On the other
hand, we show that when a obeys inequality (92) the values
of gðr�Þ are always greater than 1 so that our model is well
defined.
From this discussion, it follows that our model is well

defined only for

a ≥ amin ¼ −
2

π2
Γ4

�
3

4

�
; ð93Þ

and, from the discussion before and including Eq. (88), we
conclude that unstable mode solutions never occur in this
model. This result unveils a nice feature, namely that the
allowed nozzle configurations automatically reproduce
only the boundary conditions that are always consistent
with the stability condition in the BTZ spacetime.

IV. SUMMARY AND CONCLUSION

We introduced an analog model for the BTZ black hole
which is appropriate to analyze the QNMs resulting from
Robin boundary conditions at its corresponding conformal
infinity. Applying the procedure introduced in [23], we
found a Laval nozzle configuration for which acoustic
waves traveling on the flowing gas mimics a conformally
coupled scalar field propagating on the BTZ black hole. We
found that the obtained nozzle has a finite length, and that
the spatial infinity of the BTZ spacetime is mapped into
one end of the nozzle. From there on, we considered nozzle
extensions corresponding to effective potentials formally
extending the BTZ black hole beyond its conformal
infinity. In tortoise coordinates, the extended model rep-
resents two copies of the same problem, which results in the
QNMs in BTZ spacetime (with the second copy effectively
extending the mode solution by parity into the region
beyond the spatial infinity of the BTZ spacetime).
After finding the ordinary QNMs in the extended nozzle,

we showed that these modes can be used to simulate QNMs
in the BTZ spacetime satisfying Dirichlet, Neumann and
Robin boundary conditions at its conformal boundary.
Finally, we showed that, for m ¼ 0, the range of the
parameters for which our model is well defined corre-
sponds precisely to the range of Robin boundary conditions
that allow only stable QNMs.
Although we have restricted ourselves to mode solutions

with zero angular momentum (m ¼ 0), the case of m ≠ 0
can be treated in a similar fashion if we take the black hole
mass as M ¼ m2, which turns the effective potential of
Eq. (8) into V̂ðr̂�Þ ¼ ð5=4Þsech2r̂�. As in the case of
m ¼ 0, the nozzle has a finite length and one can emulate3See footnote 2.
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RBCs by extending it, with the addition of a delta function
term aδðr�Þ to the potential. Our other results still hold in
this case; namely, the odd (even) ordinary QNMs corre-
spond to QNMs obeying Dirichlet (Neumann or Robin)
boundary conditions at the BTZ conformal infinity; and our
model is well defined for a ≥ amin, for a certain amin. The
minimum value amin still constrains the range of allowed
boundary conditions to an interval −∞ < β ≤ βmax, but
now βmax is smaller than the corresponding critical value βc
(and therefore the allowed nozzle configurations again
reproduce only the boundary conditions that are consistent
with the stability condition in the BTZ spacetime).
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APPENDIX: BEHAVIOR OF gðr�Þ FOR a
OBEYING INEQUALITIES (91) AND (92)

Suppose that a satisfies Eq. (91). Noting that

lim
r�→þ∞

Q−1
2
ðtanh r�Þ ¼ þ∞; ðA1Þ

it follows that

lim
r�→þ∞

hð>Þðr�Þ ¼ −∞: ðA2Þ

Hence we conclude that there exists r̃� such that
hð>Þðr̃�Þ ¼ 0. For this r̃�, we have gðr̃�Þ < 1, and our
model is not well defined for case (i).

Let us now analyze case (ii), given by inequality (92).
From Eq. (51), we have that

hð>Þðr�Þ ¼
ffiffiffiffiffiffiffi
3ffiffiffi
5

p
s 


2

π
Q−1

2
ðtanh r�Þ

þ πa
Γð3

4
Þ4
�
Q−1

2
ðtanh r�Þ −

π

2
P−1

2
ðtanh r�Þ

��

≥

ffiffiffiffiffiffiffi
3ffiffiffi
5

p
s

P−1
2
ðtanh r�Þ; ðA3Þ

where we have used the condition (92) and the fact that

Q−1
2
ðtanh r�Þ ≥

π

2
P−1

2
ðtanh r�Þ ðA4Þ

for 0≤ r�<∞. Inequality (A4) follows from the relation [28]

Q−1
2
ðtanh r�Þ ¼

π

2
P−1

2
ð− tanh r�Þ ðA5Þ

and the fact that Q−1=2 is an increasing function in
−∞ < r� < ∞.
Since

P−1
2
ðtanh r�Þ ≥ 1; 0 ≤ r� < ∞; ðA6Þ

the result (A3) implies

hð>Þðr�Þ ≥
ffiffiffiffiffiffiffi
3ffiffiffi
5

p
s

> 1: ðA7Þ

Thus it follows from Eq. (37) that gðr�Þ > 1 whenever the
constraint (92) is fulfilled, which means that our model is
well defined for a in case (ii).
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