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We give full details regarding the new Cauchy-characteristic evolution (CCE) system in SpECTRE. The
implementation is built to provide streamlined flexibility for either extracting waveforms during the process
of a SpECTRE binary compact object simulation or as a stand-alone module for extracting waveforms from
worldtube data provided by another code base. Using our recently presented improved analytic
formulation, the CCE system is free of pure-gauge logarithms that would spoil the spectral convergence
of the scheme. It gracefully extracts all five Weyl scalars, in addition to the news and the strain. The
SpECTRE CCE system makes significant improvements on previous implementations in modularity, ease of
use, and speed of computation.
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I. INTRODUCTION

Since the original gravitational-wave detections by the
LIGO-VIRGO Collaborations [1,2], sensitivities of
ground-based detectors have continued to advance [3,4].
A crucial requirement for the successful detection and
parameter estimation of astrophysical gravitational-wave
sources is the accurate modeling of potential gravitational-
wave signals. Gravitational-wave modeling is required
both to construct templates for extracting signals from
instrumentation noise [5,6] and for performing follow-up
parameter estimation [7–11]. Currently, the precision of
numerical relativity waveforms is sufficient to cause no
significant bias in detections produced by the present
generation of gravitational-wave detectors [12].
As the technology of the current network of gravita-

tional-wave detectors (Advanced LIGO [13], VIRGO, and
KAGRA [14]) continues to mature, next-generation ground-
based interferometers (Cosmic Explorer [15] and Einstein
Telescope [16]) are planned, and space-based gravitational-
wave detector projects (LISA [17], TianQin [18], and
DECIGO [19])move forward, the demand for high-precision
waveform models for binary inspirals continues to grow.
Recent investigations [12] have indicated that future
ground-based gravitational-wave detectors will have suffi-
cient sensitivity that current numerical relativity waveforms
are not precise enough to produce unbiased parameter
recovery. Further, space-based gravitational-wave detec-
tors, such as LISA, will likely observe several sources
simultaneously, and sufficiently precise modeling of each

source will help make best use of the resulting
data by improving the capability to distinguish overlapping
signals.
An important ingredient to improved precision for

numerical relativity waveforms is the refinement of wave-
form extraction methods. The process of waveform extrac-
tion refers to the calculation of the observable asymptotic
waveform from a strong-field simulation of the Einstein
field equations. Current strong-field numerical relativity
simulation methods are “Cauchy” methods [20–23]: Initial
data are generated for a desired configuration of the
compact binary using an elliptic solve on a restricted
region, and that spacelike hypersurface data are evolved
in the timelike direction. One output of a Cauchy simu-
lation is the metric and its derivatives as a function of time,
evaluated on one or more spheres of finite distance from the
binary, typically ∼100–1000M from the coalescence.
Waveform extraction then uses the Cauchy worldtube
metric and its derivatives to determine the observable
asymptotic waveform that is directly applicable to data
analysis efforts for gravitational-wave interferometers.
The most widely used technique of waveform extraction

is the method of extrapolation to large radii using several
worldtubes of finite radius [24,25]. For each waveform
quantity of interest, such as the gravitational-wave strain
or one of the Weyl scalars, there is a clear power law
asymptotic behavior in well-behaved gauges. The extrapo-
lation method then fits for the leading behavior in r−1 and
obtains a reasonable approximation for the asymptotic
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waveform. The extrapolation method has been used to
generate a great number of useful waveforms for gravita-
tional-wave data analysis [26–28]. However, the extrapo-
lation method makes a number of simplifying assumptions
regarding the choice of coordinates and behavior of the
field equations far from the system that diminish the
precision of the method.
In addition, there is good evidence [29] that there are

large, low-frequency parts of gravitational waveforms
(“memory” contributions) that are not well modeled by
waveform extrapolation. These memory effects do not have
significant impact on the frequency bands important for
LIGO but will likely be important for more sensitive
detectors (such as the Einstein Telescope or Cosmic
Explorer) or detectors sensitive to lower frequency bands
(such as DECIGO or LISA).
Cauchy-characteristic evolution1 (CCE) [30–32] is an

alternative waveform extraction method that uses metric
data on a single worldtube Γ to provide boundary con-
ditions for a second full nonlinear field simulation along
hypersurfaces generated by outgoing null geodesics. CCE

avoids many of the assumptions made by other extrac-
tion methods and instead computes the full solution to
Einstein’s equations in a Bondi-Sachs coordinate system at
Iþ, from which waveform quantities may be unambigu-
ously derived. The CCE domain and salient hypersurfaces
are illustrated in Fig. 1.
There are two notable previous implementations of CCE.

The original implementation, PITT Null [33,34], is a part of
the Einstein Toolkit and demonstrated the feasibility of the
CCE approach. Unfortunately, as it is a finite difference
implementation, PITT Null struggles to achieve high pre-
cision and can be very costly to run [35]. The first spectral
implementation of CCE is a module of the Spectral Einstein
Code (SpEC). That implementation was first reported in
Ref. [36] and has undergone a number of updates and
refinements [37,38], including recent work that assembled
a number of valuable analytic tests that assisted in refining
and optimizing the code [35].
In this paper, we present our new implementation of CCE

in the SpECTRE [39] code base, which incorporates a number
of improvements to the waveform extraction system. The
SpECTRE CCE module implements a modified version of the
evolution system inBondi-Sachs coordinates [40] that is able
to guarantee that no pure-gauge logarithms arise that spoil the
spectral convergence of the scheme as the system evolves.
Further, the SpECTRE CCE system is able to use formulation
simplifications to implement the computation for all five
Weyl scalars as suggested in Ref. [40]. We have also
implemented numerical optimizations specific to the
SpECTRE CCE system to ensure rapid and precise waveform
extraction, and we have reimplemented and extended the
collection of tests that was previously effective in testing and
refining the SpEC implementation [35].

SpECTRE [39,41] is a next-generation code base for which
the aim is to construct scalable multiphysics simulations of
astrophysical phenomenon such as neutron star mergers,
binary black hole coalescences, and core-collapse super-
novae. It is the goal of the SpECTRE project to construct a
highly precise astrophysical simulation framework that
scales well to ≳106 cores. The core SpECTRE evolution
system uses discontinuous Galerkin methods with a task-
based parallelism model. The discontinuous Galerkin
method has the ability to refine a domain by subdividing
the computation into local calculations coupled by boun-
dary fluxes. SpECTRE then uses the task-based parallelism
framework, Charm++ [42–44], to schedule and run the
resulting multitude of separate calculations, which ensures
good scaling properties of the method.
The CCE system in SpECTRE enjoys some efficiency gain

from sharing a common well-optimized infrastructure with
the discontinuous Galerkin methods and makes modest use
of the parallelization framework (see Sec. IV). However,
the characteristic evolution itself is implemented as a single
spectral domain that covers the entire asymptotic region
from the worldtube Γ out to Iþ. The smooth behavior of

FIG. 1. A sketch of the Cauchy and characteristic domains.
The Cauchy system evolves Einstein’s equations on spacelike
hypersurfaces, while the characteristic system evolves Einstein’s
equations on compactified null hypersurfaces Σu that extend
to Iþ. Boundary conditions for the characteristic system are
required on the worldtube Γ and are provided there by the Cauchy
system.

1The acronym CCE has also been used in the past to refer to
“Cauchy-characteristic extraction,” which describes only the part
of the computation moving from the Cauchy coordinates to a set
of quantities that could separately be evolved on null character-
istic curves. Most of our descriptions refer to the entire algorithm
as a single part of the wave computation, so we refer to the
combination of Cauchy-characteristic extraction and character-
istic evolution as simply CCE.
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the metric away from the binary coalescence ensures
exponential convergence of the monolithic spectral
method. In principle, the CCE method could be applied
to a subdivided asymptotic domain. However, the unusual
features of the field equations for CCE (reviewed in Sec. II)
would require special treatment to appropriately account
for boundary information. Moreover, any subdivision of the
angular direction would obscure the spherical shell geom-
etry that permits efficient calculation of the angular degrees
of freedom of the system via spin-weighted spherical
harmonic (SWSH) methods.
It is important to note that the SpECTRE CCE module, like

every part of SpECTRE, is a rapidly evolving open-source
code base. The discussion in this paper represents as
completely as possible the state of our efforts to optimize
and refine the system at the time of writing. However, we
will continue to make modifications and improvements,
so we encourage the reader to explore the full code base
at [45] and refer to the documentation at [46]. For up-
to-date details for how to download, build, and run the
SpECTRE code, including the stand-alone SpECTRE CCE
system, please see the documentation page [47].
We first describe the mathematical aspects of the

evolution system, including the incorporation of formu-
lation improvements from Ref. [40] in Sec. II. Next, we
discuss some of the numerical methods that we have
constructed for our new SpECTRE implementation to
improve run-time and precision in Sec. III. We discuss
the how the SpECTRE CCE module fits into the wider
task-based SpECTRE infrastructure in Sec. IV. Finally, we
demonstrate the precision and accuracy of the code by
applying the system to a collection of analytic test cases in
Sec. V and to a realistic use case of extracting data from a
binary black hole evolution from SpEC in Sec. VI. We
describe the major future improvements that we hope to
make for the CCE system in Sec. VII.

II. THE EVOLUTION SYSTEM

The discussion of CCE and its numerical implementa-
tions relies closely on a number of coordinate systems. We
use the following notation for coordinate variables and
spacetime indices.

(i) xα.—fu; r; θ;ϕg are generic Bondi-like coordinates.
These are the coordinates determined by the first
stage of local coordinate transformations at the
worldtube first derived in Ref. [48].

(ii) x̂α̂.—fû; r̂; θ̂; ϕ̂g are partially flat Bondi-like coor-
dinates introduced in Ref. [40].

(iii) x̆ᾰ.—fŭ; y̆; θ̆; ϕ̆g are numeric partially flat coordi-
nates. These are the coordinates directly represented
in the SpECTRE numeric implementation and are
related to the partially flat Bondi-like coordinates by

ŭ ¼ û; y̆ ¼ 1 − 2R̂=r̂;

θ̆ ¼ θ̂; ϕ̆ ¼ ϕ̂; ð1aÞ

where the worldtube hypersurface is determined
by r̂ ¼ R̂ðû; θ̂; ϕ̂Þ.

(iv) x̊α̊.—fů; r̊; θ̊; ϕ̊g are the asymptotically flat “true”
Bondi-Sachs coordinates. These are the coordinates
in which we would like to determine the final
waveform quantities.

We use Greek letters α; β; γ;… to represent spacetime
indices, uppercase Roman letters A;B; C;… to represent
spherical angular indices, and lowercase Roman letters
from the middle of the alphabet i; j; k;… to represent
spatial indices.
When relevant, we similarly adorn the spin-weighted

scalars and tensors that represent components of the metric
to indicate the coordinates in which they are components of
the Bondi-like metric. For instance, the gr̂ û component of a
partially flat Bondi-like metric is −e2β̂. Our notation
conventions are consistent with our previous paper regard-
ing the mathematics of the CCE system [40].

A. Spectral representation

The SpECTRE CCE system represents its null hypersur-
face data on the domain I × S2, where the real interval I
describes the domain y ∈ ½−1; 1� for compactified radial
coordinate

y̆ ¼ 1 −
2R̂ðû; x̂ÂÞ

r̂
; ð2Þ

where r̂ is the partially flat Bondi-like radial coordinate and
R̂ is the Bondi-like radius at the worldtube.
We use a pseudospectral representation for each physical

variable on this domain, using Gauss-Lobatto points for the
radial dependence and LIBSHARP [49,50]-compatible col-
location points for the angular dependence. The angular
collocation points are chosen to be equiangular in the ϕ
direction and Gauss-Legendre points in cos θ.2

The choice of Gauss-Lobatto points for the radial
dependence simplifies the CCE algorithm because it is
convenient to specify boundary conditions for the radial
integrals as simple boundary values.
The choice of angular collocation points enables fast

SWSH transforms, so that LIBSHARP routines can efficiently
provide the angular harmonic coefficients salmðy̆Þ for an
arbitrary function fðy̆; θ̆; ϕ̆Þ of spin weight s, defined by

fðy̆; θ̆; ϕ̆Þ ¼
X
lm

salmðy̆ÞsYlmðθ̆; ϕ̆Þ: ð3Þ

Here sYlmðθ̆; ϕ̆Þ are the SWSHs as defined in Eq. (E1).

2It is of some numerical convenience that there are no points at
the poles, where spherical polar coordinates are singular. How-
ever, care must still be taken to avoid unnecessary factors of sin θ
in quantities like derivative operators, as they give rise to greater
numerical errors when points are merely close to the pole.
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We then perform all angular calculus operations using

the spin-weighted derivative operators ð̆ and ˘̄ð. We use an
angular dyad q̆Ă:

q̆Ă ¼
�
−1;

−i
sin θ̆

�
: ð4Þ

Then, for any spin-weighted scalar quantity v̆ ¼ q̆Ă1

1 …

q̆Ăn
n v̆Ă1…Ăn

, where each q̆i may be either q̆ or ˘̄q, we define
the spin-weighted derivative operators

ð̆ v̆ ¼ q̆Ă1

1 …q̆Ăn
n q̆B̆D̆B̆vĂ1…Ăn

; ð5aÞ

˘̄ð v̆ ¼ q̆Ă1

1 …q̆Ăn
n ˘̄qB̆D̆B̆v̆Ă1…Ăn

; ð5bÞ

where D̆Ă is the angular covariant derivative. All angular

derivatives may be expressed in a combination of ð̆ and ˘̄ð
operators. We perform angular differentiation of an arbi-
trary function fðy̆; θ̆; ϕ̆Þ of spin weight s by transforming to
SWSH modes on each concentric spherical slice of the
domain represented by salmðy̆Þ, then applying the diagonal
modal multipliers

ð̆fðy̆; θ̆; ϕ̆Þ
¼

X
lm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
salmðy̆Þsþ1Ylmðθ̆; ϕ̆Þ; ð6aÞ

˘̄ðfðy̆; θ̆; ϕ̆Þ
¼

X
lm

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
salmðy̆Þs−1Ylmðθ̆; ϕ̆Þ; ð6bÞ

and then performing an inverse transform.
In addition, it is occasionally valuable to apply the

inverse of the angular derivative operators ð̆ and ˘̄ð. This can
be performed applying the inverse of the multiplicative
factors in the modal representation (6) and is approximately
as efficient to compute as the derivative.

B. Hierarchical evolution system

For evolution in the characteristic domain (see Fig. 1),
we solve the Einstein field equations for the spin-
weighted scalars that appear in the Bondi-Sachs form of
the metric:

ds2 ¼ −
�
e2β

V
r
− r2hABUAUB

�
du2 − 2e2βdudr

− 2r2hABUBdudxA þ r2hABdxAdxB: ð7Þ

The spin-weighted scalars that are used in the evolution
system are then J, β, Q, U, W, and H, where

U ≡UAqA; ð8aÞ

Q≡ r2e−2βqAhAB∂rUB; ð8bÞ

r2W ≡ V − r; ð8cÞ

J ≡ 1

2
qAqBhAB; ð8dÞ

K ≡ 1

2
qAq̄BhAB: ð8eÞ

In a Bondi-like metric, surfaces of constant u are generated
by outgoing null geodesics. The Bondi-Sachs metric further
imposes asymptotic conditions on each component of the
metric that we will not impose for all of our coordinate
systems. The same form (7) holds in any Bondi-like
coordinates, including the partially flat Bondi-like coordi-
nates x̂α̂ and true Bondi-Sachs coordinates x̊α̊.
It is important to note that for numerical implementa-

tions, the system is usually not evolved in a true Bondi-
Sachs coordinate system. For convenience of numerical
calculation, most CCE implementations enforce gauge
choices only at the worldtube boundary and therefore do
not ensure asymptotic flatness. The SpECTRE CCE imple-
mentation employs a somewhat different tactic, as the
generic Bondi-like gauge is vulnerable to pure-gauge
logarithmic dependence that spoils spectral convergence.
Instead, we use the partially flat gauge introduced in
Ref. [40], which ensures that the evolved coordinates are
in the asymptotically inertial angular coordinates, while
keeping the time coordinate choice fixed by the arbitrary
Cauchy time coordinate.
In the Bondi-like coordinates, it is possible to choose a

subset of the Einstein field equations that entirely deter-
mine the scalars fJ; β; U;Wg and that form a computa-
tionally elegant, hierarchical set of differential equations.
Represented in terms of the numerical Bondi-like coor-
dinates fŭ; y̆; θ̆; ϕ̆g, the hierarchical differential equations
take the form

∂y̆β̆ ¼ Sβ̆ðJ̆Þ; ð9aÞ

2Q̆þ ð1 − y̆Þ∂y̆Q̆ ¼ SQ̆ðJ̆; β̆Þ; ð9bÞ

∂y̆Ŭ ¼ SŬðJ̆; β̆; Q̆Þ; ð9cÞ

2W̆þ ð1− y̆Þ∂y̆W̆ ¼ SW̆ðJ̆; β̆; Q̆; ŬÞ; ð9dÞ

½ð1 − y̆Þ∂y̆H̆ þ ðLH̆ðJ̆; β̆; Q̆; Ŭ; W̆Þ þ 1ÞH̆
þ L ˘̄HðJ̆; β̆; Q̆; Ŭ; W̆Þ ˘̄H� ¼ SH̆ðJ̆; β̆; Q̆; Ŭ; W̆Þ; ð9eÞ

∂ŭJ̆ ¼ H̆: ð9fÞ
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The detailed definitions for the source functions S̆ð…Þ and
the factors LH̆ in Eq. (9) can be found in Sec. IV of
Ref. [40]. We emphasize that the only time derivative
appearing in the core evolution system (9) is that of J̆ (9f),
so we have only the single complex field to evolve and all
of the other equations are radial constraints within each null
hypersurface.
The SpECTRE CCE system requires input data specified

on two hypersurfaces: the worldtube Γ and the initial
hypersurface Σŭ0 (see Fig. 1). The worldtube surface data
must provide sufficient information to set the boundary
values for each of the radial differential equations in
Eq. (9). Namely, we must specify β̆, Ŭ, Q̆, W̆, and H̆ at
the worldtube (see Sec. II C below). The worldtube data are
typically specified by determining the full spacetime metric
on a surface of constant coordinate radius in a Cauchy code
and then performing multiple gauge transformations to
adapt the boundary data to the appropriate partially flat
Bondi-like gauge.
The initial hypersurface data require specification only

of the single evolved field J̆. In contrast to Cauchy
approaches to the Einstein field equations, the initial data
for CCE do not have a collection of constraints that form an
elliptic differential equation. Instead, J̆ may be arbitrarily
specified on the initial data surface, constrained only by
asymptotic flatness conditions. The choice of “correct”
initial data to best match the physical history of an inspiral
system, however, remains very difficult. We discuss our
current heuristic methods for fixing the initial hypersurface
data in Sec. II E.

C. Gauge-corrected control flow

The SpECTRE CCE system implements the partially flat
gauge strategy discussed at length in Ref. [40]. The
practical impact of the method is that we must include
the evolved angular coordinates in the process of determin-
ing the Bondi-Sachs scalars for the radial hypersurface
equations. Past implementations have performed the angu-
lar transformation at Iþ, which results in a simpler
algorithm but also gives rise to undesirable pure-gauge
logarithmic dependence.
The differential equations (9) that determine the values

of Q̆, W̆, and H̆ on the outgoing null hypersurface support
solutions that behave asymptotically as ∝ r−2 lnðrÞ ∝
ð1− yÞ2 lnð1− yÞ (for Q̆ and W̆) or ∝ r−1 lnðrÞ ∝ ð1 − yÞ×
lnð1 − yÞ (for H̆). Whether such terms arise is determined
by the asymptotic structure of their respective source
functions S. For example, if the source SQ̆ has a non-

vanishing asymptotic contribution ∝ ð1 − y̆Þ2, then Q̆ will
possess a contribution that behaves asymptotically as
ð1 − y̆Þ2 lnð1 − y̆Þ. The leading falloff behavior of the
source functions S can be controlled by taking advantage
of the remaining gauge freedom in the Bondi-Sachs-like
coordinate systems used for CCE numerical methods.

The details of selecting an asymptotically well-behaved
(“partially flat”) coordinate system to impose the needed
falloff behavior of the source functions are provided
in Ref. [40].
In the abstract, the presence of undesirable gauge

behavior may seem like a minor inconvenience and
potentially correctable with a “postprocessing” coordinate
transformation in the asymptotic data. For a purely sym-
bolic computation, that would be true. However, for
numerical computations, we must ensure that the approx-
imations used to efficiently evolve the partial differential
field equations remain robust during intermediate steps of
the computation. For our implementation, much of the
efficiency of the algorithm comes from using pseudospec-
tral methods that represent the field values as a super-
position of Legendre polynomials. For functions that are
smooth over the domain, pseudospectral methods converge
exponentially in the number of grid points. However, a
logarithmic function is not smooth—it does not have a
well-behavedTaylor series about the origin and so is notwell
approximated by a polynomial expansion. Accordingly, the
pseudospectral representation of a field with such depend-
ence convergesmerely as a polynomial of the number of grid
points. This far slower convergence rate threatens the
efficiency and precision of our spectral method, so it is
worth the formulaic inconvenience of a more complicated
gauge treatment to preserve the exponential convergence of
the pseudospectral representation.
In this discussion, we make use of the local Bondi-

Sachs-like coordinates x̂μ̂ on the worldtube that are deter-
mined by the standard procedure introduced in Ref. [30]
and reviewed in Refs. [35,40]. This procedure obtains a
unique Bondi-Sachs-like coordinate system by generating a
null hypersurface with geodesics outgoing with respect to
the worldtube and with time and angular coordinates
chosen to match the Cauchy coordinates on the worldtube.
In the below discussion, we make use of an intermediate

spin-weight 1 scalar

U ¼ Ŭ þ U0; ð10Þ

where U0 ¼ UjIþ is a radially independent contribution
fixed by the worldtube boundary conditions. U obeys the
same radial differential equation as Ŭ but possesses a
constant asymptotic value that is used to determine the
evolution of the angular coordinates.
The computational procedure with the gauge transfor-

mation to partially flat coordinates is then as follows.
(1) Perform the gauge transformation from the Cauchy

gauge metric to the local Bondi-Sachs coordinates
on the worldtube Γ, generated by geodesics with null
vectors that are outgoing with respect to the world-
tube surface.

(2) For each spin-weighted scalar I in fβ, Q, Ug,
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(a) Transform I to partially flat gauge Ĭ (or U) via the
angular coordinates xAðŭ; x̆ĂÞ.3 All transforma-
tions for these scalars depend only on angular
Jacobians ∂Ăx

B and are described in Sec. II D.
(b) Evaluate the hypersurface equation for the spin-

weighted scalar Ĭ using the radial integration
methods described in Appendix D.

(3) Determine the time derivative of the angular coor-
dinates ∂ŭxAðx̆Þ (see Sec. II D) using the asymptotic
value of U.

(4) Transform U to the partially flat gauge Ŭ by
subtracting its asymptotic value U0 ≡ UjIþ .

(5) For each spin-weighted scalar I in fW;Hg,
(a) Transform I to partially flat gauge Ĭ via the

angular coordinates xAðx̆ĂÞ and their first deriv-
atives ∂ŭxAðx̆Þ—see Sec. II D.

(b) Evaluate the hypersurface equation for Ĭ.
(6) For each output waveform quantity O in fh;N;Ψ4;

Ψ3;Ψ2;Ψ1;Ψ0g,
(a) Compute asymptotic value of O and transform

to asymptotically inertial coordinate time as
described in Appendix C, using ůðx̆ĂÞ.

(7) Step J̆ forward in time using ∂ŭJ̆ ¼ H̆, step xA using
Eq. (12) below for ∂ŭxA, and step ů using Eq. (C1)
below for ∂ŭů.

See Appendix B for details regarding the calculation of the
angular Jacobian factors required for the gauge trans-
formation and the practical methods used to evolve the
angular coordinates.

D. Worldtube data interpolation and transformation

The collection of hypersurface equations (9) requires data
for each of the quantities fβ̆; Q̆; Ŭ; W̆; H̆g on a single
spherical shell at each time step. For β̆ and Ŭ, the worldtube
data specify the constant-in-y̆ part of the solution on the
hypersurface; for Q̆ and W̆, the worldtube data fix the ∝
ð1 − y̆Þ2 part; and for H̆, theworldtube data fix a combination
of radial modes that includes the ∝ ð1 − y̆Þ contribution.
The worldtube data provided by a Cauchy simulation

contain the spacetime metric, as well as its first radial and
time derivatives. The procedure for transforming the data
provided by the Cauchy evolution to boundary data for the
hypersurface equations (9) is then, for each hypersurface
time ŭ, as follows.
(1) Interpolate the worldtube data to the desired hyper-

surface time ŭ.
(2) Perform the local transformation of the Cauchy

worldtube metric and its derivatives to a Bondi-like
gauge as described in Ref. [48].

(3) Perform angular transformation and interpolation
from the generic Bondi-like gauge to the partially
flat gauge used for the evolution quantities.

The worldtube data are usually generated by the Cauchy
simulation at time steps that are suited to the strong-field
calculations, but the characteristic system can usually take
significantly larger time steps. Once the characteristic time-
stepping infrastructure has selected a desired time step, we
interpolate the worldtube data at each angular collocation
point to the target time for the next hypersurface. In
SpECTRE, the interpolation is performed by selecting a
number of time points as centered as possible on the target
time and then performing a barycentric rational interpola-
tion to the target time.
After the time interpolation of the worldtube data, we

have the values of the spacetime metric and its radial and
time derivatives on a single inner boundary of the CCE
hypersurface of constant retarded time ŭ. We then com-
pute the outgoing radial null vector lμ

0
(denoting Cauchy

coordinate quantities with a prime), construct a radial null
coordinate system using the affine parameter along null
geodesics generated by lμ

0
, and then normalize the radial

coordinate to construct an areal radius r. Following these
transformations, for which explicit formulas are given in
Refs. [35,40,48], the spacetime metric gαβ is of the form
(7), but with no asymptotic flatness behavior imposed.
During the transformation from the Cauchy coordinates to
the Bondi-like coordinates, the angular and time coordi-
nates remain fixed on the worldtube surface, so no alter-
ation of the pseudospectral grid is necessary.
The final step for the worldtube computation is to

perform a constant-in-r angular coordinate transformation
to a set of angular coordinates xAðx̆ĂÞ for which the metric
satisfies the asymptotic conditions:

lim
y̆→1

J̆ ¼ 0; ð11aÞ

lim
y̆→1

Ŭ ¼ 0: ð11bÞ

These conditions are satisfied if the angular coordinates
obey the radially independent evolution equation [40]

∂ŭxA ¼ −U Ă
0 ∂Ăx

A; ð12Þ

where U Ă
0 q̆Ă ≡ U0.

The angular transformations for the remaining spin-
weighted scalars require the spin-weighted angular
Jacobian factors

ă ¼ q̆Ă∂Ăx
BqB; ð13aÞ

b̆ ¼ ˘̄qĂ∂Ăx
BqB ð13bÞ

3When performing spectral interpolation, we require the
position of the target collocation points in the source coordinate
system. See Appendix B for more details regarding our inter-
polation methods.
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and conformal factor

ω̆ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̆ ˘̄b−ă ˘̄a

q
; ð14aÞ

∂ŭω̆ ¼ ω̆

4
ð ˘̄ðU0 þ ð̆Ū0Þ þ

1

2
ðU0

˘̄ð ω̆þŪ0ð̆ ω̆Þ: ð14bÞ

Given the angular coordinates determined by the time
evolution of Eq. (12), we perform interpolation of each of
the spin-weighted scalars fR; ∂uR; J; U; ∂rU; β; Q;W;Hg
to the new angular collocation points (more details for the
numerical interpolation procedure are in Appendix B) and
perform the transformation of the spin-weighted scalars as

R̆ ¼ ω̆R; ð15aÞ

∂ŭR̆ ¼ ω̆∂uRþ ∂ŭω̆þ ω̆

2
ðU0

˘̄ðRþ Ū0ð̆RÞ; ð15bÞ

J̆ ¼ 1

4ω̆2
ð ˘̄b2J þ ă2J̄ þ 2ă ˘̄bKÞ; ð15cÞ

e2β̆ ¼ e2β

ω̆
; ð15dÞ

∂y̆Ŭ ¼ R̆
ω̆3ð1 − y̆Þ2 ð

˘̄b∂rU − c̆∂rŪÞ þ 4R̆
e2β̆

ω̆

�
˘̄ð ω̆ ∂y̆J̆ − ð̆ ω̆

�
∂y̆ðJ̆ ˘̄JÞ
2K̆

��

þ 2R̆
e2β̆

ω̆
ðJ̆ ˘̄ð ω̆−K̆ ð̆ ω̆Þ

�
−1þ ∂y̆

˘̄J∂y̆J̆ −
�
∂y̆ðJ̆ ˘̄JÞ
2K̆

�2�
; ð15eÞ

Q̆ ¼ 2R̆e−2β̆ðK̆∂y̆Ŭ þ J̆∂y̆
˘̄UÞ; ð15fÞ

U ¼ 1

2ω̆
ð ˘̄bU − c̆ ŪÞ − e2β̆ð1 − y̆Þ

2R̆ ω̆
ðK̆ ð̆ ω̆−J̆ ˘̄ð ω̆Þ; ð15gÞ

Ŭ ¼ U − U0; ð15hÞ

W̆ ¼ W þ ðω̆ − 1Þð1 − y̆Þ
2R̆

þ e2β̆ð1 − y̆Þ
4R̆ω̆2

½J̆ð ˘̄ð ω̆Þ2 þ ˘̄Jðð̆ ω̆Þ2 − 2K̆ðð̆ ω̆Þð ˘̄ð ω̆Þ� − 2∂ŭω̆

ω̆
−
Ŭ ˘̄ð ω̆þ ˘̄U ð̆ ω̆

ω̆
; ð15iÞ

H̆ ¼ 1

2
½U0

˘̄ð J̆þð̆ðŪ0J̆Þ − J̆ ð̆ Ū0� þ
∂ŭω̆ − 1

2
ðU0

˘̄ð ω̆þŪ0ð̆ ω̆Þ
ω̆

ð2J̆ − 2∂y̆J̆Þ − J̆ ˘̄ðU0 þ K̆ ð̆ Ū0

×
1

4ω̆

�
˘̄b
2
H þ ă2H̄ þ ˘̄b c̆

HJ̄ þ JH̄
K

�
þ 2

∂ŭR̆

R̆
∂y̆J̆; ð15jÞ

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ JJ̄

p
and K̆ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J̆ ˘̄J

p
. Finally, the

quantities fβ̆; Q̆;U; W̆; H̆g are used directly to determine
the integration constants in the hypersurface equations (9).
Note that in all of the equations (15h) onward, we have
explicit dependence on U0 or implicit dependence on U0 via
∂ŭω̆. This dependence necessitates finishing the hypersur-
face integration of U to determine its asymptotic value
before computing the remaining gauge-transformed quan-
tities on the worldtube.

E. Initial data

In addition to the specification of the worldtube data at
the interface to the Cauchy simulation, the characteristic

system requires initial data at the first outgoing null
hypersurface in the evolution (see Fig. 1). The initial data
problem on this hypersurface is physically similar to the
initial data problem for the Cauchy evolution: It is
computationally prohibitive to directly construct the space-
time metric in the state that it would possess during the
inspiral. Ideally, we would like the starting state of the
simulation to be simply a snapshot of the state if we had
been simulating the system for far longer.
The initial data problem in CCE has been investigated

previously by Ref. [51], in which a linearized solution
scheme was considered. The most important part of the
initial data specification appears to be choosing the first
hypersurface such that it is consistent with the boundary
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data at the same time step. Without that constraint, previous
authors [51], and empirical tests of our own code, indicate
that spurious oscillations emerge that often last the full
duration of the simulation.
Computationally, the initial data freedom in CCE is

much simpler than the Cauchy case [52,53]. We may
specify the Bondi-Sachs transverse-traceless angular scalar
J̆ arbitrarily. Even when we take the practical constraint
that J̆ must be consistent with the worldtube data at the
first time step, we still have almost arbitrary freedom in
the specification of J, as it must be consistent with the
worldtube data only up to an arbitrary angular coordinate
transformation.4

Current methods of choosing initial data for J do not
represent a snapshot of a much longer simulation, and this
gives rise to transients in the resulting strain outputs (see

Fig. 2). These initial data transients are analogous to “junk
radiation” frequently found in Cauchy simulations but are
somewhat more frustrating for data analysis because the
CCE initial data transients tend to have comparatively long
timescales. We observe that the strain waveform tends to
settle to a suitable state within a few orbits of the start of the
simulation. However, when recovering high-fidelity wave-
forms from an expensive Cauchy simulation, every orbit of
trustworthy worldtube data is precious, and it is disap-
pointing to lose those first orbits of data to the initial data
transient. It is a topic of ongoing work to develop methods
of efficiently generating high-quality initial data for CCE to
improve the initial data transient behavior (see Sec. VII A).
We currently support three methods for generating initial

hypersurface data.
(1) Keep J̆ and ∂y̆J̆ consistent with the first time step

of the worldtube data. Use those quantities to fix
the angularly dependent coefficients A and B in the
cubic initial hypersurface ansatz:

J̆ðy̆; θ̆; ϕ̆Þ ¼ Aðθ̆; ϕ̆Þð1 − y̆Þ þ Bðθ̆; ϕ̆Þð1 − y̆Þ3:
ð16Þ

This is a similar initial data construction to Ref. [51]
and is chosen to omit any ð1 − y̆Þ2 dependence,
which guarantees that no pure-gauge logarithmic
terms arise during the evolution [40].

(2) Set the Newman-Penrose quantity Ψ0 ¼ 0 on the
initial hypersurface. This amounts to enforcing a
second-order nonlinear ordinary differential equa-
tion in y≡ 1–2R=r for J, before constructing the
coordinate transformation from xα to x̆ᾰ. After some
simplification, the expression for Ψ0 in Ref. [40]
may be used to show that the equation

∂
2
yJ ¼ 1

16K2
ðJ̄2ð∂yJÞ2 − 2ð2þ JJ̄Þ∂yJ∂yJ̄

þ J2ð∂yJ̄Þ2Þð−4J − ð1 − yÞ∂yJÞ ð17Þ

is equivalent to the condition Ψ0 ¼ 0. The initial
hypersurface data are generated by first using
Eq. (17) to perform a radial ordinary differential
equation (ODE) integration out to Iþ, with boun-
dary values of J and ∂yJ on the initial worldtube.
However, the data so generated are not necessarily
asymptotically flat, so an angular coordinate trans-
formation is calculated to fix J̆jIþ ¼ 0. Encourag-
ingly, fixing both Eq. (17) and the asymptotic
flatness condition also constrains the ð1 − yÞ2 part
of J to vanish, which is sufficient to prevent the
emergence of pure-gauge logarithmic dependence
during the evolution of J.

(3) Set J̆ ¼ 0 along the entire initial hypersurface. In
general, this choice will be inconsistent with the data
specified on the worldtube JjΓ, so it is necessary to

FIG. 2. The initial data transient for an example CCE run using
worldtube data obtained from a binary black hole simulation
SXS:BBH:2096 from the SXS catalog. The dominant modes of
the strain and Ψ0 display visually apparent drift during the first
∼2 orbits of the inspiral. The initial data transient contaminates
the data for the early part of the simulation and leads to a Bondi-
Metzner-Sachs (BMS) frame shift in the strain waveform. The
frame shift can be seen visually from the fact that the Y22 mode
does not oscillate about 0. The initial data method used for this
demonstration is the cubic ansatz initial data described as method
1 below.

4In our evolution system, we track and perform an angular
coordinate transformation at the worldtube regardless of initial
data choice, so permitting this transformation on the initial
hypersurface amounts only to setting nontrivial initial data
for xAðx̂ÂÞ.
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construct an angular transformation xðx̆ĂÞ such that
J̆jΓ ¼ 0 following the transformation.

Methods 2 and 3 above require the ability to compute the
angular coordinate transformation xAðx̂B̂Þ such that

0 ¼ J̆ ¼
˘̄b
2
J̆ þ ă2 ˘̄J þ 2ă ˘̄b K̆

4ω̆2
ð18Þ

on some surface. Solving Eq. (18) in general would amount
to an expensive high-dimensional root find.
However, in our present application, practical solutions

in the wave zone typically have a value of J̆ no greater than
∼5 × 10−3, and we should not expect to find a well-
behaved angular coordinate transform otherwise. So, we
take advantage of the small parameter in the equation to
iteratively construct candidate angular coordinate systems
that approach the condition (18). Our linearized iteration is
based on the approximation

ănþ1 ¼ −
1

2

J̆nω̆n

˘̄bnK̆n

ð19aÞ

x̆inþ1ðx̆Þ ¼
1

2
ð̆−1nþ1ðănþ1ð̆x̆i þ ˘̄bnþ1

˘̄ðx̆iÞ; ð19bÞ

for a collection of Cartesian coordinates x̆i that are
representative of the angular coordinate transformation
(see Appendix B).
We find that this procedure typically approaches round-

off in ∼103 iterations. Despite the crude inefficiency of this
approximation, the iterative solve needs to be conducted
only once, so it represents only a small portion of the CCE
execution time for the initial data methods that take
advantage of it.
In practical investigations, it has been found that most

frequently the simplest method of an inverse cubic ansatz
(1 above) performs best in various measures of asymptotic
data quality [54]. However, because the reasons for the
difference in precision for different initial data schemes
are not currently well understood, we believe it useful to
include descriptions of all viable methods.

III. IMPLEMENTATION DETAILS
AND NUMERICAL OPTIMIZATIONS

Much of the good performance of the SpECTRE CCE
system is inherited from the shared SpECTRE infrastruc-
ture. In particular, the SpECTRE data structures offer easy
interfaces to aggregated allocations (which limit expensive
allocation of memory), fast vector operations through the
interface with the open-source Blaze library [55], and rapid
SWSH transforms via the open-source LIBSHARP library.
Further, we take advantage of per-core caching mecha-
nisms to avoid recomputing common numerical constants,
such as spectral weights and collocation values.

However, in addition to establishing ambitious “best
practices” for the mechanical details of the software
development, we have implemented numerical optimiza-
tions specialized to calculations in the CCE system.
For the SpECTRE implementation of the CCE system, we

have made two primary alterations to the core spectral
algorithms used in the computation.
Angular interpolation techniques using spin-weighted

Clenshaw recurrence algorithm.—The Clenshaw algo-
rithm is a method of improving the precision and effici-
ency of computing mode sums over basis functions that
obey three-term recurrence relations. We developed a new
method applying the Clenshaw algorithm to the task of
interpolating spin-weighted spherical harmonics from
the generic Bondi-like coordinates to the partially flat
coordinates. The Clenshaw method is used for the neces-
sary sum among l modes in the spin-weighted spherical
harmonics sYlm, and a separate recurrence relation is used
to assist in the sum over m modes. In Appendix B, we give
full details of our optimized interpolation method, includ-
ing the application of the Clenshaw method as well as the
additional considerations necessary for the Jacobian factors
that appear in gauge transforms of spin-weighted scalars.
Rapid linear algebra methods for radial integration.—

The SpECTRE implementation of the CCE hypersurface
equations (9) improves on previous methods by optimizing
many of the radial integrations, recasting them (up to
boundary contributions) as the application of precomputed
linear operators. The technique relies on determining the
matrices for the pseudospectral differential operators used
on the left-hand sides of Eq. (9), inverting the matrices, and
caching the inverses so that most of the radial solves can be
reduced to a series of fast matrix multiplications. Only the
equation governing H requires a full linear solve for each
hypersurface. In Appendix D we present the technical
details for our method of solving the hypersurface equa-
tions (9) for our chosen spectral representation.

IV. PARALLELIZATION AND MODULARITY

Because of the dependence of the gauge transformation
at the inner boundary on the field values at Iþ needed to
establish an asymptotically flat gauge, the opportunities
for subdividing the CCE domain for parallelization pur-
poses are limited. However, we are able to take advantage
of the task-based parallelism in SpECTRE to (a) parallelize
independent portions of the CCE information flow and
(b) efficiently parallelize the CCE calculation with a
simultaneously running Cauchy simulation.

A. Component construction

In SpECTRE, we refer to the separate units of the
simulation that may be executed in parallel via task-based
parallelism as components. For instance, in the near-field
region in which the domain can be parallelized among
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several subregions of the domain, each portion of the
domain is associated with a component.
For SpECTRE CCE, we use three components (in addition

to components that are used for the Cauchy evolution):
one component for the characteristic evolution, another
component dedicated to providing boundary data on the
worldtube, and a third component for writing results
to disk.
Much of the efficiency and precision of the SpECTRE

CCE system comes from the ability to cover the entire
asymptotic domain from the worldtube Γ to Iþ with a
single spectral domain. In principle, there may be oppor-
tunity to parallelize multiple radial shells of the computa-
tion, but in practice our initial assessments indicated that
there would be little gain for the typical gravitational-wave
extraction scenario. First, there is a significant constraint
that comes from the asymptotic flatness condition—the
gauge transformation throughout the domain on a given
hypersurface depends on the asymptotic value UjIþ on the
same hypersurface, which forces a significant portion of the
computation to serial execution. Additionally, we have seen
very rapid convergence in the number of radial points used
for the CCE system, so it is unlikely that subdividing the
domain radially would offer much additional gain for the
typical use case.
Therefore, the entire characteristic evolution system is

assigned to a single component and represents the compu-
tational core of the algorithm. The evolution component is
responsible for

(i) the angular gauge transformation and interpolation
(via Clenshaw recurrence),

(ii) the calculation of the right-hand sides of the set of
hierarchical equations (9),

(iii) the integration of each of the radial ODEs, and

(iv) the time interpolation and preparation of wave-
form data.

The core evolution component performs no reads from or
writes to the file system, which ensures that the expensive
part of the computation will not waste time waiting for
potentially slow disk operations.
The second component used in CCE is the worldtube

component. A worldtube component is responsible for
(i) collecting the Cauchy worldtube metric and its

derivatives from an assigned data source,
(ii) interpolating the data to time steps appropriate to the

CCE evolution system, and
(iii) performing the transformation to the Bondi-Sachs-

like coordinate system on the worldtube.
The user has a choice of several different worldtube com-
ponents, each of which corresponds to a different source of
the metric quantities on the worldtube. Worldtube compo-
nents are available that

(i) read worldtube data directly from disk,
(ii) accept interpolated data from a simultaneously

running Cauchy execution in SpECTRE, and
(iii) calculate worldtube data from an analytically deter-

mined metric on the boundary.
Our methods for reading from disk are currently optimized
for easily reading worldtube data written by SpEC, but our
worldtube module should accept data from any code that
can produce the spacetime metric and its first derivatives
decomposed into spherical harmonic modes.
Finally, there is a generic observer component that

handles the output of the waveform data to disk. When
CCE is simultaneously running with a Cauchy evolution,
there will be additional components running in parallel with
the CCE components, such as components that perform
the Cauchy evolution, components that search for apparent

FIG. 3. Components of the CCE task-based parallelism system. The worldtube component (left) is modular and can be switched out
according to the desired source of worldtube data. We currently support reading worldtube data from disk, interpolating worldtube data
from a simultaneously running generalized harmonic system in SpECTRE, or computing analytic boundary data from a known solution or
approximation to the Einstein field equations.
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horizons, and components that write simulation data to
disk. The division of the CCE pipeline into parallel
components is illustrated in Fig. 3.

B. Independently stepped interface
with Cauchy simulation

Because the Cauchy-characteristic evolution system
does not have much opportunity to parallelize internally,
we need to ensure that its serial execution is optimized. Our
goal is that when running simultaneously with the highly
parallel discontinuous Galerkin system used for the gen-
eralized harmonic evolution, the CCE system does not
impose any significant run-time penalty.
An important contribution to the efficiency of the CCE

system is that the solutions to the Einstein field equations
are smooth and slowly varying in time. As a result, the
spectral methods used in CCE converge rapidly, and the
scales that we seek to resolve with the time stepper are
primarily on orbital timescales. Therefore, we anticipate
that the CCE system should be able to take far larger time
steps than the generalized harmonic system running in
concert, and it will be important for the overall efficiency of
the extraction pipeline to adjust the time steps of the CCE
evolution independently of the time step of the generalized
harmonic system [56].
Our implementation permits the CCE step size to vary

independently of other timescales in the simulation, and the
step size can be chosen according to estimates of the time
stepper residuals. Those estimates are frequently obtained by
comparing the results of time steppers of different orders,
either via embedded methods [57] for substep integrators or
by varying the number of points used in the arbitrary-sized
multistep methods (LMM) [58] often used in SpECTRE.
The CCE worldtube component receives the metric and

its first time derivatives from the generalized harmonic
system. It then uses dense output to generate evenly spaced
datasets and barycentric rational interpolation [59] to
generate values at the time points required by the CCE
evolution system.5 This technique ensures that the inter-
polated time points will have a precision associated with the
scale of stepper residuals of the generalized harmonic
system.
To demonstrate the usefulness of our variable step size

implementation, we have performed a simple evolution in
SpECTRE using input from a SpEC binary black hole
simulation and compared the size of the time steps between
the SpEC evolution system and the SpECTRE CCE system.
In Fig. 4 we show the respective step size of a globally
stepped generalized harmonic system in SpEC and the step

size of the SpECTRE CCE system using an adaptive step size
based on time stepper residuals.
For the evolution system in SpECTRE, we will have the

opportunity to perform local time stepping for separate
elements in the generalized harmonic domain as well, which
will allow the elements in direct communication with the
CCE system to take larger steps. However, even for modest
resolution in the SpECTRE generalized harmonic system, and
for a 100M worldtube radius we should expect the gener-
alized harmonic system to still take Oð10Þ steps per M of
evolution for an Adams-Bashforth order 3 scheme, so the
CCE system should still benefit from an independently
chosen step size.
The examples in this section emphasize the value in

permitting the CCE system to choose its own step size—
the smoothness of the solution across the asymptotic null
hypersurface ensures that CCE can comfortably take far
larger time steps than its partner generalized harmonic
system. The larger time steps then permit either a far faster
extraction in the case of a stand-alone CCE run or the CCE
system to make negligible impact on the overall run-time
when evolved in tandem with the generalized harmonic
evolution in SpECTRE.

FIG. 4. A comparison of the number of substeps taken per 1M
of simulation time in the SpEC generalized harmonic evolution
(with Dormand-Prince-5 substep method) to the number of steps
taken in the CCE system (with Adams-Bashforth order 3 linear
multistep method). We choose to compare the number of substeps
to the number of LMM steps, as it most closely represents the
factor of speedup in the CCE system as compared to a system in
which CCE is forced to take identical steps to the generalized
harmonic system that supplies its worldtube data, i.e. a global
time-stepping method across all systems. The SpECTRE system
chooses steps in discrete factors of 2 as a simplification to the
time-stepping infrastructure and to maintain globally agreed-
upon “slabs” of the evolution, so the time steps chosen in our
CCE implementation jump by factors of 2 during transitions. The
bottom plot shows the dominant gravitational waveform mode
for reference.

5Numerically, only one of either dense output or barycentric
interpolation should be sufficient, but we must use both in
sequence to satisfy the constraints of the SpECTRE local time-
stepping infrastructure and communication scheduling.
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V. BATTERY OF TESTS

A. Barkett test collection

In Ref. [35], we described a series of demanding tests
for verifying the correctness and efficiency of the SpEC
implementation of CCE. We have reimplemented all five of
those analytic tests for SpECTRE CCE and similarly verified
the correctness and convergence properties of the new
implementation. Here, we briefly summarize the salient
features of each of the test cases and present the results
from applying the collection of tests to our new imple-
mentation in SpECTRE. Please refer to Ref. [35] for complete
details regarding the formulation of the tests.
Each test generates Cauchy worldtube metric and its

derivatives on a chosen worldtube and uses a custom
version of the CCE worldtube component to provide the
Cauchy worldtube metric and its derivatives to the char-
acteristic evolution component. Otherwise, the remainder
of the pipeline operates precisely as it would if extracting
waves from data generated by a full Cauchy evolution
(see Fig. 3). The analytic tests provide a prediction for
the asymptotic Bondi-Sachs news function, which is then
compared against the extracted news function to determine
a residual and evaluate the precision of the CCE system.

1. Linearized Bondi-Sachs

This solution expands the Bondi-Sachs metric (7) around
the flat space solution and was first derived in Ref. [60].
The spin-weighted scalars that determine the metric are
expanded in modes as

Jlinlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!=ðl − 2Þ!

p
2ZlmRe½JlðrÞeiνu�; ð20aÞ

Ulinlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
1ZlmRe½UlðrÞeiνu�; ð20bÞ

βlinlm ¼ 0ZlmRe½βlðrÞeiνu�; ð20cÞ

Wlinlm ¼ 0ZlmRe½WlðrÞeiνu�; ð20dÞ

where ν is a user-defined frequency and each radially
dependent l mode of the solution is specified by analytic
calculation via the expansion of the Einstein field equations
in the Bondi-Sachs gauge, and the spin-weighted spherical
harmonic functions sZlm from Ref. [60] are

sZlm ¼

8>>><
>>>:

iffiffi
2

p ½ð−1ÞmsYlm − sYl−m�; m < 0;

sYl0; m ¼ 0;
1ffiffi
2

p ½sYlm þ ð−1ÞmsYl−m�; m > 0:

ð21Þ

The asymptotic news function is then

Nlinlm ¼ Re

�
eiνu lim

r→∞

�
lðlþ 1

4
Jl −

iνr2

2
Jl;r þ βl

��

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
2Zlm: ð22Þ

As in the SpEC implementation, we consider only l ¼ 2
and l ¼ 3 modes, for which the full radial dependence
is given in Refs. [35,60]. Because the above linearized
Bondi-Sachs expressions are valid only to first order in the
perturbation amplitude α, but CCE evolves the full nonlinear
Einstein equations, the difference between the linearized
solution and CCE should depend quadratically on the
amplitude α. In Fig. 5, we plot this difference versus α,
andwe recover the expected quadratic dependence, so that the
relative residual is proportional to the perturbation amplitude
α. Figure 6 shows the convergence of the CCE news with
angular resolution lmax: Plotted is the difference between the
CCE news at a given lmax and the CCE news at lmax ¼ 24.

2. Teukolsky wave

A linearized perturbation on a flat background is evaluated
on the worldtube and compared against the predicted
asymptotic news.We use the outgoing form of the linearized
metric given in Refs. [35,61]:

ds2 ¼ −dt2 þ ð1þ frrÞdr2 þ 2Bfrθrdrdθ

þ 2Bfrϕr sin θdrdϕþ
�
1þ Cfð1Þθθ þ Afð2Þθθ

�
r2dθ2

þ 2ðA − 2CÞfθϕr2 sin θdθdϕ

þ
�
1þ Cfð1Þϕϕ þ Afð2Þϕϕ

�
r2sin2θdϕ2; ð23Þ

FIG. 5. Residual obtained by subtracting the numerical
SpECTRE CCE news from the linearized Bondi-Sachs news.
The residual follows closely the expected perturbative residual
∝ α2 for amplitude α, until the time stepper residual dominates at
∼10−12 (the absolute tolerance of the time stepper is chosen to be
10−13 in these tests and run for a duration of 5=ν).
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where the functions A, B, and C are determined by the
arbitrary wave profile function FðuÞ ¼ Fðt − rÞ:

A ¼ 1

r3
ð∂2uF þ 3r−1∂uF þ 3r−2∂uFÞ; ð24aÞ

B ¼ −
1

r2
ð∂3uF þ 3r−1∂2uF þ 6r−2∂uF þ 6r−3∂uFÞ; ð24bÞ

C ¼ 1

4r
ð∂4uF þ 2r−1∂3uF þ 9r−2∂2uF

þ 21r−3∂uF þ 21r−4FÞ; ð24cÞ

and the fðnÞij functions are tensor harmonic functions deter-
mined by the choice of sYlm modes.We followRef. [35] and
choose a strictly outgoing 2Y20 mode, and for that choice of
solution, the asymptotic news is

N ¼ 3

4
sin2 θ∂5uFðuÞ: ð25Þ

We also choose a Gaussian wave profile FðuÞ ¼ αe−u
2=τ2

with amplitude α and width τ.
As in the linearized Bondi-Sachs solution, the analytic

solution for the Teukolsky wave generates a nontrivial
waveform, but the solution is perturbative. Because CCE
evolves the full nonperturbative Einstein equations, the
difference between CCE and the perturbative solution
should scale as α2. We show the convergence of the
residual with diminishing amplitude in Fig. 7, and in
Fig. 8 we show the convergence of the numerical residuals
determined by comparing to the highest-resolution run
conducted (lmax ¼ 20).

3. Rotating Schwarzschild

We generate worldtube data from the Schwarzschild
metric in Eddington-Finkelstein coordinates, with an angu-
lar coordinate transformation ϕ → ϕþ ωu applied:

ds2 ¼ −
�
1 −

2M
r

− ω2r2 sin2 θ

�
du2 − 2dudr

þ 2ωr2 sin2 θdudϕþ r2 sin2 θdΩ2: ð26Þ

This test case produces no waves, so we expect to recover
news N ¼ 0 from the CCE system. For this test case, we
find extremely small residuals across the parameter space

FIG. 7. Residual obtained by subtracting the SpECTRE CCE
news from the news computed from an ðl; mÞ ¼ ð2; 0Þ Teukolsky
wave. The residual follows closely the expected perturbative
residual ∝ α2 for amplitude α, until the time stepper residual
dominates at ∼10−12 (the absolute tolerance of the time stepper is
chosen to be 10−13 in these tests and run for duration 5τ).

FIG. 8. Numerical residual in the Teukolsky wave test, obtained
by subtracting the extracted news from its value at the maximum
resolution (lmax ¼ 20) for each given amplitude.

FIG. 6. Numerical residual in the linearized Bondi-Sachs test,
obtained by subtracting the extracted news from its value at the
maximum resolution (lmax ¼ 24) for each given amplitude.
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that we explored. No run resulted in any mode of the news
exceeding ∼10−11; this test case is included in summary
Table I.

4. Bouncing Schwarzschild black hole

The worldtube data for the bouncing black hole test are
similar conceptually to the rotating Schwarzschild test.
However, instead of performing an angular coordinate
transformation, here we apply a time-dependent linear trans-
formation to the Kerr-Schild coordinate system ðt; x; y; zÞ:

x → xþ a sin4ð2πt=bÞ: ð27Þ

As in the rotating Schwarzschild test, the expected result of
the CCE system is zero news, since the solution is simply
Schwarzschild in an oscillating coordinate system. For our
tests, we choose an oscillation amplitude a ¼ 2M and
period b ¼ 40M.
In practice, the bouncing black hole test has proven to be

a far more demanding test of the CCE wave extraction
system than many of the other tests. A naive examination of
individual Bondi-Sachs scalars in this scenario would lead

one to believe that there is wave content in the system—it is
only through the full nonlinear simulation that the CCE
system is able to resolve the motion as a pure-gauge effect
and cancel all of the contributions in the final value of the
news. We show the convergence of the SpECTRE CCE
system for the bouncing Schwarzschild black hole test
in Fig. 9.
Because the bouncing black hole test has proven to be

such a thorough test of CCE, we have chosen this test case
as a benchmark system to compare the SpEC and SpECTRE

simulation codes, both for speed and precision. In Figs. 10
and 11 we show the relative precision and wall-clock
execution times for the two systems, for similar parameters
of the test system.
We use a somewhat more demanding error measure

than in the previous publication [35]: We take the maxi-
mum error over all extracted modes, instead of examining
particular modes and potentially neglecting the highest
modes that can accumulate nontrivial value. The angular
resolution plotted here is the lmax used during the world-
tube transformation phase of the computation, as that is the
most demanding part of the calculation for angular reso-
lution. The SpEC implementation uses twice the angular
resolution on the worldtube boundary as on the volume and

TABLE I. Maximum residuals across the explored parameter space for the rapidly converging test cases.

Test name Parameters tested Maximum residual

Rotating Schwarzschild lmax ∈ ½8; 24�;ω ∈ ½0.1; 0.8� 2.94 × 10−11

Gauge wave lmax ∈ ½8; 24�; α ∈ ½0.01; 10.0� 4.05 × 10−12

FIG. 9. Convergence of SpECTRE CCE for the bouncing black
hole test across various extraction radii. Here, we have set the
absolute tolerance of the stepper residual to 10−12 to ensure that
the residuals are associated only with the spatial resolution. At an
extraction radius of 15M, the convergence saturates slightly early,
at around ∼10−9. However, at even modestly larger extraction
radii, the SpECTRE CCE system approaches the expected trunca-
tion scale of the spectral scheme.

FIG. 10. Convergence of SpEC and SpECTRE CCE systems
when using matched parameters for the collection of tests used
for the bouncing black hole in Ref. [35]. The residual floor
reached at lmax ¼ 20 is dominated by the absolute stepper
residual. Figure 9 shows convergence over several extraction
radii for SpECTRE alone, for runs in which we use a more
aggressive stepper residual and achieve a finer precision.

JORDAN MOXON et al. PHYS. REV. D 107, 064013 (2023)

064013-14



keeps all but the top two modes from the volume when
writing to disk. The SpECTRE implementation uses the
same resolution on the boundary as in the volume, and for
these runs we write the same set of modes as SpEC for
consistency in the comparison. The SpEC runs are the same
three runs as were used in the performance and conver-
gence tests reported in Ref. [35].
We find that the SpECTRE implementation enjoys sig-

nificantly better precision, executes more quickly, and
scales to high resolutions more gracefully than our previous
SpEC implementation. At the highest resolution that we
anticipate will be practical for the typical binary black hole
wave extraction, lmax ¼ 24, we find that our new SpECTRE

implementation performs ∼6× faster.

5. Gauge wave

The final test in the collection of analytic tests assembled
in Ref. [35] is an exact wavelike solution that is equivalent
to a gauge transformation applied to the Schwarzschild
spacetime. The metric is constructed by applying the
coordinate transformation v ¼ tþ rþ Fðt − rÞ=r, where
the function FðuÞ is the wave profile function. Following
the coordinate transformation, the Schwarzschild metric is

ds2 ¼ −
�
1 −

2M
r

��
1þ ∂uF

r

�
2

dt2 þ 2

�
1þ ∂uF

r

��
2M
r

þ
�
1 −

2M
r

��
∂uF
r

þ F
r2

��
drdt

þ
�
1 −

∂uF
r

−
F
r2

��
1þ 2M

r
þ
�
1 −

2M
r

��
∂uF
r

þ F
r2

��
þ r2dΩ2: ð28Þ

For our implementation, as in Ref. [35], we use a sine-
Gaussian wave profile FðuÞ ¼ A sinðωuÞe−ðu−u0Þ2=τ2 , with
frequency ω ¼ 0.5, duration τ ¼ 10.0, and peak time
u0 ¼ 25.0. Once again, we expect to recover zero news,
as there is no physical wave content in the gauge wave
spacetime. The SpECTRE CCE implementation performs
well; across the parameter space that we tested, we find no
residuals greater than 4.05 × 10−12. The test results are
summarized in Table I.

B. Robinson-Trautman solution

In addition to the five tests constructed previously, we
have implemented an analytic test of SpECTRE CCE based
on the Robinson-Trautman metric [62]. We specialize the
construction of the Robinson-Trautman metric to the case
in which there is no coordinate singularity in the asymptotic
domain simulated in CCE. Unlike the tests in the above
collection, the Robinson-Trautman solution both generates
nontrivial asymptotic Bondi-Sachs News and does not rely
on any linearized approximations. However, it is not a fully
analytic solution—a single scalar variable needs to be
numerically evolved on the worldtube surface to determine
the full Bondi-Sachs metric.

The specialization of the Robinson-Trautman solution
that we use depends on the scalar spin-weight zero surface
quantity that we denote ωRT. The Robinson-Trautman
metric solution takes the form [62]

ds2 ¼ −½ðrW þ 1ÞωRT − r2UŪ�ðdt − drÞ2
− 2ωRTðdt − drÞdr − 2r2UAqABdxBðdt − drÞ
þ r2qABdxAdxB; ð29Þ

where qAB represents the angular unit sphere metric and the
Bondi-Sachs scalars and angular tensors are defined in
terms of the Robinson-Trautman scalar ωRT as

W ¼ 1

r
ðωRT þ ðð̄ωRT − 1Þ − 2

r2ω2
RT

; ð30aÞ

U≡ UAqA ¼ ðωRT

r
: ð30bÞ

The Robinson-Trautman scalar may be chosen arbitrarily
for a single initial retarded time u ¼ u0 and at all later times
is computed by integrating the evolution equation

∂uωRT ¼ −½ω4
RTð

2ð̄2ωRT − ω3
RTðð2ωRTÞðð̄2ωRTÞ�: ð31Þ

FIG. 11. Performance comparison between the SpEC and
SpECTRE CCE systems applied to the bouncing black hole test.
We find that the SpECTRE performs considerably better for a
comparable selection of simulation and stepper parameters. The
nonmonotonicity of the SpECTRE execution time likely arises
from the dependence of the core SWSH operations performed via
LIBSHARP and the corresponding dependence on fast Fourier
transform algorithms that perform better for some mode numbers
than others.
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The news for the solution is

N ¼ ð̄ ð̄ωRT

ωRT
: ð32Þ

We have performed the Robinson-Trautman test
over a range of angular resolutions and for various initial

magnitudes of the Robinson-Trautman scalar ωRT, and the
rapid convergence for this test case is shown in Fig. 12. For
our tests, we choose a starting ωRT with nonzero modes:

a00 ¼ A; a1−1 ¼ 4A=3; a10 ¼ A=3ð2þ iÞ;
a11 ¼ 4Að1þ 2iÞ=3; a2−2 ¼ Að5þ 2iÞ=3; ð33Þ

where A is the initial mode amplitude that is varied in
Fig. 12. All other modes of ωRT are zero at t ¼ 0.

VI. BINARY BLACK HOLE
SIMULATION TRIALS

As the capstone demonstration of the efficacy of the
SpECTRE CCE system, we have performed the full
wave extraction of a representative binary black hole
simulation from SpEC. We have chosen the simula-
tion SXS:BBH:2096 from the SXS catalog [26,63], for
which SXS has stored worldtube data at extraction radii
R ¼ ð239; 436; 633; 830Þ. The chosen simulation is an
equal-mass nonspinning binary black hole merger, and
the SpEC simulation had a full duration of 23.36 orbits.
The equal-mass nonspinning case was chosen as a valuable
benchmark case for comparing numerical implementations.

FIG. 12. Residuals for the Robinson-Trautman test, computed
by subtracting the extracted news from the analytic prediction of
the news.

FIG. 13. The last several orbits of a waveform extracted using SpECTRE CCE, generated from the R ¼ 436 worldtube of simulation
SXS:BBH:2096.
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In Fig. 13, we show the extracted (2, 2) and (2, 0) modes
for each of the waveform quantities. In Fig. 15 we show the
convergence in numerical resolution for each of the
extraction radii, and in Fig. 14 we show the performance
of the SpECTRE CCE execution for the BBH extractions.
We find that SpECTRE CCE recovers the waveform and
Weyl scalars to good precision and is able to perform the
wave extraction very rapidly, achieving ∼10−9 residuals
with 20–40 minutes of run-time.
In Figs. 16 and 17 we show the performance and

convergence for the same BBH worldtube data as shown
in Figs. 14 and 15 but using the SpEC implementation of
CCE as described in Ref. [35]. The gains in accuracy and

efficiency in SpECTRE versus SpEC are substantial and can
be attributed to both analytical and numerical improve-
ments. On the analytical side, there have been advances
and simplifications in the CCE equations (see Ref. [40]),
including gauge transformations that eliminate pure-gauge
terms behaving like logðrÞ at large r. These advances
result in a better-behaved set of equations that is easier to
solve efficiently. On the numerical side, we have used
features of the SpECTRE infrastructure such as aggregate
memory allocations and fast vector operations, and we
have implemented more efficient algorithms than SpEC’s
CCE, as described in Sec. III. These include angular
interpolation via Clenshaw recurrence and improved radial
integration methods.

FIG. 14. The run-time of SpECTRE CCE applied to the extrac-
tion of binary black hole worldtube data generated by SpEC for
various stepper tolerance targets and extraction radii. In practical
cases, SpECTRE CCE is able to achieve a high-precision wave
extraction within 20–40 min of run-time.

FIG. 16. The same as Fig. 14 but computed with the SpEC CCE
code as described in Ref. [35]. Note the difference in scale on the
vertical axis; SpECTRE shows an enormous improvement, espe-
cially at higher resolution.

FIG. 17. The same as Fig. 15 but computed with the SpEC
CCE code as described in Ref. [35]. The new SpECTRE imple-
mentation of CCE provides a large improvement over SpEC’s
implementation.

FIG. 15. Convergence of the binary black hole trial execution of
SpECTRE CCE, computed by comparing the extracted news to the
value generated at the highest angular resolution run, lmax ¼ 16.
The SpECTRE CCE system converges rapidly for practical
use cases.
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In the present work, we are primarily concerned with the
precision and performance of the numerical system for
extracting gravitational-wave data from worldtube data.
However, evenwith our surface presentation of thewaveform
of the system, we can see that the (2, 0) mode of the
strain waveform produced by the SpECTRE CCE system in
Fig. 13 shows that we have successfully extracted a memory
component of the waveform—the postmerger strain shows a
clear offset that does not appear in extrapolation methods. In
several other publications [29,54,64–69], we explore the
physical insights and validation that are possible with highly
precise waveform extraction. In many of those explorations,
the availability of the full set of asymptotic Weyl scalars
has provided valuable information about asymptotic BMS
degrees of freedom and allowed cross-checks of the accuracy
of the data that are independent of the numerical convergence
checks.

VII. UPCOMING IMPROVEMENTS

A. Physically motivated initial data generation

The main remaining deficit in the accuracy of the
waveforms determined by SpECTRE CCE is the initial-data
transient near the beginning of every characteristic evolu-
tion. Without a better method to fix the CCE data on the
first hypersurface, waveform data analysis methods are
typically forced to discard the first ≈3–5 orbits of the
resulting strain waveform and to correct for the long-lived
BMS frame shift following the initial data transient [54].
The BMS shift is primarily noticeable in the strain wave-
form, which displays a visually apparent offset during the
inspiral. Note that there are also transients (commonly
called junk radiation) in the Cauchy evolution; those
transients also force data analysis methods to discard the
beginning of the waveform, but they are not as long lived as
the CCE transients and disappear after an orbit or so.
Future work will focus on methods to generate physi-

cally motivated data for the spin-weighted scalar J̆ and
angular coordinates xAðx̂ÂÞ on the first CCE hypersurface.
We anticipate that an improved initial data scheme will
construct the state of the initial hypersurface as an approxi-
mation to the system in which the inspiral had proceeded
arbitrarily far into the past of the first Cauchy surface. With
sufficiently accurate initial data, more of the valuable
Cauchy data could be recovered as high-precision wave-
form data and may reduce the demands of the postprocess-
ing BMS gauge transformation.

B. Cauchy-characteristic matching

Unlike past implementations of the Cauchy-characteristic
evolution system, the SpECTRECCEmodule is able to operate
in concert with a simultaneously running Cauchy simulation
with negligible performance degradation. The key develop-
ments that allow this accomplishment are setting the CCE
step size significantly larger than the Cauchy step as

described in Sec. IV B and numerical improvements
described in Sec. III.
The ability to gracefully run in tandem with a general-

ized harmonic system makes SpECTRE CCE a well-suited
system for an implementation of Cauchy-characteristic
matching. As derived in Ref. [56], the main piece of
information that is required to determine the ingoing
characteristic speeds for the generalized harmonic system
is the Weyl scalar Ψ0, computed in a choice of null tetrads
associated with the Cauchy coordinates. The value of Ψ0

can be derived directly from spectral operations on any null
hypersurface in the CCE system and transmitted to the
boundary elements in the generalized harmonic system to
improve the physical boundary condition.
We anticipate that a successful Cauchy-characteristic

matching system in SpECTRE would improve the precision
of the outer boundary conditions and reduce erroneous
wave reflections at the outer boundary. Further, with
sufficient improvement in the boundary behavior, the
outer boundary of the generalized harmonic simulation
should be able to be placed at smaller radii than the usual
∼103M without impacting the waveform precision. We
expect, then, that a smaller simulation domain for the
generalized harmonic system would enable less expensive
Cauchy simulations.

VIII. CONCLUSIONS

The SpECTRE CCE system represents a significant
improvement over previous methods of performing CCE
as well as over more traditional wave extraction methods.
Our new implementation of CCE is able to rapidly extract
waveforms from finished strong-field simulations or from a
simultaneously running generalized harmonic strong-field
simulation in SpECTRE. In the latter case, the SpECTRE

CCE system gracefully extracts finalized waveform data in
concert with the strong-field simulation. Our CCE imple-
mentation is extremely fast compared to previous imple-
mentations of CCE [33–35], which provides significant
benefits both for interoperability with other systems and in
the opportunity for users to quickly iterate on new advances
in waveform processing that require the use of CCE as a
step in the analysis.
Our implementation takes advantage of recent advances

in the understanding of the formalism underlying the
system of Einstein field equations in the Bondi-Sachs
and Bondi-like coordinate systems [40]. As a result, the
gauge is specialized to provably avoid any pure-gauge
logarithms that appear in generic Bondi-Sachs-like gauges.
In addition, the implementation is then able to easily
compute the asymptotically leading contribution to all five
Weyl scalars (see Fig. 13).

SpECTRE CCE has already begun to be used to
extract valuable insights from gravitational-wave data.
The gains available from highly precise gravitational-
wave extraction and the rich data encoded in the Weyl
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scalars have enabled a number of valuable early inves-
tigations of waveform properties and BMS gauge trans-
formations [29,54,64–69]. We anticipate that precise
waveform extraction will play an important role in the
gravitational-wave modeling pipeline as next-generation
ground-based and the near-future space-based gravita-
tional-wave detectors will demand extremely high-quality
gravitational-wave models [12].
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APPENDIX A: WORLDTUBE DATA
REPRESENTATIONS

The worldtube metric quantities that the interior Cauchy
code must supply to CCE are all components of the spatial
metric gij, the shift βi, the lapse α, their radial derivatives
∂rgij, ∂rβi, and ∂rα, and their time derivatives ∂tgij, ∂tβi,
and ∂tα. This results in a total of 30 tensor components to
store and retrieve.
However, if the initial transformation to Bondi-Sachs

coordinates can be performed before storage, we need only
store the boundary values of β, Q, U, W, H, J, ∂rJ, R, and
∂uR. The Bondi-Sachs representation totals 14 real com-
ponents. Combined with a representation in spin-weighted
spherical harmonics that make good use of the relation-
ships between þm and −m modes for real functions,
storing Bondi-Sachs data can be a factor of 2–4 cheaper
than storing the full set of metric components and their
derivatives.
Because this savings is so great for large catalogs of

binary black hole simulations, SpECTRE [45] also provides a
lightweight executable (ReduceCceWorldtube) for con-
verting inefficient metric component data to the far smaller
Bondi-Sachs data representation.

APPENDIX B: ANGULAR INTERPOLATION
TECHNIQUES USING SPIN-WEIGHTED

CLENSHAW ALGORITHM

The Clenshaw recurrence algorithm is a fast method of
computing the sum over basis functions:

fðxÞ ¼
XN
n¼0

anϕnðxÞ; ðB1Þ

provided the set of basis functions ϕn obeys a standard
form of a three-term recurrence relation common to many

polynomial bases. In particular, it is assumed that ϕn may
be written as

ϕnðxÞ ¼ αnðxÞϕn−1ðxÞ þ βnðxÞϕn−2ðxÞ; ðB2Þ

for some set of easily computed αn and βn.
The algorithm for computing the full sum fðxÞ [70]

is then to compute the set of quantities yn for n ≥ 1, where
yn is

yNþ2ðxÞ ¼ yNþ1ðxÞ ¼ 0; ðB3aÞ

ynðxÞ ¼ αnþ1ðxÞynþ1ðxÞ
þ βnþ2ðxÞynþ2ðxÞ þ an: ðB3bÞ

Once the last two quantities in the chain y1ðxÞ and y2ðxÞ are
determined, the final sum is obtained from the formula

fðxÞ ¼ β2ðxÞϕ0ðxÞy2ðxÞ þ ϕ1ðxÞy1ðxÞ þ a0ϕ0ðxÞ: ðB4Þ

We use the Clenshaw method for interpolating SWSH
data to arbitrary points x on the sphere. For spherical
harmonics, it is successive values of l that have convenient
three-term recurrence relations, so the lowest modes in the
recursion are Y jmj;mðθ;ϕÞ and Y jmjþ1;mðθ;ϕÞ. The values of
αl;mðθ;ϕÞ and βl;mðθ;ϕÞ are cached for the target inter-
polation points, and the source collocation values are
transformed to spectral coefficients al;m. The Clenshaw
algorithm can be applied directly at each of the target points
ðθ;ϕÞ, to obtain the values fðθ;ϕÞ. Note that the step of
caching the αl;mðθ;ϕÞ and βl;mðθ;ϕÞ is primarily useful for
interpolating multiple functions to the same grid; if only
one function is needed for each grid, there will be little gain
in caching α and β, as they would each be evaluated only
once in a given recurrence chain.
In Appendix E, we give full details of the specific

recurrence relations that can be used to efficiently calculate
the Clenshaw sum for SWSH, as well as additional
recurrence relations that improve performance when mov-
ing between themmodes. For the remaining discussion it is
convenient to define a few auxiliary variables that are used
in the formulas for the SWSH recurrence:

a ¼ jsþmj; ðB5aÞ

b ¼ js −mj; ðB5bÞ

λ ¼
�
0; s ≥ −m;

sþm; s < −m:
ðB5cÞ

The step-by-step procedure for efficiently interpolating a
spin-weighted function represented as a series of spin-
weighted spherical harmonic coefficients to a set of target
collocation points ðθi;ϕiÞ is then as follows.

SpECTRE CAUCHY-CHARACTERISTIC EVOLUTION SYSTEM FOR … PHYS. REV. D 107, 064013 (2023)

064013-19



(1) Assemble the lookup table of required (αða;bÞl ðθÞ,
βða;bÞl , λm):
(a) For each m ∈ ½−lmax;lmax� there is a pair ða; bÞ

from Eq. (B5) to be computed. Note that αða;bÞl
must be cached separately for each target point,

but βða;bÞl does not depend on the target coor-
dinates.

(2) For m ∈ ½0;lmax�,
(a) If jsj ≥ jmj, determine sY jsj;mðθ;ϕÞ from direct

evaluation of (E1) with (E3) and sY jsjþ1;mðθ;ϕÞ
from (E10); store sY jsj;mðθ;ϕÞ for recursion
if jsj ¼ jmj.

(b) If jmj > jsj, determine sY jmj;mðθ;ϕÞ from recur-
rence (E9) and sY jmjþ1;mðθ;ϕÞ from (E10). Store

sY jmj;mðθ;ϕÞ for recursion.
(c) Perform the Clenshaw algorithm to sum over

l ∈ ½minðjsj; jmjÞ;lmax�, using the spectral co-

efficients alm, the precomputed αða;bÞl and βða;bÞl
recurrence coefficients, and the first two har-
monics in the sequence computed from the
previous step.

(3) For m ∈ ½−1;−lmax�, repeat the substeps of step 2,
but for the negative set of m’s.

Although the procedure for interpolation is performed
efficiently, there are a number of details of the implemen-
tation of the angular coordinate transformation that must be
handled carefully.

First, it is important to note the counterintuitive nature of
the set of coordinate functions we require for the interpo-
lation. In both the source frame and the target frame, we use a
pseudospectral grid, evenly spaced in ϕ, and at Legendre-
Gauss points in θ. When interpolating, we require the
location in the source frame coordinates of the target frame
collocation points. Therefore, when expressed as a function
over collocation points, the function that we use for inter-
polation is xAðx̂AÞ. We have found this feature of the
interpolation for pseudospectral methods easy to misremem-
ber, so we have included Fig. 18 to assist in recalling the
correct reasoning.
Most of the quantities that we wish to interpolate have

nonzero spin weight and so do not transform as scalars.
Instead, their transformation involves factors of the spin-
weighted angular Jacobians (13). The tensor transforma-
tions for each of the relevant quantities at the worldtube
boundary are given in Eq. (15). For illustration, let us
discuss the transformation of the spin-weight 2 scalar J̆:

J̆ ¼
˘̄b
2
J þ ă2J̄ þ 2ă ˘̄bK

4ω̆
: ðB6Þ

It is important to note that at the start of the transformation
procedure, we have the values of J on the source grid xA

and the values of ă, b̆, and ω̆ on the target grid x̆Ă [the
Jacobians are derivatives of xðx̆Þ; see Fig. 18].
The spin-weighted interpolation procedure can be per-

formed only on quantities that are representable by the
SWSH basis. We can store nonrepresentable quantities
(including, e.g. the angular coordinates themselves) on our
chosen angular grid, but we cannot perform a SWSH
transform on such quantities, so we cannot interpolate them
using pseudospectral methods with any predictable accu-
racy. Inconveniently, we are burdened with a number of
quantities that are not representable on the SWSH basis.
Immediately after interpolation, JðxAðx̆ĂÞÞ is not repre-
sentable on the basis corresponding to the new grid because
the Jacobian factors have not yet been applied. Simi-
larly, the Jacobian factors ă and b̆ are not representable
on the SWSH basis whenever the angular transform is
not trivial.
Accordingly, for our example of J̆, we must apply the

transformation operations in a specific sequence.
(1) Interpolate JðxAÞ and KðxAÞ to JðxAðx̆ĂÞÞ and

KðxAðx̆ĂÞÞ.
(2) Multiply the result by the Jacobian factors that

appear in Eq. (B6).
We meet a similar complication when manipulating the

evolved angular coordinates xAðŭ; x̆ĂÞ. The angular coor-
dinates are not representable on the SWSH basis, yet we
must take angular derivatives of the angular coordinates
to determine the Jacobian factors (13). The method we
use to evade the problems for the angular coordinate

FIG. 18. An illustration of the interpolation reasoning for
pseudospectral methods. The input to the interpolation is the
field values at the collocation points in the source frame, and we
wish to determine the field values for the same function at the
collocation points in the target frame, which will be at non-
collocation points in the source frame coordinates. Therefore, the
interpolation seeks to calculate the field value at points xðx̂Þ in the
source frame, for all collocation points x̂ in the target frame.
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representation is to introduce a unit sphere Cartesian
representation of the angular coordinates:

xunit ¼ sin θ cosϕ; ðB7aÞ
yunit ¼ sin θ sinϕ; ðB7bÞ
zunit ¼ cos θ: ðB7cÞ

The evolution equation for the unit sphere Cartesian
representation is then derived from the angular coordinate
evolution equation (12):

∂ŭxiunit ¼ U Ă
0 ∂Ăx

i
unit

¼ 1

2
ðU0

˘̄ðxiunit þ Ū0ð̆xiunitÞ: ðB8Þ

The main advantage of promoting the angular coordi-
nates xAðŭ; x̆ĂÞ to their unit sphere Cartesian analogs is that
the Cartesian coordinates xi are spin weight 0 and so we can
quickly and accurately evaluate their angular derivatives.
The spin-weighted Jacobian factors (13) are then calcu-

lated as

ă ¼ ð̆xi∂ixAqA; ðB9aÞ

b̆ ¼ ˘̄ðxi∂ixAqA; ðB9bÞ

where the factors ∂ixA are theCartesian-to-angular Jacobians
in the source frame and so are analytically computed as

∂xθ ¼ cos½ϕðx̂ÂÞ� cos½θðx̂ÂÞ�; ðB10aÞ

∂xϕ ¼ − sin½ϕðx̂ÂÞ�= sin½θðx̂ÂÞ�; ðB10bÞ

∂yθ ¼ cos½θðx̂ÂÞ� sin½ϕðx̂ÂÞ�; ðB10cÞ

∂yϕ ¼ cos½ϕðx̂ÂÞ�= sin½θðx̂ÂÞ�; ðB10dÞ

∂zθ ¼ − sin½θðx̂ÂÞ�; ðB10eÞ

∂zϕ ¼ 0: ðB10fÞ

APPENDIX C: INTERPOLATION AT I +

The core evolution system using the hierarchical system
of CCE equations (9) gives the spin-weighted scalars
fJ̆; β̆; Ŭ; W̆; H̆g that determine the asymptotic partially flat
Bondi-like metric (7). However, to determine the waveform
quantities in asymptotically inertial coordinates, we must
perform a final gauge transformation at Iþ. Because the
partially flat coordinates of the evolution system ensure that
the angular coordinates are asymptotically inertial—their
defining Eq. (12) is identical to the asymptotically inertial

angular coordinates constructed in Ref. [34]—we just need
to perform a coordinate transformation to asymptotically
inertial retarded time ůðŭ; x̆ĂÞ.
The asymptotically inertial retarded time ů is determined

by evolving

∂ŭů ¼ e2β̆: ðC1Þ

All other coordinates are identical to their partially flat
counterparts r̊ ¼ r̂, θ̊ ¼ θ̂, and ϕ̊ ¼ ϕ̂.
Once the asymptotically inertial retarded time ů is

determined, we must perform the explicit computations
of the asymptotic quantities

h ¼ ˘̄Jð1Þ þ ˘̄ð2ů; ðC2aÞ

N ¼ e−2β̆
ð0Þ
h
˘̄Hð1Þ þ ˘̄ð2e2β̆

ð0Þ
i
; ðC2bÞ

ΨBondið1Þ
4 ¼ ΨPFð1Þ

4 ; ðC2cÞ

ΨBondið2Þ
3 ¼ ΨPFð2Þ

3 þ 1

2
ð̆ ůΨPFð1Þ

4 ; ðC2dÞ

ΨBondið3Þ
2 ¼ ΨPFð3Þ

2 þ ð̆ ůΨPFð2Þ
3 þ 1

4
ðð̆ ůÞ2ΨPFð1Þ

4 ; ðC2eÞ

ΨBondið4Þ
1 ¼ ΨPFð4Þ

1 þ 3

2
ð̆ ůΨPFð3Þ

2 þ 3

4
ðð̆ ůÞ2ΨPFð2Þ

3

þ 1

8
ðð̆ ůÞ3ΨPFð1Þ

4 ; ðC2fÞ

ΨBondið5Þ
0 ¼ ΨPFð5Þ

0 þ 2ð̆ ůΨPFð4Þ
1 þ 3

4
ðð̆ ůÞ2ΨPFð3Þ

2

þ 1

2
ðð̆ ůÞ3ΨPFð2Þ

3 þ 1

16
ðð̆ ůÞ4ΨPFð1Þ

4 : ðC2gÞ

FIG. 19. A sketch of the interpolation required at Iþ. The black
rings represent the time series of spherical surface data produced
by CCE at Iþ and the points represent the collocation points on
which the field values are provided. The red curve represents a
single value of asymptotically inertial time ůðŭ; x̆ĂÞ on which we
wish to evaluate the waveform. The red points are those we would
use to perform a second-order interpolation to the asymptotically
inertial time. Note that we may need to use different sets of source
time values ŭ at different collocation points.
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However, once we have computed these waveform quan-
tities, we still need to perform the interpolation to cuts of
Iþ at constant inertial retarded time ů. To perform the
interpolation, we record several time steps of the CCE
evolution, until we have sufficient data at Iþ to perform a
barycentric rational [59] interpolation to the target cut of
constant ů. This process is illustrated in Fig. 19.

APPENDIX D: RAPID LINEAR ALGEBRA
METHODS FOR RADIAL INTEGRATION

SpECTRE CCE uses a Legendre Gauss-Lobatto spectral
representation for the radial dependence of the spin-
weighted scalars on its domain. The use of spectral
methods allows rapid integration of the radial differential
equations of the hierarchical CCE system (9). The numeri-
cal methods we employ in this section are not themselves
new, but they have not previously been applied to effi-
ciently solving the CCE system of equations.
Each of the angular derivatives that appears in the

hierarchy of radial differential equations is first evaluated
by the procedure described around Eq. (6): Perform a spin-
weighted spherical harmonic transform using LIBSHARP,
multiply by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − sÞðlþ sþ 1Þp
in the modal basis for the

ð̆ and −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ sÞðl − sþ 1Þp

for ˘̄ð, and recover the nodal
representation of the derivative with an inverse spin-
weighted transform. Using these nodal values of the
angular derivative terms, we may then directly compute
each of the right-hand sides of the radial differential
equations over the nodal grid. Therefore, for each of the
radial differential equations, the problem reduces to a
collection of radial ODE solves.
The spectral representation in the radial direction allows

the further simplification of determining linear operators
that correspond to indefinite integration. Given the function
f expressed in the modal representation

fðy̆Þ ¼
X
n

anPnðy̆Þ; ðD1Þ

we seek the integration matrix I such that

X
n

an

Z
y̆
Pnðy̆Þ ¼

X
n

ðI · aÞnPnðy̆Þ

⟹
X
n

anPnðy̆Þ ¼
X
n

ðI · aÞn∂y̆Pnðy̆Þ: ðD2Þ

The relevant identity for Legendre polynomials that we use
to determine the integration matrix I is

Pnðy̆Þ ¼
1

2nþ 1

d
dy̆

½Pnþ1ðy̆Þ − Pn−1ðy̆Þ�: ðD3Þ

By integrating both sides of this equation and applying
the result to the modal representation (D1), we find the

almost-tridiagonal indefinite integration matrix for the
spectral representation:

I ¼

2
666666664

−1 1 −1 1 � � � ð−1Þnþ1

−1 0 −1=3 0 � � � 0

0 1 0 −1=5 � � � 0

..

. ..
. . .

. . .
. . .

. ..
.

0 0 � � � 1=ð2n − 1Þ 0 −1=ð2nþ 3Þ

3
777777775
:

ðD4Þ

Here the first row is chosen to zero the function at the
innermost grid point (at y̆ ¼ −1). It is convenient to
generate linear operators acting entirely on the nodal
representation. These are composed as M−1IM, where
M is the linear operator that maps the nodal represen-
tation to the modal representation. We may then add an
integration constant freely to the result of the indefinite
integration operator in the nodal representation to satisfy
the boundary conditions.
Two of the five equations (those that determine β̆ and Ŭ)

take the simple form

∂y̆f ¼ Sf: ðD5Þ

The radial ODE solves for these cases are a straightforward
application of the nodal integration matrix M−1IM using
Eq. (D4). In the CCE system, the choice to zero the value at
the innermost boundary point ensures that we may impose
the boundary conditions for the worldtube quantities β̆jΓ
and ŬjΓ by adding the appropriate boundary value to all
points along the radial rays for each angular point on the
boundary.
Two more of the radial differential equations (those that

determine Q̆ and W̆) take the form

ð1 − y̆Þ∂y̆f þ 2f ¼ Sf: ðD6Þ

This case requires more care than the original indefinite
integral, but the full integration matrix is still readily
calculable for arbitrary Legendre order n.
Considering again the modal representation (D1), we

wish to find the linear operator K such that

X
n

anPnðy̆Þ ¼
X
n

ðK · aÞn½ð1 − y̆Þ∂y̆Pnðy̆Þ þ 2Pnðy̆Þ�:

ðD7Þ

The operator K is the inverse of the operator in Eq. (D6).
We will again make use of the integration matrix I (D4).

We also require the inverse of the matrix C associated with
multiplication by ð1 − y̆Þ:
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X
ðC · aÞnPnðy̆Þ ¼

X
anð1 − y̆ÞPnðy̆Þ: ðD8Þ

The matrix C is derived by algebraic manipulations of
Bonnet’s recursion formula for Legendre polynomials:

ðnþ 1ÞPnþ1 ¼ ð2nþ 1Þy̆Pn − nPn−1

⟹ ð1 − y̆ÞPn ¼ −
nþ 1

2nþ 1
Pnþ1 þ Pn −

n
2nþ 1

Pn−1:

ðD9Þ

Therefore, composing the operations of C and I, we findX
n

ððCþ 2IÞ · aÞnPnðy̆Þ ¼
X
n

ðI · aÞn½ð1 − y̆Þ∂y̆Pn þ 2Pn�

ðD10Þ

and

K ¼ I · ðCþ 2IÞ−1: ðD11Þ

To computeK in practice, we determine the values of C and
I analytically and then perform a single numerical inversion
to finish the computation of Eq. (D11). Boundary con-
ditions then determine the quadratic part of the solution and
so are imposed by adding the appropriate bðθ̆; ϕ̆Þð1 − y̆Þ2
contribution along each radial ray.
Importantly, for both of the above types of the radial

ODE solve, the integration matrix in question is indepen-
dent of the values of the fields. So, at the start of the
simulation, we precompute and store the necessary inte-
gration matrices, reducing each of the ODE solves
described above to a matrix-vector multiplication for each
radial ray. In SpECTRE, these matrix-vector product calcu-
lations are optimized via the vector intrinsic library
LIBXSMM [71].
The final type of radial differential equation appears

only in the equation that determines H. This type is more
complicated:

ð1 − y̆Þ∂y̆f þ ½1þ ð1 − y̆ÞLGLJ�f þ ð1 − y̆ÞL̄GLJf̄ ¼ S;

ðD12Þ

in which the L factors depend on the field quantities of the
current hypersurface. In this case, there is little hope of
determining an elegant simplification using the modal
basis. In any case, there would be no opportunity for
caching and reusing an integration matrix, as the differ-
ential operator that acts on f depends on the other fields on
the hypersurface. So, for the integration of the H equation,

we decompose the complex linear differential equation into
a real linear equation on vectors of length 2n:

�� ð1− y̆Þ∂y̆ þ 1 0

0 ð1− y̆Þ∂y̆ þ 1

�

þ ð1− y̆Þ
�
ReðLJÞReðLGÞ ReðLJÞImðLGÞ
ImðLJÞReðLGÞ ImðLJÞImðLGÞ

���
ReðfÞ
ImðfÞ

�

¼
�
ReðSÞ
ImðSÞ

�
; ðD13Þ

where the multiplication by ð1 − y̆Þ and differentiation ∂y̆

are understood to represent linear operators on the
Legendre Gauss-Lobatto nodal representation. We then
solve Eq. (D13) by numerically computing the linear
operator along each radial ray and performing an aggre-
gated linear solve via LAPACK [72]. Boundary conditions
are imposed as usual by setting the first row of the operands
ReðSÞ and ImðSÞ to the desired boundary value before the
operation and adjusting the first and (nþ 1) rows of the
linear operator to be equivalent to the first and (nþ 1) rows
of the identity matrix.

APPENDIX E: CLENSHAW RECURRENCE
DETAILS

1. Spin-weighted spherical harmonics in terms
of Jacobi polynomials

A number of representation choices exist for the spin-
weighted spherical harmonic basis, most of which are
related by phase and sign changes. For simplicity, we take
the definition of the spin-weighted spherical harmonics
sYlmðθ;ϕÞ directly in terms of the Wigner rotation matrices
dl−m;sðθÞ [73]:

sYlmðθ;ϕÞ ¼ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
eimϕdl−m;sðθÞ: ðE1Þ

The Wigner rotation matrices dl−m;s may then be
expressed in terms of Jacobi polynomials [74]. Define

a ¼ jsþmj; ðE2aÞ
b ¼ js −mj; ðE2bÞ

k ¼ −
1

2
ðaþ bÞ; ðE2cÞ

λ ¼
�
0; s ≥ −m;

sþm; s < −m:
ðE2dÞ
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Then,

dl−m;sðθÞ ¼ ð−1Þλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ kÞ!ðlþ kþ aþ bÞ!
ðlþ kþ aÞ!ðlþ kþ bÞ!

s

× sina
�
θ

2

�
cosb

�
θ

2

�
Pða;bÞ
lþk ðcos θÞ: ðE3Þ

We have deviated from the notation of Ref. [74] and others
by separating out the l contribution from the variable k.
With the notation in Eq. (E3), all dependence on l is
explicit. This assists the derivation below of recurrence
relations for successive l at fixed s andm (and so also fixed
a, b, and k).

Note that for any particular ðs;mÞ, the lowest l
mode that is required is lmin ¼ maxðjmj; jsjÞ and that
k ¼ minð−jmj;−jsjÞ. Thus each of the recurrence relations

has its lowest two contributions determined by Pða;bÞ
0 and

Pða;bÞ
1 , which have convenient closed forms:

Pða;bÞ
0 ðcos θÞ ¼ 1; ðE4aÞ

Pða;bÞ
1 ðcos θÞ ¼ ðaþ 1Þ þ ðaþ bþ 2Þ cos θ − 1

2
: ðE4bÞ

For reference, the three-term recursion relation we use for
the Jacobi polynomials is [75]

Pða;bÞ
n ðxÞ ¼ Pα

ða;bÞ
n ðxÞPn−1ðxÞ þ Pβ

ða;bÞ
n Pn−2ðxÞ; ðE5aÞ

Pα
ða;bÞ
n ðxÞ ¼ 2nþ bþ a − 1

2nðnþ aþ bÞ
�
ð2nþ aþ bÞxþ ða2 − b2Þ

2nþ aþ b − 2

�
; ðE5bÞ

Pβ
ða;bÞ
n ¼ −ð2nþ aþ bÞðnþ a − 1Þðnþ b − 1Þ

nðnþ aþ bÞð2nþ aþ b − 2Þ : ðE5cÞ

In Eq. (E5), we denote the recurrence coefficients with a
leading subscript P, to avoid ambiguity with other recur-
rence coefficients in this paper.

2. Recursion relations for application
of Clenshaw algorithm

In general, to perform a spin-weighted spherical har-
monic interpolation from a prescribed set of collocation
points, one first performs a transformation to spin-weighted
coefficients salm and then interpolates to each desired
ðθi;ϕiÞ by evaluating the sum

fðθi;ϕiÞ ¼
Xlmax

m¼−lmax

Xlmax

l¼minðjmj;jsjÞ
salmsYlmðθi;ϕiÞ: ðE6Þ

The Clenshaw-based algorithm will possess an outer
loop over m ∈ ½−lmax;lmax� modes for a given spin s.

The inner sum will then be evaluated using the Clenshaw
recurrence algorithm described in Appendix B. For this
section, we focus on the formulas necessary to apply the
Clenshaw algorithm to the innermost loop.
For spin-weighted spherical harmonics with l ≥

maxðjmj; jsjÞ þ 2, we seek a recurrence relation of
the form

sYlmðθ;ϕÞ ¼ Yα
ða;bÞ
l ðθ;ϕÞsYl−1mðθ;ϕÞ

þ Yβ
ða;bÞ
l sYl−2mðθ;ϕÞ: ðE7Þ

The coefficients in Eq. (E7) are labeled with a leading
subscript Y and may be inferred from the relation
between the spin-weighted spherical harmonics and
the Jacobi polynomials. The result is the recurrence
coefficients

Yα
ða;bÞ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2l − 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ kÞðlþ kþ aþ bÞ
ðlþ kþ aÞðlþ kþ bÞ

s
Pα

ða;bÞ
lþk ðcos θÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2l − 1

r
2ðlþ kÞ þ bþ a − 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ kÞðlþ kþ aþ bÞðlþ kþ aÞðlþ kþ bÞp

×

�
ð2ðlþ kÞ þ aþ bÞ cos θ þ a2 − b2

2ðlþ kÞ þ aþ b − 2

�
; ðE8aÞ
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Yβ
ða;bÞ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2l − 3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ kÞðlþ k − 1Þðlþ kþ aþ bÞðlþ kþ aþ b − 1Þ
ðlþ kþ aÞðlþ kþ a − 1Þðlþ kþ bÞðlþ kþ b − 1Þ

s
Pβ

ða;bÞ
lþk

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðlþ kþ a − 1Þðlþ kþ b − 1Þðlþ k − 1Þðlþ kþ aþ b − 1Þ

ð2l − 3Þðlþ kÞðlþ kþ aþ bÞðlþ kþ aÞðlþ kþ bÞ

s
2ðlþ kÞ þ aþ b

2ðlþ kÞ þ aþ b − 2
: ðE8bÞ

When generating the Yα and Yβ coefficients, it would be
wasteful to populate a full two-dimensional space of
integers for ða; bÞ values. For each spin s, there is a
one-to-one mapping between m and ða; bÞ pairs, so for
each spin value exactly 2lmax þ 1 recurrence coefficient
sets should be generated. For each coefficient set, coef-
ficients are needed with indices l ∈ ½minðjmj; jsjÞ;lmax�.

3. Relations between successive iterations
for spin-weighted spherical harmonics

In this section, we describe the computations necessary
to obtain the two lowest spin-weighted spherical harmonics
for each Clenshaw recurrence evaluation and suggest a
method by which several of these explicit functions may
also be determined by recurrence in m to limit evaluations
of the factorial prefactor and powers of trigonometric
functions found in Eq. (E3).
First, we note that it is desirable to first evaluate the

recurrence for m ¼ 0 and then perform the sequence of
positivem and negativem as further branches. The reason for

this evaluation structure is based on the observation that
successive factors of sinaðθ=2Þ cosbðθ=2Þ can be computed
from previous ones provided that a and b both increment
from one step to the next. FromEq. (B5), we see that that this
will be true for ascending values of jmj whenever jsj < jmj.
Therefore, it is possible to recursively obtain sY jmjm

and sY jmjþ1m from the previously determined harmonics,
for all harmonics where jmj > jsj. Recursive construction
will not be available for complete generality, as the steps
for which jsj ≥ jmj involve both the increase and decrease
of a’s and b’s and so would involve the potentially
dangerous division by sinðθ=2Þ, which is ill defined near
one pole. For those 2jsj steps, our algorithm accepts the
cost of the direct evaluation of the (small) powers. For
most realistic applications, the value jsj will be far smaller
than lmax, so most m steps can be evaluated by the
recursive method.
In particular, for jmj > jsj, the first required explicit

function for the Clenshaw recurrence is

sY jmjm ¼ ð−1ÞΔλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jmj þ 1

2jmj − 1

ðlþ kþ aþ b − 1Þðlþ kþ aþ bÞ
ðlþ kþ aÞðlþ kþ bÞ

s
eiϕ sin ðθ=2Þ cos ðθ=2Þ

�
sY jmj−1m−1; m > 0;

sY jmj−1mþ1; m < 0;
ðE9Þ

where the difference Δλ ¼ λm − λ�m is sufficiently cheap to compute on a case-by-case basis. Finally, the second harmonic
can always be easily evaluated from the first harmonic of a sequence. The simple relation arises from noting that the first
Jacobi polynomial in each sequence is unity. Therefore, computation can once again be saved in determining sYlminþ1;m:

sYlminþ1m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lmin þ 3

2lmin þ 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlmin þ kþ 1Þðlmin þ kþ aþ bþ 1Þ
ðlmin þ kþ aþ 1Þðlmin þ kþ bþ 1Þ

s �
ðaþ 1Þ þ ðaþ bþ 2Þ ðcos θ − 1Þ

2

�
sYlminm: ðE10Þ

With the above recurrence for the successive startingmmodes, it is only necessary to evaluate sYlminm for jmj ≤ jsj from the
explicit formulas for the Wigner rotation matrices (E3).
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[42] L. Kalé and S. Krishnan, in Proceedings of OOPSLA’93,

edited by A. Paepcke (Association for Computing Machi-
nery, New York, 1993), pp. 91–108.

[43] Parallel Science and Engineering Applications: The
Charm++ Approach, edited by L. V. Kale and A. Bhatele
(Taylor & Francis Group, CRC Press, London, 2013).

[44] Charm++, https://charm.cs.illinois.edu/research/charm (ac-
cessed: 2021-07-16).

[45] SpECTRE github page, https://github.com/sxs-collaboration/
spectre (2022) (accessed: 2022-10-23).

[46] SpECTRE documentation page, https://spectre-code.org
(2022) (accessed: 2022-10-23).

[47] SpECTRE CCE tutorial page, https://spectre-code.org/
tutorial_cce.html (2022) (accessed: 2022-10-23).

[48] N. T. Bishop, R. Gomez, L. Lehner, B. Szilagyi, J.
Winicour, and R. A. Isaacson, Cauchy characteristic match-
ing, in Black Holes, Gravitational Radiation and the
Universe: Essays in Honor of C. V. Vishveshwara, edited
by B. R. Iyer and B. Bhawal (Springer, Netherlands, 1998).

[49] M. Reinecke and D. S. Seljebotn, Astron. Astrophys. 554,
A112 (2013).

[50] LIBSHARP, https://github.com/Libsharp/libsharp (2022)
(accessed: 2022-10-23).

[51] N. Bishop, D. Pollney, and C. Reisswig, Classical Quantum
Gravity 28, 155019 (2011).

[52] J. W. York, Jr., Phys. Rev. Lett. 82, 1350 (1999).
[53] H. P. Pfeiffer and J. W. York, Jr., Phys. Rev. D 67, 044022

(2003).
[54] K. Mitman, N. Khera, D. A. B. Iozzo, L. C. Stein, M. Boyle,

N. Deppe, L. E. Kidder, J. Moxon, H. P. Pfeiffer, M. A.
Scheel, S. A. Teukolsky, and W. Throwe, Phys. Rev. D 104,
024051 (2021).

[55] Blaze, https://bitbucket.org/blaze-lib/blaze/src/master/ (ac-
cessed: 2021-08-02).

[56] L. Lindblom, M. A. Scheel, L. E. Kidder, R. Owen,
and O. Rinne, Classical Quantum Gravity 23, S447
(2006).

[57] E. Harier, S. P. Nørsett, and G. Wanner, Solving Ordinary
Differential Equations I (Springer, New York, 1993).

[58] W. Throwe and S. A. Teukolsky, arXiv:1811.02499.
[59] M. S. Floater and K. Hormann, Numer. Math. 107, 315

(2007).
[60] N. T. Bishop, Classical Quantum Gravity 22, 2393

(2005).
[61] S. A. Teukolsky, Phys. Rev. D 26, 745 (1982).
[62] L. Derry, R. Isaacson, and J. Winicour, Phys. Rev. 185, 1647

(1969).

JORDAN MOXON et al. PHYS. REV. D 107, 064013 (2023)

064013-26

https://doi.org/10.1103/PhysRevD.94.064035
https://doi.org/10.1103/PhysRevD.99.124005
https://doi.org/10.1103/PhysRevD.92.102001
https://doi.org/10.1103/PhysRevD.92.102001
https://doi.org/10.1103/PhysRevD.96.104041
https://doi.org/10.1088/0264-9381/33/24/244002
https://doi.org/10.1088/0264-9381/33/24/244002
https://doi.org/10.1103/PhysRevResearch.2.023151
https://doi.org/10.1103/PhysRevResearch.2.023151
https://arXiv.org/abs/2105.09247
https://doi.org/10.1088/1475-7516/2020/03/050
https://doi.org/10.1088/1475-7516/2020/03/050
https://arXiv.org/abs/1702.00786
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/1742-6596/840/1/012010
https://black-holes.org/code/spec.html
https://black-holes.org/code/spec.html
https://black-holes.org/code/spec.html
https://black-holes.org/code/spec.html
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1103/PhysRevLett.92.211101
https://doi.org/10.1103/PhysRevLett.92.211101
https://doi.org/10.1103/PhysRevD.97.064036
https://doi.org/10.1103/PhysRevD.97.064036
https://doi.org/10.1103/PhysRevD.103.024039
https://doi.org/10.1007/s41114-016-0001-9
https://doi.org/10.1007/s41114-016-0001-9
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1103/PhysRevD.100.024021
https://doi.org/10.1103/PhysRevD.100.024021
https://doi.org/10.1088/0264-9381/33/20/204001
https://doi.org/10.1088/0264-9381/33/20/204001
https://doi.org/10.1103/PhysRevD.102.104007
https://doi.org/10.1103/PhysRevD.102.104007
https://doi.org/10.1103/PhysRevD.54.6153
https://doi.org/10.1103/PhysRevD.54.6153
https://doi.org/10.12942/lrr-2012-2
https://doi.org/10.1088/0264-9381/28/13/134006
https://doi.org/10.1088/0264-9381/28/13/134006
https://doi.org/10.1063/1.1301561
https://doi.org/10.1103/PhysRevD.56.6298
https://doi.org/10.1103/PhysRevD.102.024004
https://doi.org/10.1103/PhysRevD.102.024004
https://doi.org/10.1088/0264-9381/32/2/025008
https://doi.org/10.1088/0264-9381/32/2/025008
https://doi.org/10.1088/0264-9381/32/23/235018
https://doi.org/10.1088/0264-9381/32/23/235018
https://doi.org/10.1088/0264-9381/33/22/225007
https://doi.org/10.1088/0264-9381/33/22/225007
https://zenodo.org/record/5083825
https://zenodo.org/record/5083825
https://zenodo.org/record/5083825
https://doi.org/10.1103/PhysRevD.102.044052
https://doi.org/10.1103/PhysRevD.102.044052
https://doi.org/10.1016/j.jcp.2016.12.059
https://charm.cs.illinois.edu/research/charm
https://charm.cs.illinois.edu/research/charm
https://charm.cs.illinois.edu/research/charm
https://charm.cs.illinois.edu/research/charm
https://github.com/sxs-collaboration/spectre
https://github.com/sxs-collaboration/spectre
https://github.com/sxs-collaboration/spectre
https://spectre-code.org
https://spectre-code.org
https://spectre-code.org/tutorial_cce.html
https://spectre-code.org/tutorial_cce.html
https://spectre-code.org/tutorial_cce.html
https://spectre-code.org/tutorial_cce.html
https://doi.org/10.1051/0004-6361/201321494
https://doi.org/10.1051/0004-6361/201321494
https://github.com/Libsharp/libsharp
https://github.com/Libsharp/libsharp
https://doi.org/10.1088/0264-9381/28/15/155019
https://doi.org/10.1088/0264-9381/28/15/155019
https://doi.org/10.1103/PhysRevLett.82.1350
https://doi.org/10.1103/PhysRevD.67.044022
https://doi.org/10.1103/PhysRevD.67.044022
https://doi.org/10.1103/PhysRevD.104.024051
https://doi.org/10.1103/PhysRevD.104.024051
https://bitbucket.org/blaze-lib/blaze/src/master/
https://bitbucket.org/blaze-lib/blaze/src/master/
https://doi.org/10.1088/0264-9381/23/16/S09
https://doi.org/10.1088/0264-9381/23/16/S09
https://arXiv.org/abs/1811.02499
https://doi.org/10.1007/s00211-007-0093-y
https://doi.org/10.1007/s00211-007-0093-y
https://doi.org/10.1088/0264-9381/22/12/006
https://doi.org/10.1088/0264-9381/22/12/006
https://doi.org/10.1103/PhysRevD.26.745
https://doi.org/10.1103/PhysRev.185.1647
https://doi.org/10.1103/PhysRev.185.1647


[63] T. Chu, H. Fong, P. Kumar, H. P. Pfeiffer, M. Boyle, D. A.
Hemberger, L. E. Kidder, M. A. Scheel, and B. Szilagyi,
Classical Quantum Gravity 33, 165001 (2016).

[64] F. Foucart, A. Chernoglazov, M. Boyle, T. Hinderer, M.
Miller, J. Moxon, M. A. Scheel, N. Deppe, M. D. Duez,
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