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In the present paper we argue that it is advantageous to study the dyonic black hole spacetimes within the
theory of two electromagnetic potentials, and we use the dyonic Reissner-Nordström solution to
demonstrate that the field of the monopole magnetic charge is correctly described by the t component
of the dual electromagnetic potential. As a result, the Dirac string associated with the φ component of the
usual electromagnetic four-potential becomes just a mathematical object, without any physical content, that
arises in some calculations when one employs unsymmetrical representations of the electromagnetic field.
We use three different, though equivalent, forms of the electromagnetic energy-momentum tensor to
calculate the Komar mass of the Reissner-Nordström black hole, and in one case the Dirac string is linked
to the magnetic charge, in another to the electric charge, while the third, symmetrical case, is string free.
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I. INTRODUCTION

The idea that magnetic charges are located “at the end of
an unobservable string, which is the line along which the
electromagnetic potentials are singular” belongs to Dirac
[1], and one may think that it introduces certain physical
asymmetry between electricity and magnetism. This
unsymmetrical approach to electromagnetism was criti-
cized by Schwinger [2] who advocated the symmetrical
viewpoint embodying invariance under charge rotation
which leads to the integer quantization condition, as
opposed to Dirac’s “half-integer” condition. An important
ingredient of Schwinger’s symmetrical approach was the
introduction of a second electromagnetic vector potential
defined nonlocally in terms of the field strengths; it looks
like Schwinger’s remarkable intuition was telling him that
the magnetic charge cannot be properly described exclu-
sively by means of the ordinary potential Aμ.
The dyonic black hole solutions within the framework of

general relativity were first considered by Carter [3] who
introduced the magnetic charge parameter into the Reissner-
Nordström (RN) and Kerr-Newman (KN) [4] spacetimes on
physical grounds. However, his analysis of the thermody-
namic properties of black holes was restricted to the case of
zero magnetic charge only, most probably to avoid the
problem of singular electromagnetic sources. The dyonic
solutions also widely arise in other field theories (see, e.g.,
[5,6]), which shows generic interest in the magnetic monop-
oles in modern theoretical physics, thus motivating and
justifying efforts aimed at their correct description.
A few years ago, a discussion of the Dirac strings in

dyons sprang up in relation to the problem of the mass

distribution in the dyonic KN black hole, when in the paper
[7] such distribution was assumed to be the same as in the
usual electrically charged KN black hole, while in the paper
[8] a mathematical evaluation of the mass integral gave
rise to a model with two additional semi-infinite massive
sources due to Dirac strings. Although the latter model was
already criticized for its unphysical features [9], we believe
a convincing analytical demonstration of the incorrectness
of the entire Dirac-string concept is still needed to clarify
and broaden our knowledge about the dyonic spacetimes in
general and magnetic charges in particular. In the present
paper, the first of a short series of two papers, we consider
the static RN dyonic black hole solution which, in our
opinion, is the best example of a spacetime for the
presentation and illustration of both the basic ideas on
the description of magnetic monopoles and the related
mathematical calculations, while in the second paper [10]
we shall extend our approach to the stationary spacetimes
and the dyonic KN black hole. It is precisely the spherical
symmetry of the dyonic RN solution that helped us actually
realize that the φ component of the potential Aμ is nothing
more than an auxiliary mathematical function whose
singularity structure should not be ascribed to the RN
dyon itself, whereas the field of the magnetic charge is
correctly described by the t component of the dual
electromagnetic potential Bμ that does share the spherical
symmetry of the RN spacetime. The reader will see that the
presence or absence of the string term in the mass integrals
essentially depends on the choice of the specific repre-
sentation of the energy-momentum tensor, and one repre-
sentation even gives rise to a “Dirac string” associated with
the electric charge.
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Our paper is organized as follows. In the next section we
consider the Maxwell equations in the symmetrical form
and give three different, though equivalent, representations
of the energy-momentum tensor of the electromagnetic
field in terms of the usual and dual electromagnetic tensors.
Here we also present the dyonic RN solution and calculate
two nonzero components of the corresponding dual four-
potential Bμ. In Sec. III the Komar mass [11] of the dyon
RN solution is calculated in three different ways, clearly
demonstrating the auxiliary mathematical character of
the components endowed with singular Dirac strings.
The results obtained are discussed in Sec. IV.

II. TWO-POTENTIAL FORMULATION OF
MAXWELL’S EQUATIONS AND THE

DYONIC RN SOLUTION

Motivated by Schwinger’s symmetrical approach to the
description of dyons [2], we write the vacuum Maxwell
equations in the absence of currents in the form

∂νð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0; ∂νð

ffiffiffiffiffiffi
−g

p
F̃μνÞ ¼ 0; ð1Þ

where

F̃μν ¼ 1

2
ϵμναβFαβ ð2Þ

is the dual electromagnetic tensor.
Equations (1) imply the existence of the potentials Aμ

and Bμ, such that

Fμν ¼ ∂μAν − ∂νAμ; F̃μν ¼ ∂μBν − ∂νBμ; ð3Þ

which in the language of differential forms rewrites as

F ¼ dA; ⋆F ¼ dB; ð4Þ

the star symbol denoting Hodge dual.
The energy-momentum tensor of the electromagnetic

field is normally taken in the form

Tμ
ν ¼

1

4π

�
FμαFνα −

1

4
δμνFαβFαβ

�
; ð5Þ

and, as will be shown in the next section, it is precisely this
representation of Tμ

ν that leads to the appearance of
singular terms due to the magnetic field in the mass
integrals. Apart from (5), it is advantageous to have two
other equivalent representations of Tμ

ν which involve the
dual electromagnetic tensor F̃μν. For this purpose we use
the identity [12]

AμαBνα − ÃμαB̃να ¼
1

2
δμνAαβBαβ; ð6Þ

which is valid for any two antisymmetric tensors Aμν and
Bμν, and their duals Ãμν and B̃μν. Then the second
representation of Tμ

ν takes the symmetrical form

Tμ
ν ¼

1

8π
ðFμαFνα þ F̃μαF̃ναÞ; ð7Þ

while for the third representation in terms of the dual tensor
only we get

Tμ
ν ¼

1

4π

�
F̃μαF̃να −

1

4
δμνF̃αβF̃αβ

�
: ð8Þ

It is our purpose to demonstrate that the field of the
magnetic charge is better described by the dual potential Bμ

than by Aμ. So, we can take a dyonic RN black hole as the
simplest model for our analysis, described by the metric [3]

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2 θdφ2Þ;

f ¼ 1 −
2m
r

þ q2 þ p2

r2
; ð9Þ

with the corresponding electromagnetic field defined by the
one-form

A ¼ Atdtþ Aφdφ ¼ −
q
r
dt − p cos θdφ; ð10Þ

where m, q, and p are the parameters of mass, electric
charge, and magnetic charge, respectively.
The RN metric (9) represents a static spherically sym-

metric spacetime of point charges for which we now
should calculate the components of the dual potential
Bμ. These can be found by solving the following differ-
ential equations:

∂rBt ¼ −
1

r2 sin θ
∂θAφ; ∂θBt ¼

f
sin θ

∂rAφ;

∂rBφ ¼ −f−1 sin θ∂θAt; ∂θBφ ¼ r2 sin θ∂rAt; ð11Þ

which are obtainable from the second equation in (4) by
taking the dual of F and by noting that dB ¼ dðBνdxνÞ.
From (10) and (11) we readily get

B ¼ Btdtþ Bφdφ ¼ p
r
dt − q cos θdφ; ð12Þ

where the integration constants have been assigned zero
values.
By comparing the expressions (10) and (12), we can see

that both A and B have a well-behaved t component, as well
as a string φ component. Taking into account the spherical
symmetry of the dyonic RN spacetime, it would be
plausible to draw a conclusion that the electric field is
determined by the t component At ¼ −q=r of A, whereas
the magnetic field is defined by the t component Bt ¼ p=r
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of B, both At and Bt sharing spherical symmetry of the RN
solution. In this respect, having two electromagnetic
potentials at hand, the affirmation that the magnetic
monopole charge p is described by the string component
Aφ ¼ −p cos θ would be equivalent to affirming that the
electric field of a pointlike charge q is defined by
Bφ ¼ −q cos θ, with an “electric Dirac string” consisting
of two semi-infinite singularities at θ ¼ 0; π. Therefore, in
view of the auxiliary mathematical role of the components
Aφ and Bφ it would be obviously wrong to ascribe the string
singularity of the former to the field of the magnetic charge
p, and the string singularity of the latter to the field of the
electric charge q, on equal grounds.
We shall now illustrate a purely mathematical character

of the components Aφ and Bφ by calculating the Komar
mass of the dyonic RN solution in three different ways.

III. CALCULATION OF THE KOMAR MASS
INTEGRAL

The Komar mass is defined by the surface integral

MK ¼ −
1

8π

Z
∞
⋆dk; ð13Þ

where k ¼ gttdt is the covector associated to the timelike
Killing vector ∂t.
Let us first see how (13) can be evaluated straightfor-

wardly just using the metric (9), for which purpose we
calculate (13) for some sphere of constant radius r and then
take the limit r → ∞. By noting that in our case

⋆dk ¼ ∂rgttr2 sin θdθ ∧ dφ; ð14Þ

we have

Mr ¼ −
1

8π

Z
r¼const

ð−∂rfÞr2 sin θdθdφ ¼ 1

2
r2∂rf

¼ m −
q2 þ p2

r
; ð15Þ

so that

MK ¼ lim
r→∞

Mr ¼ m: ð16Þ
To analyze the contribution of the electromagnetic field

into the mass integral (13) in more detail, it is advantageous
to rewrite (13) in the form

MK ¼ 1

4π

Z
∞
DνkμdΣμν ¼

1

4π

Z
∂M

DνkμdΣμν

þ 1

4π

Z
M

DνDνkμdSμ ð17Þ

by means of Ostrogradsky’s formula, where kμ ¼ δμt (here
and below we have adopted some of the notations and
conventions of the paper [8] for the reader’s convenience).

If ∂M is chosen as a sphere of constant radius r, then the
first integral on the right-hand side of (17) is justMr in (15),

and in particular if r ¼ rþ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2 − p2

p
, rþ

being the radius of the event horizon (the case that is of
interest to us), then

1

4π

Z
H
DνkμdΣμν ¼ m −

q2 þ p2

rþ
: ð18Þ

Following [8], we now introduce the electromagnetic
field explicitly into the “geometrical” formula for MK by
writing the bulk integral from (17) in the form

1

4π

Z
M

DνDνkμdSμ ¼ −2
Z
M

Tμ
νkνdSμ ð19Þ

with the aid of the well-known relations

DνDνkμ ¼ −Rμ
νkν ¼ −8πTμ

νkν: ð20Þ

Below we will calculate the integral on the right-
hand side of (19) for three different (but equivalent)
representations, (5), (7), and (8), of the energy-momentum
tensor Tμ

ν. Of course, in all three cases we must get the
same result ðq2 þ p2Þ=rþ, as the integrals (16) and (18)
are known.

A. The canonical representation

Note that in this representation, given by formula (5), the
bulk integral (19) will contain the function Aφ explicitly
after the Ostrogradsky theorem is applied for converting
(19) into the surface integral, and hence the contribution of
the “magnetic Dirac string” must be taken into account.
Bearing this in mind, we get

1

4π

Z
M

DνDνkμdSμ ¼ −2
Z
M

Tt
t

ffiffiffiffiffiffi
−g

p
d3x

¼ −
1

4π

Z
M
ðFtaFta − FφaFφaÞ

ffiffiffiffiffiffi
−g

p
d3x

¼ 1

4π

Z
M

∂a½
ffiffiffiffiffiffi
−g

p ðFtaAt − FφaAφÞ�d3x

¼ 1

4π

Z
Σa

ðFtaAt − FφaAφÞdΣa

¼ 1

4π

Z
H
FtrAtdΣr −

1

4π

Z
S
FφθAφdΣθ;

ð21Þ

(a ∈ fr; θg) where “H” refers to the horizon and “S” refers
to the string. In the last step we have taken into account that

Z
S
FtθAtdΣθ ¼ 0;

Z
H
FφrAφdΣr ¼ 0; ð22Þ
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because Ftθ ¼ 0 and Fφr ¼ 0. Finally, we readily obtain

Z
H
FtrAtdΣr ¼

Z
H
FtrAtr2 sin θdθdφ ¼ 4πq2=rþ;

Z
S
FφθAφdΣθ ¼ 2lim

θ→π

Z
∞

rþ

Z
2π

0

FφθAφ
1

r2 sin θ
drdφ

¼ −4πp2=rþ; ð23Þ

which leads to ðq2 þ p2Þ=rþ for (21).
Note that in this representation of Tμ

ν the contribution of
the electric charge into the bulk integral (21) comes from
the horizon, and the contribution of the magnetic charge
comes from the string.

B. The dual representation

This case, defined by formula (8), is fully analogous to
the previous one, with the roles of the electric and magnetic
fields interchanged:

1

4π

Z
M

DνDνkμdSμ ¼ −
1

4π

Z
M
ðF̃taF̃ta − F̃φaF̃φaÞ

ffiffiffiffiffiffi
−g

p
d3x

¼ 1

4π

Z
M
ðF̃ta

∂aBt − F̃φa
∂aBφÞ

ffiffiffiffiffiffi
−g

p
d3x

¼ 1

4π

Z
M

∂a½
ffiffiffiffiffiffi
−g

p ðF̃taBt − F̃φaBφÞ�d3x

¼ 1

4π

Z
Σa

ðF̃taBt − F̃φaBφÞdΣa

¼ 1

4π

Z
H
F̃trBtdΣr −

1

4π

Z
S
F̃φθBφdΣθ;

ð24Þ

where we have taken into account that

Z
S
F̃tθBtdΣθ ¼ 0 and

Z
H
F̃φrBφdΣr ¼ 0: ð25Þ

The evaluation of the last two integrals in (24) yields

Z
H
F̃trBtdΣr ¼ 4πp2=rþ;

Z
S
F̃φθBφdΣθ ¼ −4πq2=rþ;

ð26Þ

and in this representation of the energy-momentum tensor
it is the electric charge that develops an “electric Dirac
string,” so that this time the electrostatic contribution
into the bulk integral (24) comes from the string, while
the contribution of the magnetic charge comes from the
horizon!.

C. The symmetrical representation

In the representation (7) only the well-behaved compo-
nents of the electromagnetic potentials are involved in the
calculations of the bulk integral (19), so that no any
auxiliary string contribution arises during the application
of Ostrogradsky’s theorem converting the bulk integral into
the surface integral:

1

4π

Z
M

DνDνkμdSμ ¼ −
1

4π

Z
M
ðFtaFta þ F̃taF̃taÞ

ffiffiffiffiffiffi
−g

p
d3x

¼ 1

4π

Z
M
ðFta

∂aAt þ F̃ta
∂aBtÞ

ffiffiffiffiffiffi
−g

p
d3x

¼ 1

4π

Z
M

∂a½
ffiffiffiffiffiffi
−g

p ðFtaAt þ F̃taBtÞ�d3x

¼ 1

4π

Z
Σa

ðFtaAt þ F̃taBtÞdΣa

¼ 1

4π

Z
H
FtrAtdΣr þ

1

4π

Z
H
F̃trBtdΣr;

ð27Þ

and evaluation of the last two integrals readily gives
Z
H
FtrAtdΣr ¼ 4πq2=rþ;

Z
H
F̃trBtdΣr ¼ 4πp2=rþ:

ð28Þ
Therefore, in the symmetrical representation of Tμ

ν, the
calculation of the Komar mass of the dyonic RN source
reduces to evaluation of the surface integrals over the event
horizon only. As we have shown, the choice of the particular
representation does not alter the final result when the
singularity structure of the functions involved in the concrete
calculational scheme is carefully taken into account.

IV. DISCUSSION AND CONCLUSIONS

The analysis carried out in the previous two sections
clearly shows that the problem of the Dirac string associated
in the literature with the magnetic charge is actually an
artificial mathematical issue arising as a result of a wrong
identification of the potential describing the field of the
magnetic monopole. Thus we have seen that the same
contributions into the mass integral can be made by the
horizon or string terms, and these are interrelated as follows:

Z
H
FtrAtdΣr ¼ −

Z
S
F̃φθBφdΣθ ¼ 4πqΦe;

Z
H
F̃trBtdΣr ¼ −

Z
S
FφθAφdΣθ ¼ 4πpΦm; ð29Þ

where we have introduced the horizon values of the electric
and magnetic potentials Φe and Φm by the well-known
formulas
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Φe ¼ q=rþ; Φm ¼ p=rþ; ð30Þ

and now it is manifest thatΦm is just the dual componentBt
evaluated on the horizon.
It should also be stressed that the distribution of the

Komar mass along the horizon and the magnetic (or
electric) string singularity of the component Aφ (or Bφ)
appearing during the computation of the mass integral (13)
is just a mathematical abstraction that should not be
interpreted as reflecting the real physical distribution of
mass in the dyonic RN black hole, which is of course
spherically symmetric. In this respect it would probably be
worth drawing analogy with the static vacuum Weyl
gravitational fields which all satisfy the Laplace equation
Δψ ¼ 0 for an auxiliary function ψ , but the real physical
field is f ¼ expψ which apparently has a different singu-
larity structure than ψ .
A curious feature of the bulk integral (19) additionally

pointing at its auxiliary technical character is that it does
not seem to be actually involved in the Smarr mass formula
[13], the latter important relation following directly from
the surface integral (18) evaluated on the horizon. Indeed,
after rewriting (18), on the one hand, in terms of the
potentials Φe and Φm as

1

4π

Z
H
DνkμdΣμν ¼ m − qΦe − pΦm; ð31Þ

and recalling, on the other hand, that, as was shown by
Carter [3],

1

4π

Z
H
DνkμdΣμν ¼

κ

4π
A; ð32Þ

where κ is the surface gravity and A the area of the event
horizon, we immediately arrive at the Smarr relation
verified by the dyonic RN black hole

m ¼ κ

4π
Aþ qΦe þ pΦm: ð33Þ

As a final remark, it would probably be worth mention-
ing that our results suggesting the nonexistence of magnetic
and electric Dirac strings are particularly important in
application to the systems of many dyonic black holes,
for which a correct calculation of individual Komar masses
would be practically impossible in the presence of numer-
ous string singularities. Our symmetrical approach in which
the individual masses are evaluated on the horizons, and
hence are entirely located inside the horizons, does not have
this kind of problem, confirming for instance the definition
of the Komar mass in a binary system of magnetically
charged Reissner-Nordström black holes [14].

ACKNOWLEDGMENTS

We would like to thank the referee for valuable sugges-
tions. This work was partially supported by CONACyT
of Mexico and by “Secretaría de Educación, Ciencia,
Tecnología e Innovación de la Ciudad de México
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