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In this work, we present a convenient method to perform the topological analysis of black hole
thermodynamics. Utilizing the spinodal curve, thermodynamic critical points of a black hole are endowed
with a topological quantity, Brouwer degree, which reflects intrinsic properties of the system under smooth
deformations. Particularly, in our setup it can be easily calculated without an exact solution of critical
points. This enables us to conveniently investigate the topological transition between different thermo-
dynamic systems, and give a topological classification for them. In this framework, topology of Lovelock
AdS black holes with spherical horizon geometry is explored. Results show that charged black holes in
arbitrary dimensions can be classified into the same topology class, whereas the d ¼ 7 and d ≥ 8

uncharged black holes are in different topology classes. Moreover, we revisit the relation between different
phase structures of these black holes from the viewpoint of topology. Some general topological properties
of critical points are also discussed.
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I. INTRODUCTION

The study of black hole thermodynamics continues to be
one of the most exciting areas in gravitational theory. Of
especial interest are the phase transitions in asymptotically
anti–de Sitter (AdS) black holes, motivated by the straight-
forward definition of thermodynamic equilibrium and the
possible interpretation in the context of gauge/gravity duality
[1–3]. Early examples include the Hawking-Page phase
transition occurred between thermal radiation and large
AdS black holes [4], which can be interpreted as the
confinement/deconfinement phase transition of gauge field
[5], and the van der Waals (VdW) like phase transition found
between charged small and large AdS black holes [6–9].
A topic of active research in recent years is the

interpretation of the cosmological constant as the thermo-
dynamic pressure [10–12]. This perspective, known as the
extended phase space, has shed new insights into the
thermodynamics and phase transitions of AdS black holes,
including understanding the Hawking-Page phase transi-
tion as a solid/liquid transition [13], and strengthening the
analogy between van der Waals fluids and charged AdS
black holes [14–17]. Plenty of novel phase behaviors are
also discovered in this framework, such as the reentrant
large/small/large black hole phase transition [18,19], triple

points where small/large/intermediate black holes can
coexist [20,21], superfluid black holes [22] admitting a
λ-line phase transition reminiscent of the superfluid tran-
sition in liquid 4He, etc.
In spite of phase transitions differing in their forms,

critical points always emerge and record crucial thermo-
dynamic information. Locally, a second-order phase tran-
sition occurs at the critical point. Critical exponents can be
derived from the behavior of physical quantities near this
point, which are believed to be universal and related to
general features of the physical system [23]. For black hole
systems, in most cases, they were found to have the
standard set of critical exponents expected from mean field
theory [24]. A special case is the isolated critical point from
Lovelock gravity, which was shown to possess nonmean-
field exponents [25]. Globally, the presence of multiple
critical points1 generally implies intriguing phase behav-
iors, such as the reentrant phase transition (typically two
critical points [18,19]), triple point (typically three critical
points [20,21]), and in particular the superfluid black hole
which admits infinite critical points [22]. Therefore, dis-
covering the nature of critical points is quite valuable,
which can provide additional insight into black hole
thermodynamics and may also reveal more features about
quantum gravity.
To this aim, topology has been introduced to the critical

points of black hole thermodynamics [26]. This approach*bainingchen@stu.scu.edu.cn
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1Here we take the unphysical critical points (with negative
pressure or temperature) into account.
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begins by constructing a two-dimensional vector field with
zero points designed to be critical points of the thermo-
dynamic system. Following Duan’s ϕ-mapping topological
current theory [27,28], one can assign a topological charge
for each critical point to reflect its local property.
Concretely, the first-order phase transition can extend from
the critical point with negative topological charge, but not
from the one with positive topological charge. Moreover,
topological charges at critical points can be added together to
construct a total topological charge for the thermodynamic
system.This allows us to determine theglobal property of the
thermodynamic system, and classify various thermodynamic
systems into a few classes. Thermodynamics of several AdS
black holes has been revisited and classified utilizing such an
approach [26,29,30]. It is also interesting to see that the
isolated critical point can be interpreted as a topological
phase transition of a “vortex/antivortex pair” [31].
In this paper, we present an alternative method to

perform the topological analysis of thermodynamics and
phase transitions of black holes. This method relies on a
topological quantity Brouwer degree [32], which is invari-
ant under smooth deformations of the system and reflects
system’s intrinsic properties. Utilizing features of spinodal
curve [17], including its continuous differentiability and
relation to critical points, we construct such a topological
quantity for the thermodynamic system. In particular, as we
will see, this quantity can be directly calculated by using a
mathematical formula without an exact solution of critical
points. This enables us to conveniently probe the topo-
logical transition between different thermodynamic sys-
tems, and give them a topological classification. We shall
employ this approach to explore the topological properties
of AdS black holes in Lovelock gravity [33,34]. On the
one hand, these black holes possess rich phase behaviors
[35–37], providing an excellent arena for discovering
topological features of black hole thermodynamics. On
the other hand, the topology of black hole thermodynamics
in Gauss-Bonnet gravity, namely the 2nd-order Lovelock
gravity, has been investigated [29]. It would be interesting
to examine whether the higher curvature gravity, such as the
3rd-order Lovelock gravity, would affect the topological
properties of black hole thermodynamics.
The structure of the paper is as follows. In Sec. II, we

give a brief introduction to the Brouwer degree. Then, by
use of the spinodal curve, we relate the Brouwer degree to
balck hole thermodynamics. In Sec. III, the topology of
Lovelock black holes’ thermodynamics is investigated. The
charged case and uncharged case are discussed separately.
In Sec. IV, further discussions on the relation between
topological degree (charge) and critical point are given.
Finally, we summarize and discuss our results in Sec. V.

II. BROUWER DEGREE AND SPINODAL CURVE

Consider an open and bounded set X ⊂ Rn with (at least)
a C1-smooth map f∶X → Rn. Let y ∈ fnfð∂XÞ be a

regular value of f, then the set f−1ðyÞ ¼ fx1; x2; � � �g with
xn ∈ X has a finite number of points, such that fðxnÞ ¼ y.
Suppose the Jacobian JðxnÞ ¼ detð∂f=∂xnÞ ≠ 0, one can
define a topological quantity, called the Brouwer degree of
the map [32]

degðf; X; yÞ ¼
X

xn∈f−1ðyÞ
sgnJðxnÞ; ð1Þ

where sgn denotes the sign function

sgnðxÞ ¼
8<
:

−1 x < 0

0 x ¼ 0

1 x > 0

: ð2Þ

This quantity is a topological characteristic of the map
itself, which does not depend on the choice of the regular
value y and remains constant under continuous deforma-
tions of the map.
Now we focus on the one-dimensional case. Let X ¼

½α; β� ⊂ R and f∶X → R be a continuously differentiable
function with fðαÞ ≠ 0 and fðβÞ ≠ 0, and we choose y ¼ 0

such that fxng ¼ f−1ðyÞ be the set of zeroes of f, as shown
in Fig. 1. The nonzero Jacobian JðxnÞ now restricts
f0ðxnÞ ≠ 0, i.e., 0 is a regular value of f. Then the
Brouwer degree (1) can be expressed as

degðf; X; 0Þ ¼
X

xn∈f−1ð0Þ
sgnf0ðxnÞ: ð3Þ

Following Refs. [38,39], we can associate a topological
charge Qn ≡ sgnf0ðxnÞ for each zero point, and then sum
over all contributions to construct the total topological
charge (degree)

Qtotal ¼
X
n

Qn: ð4Þ

Note that the topological charge Qn can have two values,
−1 or þ1, according to the slope at the zero point xn, as

FIG. 1. A continuously differentiable function fðxÞ with
x ∈ ½α; β�, and fðαÞ ≠ 0, fðβÞ ≠ 0.
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shown in Fig. 1. The green and red points represent the zero
points with negative and positive topological charges
respectively. In the case of Fig. 1, the total topological
charge can be easily read as Qtotal ¼ −1.
Moreover, we notice that there is another simple way to

calculate the total topological charge, which is accom-
plished by using the following formula [40]:

1

2
½sgnfðβÞ − sgnfðαÞ� ¼

X
xn∈f−1ð0Þ

sgnf0ðxnÞ: ð5Þ

From this equation, we can directly obtain the total
topological charge by studying the asymptotic behavior
of f, even if the zero points are undetermined. For the case
of Fig. 1, we have Qtotal ¼ ð−1 − 1Þ=2 ¼ −1, which is
consistent with the result obtained before. Note that Eq. (5)
must be used with caution, which can only be applicable for
a continuously differentiable function with a nonzero
boundary, see Ref. [40] for more discussions.
To apply this tool to the topological study of thermo-

dynamics, one has to endow the function f and its zero
points with specific physical significance. Recall that for a
general state equation T ¼ TðS; P; ziÞ, the critical point can
be identified with

�
∂T
∂S

�
P;zi

¼ 0;

�
∂
2T
∂S2

�
P;zi

¼ 0: ð6Þ

Using the first equation, one can eliminate the parameter P,
and then get the spinodal curve Tsp ¼ TðS; ziÞ [17]. Now
the condition (6) turns into

ð∂STspÞzi ¼ 0: ð7Þ

Hence, we can let f ≡ ð∂STspÞzi , and thus zero points of f
exactly become critical points of the thermodynamic
system. In this context, we can endow a topological charge
for each critical point, and a total topological charge for the
system to investigate the global properties.
To make this claim more clear, we first take a simple

example—the charged AdS black hole system. Identifying
the cosmological constant as the thermodynamic pressure
P, the state equation in d-dimensional spacetime reads [41]

T ¼
16πr2h

�
P − 2πq2r4−2dh

ω2
d−2

�
þ dðd − 5Þ þ 6

4πðd − 2Þrh
; ð8Þ

where rh is the horizon radius, q the electric charge,
and ωd ¼ 2πðdþ1Þ=2=Γððdþ 1Þ=2Þ the volume of a unit
d-sphere. After simple calculation, the spinodal curve can
be obtained as

Tsp ¼
1

2πrh

�
−
32π2q2r6−2dh

ω2
d−2

þ d − 3

�
: ð9Þ

Taking d ¼ 4, q ¼ 1 for example, we show the isobaric
curves and the spinodal curve in Fig. 2. It is clear that the
critical point CP1 is exactly the extreme point of spinodal
curve. Note that the condition for critical point ð∂STspÞq¼0

is equal to ð∂rhTspÞq ¼ 0.
Now we construct the function

f ≡ ð∂rhTspÞq ¼
16πð2d − 5Þq2r4−2dh

ω2
d−2

−
d − 3

2πr2h
; ð10Þ

and it is obvious that this function is continuously differ-
entiable. It is also easy to see that for any d ≥ 4 and q > 0,

fðrh → 0þÞ ∼ ð2d − 5Þq2r4−2dh

ω2
d−2

→ þ∞; ð11Þ

fðrh → þ∞Þ ∼ −
d − 3

r2h
→ 0−; ð12Þ

and thus f admits a nonzero boundary. For these features,
we can directly use Eq. (5) to calculate the total topological
charge:

Qtotal ¼
1

2
½sgnfðrh → þ∞Þ − sgnfðrh → 0þÞ�

¼ 1

2
ð−1 − 1Þ ¼ −1: ð13Þ

Therefore we recover the d ¼ 4, q ¼ 1 result obtained in
Ref. [26] using a different method, and further show that for
any d ≥ 4 and q > 0, the charged AdS black holes share the
same topological charge −1. This also implies that there is
at least one critical point presented in the system, other-
wise, a zero topological charge will be obtained. Note
that we capture this information without actually solv-
ing Eq. (7).

P<Pc

P=Pc

P>Pc

rh0

f

CP1
–

0 1 2 3 4 5 6 7
0.00

0.01

0.02

0.03

0.04

0.05

0.06

rh

T

CP1

FIG. 2. Isobaric curves and spinodal curve (gray dashed line)
for the charged AdS black hole. Inset: f ≡ ð∂rhTspÞq vs rh
diagram. We have set d ¼ 4 and q ¼ 1.
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To obtain the topological charge for each critical point,
one can study the behavior of function f at zero points. In
the inset of Fig. 2, we display the d ¼ 4, q ¼ 1 case.
Obviously, there is a zero point with negative slope,
indicating a critical point CP1 with the topological charge

QCP1 ¼ sgnf0ðCP1Þ ¼ −1: ð14Þ
In fact, using the condition (6), one can show that charged
AdS black holes only have one critical point, and thus
QCP1 ≡Qtotal¼−1. Moreover, since both f¼ð∂rhTspÞq¼0

and f0 ¼ ð∂rh;rhTspÞq < 0 are satisfied, we conclude that a
critical point with negative topological charge denotes a
maximum point of spinodal curve. As shown in Fig. 2,
near such a point, the stable black hole branches (CP ¼
Tð∂STÞ−1P;zi > 0) are on both sides, while the unstable black
hole branch is in the middle, and one can draw a first-order
phase transition line in T – S plane between these stable
black hole branches using Maxwell’s equal area law.
However, whether such a phase transition can actually
occur should be carefully examined by the free energy. This
will be discussed further in Sec. IV.
On the contrary, a critical point with positive topological

charge denotes a minimum point of spinodal curve. Near
this point, the unstable black hole branches are on both
sides, whereas the stable black hole branch is in the middle,
and thus one cannot draw a first-order phase transition line.
It is worth noting that in the above discussion, we suppose

f0ðxnÞ ≠ 0. In this case, it is obvious that the adjacent critical
points must have opposite topological charges, as shown in
Fig. 1. Under the continuous deformations of f, if f0ðxjÞ ¼ 0

is satisfied for some zero point xj, therewill be a critical point
with zero slope. One can treat this point as the result of the
annihilation of adjacent critical points, and endow it with a
zero topological charge. Since the total topological charge
does not change in this process, Eq. (5) is still applicable.
Moreover, similar topological discussion can also be done in
the P − V criticality and q −Φ criticality, see Appendixes A
and B for more details.
So far, we have constructed a convenient method to

investigate the topology of black hole thermodynamics.
The physical significance of the topological charge has also
been clearly described in the context of charged AdS black
holes. In the following sections, we shall focus on a more
complex system—Lovelock black holes, in which more
interesting topological properties will be disclosed.

III. THERMODYNAMIC TOPOLOGY OF
LOVELOCK BLACK HOLES

The action of the Lovelock gravity in d-dimensional
spacetime with a Maxwell field is given by [33]

I ¼ 1

16πGN

Z
ddx

ffiffiffiffiffiffi
−g

p �Xkmax

k¼0

α̂ðkÞLðkÞ − 4πGNFabFab

�
;

ð15Þ

where α̂ðkÞ are the Lovelock coupling constants and LðkÞ are
the 2k-dimensional Euler densities, given by the contrac-
tion of k powers of the Riemann tensor

LðkÞ ¼ 1

2k
δðkÞRa1b1

c1d1…Rakbk
ckdk ; ð16Þ

where δðkÞ ¼ δa1b1…akbk
c1d1…ckdk

is totally antisymmetric in both sets

of indices. The Lð0Þ, Lð1Þ and Lð2Þ correspond to the
cosmological constant term, Einstein–Hilbert term and
quadratic Gauss–Bonnet term, respectively. The integer
kmax ¼ ½d−1

2
� restricts that only for d > 2k, LðkÞ contributes

to the equations of motion.
Considering the charged AdS black holes in Lovelock

gravity with static spherically symmetric, the ansatz is
given by

ds2 ¼ −gðrÞdt2 þ gðrÞ−1dr2 þ r2dΩ2
ðκÞd−2; ð17Þ

F ¼ Q
rd−2

dt ∧ dr; ð18Þ

where Q denotes the electric charge, dΩ2
ðκÞd−2 is the line

element of a (d − 2)-dimensional compact space with

volume denoted by ΣðκÞ
d−2 and constant curvature

ðd − 2Þðd − 3Þκ, in which κ ¼ 0;þ1;−1 correspond to
flat, spherical, hyperbolic black hole horizon geometries
respectively.
For this ansatz, the field equations derived from Eq. (15)

can be reduced to [42–44]

Xkmax

k¼0

αk

�
κ − g
r2

�
k
¼ 16πGNM

ðd − 2ÞΣðκÞ
d−2r

d−1

−
8πGNQ2

ðd − 2Þðd − 3Þ
1

r2d−4
: ð19Þ

where

α0 ¼
α̂ð0Þ

ðd − 1Þðd − 2Þ ; α1 ¼ α̂ð1Þ;

αk ¼ α̂ðkÞ
Y2k
n¼3

ðd − nÞ for k ≥ 2; ð20Þ

and M is the ADM mass of the black hole. To avoid the
possible solutions with naked singularities [45] and con-
form to the string tension explanation in heterotic string
theory, we focus on the αk > 0 case in the followings.
Specially, to recover general relativity in the small curva-
ture limit, α1 is set to be 1.
By using the Hamiltonian formalism, the thermody-

namic quantities of the black hole, including the black hole
mass M, the temperature T, the entropy S and the electric
potential Φ, are calculated as [44]
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M ¼ ΣðκÞ
d−2ðd − 2Þ
16πGN

Xkmax

k¼0

αkκ
krd−1−2kþ þ ΣðκÞ

d−2
2ðd − 3Þ

Q2

rd−3þ
; ð21Þ

T ¼ 1

4πrþDðrþÞ
�X

k

καkðd − 2k − 1Þ
�

κ

r2þ

�
k−1

−
8πGNQ2

ðd − 2Þr2ðd−3Þþ

�
; ð22Þ

S ¼ ΣðκÞ
d−2ðd − 2Þ
4GN

Xkmax

k¼0

kκk−1αkrd−2kþ
d − 2k

; ð23Þ

Φ ¼ ΣðκÞ
d−2Q

ðd − 3Þrd−3þ
; ð24Þ

where rþ is the horizon radius determined as the largest
root of fðrþÞ ¼ 0, and

DðrþÞ ¼
Xkmax

k¼1

kαkðκr−2þ Þk−1: ð25Þ

Identifying the cosmological constant Λ ¼ −α̂0=2 as the
thermodynamic pressure,

P ¼ −
Λ

8πGN
¼ α̂0

16πGN
; ð26Þ

the extended first law of black hole thermodynamics reads
[36,46]

δM ¼ TδSþ VδPþ
XK
k¼1

ΨðkÞδαk; ð27Þ

where ΨðkÞ represents the quantity conjugate to αk,

ΨðkÞ ¼ ΣðκÞ
d−2ðd − 2Þ
16πGN

κk−1rd−2kþ

�
κ

rþ
−

4πkT
d − 2k

�
; ð28Þ

and V is the thermodynamic volume conjugate to P,

V ¼ 16πGNΨð0Þ

ðd − 1Þðd − 2Þ : ð29Þ

Working in an ensemble that fixes αk for k ≥ 1, in terms
of the following dimensionless quantities [36]:

Q ¼ qffiffiffi
2

p α
d−3
4

3 ; α ¼ α2ffiffiffiffiffi
α3

p ; m ¼ 16πM

ðd − 2ÞΣðκÞ
d−2α

d−3
4

3

;

rþ ¼ vα
1
4

3; T ¼ tα
−1
4

3

d − 2
; p ¼ 4

ffiffiffiffiffi
α3

p
P; ð30Þ

one can reinterpret (22) as the state equation for 3rd-order
Lovelock Uð1Þ charged black holes,

t ¼ 1

4πvð2ακv2 þ v4 þ 3Þ
�
−4πq2v10−2d

þ ðd − 7Þðd − 2Þκ þ αðd − 5Þðd − 2Þv2

þ ðd − 3Þðd − 2Þκv4 þ 4pπv6
�
; ð31Þ

and the condition (6) for critical points now becomes

�
∂t
∂v

�
p;q;α

¼ 0;

�
∂
2t

∂v2

�
p;q;α

¼ 0: ð32Þ

The possible phase transitions can be investigated based
on the behavior of the Gibbs free energy in the “canonical
ensemble,” given by [46,47]

G ¼ M − TS ¼ GðP; T;Q; α1;…; αkmax
Þ: ð33Þ

with the dimensionless counterpart [36]

gðt; p; q; αÞ ¼ 1

ΣðκÞ
d−2

α
3−d
4

3 G ¼ −
1

16πð3þ 2ακv2 þ v4Þ
�

4πpvdþ3

ðd − 1Þðd − 2Þ − κvdþ1 þ 24πκpαvdþ1

ðd − 1Þðd − 4Þ −
αvd−1ðd − 8Þ

d − 4

þ 60πpvd−1

ðd − 1Þðd − 6Þ −
2κα2vd−3ðd − 2Þ

d − 4
þ 4κvd−3ðdþ 3Þ

d − 6
−
3αvd−5ðd − 2Þðd − 8Þ

ðd − 4Þðd − 6Þ −
3κvd−7ðd − 2Þ

d − 6

�

þ q2

4ð3þ 2ακv2 þ v4Þðd − 3Þvd−3
�
v4ð2d − 5Þ

d − 2
þ 2ακð2d − 7Þv2

d − 4
þ 3ð2d − 9Þ

d − 6

�
: ð34Þ
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The stable state corresponds to the global minimum of
this quantity for its fixed parameters t, p, q, and α.
For κ ¼ 0, one can find there is no critical point,

which means that any planar black holes of higher-order
Lovelock gravity in arbitrary dimensions do not exhibit
critical behavior. Thus there is no urge to study their
thermodynamic topology. On the other hand, the
thermodynamic topology for the κ ¼ −1 case has been
investigated and an intriguing result has been given; the
isolated critical point—a peculiar thermodynamic criti-
cal point that occurs in the phase diagram of hyperbolic
black holes, can be interpreted as a topological phase
transition of a vortex/antivortex pair [31]. In what
follows, we shall concentrate on the thermodynamic
topology of κ ¼ þ1 case, in which rich phase behaviors
such as triple points and reentrant phase transitions

exist, and thus interesting topological properties would
be expected.

A. Charged case

We first study the topology of thermodynamics in the
charged case, i.e., q > 0. From Eq. (31) and the first
equation of (32), the spinodal curve is given by

tsp ¼
d − 2

2πv2dþ1ð6αv2 þ v4 þ 15Þ
�
−4πq2v10 þ 3ðd − 7Þv2d

þ 2ðd − 5Þαv2dþ2 þ ðd − 3Þv2dþ4

�
; ð35Þ

and then we can define

f ≡ ð∂vtspÞq;α ¼ −
d − 2

2πv2dþ2ð6αv2 þ v4 þ 15Þ2
�
60πð9 − 2dÞq2v10 þ 24παð7 − 2dÞq2v12 þ 4πð5 − 2dÞq2v14

þ 45ðd − 7Þv2d þ 4αð6d − 57Þv2dþ2 þ 6ð−10α2 þ 2α2d − 5dþ 5Þv2dþ4

− 12αv2dþ6 þ ðd − 3Þv2dþ8

�
: ð36Þ

Obviously, this function is continuously differentiable.
In addition, for any d ≥ 7 and q > 0, we have

fðv → 0þÞ ∼ ðd − 2Þð2d − 9Þq2
v2d−8ð6αv2 þ v4 þ 15Þ2 → þ∞;

fðv → þ∞Þ ∼ −
ðd − 2Þðd − 3Þv6
ð6αv2 þ v4 þ 15Þ2 → 0−; ð37Þ

hence f admits an nonzero boundary. By use of Eq. (5), the
total topological charge can be directly calculated as

Qtotal ¼
1

2
½sgnfðv → þ∞Þ − sgnfðv → 0þÞ�

¼ 1

2
ð−1 − 1Þ ¼ −1: ð38Þ

Since this result does not depend on the values of
parameters ðq; αÞ and dimension d, we conclude that
charged Lovelock AdS black holes with spherical horizon
geometry share the same topological charge, indicating
they can be classified into the same topology class. More
interestingly, they belong to the same topology class as the
charged AdS black holes, which may imply some simi-
larities between their thermodynamics.
Actually, in the d ¼ 7 case, one can find that the

equation of state only admits one critical point, and the
system exhibits the typical small/large black hole phase
structure. While in the d ¼ 8 case, the state equation
displays one or three critical points (including the unphys-
ical ones) in appropriate parameter ranges, and a triple

point may arise when a small charge q is added to the black
hole, at which the small, large and intermediate black holes
can coexist together. Taking α ¼ 2.8 and q ¼ 0.0175 for
example, we display such a phase structure in Fig. 3. The
invariant total topological charge shown above thus sug-
gests that the small/intermediate/large black hole phase
structure can be interpreted as the topological transforma-
tion of small/large black hole phase structure. According to
the behavior of f shown in the inset of Fig. 3, it is easy to
verify that the total topological charge indeed takes −1:

Qtotal ¼ QCP1 þQCP2 þQCP3 ¼ −1þ 1 − 1 ¼ −1: ð39Þ
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FIG. 3. Small/intermediate/large black phase structure for the
charged AdS Lovelock black hole with spherical horizon geom-
etry. Inset: f ≡ ð∂vTspÞq;α vs v diagram. We have set ðd; α; qÞ ¼
ð8; 2.8; 0.0175Þ.
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Meanwhile, the invariant total topological charge also
indicates that critical points must emerge, or annihilate in
pairs, between the ones with opposite topological charges.
Similar phenomena can also be seen in Refs. [38,39,48–
52]. To actually observe such a behavior, we take d ¼ 8 and
consider a process of varying α and fixing q ¼ 0.022. In
this process, α can be treated as a “time evolution factor” of
the system. The critical points are numerically solved using
condition (32), and the corresponding topological charge
for each critical point is obtained according to the slope of
f. Results are summarized in Fig. 4. When α < α1 ≈ 2.804,
there is only one critical point CP1 with topological charge
−1. When α goes exactly to α1, besides the original CP1,
we observe a critical point CP with zero slope of f, i.e.,
zero topological charge. Further increasing α, CP1 still
exists, while CP generates two new critical points:

CP → CP2 þ CP3; ð40Þ
in which CP2 has topological charge þ1, whereas CP3 has
topological charge −1. With the increasing of α, these two
critical points move away from each other, while CP1 and
CP2 get closer. When α goes to α2 ≈ 2.890, we observe a
reverse process—two critical points merge into one critical
point:

CP1 þ CP2 → CP; ð41Þ

where again CP has zero topological charge. Beyond α2,
CP also disappears, and only CP3 is left. Interestingly,
creation and annihilation do not need to occur between the
same pair of critical points. The most important feature is
that they must occur between critical points with opposite
topological charges, to leave the total topological charge
unchanged.

B. Uncharged case

Now we turn to study the uncharged case. Setting q ¼ 0
in Eq. (35), the spinodal curve reduces to

tsp ¼
d − 2

2πvð6αv2 þ v4 þ 15Þ
�
3ðd − 7Þ þ 2ðd − 5Þαv2

þ ðd − 3Þv4
�
; ð42Þ

and we define

f ≡ ð∂vtspÞα
¼ −

d − 2

2πv2ð6αv2 þ v4 þ 15Þ2
�
45ðd − 7Þ þ 4αð6d − 57Þv2

þ 6ð−10α2 þ 2α2d− 5dþ 5Þv4−12αv6þðd − 3Þv8
�
:

ð43Þ

Analogous to the charged case, this function is continu-
ously differentiable. However, unlike the charged case, we
find that this function has different asymptotic behaviors in
different dimensions. Specially, when d ¼ 7, we have

fðv → 0þÞd¼7 ∼ α;

fðv → þ∞Þd¼7 ∼ −
v6

ð6αv2 þ v4 þ 15Þ2 → 0−: ð44Þ

While for d > 7, it becomes

fðv → 0þÞd>7 ∼ −
ðd − 2Þðd − 7Þ

v2ð6αv2 þ v4 þ 15Þ2 → −∞;

fðv → þ∞Þd>7 ∼ −
v6

ð6αv2 þ v4 þ 15Þ2 → 0−: ð45Þ

For positive αk, α > 0. From Eq. (5), we know that the
total topological charge in different dimensions should be
given as

Qtotal ¼
1

2
½sgnfðv → þ∞Þ − sgnfðv → 0þÞ�

¼
�−1 for d ¼ 7

0 for d > 7.
ð46Þ

Therefore, the total topological charge of d ¼ 7 uncharged
Lovelock black holes is the same as the ones of charged
AdS black holes and charged Lovelock AdS black holes,
indicating they can be classified into the same topology
class. A detailed analysis shows that the equation of state
admits only one critical point and the system demonstrates
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0.0

0.5
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FIG. 4. Pair creation and annihilation of critical points for the
charged AdS Lovelcock black hole. The green and red curves
represent the branches with negative and positive topological
charges, respectively. The black dashed line on the left denotes
α1 ≈ 2.804, while the right one denotes α2 ≈ 2.890. The arrows
refer to the direction of increasing α. We have set d ¼ 8
and q ¼ 0.022.
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the small/large black hole phase structure, which may be
expected for a same topology class. While the total
topological charge of the d > 7 black holes is different
from the d ¼ 7 ones, indicating they are in different
topology classes. Such a difference in topology may imply
some distinct differences in their thermodynamics. Indeed,
a new phase transition—the reentrant phase transition—
was found in the d > 7 case [35,36].
Taking d ¼ 8 and α ¼ 2.884 for example, we show the

corresponding phase diagram in Fig. 5. Different from the
small/large black hole phase transition, the reentrant phase
transition consists of a VdW-like first-order phase transition
(yellow curve) and a zeroth-order phase transition (red
curve). Moreover, two critical points exist in the phase
diagram. From the inset displayed in Fig. 5, one can see that
these critical points possess opposite topological charges,
such that

Qtotal ¼ QCP1 þQCP2 ¼ 0: ð47Þ

On the other hand, due to the invariant total topological
charge for d > 7 black holes, one can expect that there
exists pair creation or annihilation of critical points. To
observe this behavior, we numerically solve the critical
points for d ¼ 8 black holes with different values of α, and
then obtain the topological charge for each critical point by
reading the corresponding slope of f. Results are shown in
Fig. 6. It is clear that when α < α1 ≈ 2.886, there are two
branches of critical points, CP1 and CP2, possessing
opposite topological charges. With the increasing of α,
they get closer to each other. When α goes exactly to α1,
two critical points merge into one:

CP1 þ CP2 → CP; ð48Þ

where CP has zero topological charge. Further increasing α,
CP disappears, and there is no critical point anymore.

IV. TOPOLOGICAL CHARGE AND REAL
CRITICAL POINT

In this section, we would like to discuss the relation
between the topological charge and the critical point in
more detail. In Sec. II, we have pointed out that a critical
point with negative topological charge denotes a maximum
point of spinodal curve. Near such a point, using Maxwell’s
equal law, one can draw a first-order phase transition line
in the T − VT − S plane. While for a critical point with
positive topological charge, it denotes a minimum point of
spinodal curve, and one cannot draw a first-order phase
transition line near such a point. In Ref. [26], the authors
conclude that the first-order phase transition can extend
from the conventional critical point (topological charge
−1), while the presence of the novel critical point (topo-
logical charge þ1) cannot serve as an indicator of the
presence of the first-order phase transition near it. In other
words, the topological charge can be used to distinguish the
real critical point (second-order phase transition point) and
the pseudo one.
For the black holes we studied, this conclusion holds for

the vast majority of cases. It is clear that for the phase
structures of most interest shown in Figs. 3 and 5, the
conventional critical points indeed connect with the first-
order phase transition curve, but the novel ones do not.
Nevertheless, we observe a special case in which this
conclusion is not applicable, as shown in Fig. 7(a). Such a
case occurs in the d ¼ 8 charged Lovelock AdS black hole,
with q ¼ 0.021 and α ¼ 2.8. Similar to the small/inter-
mediate/large black hole phase structure, three critical
points exist in the system, with topological charges

QCP1 ¼ −1; QCP2 ¼ þ1; QCP3 ¼ −1: ð49Þ

However, there are only two stable phases, the large black
hole and the small black hole, together with a first-order

v0

f

CP2
-

CP1
+

0.72550 0.72555 0.72560 0.72565
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FIG. 5. Reentrant phase structure for the d ¼ 8 uncharged
Lovelock black hole. Inset: f ≡ ð∂vtspÞα vs v diagram.
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FIG. 6. Pair annihilation of critical points for the uncharged
AdS Lovelock black hole. The green and red curves represent the
branches with negative and positive topological charges, respec-
tively. The arrows refer to the direction of increasing α. Two
branches intersect at α1 ≈ 2.886. We have set d ¼ 8.
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phase transition curve (red line) between them. We can find
that only CP3 connects with the phase transition curve,
whereas CP1 and CP2 are below it. Hence, in this case, the
topological charge is failing to identify whether a critical
point is real or pseudo. In fact, near the critical pressure and
temperature of CP1, one can also observe the swallowtail
behavior in the Gibbs free energy curve, as shown in the
inset of Fig. 7(b). But the black hole phases here do not
correspond to a minimal energy, and thus CP1 is also a
pseudocritical point. It is worth noting that a similar case
was also observed in the d ¼ 6 charged Gauss-Bonnet AdS
black holes [29].
Although the negative topological charge may not

indicate a real critical point, it still can be a necessary
condition; the real critical points can only emerge from the
critical points with negative topological charge.

V. CONCLUSIONS AND DISCUSSIONS

Starting from the Brouwer degree, we have constructed
an approach to probe the topological properties of black
hole thermodynamics. The spinodal curve was shown to be
a powerful tool to derive the topological information of
thermodynamic system. By defining the derivative of
spinodal curve as a new function f, we can associate a
topological charge (degree) for each zero point, i.e., the
critical point, and sum over all contributions to construct a
total topological charge for the thermodynamic system.
Utilizing a mathematical formula, Eq. (5), the analytic
calculation of total topological charge is now straightfor-
ward; one just needs to examine the asymptotic behavior of
spinodal curve’s derivative. This enables us to investigate
the topological transition between different thermodynamic
systems, and to give a topological classification for them
conveniently.
As an example, we first investigated the topology of

charged AdS black holes in arbitrary dimensions. We
showed that for any d ≥ 4 and q > 0, the charged AdS

black holes have the same topological charge −1, which
generalizes the d ¼ 4, q ¼ 1 result obtained in Ref. [26].
Then we turned to study the topology of a more complex

system—Lovelock AdS black holes. In particular, we
focused on the κ ¼ þ1 case, i.e., the black holes with
spherical horizon geometry. For the charged case, it was
demonstrated that d ≥ 7 black holes with arbitrary param-
eters have the same topological charge −1. This indicates
that spherical charged Lovelock AdS black holes should be
classified into the same topology class with charged AdS
black holes, as well as the charged Gauss-Bonnet AdS
black holes [29]. Thus, it seems that the higher curvature
corrections do not change the topology class of black hole
thermodynamics in Uð1Þ charged black holes. On the other
hand, it is known that these black holes hold two different
phase structures—the small/large black hole phase struc-
ture and small/intermediate/large black hole phase struc-
ture. While from the viewpoint of topology, they are
equivalent; the small/intermediate/large black hole phase
structure can be interpreted as the topological transforma-
tion of the small/large one.
For the uncharged case, we found that the d ¼ 7

(topological charge −1) and d ≥ 8 (topological charge 0)
black holes are in different topology classes. Such a
topological change is found to be accompanied by a change
in phase structures—from the small/large black hole phase
structure to the reentrant phase structure. Combing the
relation between phase structures in the charged case, we
conclude that the topological change can be a prognostic
indicator of the change in phase structures, but not
vice versa.
Some general topological properties of critical points

were also discussed: (i) For a black hole system with
nonzero topological charge, there is at least one critical
point. (ii) For a black hole system with invariant topological
charge, critical points must emerge, or annihilate in pairs,
between the ones with opposite topological charges.
(iii) Real critical points can only emerge from the critical
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FIG. 7. (a) Small/large black hole phase structure for the d ¼ 8 charged Lovelock black hole. (b) g − t diagram.We have set q ¼ 0.021
and α ¼ 2.8.
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points with negative topological charge. Especially, if a
system has a total topological charge −1, from (i), we know
that there is at least one critical point. Combing property
(ii), this explains why there is always an odd number of
critical points in the system, instead of an even number.
Analogously, for a system with topological charge 0, there
may be no critical points or an even number of critical
points. These results confirm the parity conjecture of
critical points proposed in Ref. [29], which says that,
“for odd (even) number of critical points, the total topo-
logical charge is an odd (even) number.” Note that the
critical points we are talking about here include the ones
with negative critical pressure and temperature, and
exclude the very special ones with topological charge 0.
It is worth emphasizing that, to obtain the total topo-

logical charge, one does not need to get an exact solution
for critical points. Some useful information can be directly
obtained from this topological quantity, such as the
existence and number (odd or even) of critical points, as
well as the possible transition in phase structures. This
would be quite helpful for the investigation on black hole
thermodynamics.
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APPENDIX A: TOPOLOGY IN P−V
CRITICALITY

In the P − V criticality, the state equation can be
generally expressed as P ¼ PðV; T; ziÞ, with the critical
points identified by

�
∂P
∂V

�
T;zi

¼ 0;

�
∂
2P
∂V2

�
T;zi

¼ 0: ðA1Þ

Using the first equation, one can eliminate the parameter
T and obtain the spinodal curve Psp ¼ PðV; ziÞ. Then a
function f ≡ ð∂VPspÞzi can be constructed to investigate
the topological properties of critical points in the P − V
criticality. Taking the charged AdS black hole system for
example, the state equation reads

P ¼
32π2q2r6−2dh

ω2
d−2

þ 4πðd − 2ÞrhT − dðd − 5Þ − 6

16πr2h
; ðA2Þ

which is obtained by rearranging Eq. (8). The spinodal
curve is calculated as

Psp ¼
dðd − 5Þ þ 6

16πr2h
−
2πð2d − 5Þq2
ω2
d−2r

2d−4
h

: ðA3Þ

As displayed in Fig. 8, the extreme point of spinodal curve
exactly corresponds to the thermodynamic critical point.
The function f can be constructed as

f ≡ ð∂rhPspÞq ¼ −
dðd − 5Þ þ 6

8πr3h
þ 4π2ðd − 2Þð2d − 5Þq2

πω2
d−2r

2d−3
h

;

ðA4Þ

which is continuously differentiable, and for any d ≥ 4
and q > 0,

fðrh → 0þÞ ∼ 4π2ðd − 2Þð2d − 5Þq2
πω2

d−2r
2d−3
h

→ þ∞; ðA5Þ

fðrh → þ∞Þ ∼ −
dðd − 5Þ þ 6

8πr3h
→ 0−; ðA6Þ

and thus f also admits a nonzero boundary. With Eq. (5),
the total topological charge reads

Qtotal ¼
1

2
½sgnfðrh → þ∞Þ − sgnfðrh → 0þÞ�

¼ 1

2
ð−1 − 1Þ ¼ −1: ðA7Þ

This result is the same as the one we obtained in Sec. II via
T − S criticality, which may be expected due to the
equivalence of critical point conditions (6) and (A1).
The nonzero value suggests that at least one critical point
presents in the system. Moreover, as displayed in Fig. 8,
near the critical point with negative topological charge, the
stable black hole branches are on both sides, while the
unstable black hole branch is in the middle, and one can
draw a first-order phase transition line in P–V plane
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FIG. 8. Isothermal curves and spinodal curve (gray dashed line)
for the charged AdS black hole in the P − rh plane. Inset: f ≡
ð∂rhPspÞq vs rh diagram. We have set d ¼ 4 and q ¼ 1.
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between these stable black hole branches using Maxwell’s
equal area law. But note that whether such a phase
transition can actually occur should be carefully examined
by the free energy, as we discussed in Sec. IV.
A slightly complex example is the charged spherical

Lovelock AdS black hole, whose state equation in terms of
the dimensionless quantities Eq. (30) is given by

p ¼ t
v
−
ðd − 3Þðd − 2Þ

4πv2
þ 2αt

v3
−
αðd − 5Þðd − 2Þ

4πv4

þ 3t
v5

−
ðd − 7Þðd − 2Þ

4πv6
þ q2

v2ðd−2Þ
; ðA8Þ

with the spinodal curve

psp ¼
1

4πv2ðdþ3Þð6αv2þv4þ15Þ

�
−12πð2d−9Þq2v10

−8παð2d−7Þq2v12−4πð2d−5Þq2v14
þ3ðd−7Þðd−2Þv2dþ3αðd−9Þðd−2Þv2dþ2

þ2ðd−2Þð−5α2þα2d−2d−4Þv2dþ4

þαðd−9Þðd−2Þv2dþ6þðd−3Þðd−2Þv2dþ8

�
: ðA9Þ

The function f ≡ ð∂vpspÞq;α can be calculated as

f ¼ ðd − 2Þð2αv2 þ v4 þ 3Þ
2πv2dþ7ð6αv2 þ v4 þ 15Þ2

�
60πð2d − 9Þq2v10

þ 24παð2d − 7Þq2v12 þ 4πð2d − 5Þq2v14
− 45ðd − 7Þv2d − 12αð2d − 19Þv2dþ2

− 6ð−10α2 þ 2α2d − 5dþ 5Þv2dþ4

þ 12αv2dþ6 − ðd − 3Þv2dþ8

�
: ðA10Þ

This function is continuously differentiable. In addition, for
any d ≥ 7 and q > 0, we have

fðv → 0þÞ ∼ ðd − 2Þð2d − 9Þð3þ 2αv2 þ v4Þq2
v2d−3ð6αv2 þ v4 þ 15Þ2 → þ∞;

ðA11Þ

fðv → þ∞Þ ∼ −
ðd − 2Þðd − 3Þð3vþ 2αv3 þ v5Þ

2πð6αv2 þ v4 þ 15Þ2 → 0−;

ðA12Þ

hence f admits a nonzero boundary. The total topological
charge can be then obtained as

Qtotal ¼
1

2
½sgnfðv → þ∞Þ − sgnfðv → 0þÞ�

¼ 1

2
ð−1 − 1Þ ¼ −1: ðA13Þ

Again, this result is consistent with the one we obtained in
Sec. III.

APPENDIX B: TOPOLOGY IN q −Φ
CRITICALITY

One can also observe the VdW-like critical behaviors in
the q −Φ plane, by identifying the electric charge qwith the
fluid pressure, the electric potentialΦwith the fluid volume,
and the black hole inverse temperature β ¼ 1=T with the
fluid temperature [7–9,14]. It would be interesting to
examine the applicability of our topological discussion in
such case. The state equation now can be generally expressed
as q ¼ qðΦ; β; ziÞ, with the critical points identified by

�
∂q
∂Φ

�
β;zi

¼ 0;

�
∂
2q

∂Φ2

�
β;zi

¼ 0: ðB1Þ

Using the first equation, one can eliminate the parameter β
and get the spinodal curve qsp ¼ qðΦ; ziÞ. Then a function
f ≡ ð∂ΦqspÞzi can be constructed to investigate the topo-
logical properties of critical points in the q −Φ criticality.
Similarly, taking the charged AdS black hole system for
example, the state equation reads

2ðd − 3Þ2qΦ2d−5
d−3 − ðd − 2Þðd − 3ÞqΦ 1

d−3

þ ðd − 2Þð4πÞd−2d−3q
d−2
d−3

ðd − 3Þ 1
d−3ω

1
d−3
d−2β

−
ðd − 1Þðd − 2Þð4πÞ 2

d−3q
d−1
d−3

ðd − 3Þ 2
d−3ω

2
d−3
d−2l

2Φ 1
d−3

¼ 0; ðB2Þ

which is obtained by inserting

Φ ¼ 4πq
ðd − 3Þωd−2rd−3h

ðB3Þ

into Eq. (8). The spinodal curve can be then calculated as

q
2

d−3
sp −

ðd − 3Þd−1d−3ω
2

d−3
d−2l

2Φ 2
d−3

ð4πÞ 2
d−3ðd − 1Þðd − 2Þ

× ½ðd − 2Þ − 2ðd − 3Þð2d − 5ÞΦ2� ¼ 0: ðB4Þ

i.e.,
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qsp ¼
ðd − 3Þd−12 ωd−2ld−3Φ
4πðd − 1Þd−32 ðd − 2Þd−32
× ½ðd − 2Þ − 2ðd − 3Þð2d − 5ÞΦ2�d−32 ; ðB5Þ

with Φ ∈ ð0; aÞ where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d−2
2ðd−3Þð2d−5Þ

q
. Taking d ¼ 4,

l ¼ 1 for example, we show the isothermal curves and the
spinodal curve in Fig. 9. It is clear that the critical pointCP1 is
exactly the extreme point of spinodal curve. Moreover, the
black hole branches upon the spinodal curve with positive
heat capacityCq ¼ Tð∂STÞ−1q;zi are stable, while the branches
below the spinodal curvewith negativeCq are unstable [6–9].
The function f can be calculated as

f ≡ ð∂ΦqspÞl ¼
ðd − 3Þd−12 ωd−2ld−3

4πðd − 1Þd−32 ðd − 2Þd−32
× ½1 − 2ðd − 3Þð2d − 5ÞΦ2�
× ½ðd − 2Þ − 2ðd − 3Þð2d − 5ÞΦ2�d−52 : ðB6Þ

It is continuously differentiable. Especially, for d ¼ 4,
Φ ∈ ð0; 1= ffiffiffi

3
p Þ, and

fðΦ → 0þÞ ∼ l=
ffiffiffi
3

p
; ðB7Þ

f
�
Φ →

1ffiffiffi
3

p
�
∼ −

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
− 3Φ

p → −∞; ðB8Þ

as shown in the inset of Fig. 9.

For d ¼ 5, Φ ∈ ð0; 1
2

ffiffi
3
5

q
Þ, and

fðΦ → 0þÞ ∼ πl2

2
; f

�
Φ →

1

2

ffiffiffi
3

5

r �
∼ −πl2: ðB9Þ

For d > 5, Φ ∈ ð0; aÞ, and

fðΦ → 0þÞ ∼ ðd − 3Þd−12 ωd−2ld−3

4πðd − 1Þd−32 ; fðΦ → aÞ → 0−:

ðB10Þ
Thus f admits a nonzero boundary.
With Eq. (5), the total topological charge reads

Qtotal ¼
1

2
½sgnfðΦ → aÞ − sgnfðΦ → 0þÞ� ðB11Þ

¼ 1

2
ð−1 − 1Þ ¼ −1; ðB12Þ

which is independent of d ≥ 4 and l > 0. This implies that
there is at least one critical point presented in the system.

An exact solution for Eq. (B1) shows that there is only one
critical point with

Φc ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðd − 3Þð2d − 5Þp ; ðB13Þ

βc ¼
ð2d − 5Þπl

ðd − 3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðd − 2Þp ; ðB14Þ

qc ¼
ðd − 3Þ2d−52 ωd−2ld−3

4πðd − 1Þd−32 ðd − 2Þd−32 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d − 10

p : ðB15Þ

Moreover, near the critical point with negative topological
charge, one can draw a first-order phase transition line in
the q −Φ plane between the stable black hole branches
using Maxwell’s equal area law. Again, whether such a
phase transition can actually occur should be carefully
examined by the free energy.
After similar calculations, the same topological charge is

obtained for the d ≥ 4 chargedAdS black holes in the β − rh
criticality [6]. We have also tried to calculate the topological
charges for charged Lovelock AdS black holes in the q −Φ
and β − v criticalities. Here β ¼ 1=t, t is the reduced
Hawking temperature and v denotes the reduced horizon
radius, as shown in Eq. (30). In the q −Φ criticality, we find
that it is difficult to obtain an analytic expression for the
spinodal curve qsp due to the complexity of the state equation
given by Eqs. (24) and (31). In the β − v criticality, although
an analytic expression for fðvÞ≡ ð∂vβspÞl;α can be obtained,
the specific boundary for v (required by a positive q2 in the
first condition of critical points) is difficult to calculate
analytically. These hinder us from performing topological
analysis using the current method. Such issues may be
addressed by employing the method provided in our recent
work [53]. We hope that through our efforts, these issues can
be completely solved in the future.

FIG. 9. Isothermal curves and spinodal curve (gray dashed line)
for the charged AdS black hole in the q −Φ plane. Inset: f≡
ð∂ΦqspÞl vs Φ diagram. We have set d ¼ 4 and l ¼ 1.
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