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The results obtained in our previous paper are now extended to the case of stationary axially symmetric
dyonic black boles within the theory of two electromagnetic potentials. We slightly enlarge the classical
Ernst formalism by introducing, with the aid of the t and φ components of the dual potential Bμ, the
magnetic potential Φm which, similar to the known electric potential Φe, also takes constant value on the
black hole horizon. We analyze in detail the case of the dyonic Kerr-Newman black hole and show how the
Komar mass must be evaluated correctly in this stationary dyonic model. In particular, we rigorously prove
the validity of the standard Tomimatsu mass formula and point out that attempts to “improve” it made in
recent years are explained by misunderstanding of the auxiliary role that singular potentials play in the
description of magnetic charges. Our approach is symmetrical with respect to electric and magnetic charges
and, like in the static case considered earlier, Dirac strings of all kind are excluded from the physical picture
of the stationary black hole dyonic spacetimes.
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I. INTRODUCTION

In the paper [1] we have shown that the field of a
magnetic charge is described correctly by the t component
of the dual electromagnetic potential Bμ, so that the semi-
infinite singularities accompanying the φ component of the
usual potential Aμ, that must be taken into account during
some mathematical calculations, cannot be considered as
representing real physical characteristics of the magnetic
charge. In [1] our consideration was restricted exclusively
to the static spherically symmetric dyonic case that ideally
suited our objective of giving simple and clear arguments in
favor of our novel approach to the description of magnetic
charges without Dirac strings. In the present paper we shall
expand our analysis to the stationary axially symmetric
dyonic black holes for which the effect of rotation
introduces additional technical difficulties; however, these
difficulties will be circumvented in an elegant way, clearly
confirming the physical conclusions of the previous paper
in a more general situation.
In the next section we shall introduce the nonzero

components of the dual electromagnetic potential Bμ within
the framework of the well-known Ernst formulation of the
stationary axially symmetric problem [2] and define explic-
itly the magnetic potential Φm which, similar to the electric
potentialΦe introduced long agobyCarter [3], takes constant
value on the black hole horizon. The advantages of the
enhanced Ernst formalism are illustrated here by the example
of the dyonic Kerr-Newman black hole [3,4] for which
a complete set of the corresponding potentials will be

constructed. The validity of the original Tomimatsu mass
integral [5] will be proven in Sec. III with the aid of the
symmetrical representation of the electromagnetic energy-
momentum tensor. Discussion of the results obtained and
conclusions can be found in Sec. IV.

II. THE ENHANCED ERNST FORMALISM

In the theory of exact solutions of the Einstein-Maxwell
equations, the Ernst formalism, developed in two papers
[2,6] in 1968, occupies an outstanding place as constituting
the basis for various solution generating techniques and
different approaches to the multipole analysis of vacuum
and electrovac spacetimes. In particular, Ernst trivialized
the derivation of the Kerr [7] and Kerr-Newman [8] black
hole solutions that were originally obtained by means of
hardly reproducible procedures.
The main idea of Ernst’s formalism is to use the

Papapetrou line element [9],

ds2 ¼ f−1½e2γðdρ2 þ dz2Þ þ ρ2dφ2� − fðdt − ωdφÞ2; ð1Þ

with the coordinate system fρ; z;φ; tg, which describes a
generic stationary axisymmetric electrovac field, its three
unknown functions f, γ, and ω depending only on ρ and z,
for reducing the corresponding set of the Einstein-Maxwell
equations to a fundamental system of two differential
equations for the complex potentials E and Φ of the
following elegant form:
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ðRe E þΦΦ̄ÞΔE ¼ ð∇E þ 2Φ̄∇ΦÞ · ∇E;
ðRe E þΦΦ̄ÞΔΦ ¼ ð∇E þ 2Φ̄∇ΦÞ · ∇Φ; ð2Þ

where Δ and ∇ are the usual three-dimensional Laplacian
and gradient operators, respectively, and a bar over a
symbol means complex conjugation.
The potentials E andΦ are related to the metric functions

f, ω, and to the φ and t components of the electromagnetic
four-potential Aμ ¼ ð0; 0; Aφ; AtÞ by the equations

E ¼ f −ΦΦ̄þ iχ; Φ ¼ −At þ iA0
φ; ð3Þ

and by the systems of the first-order differential equations

∂ρω ¼ −ρf−2½∂zχ þ 2ImðΦ̄∂zΦÞ�;
∂zω ¼ ρf−2½∂ρχ þ 2ImðΦ̄∂ρΦÞ�; ð4Þ

and

∂ρA0
φ ¼ ρ−1fð∂zAφ þ ω∂zAtÞ;

∂zA0
φ ¼ −ρ−1fð∂ρAφ þ ω∂ρAtÞ; ð5Þ

so that the knowledge of E and Φ permits one to find the
functions f, ω, At, and Aφ from (3) to (5), while for the
determination of the remaining metric function γ one has to
solve the system

∂ργ ¼
1

4
ρf−2½ð∂ρE þ 2Φ̄∂ρΦÞð∂ρĒ þ 2Φ∂ρΦ̄Þ

− ð∂zE þ 2Φ̄∂zΦÞð∂zĒ þ 2Φ∂zΦ̄Þ�
− ρf−1ð∂ρΦ∂ρΦ̄ − ∂zΦ∂zΦ̄Þ;

∂zγ ¼
1

2
ρf−2Re½ð∂ρE þ 2Φ̄∂ρΦÞð∂zĒ þ 2Φ∂zΦ̄Þ�

− 2ρf−1Reð∂ρΦ̄∂zΦÞ; ð6Þ

the integrability condition of which are Eqs. (2).
Note that the potential A0

φ ¼ ImΦ is regarded in the Ernst
formalism as an auxiliary function, the knowledge of which
makes possible the calculation of the corresponding mag-
netic component Aφ of the four-potential Aμ. However, in
our preceding paper [1] we have already shown that Aφ
does not describe correctly the field of the magnetic charge,
so it seems desirable to supplement the above formalism
with the nonzero components of the dual electromagnetic
four-potential Bμ ¼ ð0; 0; Bφ; BtÞ that are related to the
components At and Aφ by the first-order differential
equations. Indeed, using the one-form B ¼ Btdtþ Bφdφ,
we obtain the desired relations by means of the formula

dB ¼ ⋆F; ð7Þ
where the star denotes the Hodge dual, and F is the usual
electromagnetic two-form. Taking into account that, on the
one hand,

dB ¼ dðBνdxνÞ ¼ ∂aBνdxa ∧ dxν; ð8Þ

and, on the other hand,

⋆F ¼ ⋆dðAtdtþ AφdφÞ
¼ ðgtβ∂aAt þ gφβ∂aAφÞgab

ffiffiffiffiffiffi
−g

p
εbβγδdxγ ∧ dxδ; ð9Þ

(a; b ∈ fρ; zg), we get from (8) and (9), by first equating
the coefficients at dρ ∧ dt and dz ∧ dt, the system of
differential equations for Bt in terms of At and Aφ,
namely,

∂ρBt ¼ ρ−1fð∂zAφ þ ω∂zAtÞ;
∂zBt ¼ −ρ−1fð∂ρAφ þ ω∂ρAtÞ; ð10Þ

and then, by equating the coefficients at dρ ∧ dφ and
dz ∧ dφ, the analogous system for the determination of Bφ:

∂ρBφ ¼ ρ−1f½ðρ2f−2 − ω2Þ∂zAt − ω∂zAφ�;
∂zBφ ¼ −ρ−1f½ðρ2f−2 − ω2Þ∂ρAt − ω∂ρAφ�: ð11Þ

A simple inspection of formulas (5) and (10) shows that
the t component of the dual potential Bμ coincides with the
auxiliary potential A0

φ of the Ernst formalism, i.e.,

Bt ¼ A0
φ: ð12Þ

Curiously, it is also possible to identify the component Bφ

(up to a sign) as the potential B2 introduced in the paper
[10] by Kinnersley as part of various matrix potentials of
his solution generating method; in particular, it arises as the
imaginary part of Kinnersley’s potential Φ2.
The knowledge of the full set of the components At, Aφ,

Bt, and Bφ of the four-potentials Aμ and Bμ allows one to
analyze the electric and magnetic fields of the dyonic black
hole solutions in a symmetrical way advocated long ago
by Schwinger [11]. For example, as was shown by
Carter [3], the electric potential Φe determined as the
combination

Φe ¼ −At − ω−1Aφ; ð13Þ
assumes constant value on the black hole horizon. Having
introduced explicitly the dual potential Bμ into the Ernst
formalism, we can now define “symmetrically” the mag-
netic counterpart of Φe as

Φm ¼ Bt þ ω−1Bφ; ð14Þ

the magnetic potentialΦm also taking constant value on the
horizon, which may be considered an important result
following from our approach.
The above said can be well illustrated by the dyonic Kerr-

Newman black hole solution. Following [4], we write its
defining Ernst potentials E and Φ in the form
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E ¼ σx −m − iay
σxþm − iay

; Φ ¼ qþ ip
σxþm − iay

;

x ¼ 1

2σ
ðrþ þ r−Þ; y ¼ 1

2σ
ðrþ − r−Þ;

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz� σÞ2

q
; σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − q2 − p2

p
;

ð15Þ

where the parameters m, a, q, and p stand, respectively, for
the mass, angular momentum per unit mass, electric, and
magnetic charges of the black hole (we restrict our consid-
eration to the real-valued σ only).
The corresponding metric functions f, γ, and ω have the

form

f ¼ σ2ðx2 − 1Þ − a2ð1 − y2Þ
ðσxþmÞ2 þ a2y2

;

e2γ ¼ σ2ðx2 − 1Þ − a2ð1 − y2Þ
σ2ðx2 − y2Þ ;

ω ¼ −
að1 − y2Þ½2mðσxþmÞ − q2 − p2�

σ2ðx2 − 1Þ − a2ð1 − y2Þ ; ð16Þ

while for the electric and magnetic components At and Aφ

of the four-potential Aμ we have the expressions

At ¼ −
qðσxþmÞ − apy
ðσxþmÞ2 þ a2y2

;

Aφ ¼ −pyþ að1 − y2Þ½qðσxþmÞ − apy�
ðσxþmÞ2 þ a2y2

; ð17Þ

where the integration constant on the right-hand side of Aφ

has been chosen equal to zero, thus determining the case
with two magnetic “strings.”
Turning now to the components of the dual four-

potential Bμ, we see that Bt is obtainable as just the
imaginary part of the Ernst potential Φ, while Bφ must
be found by solving the system (11). The resulting
expressions are

Bt ¼
pðσxþmÞ þ aqy
ðσxþmÞ2 þ a2y2

;

Bφ ¼ −qy −
að1 − y2Þ½pðσxþmÞ þ aqy�

ðσxþmÞ2 þ a2y2
; ð18Þ

where the choice of the integration constant in Bφ is the
same as for Aφ and defines a pair of electric “Dirac strings.”
The only plausible conclusion that can be drawn from the

structure of the components (17) and (18) is that the field of
the electric charge q in the dyonic Kerr-Newman solution is
described by At, and the field of the magnetic charge p is
determined by Bt, both components At and Bt being well
behaved and asymptotically flat. In turn, the components

Aφ and Bφ possessing the string singularities do not define
the singularity structure of this dyonic black hole solution,
playing exclusively auxiliary mathematical roles in some
calculations. For instance, the components Aφ and Bφ are
needed for the evaluation of the electric and magnetic
potentials Φe and Φm on the horizon (ρ ¼ 0, −σ < z < σ,
or x ¼ 1):

ΦH
e ¼ −At − ω−1Aφjx¼1

¼ qðmþ σÞ
ðmþ σÞ2 þ a2

;

ΦH
m ¼ Bt þ ω−1Bφjx¼1

¼ pðmþ σÞ
ðmþ σÞ2 þ a2

: ð19Þ

After introducing the angular momentum J ¼ ma, and
also recalling that ω takes a constant value on the horizon,
so that

ω−1ðx ¼ 1Þ≡ ΩH ¼ a
ðmþ σÞ2 þ a2

; ð20Þ

one can see that the above formulas verify the Smarr mass
relation [12]

m ¼ σ þ 2JΩH þ qΦH
e þ pΦH

m: ð21Þ

We now turn to the discussion of the evaluation of the
Komar mass [13] in the dyonic Kerr-Newman solution, the
issue that also addresses the question of the distribution of
that mass.

III. VALIDATING TOMIMATSU’S MASS
INTEGRAL FORMULA

To calculate the Komar [13] mass M of a rotating
charged black hole, Tomimatsu [5] derived a simple
formula

M ¼ −
1

8π

Z
H
ω∂zχdφdz; ð22Þ

where the integral is taken over the horizon of the black
hole. Formula (22) was widely used for years in application
to nonisolated black holes in the presence of other black
holes or exterior gravitational fields. In the case of the
dyonic Kerr-Newman black hole, (22) assumes the form

M ¼ −
1

4
ωH½χðy ¼ 1Þ − χðy ¼ −1Þ�; ð23Þ

where both ω and χ must be taken on the horizon (x ¼ 1).
It is not difficult to verify that the corresponding M
calculated with the help of (23) coincides with the mass
parameter m in (15).
However, the validity of the mass formula (22) in the

presence of magnetic charge was questioned in the paper
[14]. The authors of [14] used during their calculations the
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conventional representation of the electromagnetic energy-
momentum tensor

Tμ
ν ¼

1

4π

�
FμαFνα −

1

4
δμνFαβFαβ

�
; ð24Þ

which led them to a specific dyonic configuration with two
magnetic Dirac strings and an additional electromagnetic
term in the integrand of (22), both strings carrying portions
of nonzero mass, so that the mass parameterm becomes the
sum of three different contributions—one coming from the
surface integral evaluated on the horizon, and two others
arising from the singular “massive” Dirac strings. Although
the version of the dyonic Kerr-Newman black hole pre-
sented in [14] is manifestly physically inconsistent (see
[15] for the discussion of unphysical features of that
model), the mathematical computation of the Komar
integral performed in [14] looks correct (albeit with some
misprints). The explanation of such a seemingly puzzling
situation is quite simple in the framework of the ideas
developed in [1] and in the present paper: the pathologies of
a specific representation of the electromagnetic energy-
momentum tensor formally taking part in the calculation of
the Komar mass integral should not be ascribed to the
dyonic model itself since the singularity structure of the
magnetic charge is determined by the well-behaved com-
ponent Bt, and not by the function Aφ. In this respect,
the desire to automatically associate the singularities of the
auxiliary potentials with the intrinsic properties of the
dyonic black hole would have forced the authors of [14],
after using a different representation of Tμ

ν involving say
the dual electromagnetic tensor F̃μν only, to draw a new
conclusion that it is the electric string singularities of
the component Bφ that contribute to the expression of the
Komar mass, with zero contribution coming from the
magnetic charge.
As has already been shown in [1], the choice of the

energy-momentum tensor Tμ
ν in the symmetrical repre-

sentation

Tμ
ν ¼

1

8π
ðFμαFνα þ F̃μαF̃ναÞ; ð25Þ

where

Fμν ¼ ∂μAν − ∂νAμ; F̃μν ¼ ∂μBν − ∂νBμ; ð26Þ

permits one to avoid singular sources during the calculation
of the Komar mass integral, reducing the calculational
procedure exclusively to the integrals over the black hole
horizon. Although the paper [1] treated the static case, the
rotation of the black hole does not really change the
qualitative picture of the nonrotating model, and below
we shall demonstrate that the Komar mass of the dyonic
black hole is obtainable straightforwardly by means of the

original Tomimatsu’s mass integral formula (22), without
the need to consider any singular terms outside the horizon.
In his article [5], Tomimatsu started with the same

standard integral for the calculation of the Komar mass
that has been recently used in the papers [1,14],

MK ¼ 1

4π

Z
∞
DνkμdΣμν

¼ 1

4π

Z
∂M

DνkμdΣμν þ
1

4π

Z
M

DνDνkμdSμ; ð27Þ

with the same decomposition into the surface and bulk
integrals.
By choosing the horizon of the black hole as ∂M,

Tomimatsu computed the first integral on the right-hand
side of (27) and obtained

1

4π

Z
H
DνkμdΣμν ¼

1

8π

Z
H
½−ω∂zχ þ 2ωImðΦ∂zΦ̄Þ�dφdz

¼ 1

8π

Z
H
½−ω∂zχ þ 2ωðAt∂zBt

− Bt∂zAtÞ�dφdz; ð28Þ

and he also rewrote the bulk integral on the right-hand side
of (27) in the form

1

4π

Z
M

DνDνkμdSμ ¼ −2
Z
M

Tt
t

ffiffiffiffiffiffi
−g

p
d3x; ð29Þ

and the correctness of formulas (28) and (29) was not
objected in [14]. The authors of [14], however, questioned
Tomimatsu’s result of computing the integral on the right-
hand side of (29), namely,

−2
Z
M

Tt
t

ffiffiffiffiffiffi
−g

p
d3x ¼ −

1

4π

Z
H
ω ImðΦ∂zΦ̄Þdφdz; ð30Þ

which, together with (28), gives formula (22). Though they
rightly pointed out that the representation (24) of the
energy-momentum tensor used by Tomimatsu requires
additionally taking account of two singular string sources,
which modifies the horizon contribution (22) of the Komar
mass, they still erroneously ascribed the formal mass
distribution due to singularities of the auxiliary function
to the genuine dyonic Kerr-Newman space. Actually, we
have a strong impression that Tomimatsu obtained his
formula (22) after deliberately suppressing the additional
electromagnetic term discussed in [14], with the idea of
getting a physically consistent expression for the Komar
mass of a black hole. On the other hand, the authors of [14]
have restored the additional electromagnetic term in
Tomimatsu’s formula (22) for mathematical consistency,
but this has led them to the physically incorrect result for
the mass distribution in a dyonic black hole.
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Remarkably, the validity of Tomimatsu’s mass integral
(22) can be readily demonstrated by employing the
symmetrical representation of the electromagnetic energy-
momentum tensor (25) for the evaluation of the integral on
the right-hand side of (29). Then, following the steps
outlined in the paper [1] for that representation, the bulk
integral on the left-hand side of (30) reduces to the surface
integral over the horizon, yielding

−2
Z
M
Tt

t
ffiffiffiffiffiffi
−g

p
d3x¼ 1

4π

Z
H
ðAt∂zBφ−Bt∂zAφÞdφdz; ð31Þ

where, at the last stage of the computation, we have used
the substitutions

ρ−1f½ðρ2f−2 − ω2Þ∂ρAt − ω∂ρAφ� ¼ −∂zBφ ð32Þ

and

ρ−1f½ðρ2f−2 − ω2Þ∂ρBt − ω∂ρBφ� ¼ ∂zAφ; ð33Þ

the latter relation being the corollary of the first equations
of the systems (10) and (11).
Now, combining formulas (28) and (31) in one, and also

taking into account that ω assumes a constant value on the
horizon, we get for the Komar integral (27) the expression

MK ¼ 1

8π

Z
H
½−ω∂zχ þ 2ωAt∂zðBt þ ω−1BφÞ

þ 2ωBt∂zð−At − ω−1AφÞ�dφdz; ð34Þ

and lastly, after noting that the second and third terms in the
integrand of (34) vanish because these contain the deriv-
atives of the potentials Φe and Φm, both potentials taking
constant values on the horizon, we obtain the final
expression for the Komar mass

MK ¼ −
1

8π

Z
H
ω∂zχdφdz; ð35Þ

which fully coincides with Tomimatsu’s formula (22).
Therefore, the use of the symmetrical representation (25)

of the electromagnetic energy-momentum tensor during the
calculation of the Komar mass integral leads straightfor-
wardly to the original formula obtained by Tomimatsu in
the paper [5]. We think this gives us a nice example of a
brilliant physical intuition prevailing over scholastic math-
ematical estimates.

IV. DISCUSSION AND CONCLUSIONS

The derivation of formula (35) exclusively involving the
integrals over the event horizon unequivocally suggests that
the whole Komar mass evaluated in this way is located
inside the horizon of the black hole. In this respect, it seems
remarkable that in the generic expression (27) for the

Komar mass the integration is set to be performed over a
sphere of infinite radius, thus giving an opportunity to use,
if necessary, singular functions during the computational
process. The presence of the electromagnetic field obvi-
ously complicates the evaluation of the Komar mass, both
technically and conceptually, compared with the pure
vacuum case since, as we have seen in our previous paper
and in the present one, the correct choice of the represen-
tation of the electromagnetic energy-momentum tensor is
required to avoid the presence of artificial singularities in
the dyonic black holes; consequently, in the case when an
unsymmetrical representation of the energy-momentum
tensor is employed, a very accurate physical interpretation
of the results obtained is needed. Thus, the use of the
representation (24) in the paper [14] urged the authors of
that paper to evaluate the mass integral (27) with the help of
the pathological φ component of the potential Aμ. So, it is
not a surprise that they could only arrive, within the
framework of their approach, at the mass distribution
spreading along the whole symmetry axis, and this purely
technical result was erroneously claimed by them to be an
intrinsic property of the dyonic Kerr-Newman black hole.
At the same time, what those authors really did was simply
calculating in a not rational way the same value of the
Komar mass (located entirely inside the black hole horizon)
that otherwise follows directly from Tomimatsu’s for-
mula (22) when the symmetrical representation of the
energy-momentum tensor is used. It is also clear that since
a certain part of the total Komar mass m calculated in the
paper [14] for the Kerr-Newman dyon comes from the
string singularities, the horizon contribution there differs
from the value obtainable by means of Tomimatsu’s
formula in the absence of Dirac strings, which explains
the appearance of the additional electromagnetic term in the
mass formula of the paper [14].
Summarizing the results obtained in our short series of

two papers, it should be first of all pointed out that the
knowledge of only the four-potential Aμ is generically not
sufficient for a correct description of the electromagnetic
field which also requires the knowledge of the dual four-
potential Bμ. In the case of stationary axially symmetric
fields, these potentials Aμ and Bμ have the nonzero t and φ
components, namely At, Aφ, Bt, and Bφ, among which it is
the t components At and Bt that are the basic key functions
defining the physical properties of the electric and magnetic
field, respectively, in particular their singularity structure,
while the φ components Aφ and Bφ play an auxiliary role in
the description of the electromagnetic field, and the
singularities of the functions Aφ and Bφ are not character-
istic of the proper electric or magnetic field.
We have shown that the use of a specific representation

of the electromagnetic energy-momentum tensor is able to
provoke erroneous interpretations of the physical properties
of dyonic black holes: thus, the choice of the canonical
representation (24) for Tμ

ν in the Komar mass integral leads
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to the appearance of magnetic Dirac strings [16] as the
sources of mass, while the representation of Tμ

ν involving
only the dual electromagnetic tensor F̃μν (see formula (8) of
[1]) gives rise to massive Dirac strings generated by the
electric charge. This naturally singles out the symmetrical
representation (25) of Tμ

ν as the most appropriate one for
the dyonic solutions because no contributions due to string
singularities emerge during the evaluation of the mass
integral with the help of (25).
It follows directly from our analysis that Dirac strings

(magnetic and electric ones) must be excluded from the
physical picture of dyonic spacetimes. Nevertheless, the
semi-infinite singularities that are characteristic mathemati-
cal attributes of the components Aφ and Bφ in the presence
of nonzero magnetic and electric net charges still remain a
legitimate part of the general mathematical toolkit and are
expected to be taken into account as purely mathematical
objects in some calculations involving the functions Aφ

and Bφ.
Bearing in mind our basic idea that electromagnetism is

necessarily a theory of two electromagnetic potentials, we
have slightly enlarged the well-known Ernst formalism by
explicitly introducing into it the components Bt and Bφ of
the dual electromagnetic potential Bμ. This improves the
formalism in two ways. First, it now permits a unified
symmetrical treatment of the electric and magnetic fields, in
particular the introduction for the first time of the magnetic
potential Φm which takes a constant value on the horizon,
half a century later than Carter’s electric potential Φe [3].
Second, after our amendment, the Ernst formalism looks
not only more complete but also logistically refined: the
Ernst auxiliary magnetic function A0

φ, which was needed
before just for computing the “genuine” component Aφ of
Aμ, and which we identified as the t component of the dual
potential Bμ, now plays, alongside At, the leading role in
the description of the electromagnetic field, while Aφ plays
the role of an auxiliary function. This, in our opinion,

enriches the Ernst formalism conceptually, as the knowl-
edge of the electromagnetic Ernst potential Φ ¼ −At þ
iBt supplies us directly with the explicit expressions of
the physical components of the electromagnetic four-
potentials determining the intrinsic properties of the
electromagnetic field, without the need of finding Aφ.
We notice in this respect that it is the component Bt, and
not Aφ, that takes part for instance in the definition of the
relativistic multipole moments of the electromagnetic
field [17–21], which gives us another good illustration
of a generic secondary role of the component Aφ in the
physical analysis.
We hope that our present paper, as well as the paper [1],

presenting some new ideas about the description of
magnetic charges, could also be helpful in the search
and experimental detection of dyonic sources. Of course,
a natural expectation would be that some known elemen-
tary particles, in addition to electric charges they have,
might also carry magnetic charges, such particles thus
being the dyonic objects. Taking the dyonic Kerr-Newman
solution considered in Sec. II as the simplest model for a
stationary dyon, we observe that the corresponding mag-
netic dipole moment of the source is aq, while the electric
dipole moment is equal to −ap, the latter moment arising
due to the rotation of the magnetic charge. Therefore, the
presence of the electric dipole moment in elementary
particles might be considered in principle as an indirect
indication that the particles are endowed with nonzero
magnetic charges.
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