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3Aix-Marseille University, Université de Toulon, CPT-CNRS, F-13288 Marseille, France

4Perimeter Institute, 31 Caroline Street North, Waterloo, Ontario N2L2Y5, Canada
5Department of Philosophy and the Rotman Institute of Philosophy, Western Ontario University,

London, Ontario N6A5B7, Canada
6Department of Physics and Astronomy, University of Western Ontario, London,

Ontario N6A 3K7, Canada

(Received 4 February 2023; accepted 19 February 2023; published 7 March 2023)

We write explicitly the complete Lorentzian metric of a singularity-free spacetime where a black hole
transitions into a white hole located in its same asymptotic region. In particular, the metric interpolates
between the black and white horizons. The metric satisfies the Einstein field equations up to the tunneling
region. The matter giving rise to the black hole is described by the Oppenheimer-Snyder model, corrected
with loop-quantum-cosmology techniques in the quantum region. The interior quantum geometry is fixed
by a local Killing symmetry, broken at the horizon transition. At large scale, the geometry is determined
by two parameters: the mass of the hole and the duration of the transition process. The latter is a global
geometrical parameter. We give the full metric outside the star in a single coordinate patch.
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I. INTRODUCTION

There is evidence in the sky of the presence of a huge
number of black holes, with matter spiraling into them.
General relativity predicts, arguably reliably, that this
matter crosses the hole’s horizon and reaches Planckian
densities in a short proper time. What happens next is
outside the reach of established physical theories. It
involves the quantum behavior of the gravitational field
in the strong field domain.
A possibility that has attracted interest [1–18] is that the

Einstein field equations are violated by a quantum tunnel-
ing event, with a probability that depends on the curvature.
A natural scenario is the black-to-white hole transition
[19–26], where the internal geometry of the hole undergoes
a transition from trapped to antitrapped (possibly through
an intermediate nontrapped region) and the (outer) horizon
tunnels from trapping to antitrapping as well. In this
scenario the black hole evolves into a white hole “remnant”
living in the future of the parent black hole, in its same
asymptotic region and location. Here we study the geom-
etry of this process.
We consider the case of a spherical black hole formed by

the collapse of a homogeneous and pressureless “star,” as in
the Oppenheimer-Snyder model [27]. We disregard dis-
sipative phenomena such as the Hawking radiation or the
Perez dissipation into Planckian degrees of freedom [28].

The inclusion of the former in the interior geometry of the
black-to-white hole is studied in [29]. Dissipative phenom-
ena are likely present in astrophysics and render the process
irreversible. Here we only concentrate on the physics of the
black-to-white transition alone, under the hypothesis that
dissipative phenomena can be disregarded in a first approxi-
mation, as it can be done for a basketball bouncing on the
floor. The hypothesis is that the bounce can be described in a
first approximation in terms of a few “large-scale” degrees of
freedom. We also neglect rotational degrees of freedom, but
the causal structure of the spacetime we find has already
similarities with the Kerr geometry, suggesting that rotation
might not significantly alter the picture.
We explore quantum effects only as local violations of

the Einstein field equations and not with a full quantum
analysis. We take one input from loop quantum gravity,
following [30,31]: the correction to the Friedmann equation
studied in loop quantum cosmology [32–35]. This same
correction predicts a bounce at the end of the collapse of a
homogeneous and pressureless star, thus modifying the
classical physics of the Oppenheimer-Snyder model. We
match the exterior geometry to the star [9,12]. As shown in
[36], the geometry of the interior of the hole outside the
star is then uniquely determined by the evolution of the
bouncing star and the local Killing symmetry. It turns out to
be similar to the interior geometry of a Reissner-Nordström
black hole.
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We show that a quantum tunneling briefly and locally
violating the Einstein field equations around the horizon
permits the bounce to happen also if no second asymptotic
region exists (see also [37]). The (surprising) compatibility
of this scenario with the validity of the Einstein field
equations outside the tunneling region was pointed out in
[20,23]. Crucially, we show that the horizon tunneling
region can be filled with an (effective) regular Lorentzian
geometry. This geometry unravels the possible global
horizon structure of the black-to-white hole: there are
no event nor global Killing horizons; there are only
apparent horizons, and these keep the trapped and anti-
trapped regions disconnected. The metric we construct in
this region is a proof of existence for a geometry with these
features; as any trajectory in quantum tunneling, it has no
direct physical meaning.
The geometry we found is consistent with previous

general results. For instance, it belongs to the category A.I
in the classification carried out in [38], the bounce of the star
takes place in a nontrapped interior region I bounded by two
inner horizons, consistentwith the analysis ofmatter collapse
reported in [12], and the exterior geometry fails to be exactly
static in the vicinity of the horizon at the transition [39].
Outside the star, the geometry we find depends on

parameters that have transparent physical meaning. Two
of them are measurable from a distance: in natural units,
they are the massm of the star and the duration T of the full
process, from the collapse of the star into its black horizon
to its emersion from the white horizon. Other parameters do
not affect the large-scale geometry; some of them may be
measured locally around the horizon tunneling region: they
determine its size. Interestingly, T is a global geometric
parameter (like the radius of a cylinder), not determined by
the local geometry outside the quantum tunneling region. A
quantum theory of gravity should determine the values, or
the probability distribution, of all parameters. Steps in this
direction have been taken in [22,24,25].
Section II deals with the physics of the bounce of the

collapsing star. This was called “region C” in [24]. Section III
deals with the physics of the interior of the black hole where
the curvature reaches Planckian value. This was called
“region A” in [24]. Section IV deals with the physics of
the horizon tunneling region. This was called “region B”
in [24]. Different physical processes happen in the three
regions, and they must be dealt with separately. In Sec. V we
describe the physical meaning and the large-scale geometry
of the spacetime we have built. Global coordinates for this
spacetime are given in Sec. VI. In Sec. VII we build a
Lorentzian metric for the B region and in Sec. VIII we study
its horizon structure.

II. THE STAR

The metric inside a spherical pressureless star of uniform
density ρ and total mass m can be written in comoving
coordinates ðT; RÞ as

ds2 ¼ −dT2 þ a2ðTÞðdR2 þ R2dΩ2Þ; ð1Þ

where dΩ2 is the metric of the unit 2-sphere, R ∈
½0; Rboundary�, and aðTÞ is known as the scale factor. The
radial comoving coordinate of the boundary of the star can
be chosen to be Rboundary ¼ 1 without loss of generality.
The uniform density of the star is then ρ ¼ m= 4

3
πa3.

The Einstein field equations imply that aðTÞ satisfies
the Friedmann equation. Loop quantum gravity adds a
quantum correction term to this equation [34], which
becomes

_a2

a2
¼ 8πG

3
ρ

�
1 −

ρ

ρc

�
; ð2Þ

where the critical density ρc ¼
ffiffiffi
3

p
c2=ð32π2γ3ℏG2Þ∼

c2=ℏG2, γ being the Barbero-Immirzi parameter, is a
constant with the dimension of a density and Planckian
value. Equivalently, defining a constant A ¼ 3=ð2πρcÞ,
and using units in which G ¼ c ¼ 1 from now on, we
can write

_a2 ¼ 2m
a

−
Am2

a4
: ð3Þ

In these units, the constant A ∼ ℏ ∼m2
Pl has dimension of a

squared mass and Planckian value. The last equation can be
integrated, giving

aðTÞ ¼
�
9mT2 þ Am

2

�
1=3

: ð4Þ

As shown in Fig. 1, aðTÞ is positive for the whole range
T ∈ ½−∞;∞�: it decreases for T < 0, reaches a minimum
a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Am=23

p
for T ¼ 0, and then increases for T > 0.

This is the characteristic bounce of loop quantum cosmol-
ogy. This feature of aðTÞ assures us that the line element in
Eq. (1) is well defined everywhere.
The coordinate T is the proper time along the comoving

worldlines, hence it is also the proper time on the boundary
of the star. This means that Eqs. (3) and (4) give the

a(T )

T

FIG. 1. The scale factor aðTÞ in Eq. (4) that gives the standard
loop quantum cosmology bounce.
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evolution of the physical radius rbðTÞ ¼ aðTÞRboundary ¼
aðTÞ of the star in its own proper time, hence

_r2b ¼
2m
rb

−
Am2

r4b
: ð5Þ

III. THE EXTERIOR

Where the quantum corrections are negligible, an exact
solution of the Einstein field equations is given by the
geometry for the star described above (with negligible A)
surrounded by the Schwarzschild geometry. The
Schwarzschild geometry (i) matches the geometry of the
star on the star’s surface [27], (ii) is spherically symmetric,
and (iii) is characterized by a Killing field in addition to
those related to the spherical symmetry. (This is timelike
outside the horizon, where it enforces the stationarity of the
exterior geometry, and spacelike inside the horizon, where
the geometry is not stationary.) In [36], it is shown that if
we do include the quantum corrections, that is A ≠ 0, these
three features are realized by the metric

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ þ r2dΩ2; ð6Þ

where

FðrÞ ¼ 1 −
2m
r

þ Am2

r4
: ð7Þ

This geometry is clearly spherically symmetric and admits
the Killing field ξ ¼ ∂t.
A thin shell freely falling in it has the conserved quantity

E ¼ FðrÞ_t, where E ∼ 1 if the shell starts with vanishing
velocity at large distance. The normalization of its proper
time gives

−1 ¼ −
1

FðrÞ þ
_r2

FðrÞ ; ð8Þ

from which it follows that

_r2 ¼ 2m
r

−
Am2

r4
; ð9Þ

which is exactly Eq. (5) (as it should be, since this equation
gives the evolution of the physical radius r of the shell in
its own proper time). This shows that the surface of the
pressureless star is in free fall in this metric.
The exterior geometry depends on two parameters: the

total mass m of the star and the constant A ∼m2
Pl character-

izing the quantum correction to the Friedmann equation.
If m ≫ mPl, the last term in Eq. (7) gives a negligible
correction to the Schwarzschild geometry for r of order m
or larger.

Interestingly enough, the same exterior metric can be
derived by starting from Schwarzschild spacetime and
considering quantum corrections coming from loop quan-
tum gravity [40].
Let us study this geometry. Killing horizons are defined

by the vanishing of the norm of the Killing field ξ ¼ ∂t,
namely by gtt ¼ −FðrÞ ¼ 0. The investigation of the roots
of FðrÞ, which is thoroughly performed in Appendix A,
shows that there are two real roots r�, see Eq. (A20), and
thus two Killing horizons. For m ≫ mPl, that is m2 ≫ A,

rþ ¼ 2mþOðA=mÞ ∼ rSchwarzschild ð10Þ

is the outer horizon of the black hole and it is located in the
classical region, while

r− ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Am=23

p
þOðA2=3=m1=3Þ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=mPl

3
p

lPl ð11Þ

is an inner horizon and it is located inside the quantum
region, that is the region where the spacetime curvature has
Planckian size. A direct study of the metric in Eqs. (6) and
(7) shows that r ¼ r� are also apparent horizons. That is,
they separate trapped, nontrapped, and antitrapped regions.
Studying the geodesics of the spacetime it is easy to see

that the coordinate t diverges on all these horizons. The
metric, however, is regular on them and it can be extended
past them. This extension follows closely the extension of
the Reissner-Nordström metric and it will be performed
shortly. The spacetime resulting from the maximal exten-
sion of the metric is represented in the Penrose diagram in
Fig. 2. The spacetime comprises several regions separated
by the horizons:

(i) There are two asymptotic regions, a “lower” region
L bounded by a lower outer horizon and an “upper”
region U bounded by an upper outer horizon,
where r > rþ.

r+

r+

r-

r-

L

SI

A

T

U

FIG. 2. Conformal diagram of the maximal extension of the
spacetime representing the star and the exterior region defined by
Eqs. (6) and (7).

GEOMETRY OF THE BLACK-TO-WHITE HOLE TRANSITION … PHYS. REV. D 107, 064011 (2023)

064011-3



(ii) There is a trapped region T and an antitrapped region
A where r− < r < rþ.

(iii) There are two interior nontrapped regions; one inner
region I next to the star’s bounce where rbðτÞ <
r < r−, rbðτÞ being the wordline of the star’s
boundary satisfying Eq. (9), and an interior region
S bounded by a timelike singularity where
0 < r < r−.

The bounce of the star takes place in the nontrapped interior
region I bounded by the two inner horizons. As mentioned,
this is consistent with the analysis of matter collapse
in [12].
The coordinate system ðt; rÞ separately covers each of

the six regions represented in Fig. 2. In order to maximally
extend the metric in Eqs. (6) and (7) we can proceed as
follows. The metric can be trivially rewritten as

ds2 ¼ FðrÞ
�
−dt2 þ dr2

F2ðrÞ
�
þ r2dΩ2; ð12Þ

which suggests to introduce a generalized tortoise coor-
dinate r� satisfying

dr� ¼
dr
FðrÞ : ð13Þ

The integration of this differential equation is performed in
Appendix B and the analytical expression of r�ðrÞ can be
found in Eq. (B12). The function r�ðrÞ is separately well
defined in each of the six regions represented in Fig. 2, but
it diverges logarithmically on the horizons. By substituting
Eq. (13) in Eq. (12) we get

ds2 ¼ Fðrðr�ÞÞð−dt2 þ dr2�Þ þ r2dΩ2; ð14Þ

which allows us to introduce the null coordinates

u ¼ r�ðrÞ − t; ð15Þ

v ¼ r�ðrÞ þ t; ð16Þ

in terms of which the metric reads

ds2 ¼ Fðrðu; vÞÞdudvþ r2ðu; vÞdΩ2: ð17Þ

The function rðu; vÞ is implicitly defined by

2r�ðrÞ ¼ vþ u: ð18Þ

The sign of the coordinate u defined here is the inverse of
the one normally used in the literature. This convention
much simplifies later formulas.
The new coordinates u and v diverge respectively on the

two upper horizons and the two lower horizons, so the
coordinate system ðu; vÞ is still ill defined on every horizon,

thus preventing any extension of the spacetime. We can,
however, use the coordinate system ðv; rÞ, whose metric
reads

ds2 ¼ −FðrÞdv2 þ 2dvdrþ r2dΩ2; ð19Þ

to cover in a single patch either regions L, T, I or regions S,
A or region U, and the coordinate system ðu; rÞ, whose
metric reads

ds2 ¼ −FðrÞdu2 þ 2dudrþ r2dΩ2; ð20Þ

to cover in a single patch either regions U, A, I or regions
S, T or region L. This allows all these regions to be glued as
in Fig. 2 and shows that they define together the maximal
extension of the spacetime.
It is convenient to choose v ¼ 0 as the advanced time in

which the star’s boundary enters the lower outer horizon rþ
and u ¼ 0 as the retarded time in which the star’s boundary
exits the upper outer horizon rþ. That is, the origin of the
advanced time in L is determined by the moment the star
collapses into its own outer horizon forming a black hole
and the origin of the retarded time inU is determined by the
moment the star emerges from its own outer horizon ending
the white hole.
There is a subtle but important fact to consider. The

function r�ðrÞ does not enter the definition of the metrics of
the two patches in Eqs. (19) and (20). However, it enters the
coordinate transformation on the overlap,

u ¼ 2r�ðrÞ − v: ð21Þ

The integral r�ðrÞ of Eq. (13) depends on an integration
constant which can be fixed by selecting r� at some
location [see Eq. (B12)]. The integral, however, diverges
on the two (real) zeros of FðrÞ, namely on the two horizons.
Hence so does r�. We can therefore define r�ðrÞ in different
patches across horizons, but we must remember that doing
so adds a distinct constant in each patch. That is, r is
defined globally, but r�ðrÞ is defined up to a constant in
each patch. This will play a key role below.

IV. THE HORIZON TUNNELING

The spacetime represented in Fig. 2 cannot be a realistic
approximation of the dynamics of a black hole, because as
soon as the Hawking evaporation process is taken into
account, the lifetime of the black hole as seen from the
lower asymptotic region L becomes finite. This is incom-
patible with the geometry of Fig. 2, where this lifetime is
infinite.
The dynamics of the horizon at the end of the evapo-

ration is governed by quantum gravity. Here, following
[20–26], we consider the possibility that there is a non-
vanishing probability for the geometry around the black
hole horizon to tunnel into the geometry around white hole
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horizons, via a local process within a single asymptotic
region.
We do not compute the probability for this transition

(for steps in this direction, see [22,24,25].) Analogy
with nonrelativistic quantum tunneling suggests that
the tunneling probability could be of the order of
expf−m2=ℏGg ¼ expf−m2=m2

Plankg. If so, the transition
probability is suppressed until the very last phases of the
evaporation, where m ∼mPlanck, and the tunneling physics
we specify below describes the tunneling geometry at the
end of the evaporation. If instead the transition probability
is not so suppressed at larger m, the tunneling may happen
earlier (a heuristic argument in favor of a shorter timescale
is given in [20,41]).
Notice, however, that even if we entirely disregard the

Hawking radiation and the consequent decrease of m with
time, any nonzero transition probability implies anyway
that sooner or later the tunneling happens, because small
probabilities pile up with time, as in ordinary radioactivity.
Thus the inclusion of the evaporation process in the
analysis should not alter the resulting qualitative picture.
The tunneling we describe below can happen in any case,
unless it is forbidden by something that at present we
cannot see. Hence below we neglect the Hawking radiation
and we make no assumption about the transition amplitude,
which can be arbitrary small. We will see below which
parameter of the resulting geometry depends on this
quantum transition amplitude.
In this section we construct the spacetime describing the

horizon tunneling. We do so starting from the maximally
extended spacetime in Fig. 2, cutting away a part of it,
inserting a new spacetime region and gluing some resulting
boundaries. We start by excising a part of the maximally
extended spacetime described above.
Fix three constants rα, rβ, and rδ with the dimension of a

length and satisfying rα < r− < rþ < rδ < rβ. We shall
also use δ≡ rδ − rþ > 0. The geometry we are going to
define is thus based on these four parameters in natural
units: m; rα; rβ; rδ (plus A ∼m2

Pl ¼ ℏG that determines a
scale). We are particularly interested in the regime where rα
is close to r−, and rβ (and so rδ) is close to rþ.
In region I, consider the t ¼ constant surface containing

the bounce point of the star (see Fig. 3). On this surface, let
α be the point with radial coordinate rα (the first of the
parameters for the geometry we are constructing). Let vα be
the advanced time of α. This is going to be the advanced
time at which the horizon transition begins.
It is a simple exercise to express vα as a function of rα.

First, we have to determine the advanced time vb of the
bounce point of the star. This can be determined from a
standard calculation in general relativity and it is of order
m. The t coordinate of the star’s bounce is then, from
Eq. (16),

t ¼ vb − r�ðrbÞ; ð22Þ

and since α is on the same t surface, we also have

t ¼ vα − r�ðrαÞ: ð23Þ

The two relations imply

vα ¼ vb þ r�ðrαÞ − r�ðrbÞ; ð24Þ

which does not depend on the undetermined integration
constant of r�ðrÞ in I. If rα approaches r−, the advanced
time vα can be arbitrarily long, as r� diverges in r−. We are
particularly interested in this regime, where the time from
the collapse of the star to the onset of the horizon tunneling
can be arbitrarily long. The radial coordinate rα is going
to be the maximum radius on the t ¼ constant surface in
region I for which the metric constructed in Sec. III is a
good approximation of the spacetime of a black hole.
Next, observe that all constant-t time surfaces in the L

region intersect the line v ¼ 0 outside the outer horizon.
(Recall that v ¼ 0 is the advanced time of the point where
the boundary of the star enters the outer horizon.) We insist
on this detail because it is a counterintuitive feature of
classical general relativity. The later the time t, the closer
to the horizon the constant-t surface intersects v ¼ 0.
Consider the constant time surface that intersects v ¼ 0
at the radius rδ ¼ rþ þ δ (the second of the parameters that
we introduce). An arbitrarily small δ determines an

FIG. 3. The points (2-spheres) α, βL, σL. In blue, the surface
t ¼ 0 and its intersection with v ¼ 0. In red, the worldline of an
observer at a constant distance.
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arbitrarily late t. (Later on, this time t will determine the
reflection surface under time inversion.)
Without loss of generality, we can call this surface t ¼ 0,

because this simply amounts to fixing once and for all the
integration constant of r�ðrÞ in region L, and represent it in
a conformal diagram as in Fig. 4. Explicitly, the intersection
has coordinates v ¼ t ¼ 0 and r ∼ 2mþ δ. Therefore
Eq. (16) fixes r�ðrδÞ ¼ 0.
Consider then the point βL with radius rβ (the third

parameter we introduce) on the t ¼ 0 surface. Let vβ be its
advanced time. We assume that the constants we have
introduced are such that vβ > vα. (Given rα and rβ, this is
always possible by taking δ small enough). We are
particularly interested in the regime in which rβ is close
to rþ. Since rβ > rδ ¼ 2mþ δ > rþ, this means that δ
must be small. Let σL be the intersection of the past
outgoing null geodesic originating in βL and the past
ingoing null geodesic originating in α. These null geodesics
are represented as dashed lines in Fig. 3 and as blue lines
in Fig. 4.
The above construction in the regions L, T, I can be

repeated symmetrically in the upper regions U, A, I. See
Fig. 4. By symmetry, the retarded time coordinate u of α in
the upper region is uα ¼ vα. We consider a constant-t
surface in the upper region U as well, which we can call
t ¼ 0 by fixing the integration constant of r�ðrÞ in region
U, and a point βU with radius rβ. Its retarded time
is uβ ¼ vβ.

With these definitions in place, we now come to the key
point of the construction. We excise from the spacetime the
entire region surrounded by the blue line in Fig. 4. We
identify βL with βU and the ðt ¼ 0; r > rβÞ surface in the
lower asymptotic region with the ðt ¼ 0; r > rβÞ surface in
the upper asymptotic region. The gluing is possible, since
these are isometric surfaces with vanishing extrinsic cur-
vature in the two isometric outer regions. Call B the
spacetime diamond defined by α and β≡ βL ¼ βU and
discard any previous information about the metric inside B.
The resulting spacetime is the black-to-white hole space-
time we were looking for and it has the Penrose diagram
depicted in Fig. 5.
The geometry outside the B region depicted in Fig. 5 is

everywhere locally isomorphic to the geometry in the
exterior of the blue lines depicted in Fig. 4, but the two
are not globally isomorphic. The interior region S bounded
by a timelike singularity discovered in the spacetime
constructed in Sec. III is not present in the black-to-white
hole spacetime. There is a unique asymptotic region in the
exterior of both the black and white hole. As we shall see
below, a nonsingular metric can be assigned to the region B.
This will be done below, in Sec. VII.

V. PHYSICAL INTERPRETATION AND
LARGE-SCALE GEOMETRY

Let us pause to discuss the physical interpretation and the
logic of this construction and of the new parameters
introduced. The advanced time vα is the time at which
the horizon transition is triggered. The radial coordinate rα,
which is uniquely specified by vα and vice versa, is the

FIG. 4. The blue line is the boundary of the region that is
excised, because it is not a good approximation of the spacetime
of a physical black hole. The two horizontal portions of the blue
line are identified; the excised region is replaced by a nonsingular
geometry.

FIG. 5. Conformal diagram of the black-to-white hole
spacetime.
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maximum radius on the t ¼ constant surface in region I
containing the bounce point of the star for which the metric
constructed in Sec. III is a good approximation of the
spacetime of a black hole. The radial coordinate rσ is
the maximum radius on the v ¼ vα surface for which
the quantum physics of the horizons is non-negligible. The
metric constructed in Sec. III is not a good approximation
of the spacetime of a black hole in the future light cone
of σL, because it neglects the possibility of tunneling.
Furthermore, since the black-to-white hole spacetime has a
unique asymptotic region, the metric constructed in Sec. III
must not be a good approximation of the spacetime of a real
black hole also in the future of some surface reaching
spacelike infinity in the lower region L. This is the t ¼ 0
surface identified by δ which intersects the outgoing
component of the future light cone of σL in βL. The radius
rσ is completely specified once rα and rβ are given.
Let us now consider the features of this geometry that

can be measured at large radius. At first sight, since
the geometry at a large distance from the hole is the
Schwarzschild geometry, one might think that the only
parameter measurable at large distance is the mass m, but
this is wrong.
Consider an observer that remains at distance R ≫ 2m

from the hole. Consider their proper time T between their
v ¼ 0 advanced time and their u ¼ 0 retarded time (that is,
from the advanced time in which the star enters its horizon
and the retarded time in which the star exits it). Their
worldline is shown in red in Fig. 6. By symmetry, T is twice
the proper time along this worldline between the v ¼ 0
advanced time and the t ¼ 0 surface, namely the proper
time of the worldline in red in Fig. 3. This is approximately
(minus) the t coordinate tR of the observer at v ¼ 0, that is

T=2 ∼ −tR ¼ r�ðRÞ − v ¼ r�ðRÞ: ð25Þ

For R ≫ m ≫ mPl, recalling that we have fixed r�ðrδÞ ¼ 0,
we have

r�ðRÞ ∼ Rþ 2m lnðR − 2mÞ − 2m ln δ: ð26Þ

Using this,

T ∼ 2Rþ 4m lnðR − 2mÞ − 4m ln δ: ð27Þ

The first two terms of this expression depend on R. Not so
the last term

T ≡ −4m ln δ: ð28Þ

This is independent from the observer and is large and
positivewhen δ is small. This means that δ can be measured
by comparing the proper times of two distant observers.
Let us see this more explicitly, since it is a key point. The

first term in Eq. (27), namely 2R, is the travel time of light
from an observer at radius R to the center and back, in flat
spacetime. The second (logarithmic) term is a relativistic
correction to this travel time in the Schwarzschild geom-
etry. This can be seen by comparing T with the corre-
sponding proper time T 0 of a second distant observer at a
constant radius R0 satisfying R ≫ R0 ≫ 2m. The difference
of these proper times is

T − T 0 ∼ 2R − 2R0 þ 2m lnðR − 2mÞ − 2m lnðR0 − 2mÞ
∼ Rþ 2m lnðR − 2mÞ; ð29Þ

which shows that the first two terms in Eq. (27) simply
account for the back- and forward travel time of light and
they are not related to the actual lifetime of the hole.
The quantity T is therefore a parameter that can be

measured from a distance and characterizes the intrinsic
duration of the full process of formation of the black hole,
tunneling into a white hole and dissipation of the white
hole. We can therefore properly call the quantity T the
duration of the bounce or “bounce time.” We have thus
found the geometrical interpretation of δ in terms of the
total bounce time T ,

δ ¼ e−
T
4m: ð30Þ

Notice that δ, unlike rα and rβ and in spite of being small,
is a macroscopic parameter. Namely it is a parameter of the
global geometry that can be determined by measurements
at large distance from the hole. The gluing of the upper and
lower regions in Fig. 4 introduces this global parameter, in
the same manner in which gluing two portions of flat space
can introduce the radius of a cylinder: a global parameter
not determined by the local geometry. The two other
parameters rα and rβ determine only the location of the

FIG. 6. In red, the worldline of an observer moving at a constant
distance R ≫ 2m.
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B region, without affecting the observations at large
distance. Large distance observations are therefore deter-
mined by two parameters only: the massm of the star and δ
or the bounce time T ¼ −4m ln δ.

VI. GLOBAL COORDINATES

Using Eqs. (16)–(18) the v coordinate can be defined
everywhere except for the region specified by v ∈ ½vα; vβ�
and u ∈ ½ustarðvÞ; uα�, where ustarðvÞ represents thewordline
of the boundary of the star in ðu; vÞ coordinates. This region
is depicted in red in Fig. 7. If we continue the v coordinate
into this red region, it diverges on the two horizons. Similarly,
the u coordinate is well defined everywhere except for the
region specified by u ∈ ½uα; uβ� and v ∈ ½vstarðuÞ; vα�, rep-
resented in blue in Fig. 7.
In this section we define well-behaved global coordi-

nates outside region B (and outside the star). This will allow
us to write a regular and singularity-free metric in region B
in the next section.
Starting from the coordinate v, introduce a smooth

function fðvÞ such that fðvÞ ¼ v for v < vα and v > vβ,
while for v ∈ ½vα; vβ� the function fðvÞ ranges in
½vα;∞� ∪ ½∞;−∞� ∪ ½−∞; vβ�, diverging logarithmically
in two points, that we call vþ and v−. Specifically, let

fðvÞ ¼ vþ RðvÞ; ð31Þ
where RðvÞ ¼ 0 outside the interval v ∈ ½vα; vβ�, and in this
interval is defined as

RðvÞ ¼ 2hðvÞðcþ log jv − vþj þ c− log jv − v−jÞ; ð32Þ

with vα < v− < vþ < vβ and c� ¼ 1=F0ðr�Þ. [The con-
stants c� multiply the divergent logarithms in the expres-
sion of r�ðrÞ in Eq. (B12).] The function hðvÞ can be
chosen to be any function that interpolates smoothly
between hðvαÞ ¼ hðvβÞ ¼ 0 and hðv−Þ ¼ hðvþÞ ¼ 1 and
has vanishing derivatives up to an arbitrary order n in these
four points.1 See Figs. 8 and 9.
We then define a new v coordinate in the red region by

fðvÞ ¼ 2r�ðrÞ − u; ð33Þ

instead of Eq. (16). The coordinate v defined in this way
covers the red region in its range v ∈ ½vα; vβ� and matches
with the v coordinate defined elsewhere. Notice that
ð2r�ðrÞ − uÞ diverges on the horizons, but v, so defined,
does not: on the horizons it takes the finite values v− and
vþ. Hence u and (this newly defined) v are finite

FIG. 7. In red, the region defined by v ∈ ½vα; vβ� and
u ∈ ½ustarðvÞ; uα�. In blue, the region defined by u ∈ ½uα; uβ�
and v ∈ ½vstarðuÞ; vα�.

FIG. 8. The function fðvÞ defined in Eqs. (31) and (32).

FIG. 9. The interpolating function hðvÞ defined in footnote 1.

1A simple example is hðvÞ ¼ 0 for v < vα and v > vβ, hðvÞ ¼
1 for v ∈ ½v−; vþ�, hðvÞ ¼ Snððv − vαÞ=ðv− − vαÞÞ for h ∈
½vα; v−�, and hðvÞ ¼ 1 − Snððv − vþÞ=ðvβ − vþÞÞ for v ∈
½vþ; vβ�, where SnðxÞ is the nth order “smooth step” function
that interpolates between Snð0Þ ¼ 0 and Snð1Þ ¼ 1, with vanish-
ing derivatives up to order n at x ¼ 0 and x ¼ 1 [42]. For
instance, S2ðxÞ ¼ 6x5 − 15x4 þ 10x3.
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continuous coordinates in the red region. For v to be a good
coordinate for the region, we also need to check that the
metric is well defined there. This can be done as follows.
The line element in the red region reads

ds2 ¼ Fðrðu; vÞÞf0ðvÞdudvþ r2ðu; vÞdΩ2: ð34Þ

Near the horizon r ¼ r� the function FðrÞ has a zero of the
form r − r� while f0ðvÞ diverges as the derivative of the
logarithm, namely 1=ðv − v�Þ. In particular, the guv com-
ponent of the metric behaves as

guv ¼
FðrÞf0ðvÞ

2
∼
r − r�
v − v�

ð35Þ

near the horizon r ¼ r�. Let us now study the trans-
formation in Eq. (33) around the horizons. For r ∼ r�,
Eq. (B12) gives

r�ðrÞ ∼ c� log jr − r�j þ μ1; ð36Þ

with

μ1 ¼ r� þ c∓ log jr� − r∓j þ
c1
2
logðr2� þ ar� þ bÞ

þ ð2c1=c2 − aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b − a2=4

p tan−1
�

r� þ a=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b − a2=4

p
�
þ K: ð37Þ

If v ∼ v�, then Eqs. (31) and (32) give

fðvÞ ∼ 2c� log jv − v�j þ μ2; ð38Þ

with

μ2 ¼ c∓ log jv� − v∓j: ð39Þ

This means that near the horizon r ¼ r� Eq. (33) reads

2c� log jv − v�j þ μ2 − 2c� log jr − r�j − 2μ1 ∼ u; ð40Þ

namely

r − r�
v − v�

∼ e−
2μ1−μ2
2c� e−

u
2c� : ð41Þ

The metric component guv, and so the complete metric, is
thus well behaved around the horizons.
The same construction can be performed in the sym-

metric blue region. Given the values u� ≡ v�, and remem-
bering that uα ¼ vα and uβ ¼ vβ by construction, we define
a new u coordinate in the blue region by

fðuÞ ¼ 2r�ðrÞ − v; ð42Þ

where the function f is given in Eqs. (31) and (32). The
coordinate u defined in this way covers the blue region in

its range u ∈ ½uα; uβ� and matches with the u coordinate
defined elsewhere. The line element in the blue region reads

ds2 ¼ Fðrðu; vÞÞf0ðuÞdudvþ r2ðu; vÞdΩ2 ð43Þ

and it is well behaved everywhere. This completes the
construction of a global coordinate chart for the black-to-
white hole spacetime.
Summarizing, the line element is

ds2 ¼ gðu; vÞdudvþ r2ðu; vÞdΩ2: ð44Þ

In the white regions of Fig. 7, namely where

u ∈ ½uβ;þ∞Þ; v ∈ ½vstarðuÞ;þ∞Þ; ð45Þ

u ∈ ½ustarðvÞ;þ∞Þ; v ∈ ½vβ;þ∞Þ; ð46Þ

u ∈ ½ustarðvαÞ; uα�; v ∈ ½vstarðuÞ; vα�; ð47Þ

we have

gðu; vÞ ¼ Fðrðu; vÞÞ; ð48Þ

and the radius rðu; vÞ is implicitly given by

2r�ðrÞ ¼ vþ u: ð49Þ

In the red region specified by

u ∈ ½ustarðvÞ; uα�; v ∈ ½vα; vβ�; ð50Þ

we have

gðu; vÞ ¼ Fðrðu; vÞÞf0ðvÞ; ð51Þ

and the radius rðu; vÞ is implicitly given by

2r�ðrÞ ¼ fðvÞ þ u ¼ vþ uþ RðvÞ: ð52Þ

In the blue region specified by

u ∈ ½uα; uβ�; v ∈ ½vstarðuÞ; vα�; ð53Þ

we have

gðu; vÞ ¼ Fðrðu; vÞÞf0ðuÞ; ð54Þ

and the radius rðu; vÞ is implicitly given by

2r�ðrÞ ¼ vþ fðuÞ ¼ vþ uþ RðuÞ: ð55Þ

This metric is well behaved everywhere and, thanks to the
interpolating function h in Eq. (32), it joins regularly (up to
an arbitrary order n) at the boundaries of the red and blue
regions.
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VII. AN EFFECTIVE METRIC IN THE B REGION

Can the B region be filled with an effective Lorentzian
metric that joins regularly with the exterior metric at their
boundary? To show that the answer is affirmative, let us
now construct one such metric.
We can write the metric constructed in the last section in

a more compact form by choosing a regular-enough
function SðxÞ such that SðxÞ ¼ 1 for x < vα, SðxÞ ¼ 0
for x > vβ and SðxÞ interpolates between these two values
in x ∈ ½vα; vβ�. For instance,

SðxÞ ¼ 1 − Snððx − vαÞ=ðvβ − vαÞÞ ð56Þ

in x ∈ ½vα; vβ�, where SnðxÞ is the nth order smooth step
function mentioned in footnote 1. The function SðxÞ is
represented in Fig. 10. This allows us to write compactly
[see Eq. (44)]

gðu; vÞ ¼ Fðrðu; vÞÞfðu; vÞ; ð57Þ

where

fðu; vÞ ¼ ð1þ SðuÞR0ðvÞÞð1þ SðvÞR0ðuÞÞ; ð58Þ

and rðu; vÞ is implicitly defined by

2r�ðrÞ ¼ vþ uþ SðuÞRðvÞ þ SðvÞRðuÞ: ð59Þ

The interpolating function SðxÞ, so far, serves only to
simplify notation: it does not actually affect the metric,
which for the moment does not regard the B region,
defined by

u ∈ ½uα; uβ�; v ∈ ½vα; vβ�: ð60Þ

It is now easy to perform the standard conformal trans-
formation u ¼ tanU, v ¼ tanV to bring the coordinates in
a finite and compact domain, but we do not do this

explicitly. The coordinates ðU;VÞ are those in which all
the Penrose diagrams of this article are drawn.
To extend the metric to the B region, the idea is to extend

Eqs. (44) and (57)–(59) to the B region. The global
coordinate system ðu; vÞ constructed in the last section
extends naturally to this region, because the coordinate
intervals are the same on the opposite sides of the diamond
boundary of the B region. Furthermore, thanks to the
properties of the function R, it is easy to show that the
functions fðu; vÞ and rðu; vÞ defined on the whole black-
to-white hole spacetime (outside the star) joins regularly
(up to an arbitrary order n) at the boundary of the region B.
Equations (44), (57), and (58) can then be used to extend

the metric to the complete black-to-white hole spacetime
outside the star, thus providing an (arbitrary) effective
Lorentzian metric describing the interior of the region B.

VIII. HORIZONS

Finally, we study the structure of the horizons defined by
the Lorentzian metric we have constructed in region B.
There are no event horizons: the past of future null

infinity is the entire spacetime.
There are no global Killing horizons. This is due to the

fact that the local Killing symmetry is broken in the B
region (and in the star). This can be shown as follows.
The norm jξj of a Killing field ξ is conserved along its
own integral lines because the Lie derivative Lξjξj ¼
LξðgabξaξbÞ vanishes, as the Lie derivative of each factor
does. Take one of the Killing horizons outside region B, say
u ¼ u�. It is a null integral line of the Killing field. If the
Killing symmetry was respected in B, its integral line
would remain null. So, it would follow the null geodetic.
The null geodetic is u ¼ constant, so the Killing horizon
would have to continue to the outer region through region
B. But it does not. Hence, the Killing symmetry is broken
inside the B region and there is no global Killing horizon.2

This is comprehensible physically: what happens inside
the B region is a quantum tunneling, and a tunneling breaks
stationarity. This, by the way, is why calculations that
impose a global Killing symmetry outside the star miss the
possibility of the tunneling.
The horizons in the red and blue regions are, however,

not only local Killing horizons, but also apparent horizons.
That is, they separate trapped, nontrapped, and antitrapped
regions. These regions can be characterized by the causal
character of the r ¼ constant surfaces, which are timelike
in the nontrapped regions and spacelike in the trapped and
antitrapped regions. By continuity, the apparent horizons
must continue inside the B region. How?
The qualitative way they continue inside B follows from

a topological consideration. The overall spacetime is
symmetric under a past ↔ future flip. Call Σ0 the u ¼ v

FIG. 10. The interpolating function SðxÞ defined in Eq. (56). 2We thank Alejandro Perez for pointing this out.
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reflection surface. By reflection symmetry, the r ¼
constant surfaces can only be either parallel or orthogonal
to Σ0. Outside region B they are clearly orthogonal to Σ0,
both in the asymptotic exterior region and in the interior
region where the star’s bounce takes place. By continuity,
since the r ¼ constant surfaces cannot jump from orthogo-
nal to parallel to Σ0, they must be (almost) everywhere
orthogonal to Σ0, also inside region B. Given that only
timelike surfaces can be orthogonal to Σ0, the internal
nontrapped region is expected to be connected to the
external one through the region B. A possible way for

this to happen is that the apparent horizons qualitatively
behave as in Fig. 11, making sure that the trapped and
antitrapped regions are compact and do not share a finite
boundary. The surfaces of constant radius would then have
the qualitative form represented in Fig. 12.
Other possible topological structures for the constant-

radius surfaces and for the trapped and antitrapped regions
can result from different choices of the interpolating metric
and in particular distinct relative values of the parameters
vα < v− < vþ < vβ. Given that the metric in B may be
highly dynamical, there are possibly other compact
trapped/antitrapped regions created in B in addition to
the ones shown in Fig. 11.

IX. CONCLUSIONS

We have constructed a spacetime geometry that
describes the collapse of a spherically symmetric pressure-
less star, the subsequent formation of a black hole, the
bounce of the star, the quantum transition of the black hole
into a white hole, and the final expansion of the star out of
the white hole. The entire geometry outside the star is given
in a single global null coordinate patch. The metric satisfies
the Einstein field equations at a distance from the quantum
transition region. If the mass of the star is large compared to
the Planck mass, this classical region includes a large
portion of the interior of the black and the white holes.
The geometry of the classical region is determined by

two parameters: the mass m of the star and the global
duration T of the process, from the collapse of the star to its
emersion from the white hole. The duration T can be
determined by measurements at large distance from the
hole. Since this duration is not determined by the initial
conditions and the classical Einstein field equations, it must
be determined (probabilistically) by the quantum theory as
a function ofm and ℏ, like the lifetime in radioactive decay.
A quantum theory of gravity must provide the probability
distribution of T as a function of m [22,24,25]. In the
classical limit, T → ∞ and black holes are eternal.
The geometry of the full spacetime depends also on

microscopic parameters relating to quantum gravity effects
but not affecting the observation at large distance. Two of
these parameters, rα and rβ, determine the location and the
size of the horizon tunneling region B. These two param-
eters are not, however, the only microscopic parameters
determining the geometry in B. The latter depends also
e.g. on the arbitrarily chosen interpolating function SðvÞ.
Although this geometry depends on some choices, it is still
remarkable that there exists a regular metric in B, given
that this region was a mystery in the earlier studies of the
black-to-white hole transition.
The regular metric that interpolates the geometry within

the horizon tunneling region that we have constructed is
sensitive to short-distance quantum gravity effects. This is
only a proof of existence: uniqueness is beyond the scope
of this paper. It could be interesting to better understand the

FIG. 11. One of the possible qualitative behaviors of the
apparent horizons.

FIG. 12. One of the possible qualitative behaviors of the
surfaces of equal radius.
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metric in this region in terms of effective equations that
could fix the ambiguity. Still, getting a sense of the size of
this tunneling region may be interesting. This can be done
for instance by computing the length of the spacelike curve
u ¼ v from rα to rβ and the proper time along the other
formal diagonal of the diamond. We leave this as an
exercise to the reader. On the other hand, the size and
shape of the boundary of the region B are crucial for the
quantum calculation of the transition amplitude [22,24,25].
Although no dynamical equations are involved for

constructing the geometry outside the star, the existence
of the regular metric of the entire spacetime and, in
particular, of region B suggests that certain effective
dynamics of spherical symmetric quantum gravity should
be able to derive the geometry from first principles (see e.g.
[6,8,13,14,17,31,43–45] for some recent progress on the
effective dynamics of spherical symmetric black hole).
The metric we have constructed has much in common

with the Reissner-Nordström and Kerr metrics, with the
fundamental difference that it avoids all singularities of
those geometries. See also [26]. Importantly, it also avoids
the Cauchy horizon instability of these metrics [46–49]: no
observer crossing the inner horizon receives an infinitely
blueshifted energy from outside the hole.3

We have neglected Hawking radiation under the
assumption that its effects are negligible in a first approxi-
mation of the phenomenon. If we take theHawking radiation
into account the relevant mass for the phenomenon is not the
initial mass m0 of the star anymore, but the actual shrinking
mass m of the evaporating hole, determined by the horizon
area, because the tunneling of the horizons is a phenomenon
regarding the local geometry of the horizons. In a realistic
black hole, the accumulation of quantum effects trying to
trigger the horizon transition and the Hawking evaporation
happen at the same time. The geometry described here must
then be corrected to account for the earlier evaporation phase
and the fact that the size of the interior of the hole is
determined by its age and not by the area of the horizon
[50,51]. Therefore we expect only the tunneling region of
the geometry described here to be relevant for a realistic
situation, not the long-term evolution. We nevertheless
expect the two main large-scale parameters to remain key
observables at large distance in general.
It is reasonable to expect that the closer is the shrinking

mass m to the Planckian value, the more probable is the
horizon transition to be triggered. For a macroscopic
black hole of initial mass m0 it takes a time of the order
m3

0 for the mass m to reach a Planckian value and
therefore for the probability of the transition to be of
order unity. In this scenario the lifetime of the black hole
would thus be long. Furthermore, the resulting white hole
would be of Planckian size and it may not suffer the

Eardley instability [52], being stabilized by quantum
gravity as discussed in [53], opening an intriguing
potential connection with dark matter. This is possible
because most of the energy of the black hole is emitted
via the Hawking radiation before the horizon transition,
while the information can remain trapped inside the hole
and be emitted slowly during the long life of the white
hole [54–57].
Finally, notice that the effective metric described here

differs from the model previously studied by one of the
authors (C. R.), because the trapped and the antitrapped
regions are not contiguous. The overall scenario consid-
ered is compatible with all reasonable constraints that
known physics arguably sets on the evolution of realistic
black holes: Hawking evaporation, conservation of infor-
mation, no need of a different asymptotic region, no
singularity, and validity of the Einstein field equations
in the low curvature region. Furthermore, although the
geometry outside the star is not derived from any existing
effective model of black holes, it provides some guides to
the effective models by the intriguing physical properties
demonstrated in this paper. As a future perspective, it
would be interesting to see if the results obtained could
connect to the effective dynamics in loop quantum gravity,
especially the one [14] recently proposed by one of the
authors (M. H.).
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APPENDIX A: ZEROS OF FðrÞ
We want to find the zeros of the function

FðrÞ ¼ 1 −
2m
r

þ Am2

r4
ðA1Þ

with A being a constant with dimensions of a squared mass
and satisfying A ≪ m2. Finding the zeros of FðrÞ is
equivalent to finding the roots of the fourth-degree equation

r4 − 2mr3 þ Am2 ¼ 0: ðA2Þ

Although the exact solutions to this problem are known,
their expression is too complicated to be of any help in our
analysis. Instead, we want to study these solutions pertur-
batively in the small parameter A.
To rigorously treat Eq. (A2) as a perturbation problem in

a small dimensionless parameter, let x ¼ r=m, such that the
equation to solve becomes

x4 − 2x3 þ ε ¼ 0; ðA3Þ

where ε ≔ A=m2 ≪ 1. The unperturbed equation

x4 − 2x3 ¼ 0 ðA4Þ

has the four solutions

x1;2;3 ¼ 0; x4 ¼ 2: ðA5Þ

We want to perturbatively search for solutions of Eq. (A3)
of the form

xi ¼
X∞
n¼0

ai;nεn; ðA6Þ

where i ¼ 1; 2; 3; 4 and a4;0 ¼ 2, aj;0 ¼ 0 for j ¼ 1; 2; 3.
The coefficients ai;n can be determined by solving Eq. (A3)
order by order.
Let us start with the ε order for x4. Inserting

x4 ¼ 2þ a4;1εþOðε2Þ ðA7Þ

in Eq. (A3) we find

ð2þ a4;1εþOðε2ÞÞ4 − 2ð2þ a4;1εþOðε2ÞÞ3 þ ε ¼ 0:

ðA8Þ

Solving to order ε we obtain a4;1 ¼ −1=8. This means that

x4 ¼ 2 −
ε

8
þOðε2Þ: ðA9Þ

If we try to do the same for

xj ¼ aj;1 þOðε2Þ; ðA10Þ

where j ¼ 1; 2; 3, we get

ðaj;1εþOðε2ÞÞ4 − 2ðaj;1εþOðε2ÞÞ3 þ ε ¼ 0: ðA11Þ

This equation is clearly not consistent, which means that
the ansatz in Eq. (A6) is not consistent. It simply means that
xj ∼ ε (j ¼ 1; 2; 3) for ε ≪ 1 is not true. In order to find the
right scaling we can study the dominate balance of Eq. (A3)
when ε ≪ 1 (see [58]):

(i) If x4 ∼ x3, and thus

ε ≪ x4; x3; ðA12Þ

we find one solution such that x ∼ 1. Equation (A12)
gives ε ≪ 1, which is consistent. This solution is the
solution x4 we already found.

(ii) If x4 ∼ ε, and thus

x3 ≪ x4; ε; ðA13Þ

we find three solutions such that x ∼ ε1=4. Equa-
tion (A13) gives ε3=4 ≪ ε, which is not consistent.

(iii) If x3 ∼ ε, and thus

x4 ≪ x3; ε; ðA14Þ

we find three solutions such that x ∼ ε1=3. Equa-
tion (A14) gives ε4=3 ≪ ε, which is consistent.
Hence, the remaining solutions xj (j ¼ 1; 2; 3)
behave as xj ∼ ε1=3 for ε → 0.

The new ansatz for the solutions xj (j ¼ 1; 2; 3) is then

xj ¼
X∞
n¼1

bj;nðε1=3Þn: ðA15Þ

Inserting

xj ¼ bj;1ε1=3 þOðε2=3Þ ðA16Þ

in Eq. (A3) we find

ðbj;1ε1=3 þOðε2=3ÞÞ4 − 2ðbj;1ε1=3 þOðε2=3ÞÞ3 þ ε ¼ 0:

ðA17Þ

Keeping only the order ε we get b3j;1 ¼ 1=2. The three
solutions are thus

b3;1 ¼
1

21=3
and bð1;2Þ;1 ¼

1

21=3
e�2πi=3: ðA18Þ

All the subsequent orders of the solutions can be found in
this way.
The roots of Eq. (A3) to their second nonvanishing order

in ε are
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x1;2 ¼
�
ε

2

�
1=3

e�2πi=3 þ 1

6

�
ε

2

�
2=3

e�4πi=3 þOðεÞ;

x3 ¼
�
ε

2

�
1=3

þ 1

6

�
ε

2

�
2=3

þOðεÞ;

x4 ¼ 2 −
ε

8
þOðε2Þ: ðA19Þ

Going back to the original variable r, the solutions to
Eq. (A2) to their second nonvanishing order in A are

r1;2 ¼
�
Am
2

�
1=3

e�2πi=3þ1

6

�
A

2
ffiffiffiffi
m

p
�

2=3
e�4πi=3þOðA=mÞ;

r− ¼ r3¼
�
Am
2

�
1=3

þ1

6

�
A

2
ffiffiffiffi
m

p
�

2=3
þOðA=mÞ;

rþ ¼ r4¼ 2m−
A
8m

þOðA2=m3Þ: ðA20Þ

APPENDIX B: THE GENERALIZED TORTOISE
COORDINATE r�

The generalized tortoise coordinate r� was defined in
Eq. (13) as the coordinate satisfying

dr� ¼
dr
FðrÞ : ðB1Þ

Let us integrate this differential equation. First of all,
consider the fourth-degree equation

r4 − 2mr3 þ Am2 ¼ 0: ðB2Þ

The analysis in Appendix A tells us that this equation has
two real solutions r� and two complex conjugate solutions
r1;2. This means that the polynomial r4 − 2mr3 þ Am2 can
be rewritten as

r4− 2mr3þAm2 ¼ ðr− rþÞðr− r−Þðr2þarþbÞ; ðB3Þ

where r2 þ arþ b ¼ ðr − r1Þðr − r2Þ is a positive-definite
second-degree polynomial. The values of a and b can be
easily computed by expanding the polynomial in the right-
hand side of Eq. (B3) and then equating it order-by-order to
the left-hand side. This gives

a ¼ ðrþ þ r−Þ − 2m ðB4Þ

and

b ¼ Am2

rþr−
: ðB5Þ

Equation (B1) can then be integrated as

r�ðrÞ ¼
Z

dr
1 − 2m=rþ Am2=r4

¼
Z

r4dr
r4 − 2mr3 þ Am2

¼
Z

drþ
Z

2mr3 − Am2

r4 − 2mr3 þ Am2
dr

¼ rþ
Z

2mr3 − Am2

ðr − rþÞðr − r−Þðr2 þ arþ bÞ dr: ðB6Þ

Using partial fraction decomposition we look for an expansion of the form

2mr3 − Am2

ðr − rþÞðr − r−Þðr2 þ arþ bÞ ¼
cþ

r − rþ
þ c−
r − r−

þ c1rþ c2
r2 þ arþ b

; ðB7Þ

where cþ, c−, and c1;2 are constants whose value need to be determined. By rewriting the right-hand side of this expression
using a common denominator and then equating order-by-order the polynomials in the numerator of, respectively, the left-
and right-hand side we find

cþ ¼ 2mr3þ − Am2

ðrþ − r−Þðr2þ þ arþ þ bÞ ¼
r4þ

ðrþ − r−Þðr2þ þ arþ þ bÞ ¼
1

F0ðrþÞ
; ðB8Þ

c− ¼ 2mr3− − Am2

ðr− − rþÞðr2− þ ar− þ bÞ ¼
r4−

ðr− − rþÞðr2− þ ar− þ bÞ ¼
1

F0ðr−Þ
; ðB9Þ

c1 ¼ −
−2a2mr−rþ þ aAm2 − 2abmr− − 2abmrþ þ Am2r− þ Am2rþ − 2b2mþ 2bmr−rþ

ðr2þ þ arþ þ bÞðr2− þ ar− þ bÞ ; ðB10Þ

c2 ¼ −
a2Am2 þ aAm2r− þ aAm2rþ − 2abmr−rþ − Abm2 þ Am2r−rþ − 2b2mr− − 2b2mrþ

ðr2þ þ arþ þ bÞðr2− þ ar− þ bÞ : ðB11Þ
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This leads to

r�ðrÞ ¼ rþ cþ

Z
dr

r − rþ
þ c−

Z
dr

r − r−
þ c1

Z
rþ c1=c2
r2 þ arþ b

dr

¼ rþ cþ log jr − rþj þ c− log jr − r−j þ
c1
2

Z ð2rþ aÞ þ ð2c1=c2 − aÞ
r2 þ arþ b

dr

¼ rþ cþ log jr − rþj þ c− log jr − r−j þ
c1
2
logðr2 þ arþ bÞ þ ð2c1=c2 − aÞ

Z
dr

ðrþ a=2Þ2 þ ðb − a2=4Þ

¼ rþ cþ log jr − rþj þ c− log jr − r−j þ
c1
2
logðr2 þ arþ bÞ þ ð2c1=c2 − aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b − a2=4
p tan−1

�
rþ a=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b − a2=4

p
�
þ K: ðB12Þ

The integration constant K plays a key role: the fact that it
can be independently fixed in two different regions that end
up glued together is the technical reason for the appearance
of the global geometrical parameter T [see Eq. (28)]
measuring the overall duration of the process described.
More precisely, we have picked an integration constant

by posing r�ðrδÞ ¼ 0. The constant δ, which determines T ,
is determined by the choice of the reflection surface,
namely the gluing of the lower and upper regions.
Formally, the choice of the reflection surface is equivalent

to choosing the overlap between the lower ðv; rÞ coordi-
nates and the upper ðu; rÞ coordinates. This is given by
identifying t ¼ 0, namely [from v ¼ tþ r�ðrÞ and
u ¼ −tþ r�ðrÞ] having v ¼ −uþ 2r�ðrÞ. Hence, it is
r�ðrÞ that determines which surface in L we glue with
which surface in U. If we look only at the metric at large
radius (for all times), we do not understand where the
parameter T comes from. It comes from the gluing, and the
gluing is formally determined by the choice of the constant
in r�ðrÞ.

[1] L. Modesto, Disappearance of black hole singularity in
quantum gravity, Phys. Rev. D 70, 124009 (2004).

[2] A. Ashtekar and M. Bojowald, Black hole evaporation: A
paradigm, Classical Quantum Gravity 22, 3349 (2005).

[3] M. Campiglia, R. Gambini, and J. Pullin, Loop quantization
of spherically symmetric midi-superspaces: The interior
problem, AIP Conf. Proc. 977, 52 (2008).

[4] R. Gambini and J. Pullin, Black Holes in Loop Quantum
Gravity: The Complete Space-Time, Phys. Rev. Lett. 101,
161301 (2008).

[5] A. Corichi and P. Singh, Loop quantization of the Schwarzs-
child interior revisited, Classical Quantum Gravity 33,
055006 (2016).

[6] J. Olmedo, S. Saini, and P. Singh, From black holes to white
holes: A quantum gravitational symmetric bounce, Classical
Quantum Gravity 34, 225011 (2017).

[7] A. Ashtekar, J. Olmedo, and P. Singh, Quantum
Transfiguration of Kruskal Black Holes, Phys. Rev. Lett.
121, 241301 (2018).

[8] A. Ashtekar, J. Olmedo, and P. Singh, Quantum extension
of the Kruskal spacetime, Phys. Rev. D 98, 126003
(2018).

[9] J. Münch, Effective quantum dust collapse via surface
matching, Classical Quantum Gravity 38, 175015 (2021).

[10] C. Zhang, Y. Ma, S. Song, and X. Zhang, Loop quantum
Schwarzschild interior and black hole remnant, Phys. Rev.
D 102, 041502(R) (2020).

[11] W. C. Gan, N. O. Santos, F. W. Shu, and A. Wang, Proper-
ties of the spherically symmetric polymer black holes, Phys.
Rev. D 102, 124030 (2020).

[12] J. B. Achour, S. Brahma, S. Mukohyama, and J. P.
Uzan, Towards consistent black-to-white hole bounces
from matter collapse, J. Cosmol. Astropart. Phys. 09
(2020) 020.

[13] M. Han and H. Liu, Improved effective dynamics of loop-
quantum-gravity black hole and Nariai limit, Classical
Quantum Gravity 39, 035011 (2022).

[14] M. Han and H. Liu, Covariant μ̄-scheme effective dynamics,
mimetic gravity, and non-singular black holes: Applications
to spherical symmetric quantum gravity and CGHS model,
arXiv:2212.04605.

[15] K. Giesel, B. F. Li, and P. Singh, Nonsingular quantum
gravitational dynamics of an Lemaître-Tolman-Bondi dust
shell model: The role of quantization prescriptions, Phys.
Rev. D 104, 106017 (2021).

[16] J. Fernando Barbero G. and A. Perez, Quantum geometry
and black holes, in Loop Quantum Gravity: The First 30
Years (World Scientific, Singapore, 2017), pp. 241–279.

[17] V. Husain, J. G. Kelly, R. Santacruz, and E. Wilson-Ewing,
Quantum Gravity of Dust Collapse: Shock Waves from
Black Holes, Phys. Rev. Lett. 128, 121301 (2022).

[18] V. Husain, J. G. Kelly, R. Santacruz, and E. Wilson-Ewing,
Fate of quantum black holes, Phys. Rev. D 106, 024014
(2022).

GEOMETRY OF THE BLACK-TO-WHITE HOLE TRANSITION … PHYS. REV. D 107, 064011 (2023)

064011-15

https://doi.org/10.1103/PhysRevD.70.124009
https://doi.org/10.1088/0264-9381/22/16/014
https://doi.org/10.1063/1.2902798
https://doi.org/10.1103/PhysRevLett.101.161301
https://doi.org/10.1103/PhysRevLett.101.161301
https://doi.org/10.1088/0264-9381/33/5/055006
https://doi.org/10.1088/0264-9381/33/5/055006
https://doi.org/10.1088/1361-6382/aa8da8
https://doi.org/10.1088/1361-6382/aa8da8
https://doi.org/10.1103/PhysRevLett.121.241301
https://doi.org/10.1103/PhysRevLett.121.241301
https://doi.org/10.1103/PhysRevD.98.126003
https://doi.org/10.1103/PhysRevD.98.126003
https://doi.org/10.1088/1361-6382/ac103e
https://doi.org/10.1103/PhysRevD.102.041502
https://doi.org/10.1103/PhysRevD.102.041502
https://doi.org/10.1103/PhysRevD.102.124030
https://doi.org/10.1103/PhysRevD.102.124030
https://doi.org/10.1088/1475-7516/2020/09/020
https://doi.org/10.1088/1475-7516/2020/09/020
https://doi.org/10.1088/1361-6382/ac44a0
https://doi.org/10.1088/1361-6382/ac44a0
https://arXiv.org/abs/2212.04605
https://doi.org/10.1103/PhysRevD.104.106017
https://doi.org/10.1103/PhysRevD.104.106017
https://doi.org/10.1103/PhysRevLett.128.121301
https://doi.org/10.1103/PhysRevD.106.024014
https://doi.org/10.1103/PhysRevD.106.024014


[19] C. Rovelli and F. Vidotto, Planck stars, Int. J. Mod. Phys. D
23, 1442026 (2014).

[20] H. M. Haggard and C. Rovelli, Quantum-gravity effects
outside the horizon spark black to white hole tunneling,
Phys. Rev. D 92, 104020 (2015).

[21] T. De Lorenzo and A. Perez, Improved black hole fireworks:
Asymmetric black-hole-to-white-hole tunneling scenario,
Phys. Rev. D 93, 124018 (2016).

[22] M. Christodoulou, C. Rovelli, S. Speziale, and I. Vilensky,
Planck star tunneling time: An astrophysically relevant
observable from background-free quantum gravity, Phys.
Rev. D 94, 084035 (2016).

[23] E. Bianchi, M. Christodoulou, F. D’Ambrosio, H. M.
Haggard, and C. Rovelli, White holes as remnants: A
surprising scenario for the end of a black hole, Classical
Quantum Gravity 35, 225003 (2018).

[24] F. D’Ambrosio, M. Christodoulou, P. Martin-Dussaud, C.
Rovelli, and F. Soltani, The end of a black hole’s evapo-
ration, Phys. Rev. D 103, 106014 (2021).

[25] F. Soltani, C. Rovelli, and P. Martin-Dussaud, End of a black
hole’s evaporation. II., Phys. Rev. D 104, 106014 (2021).

[26] A. Rignon-Bret and C. Rovelli, Black to white transition of a
charged black hole, Phys. Rev. D 105, 086003 (2022).

[27] J. R. Oppenheimer and H. Snyder, On continued gravita-
tional contraction, Phys. Rev. 56, 455 (1939).

[28] A. Perez, No firewalls in quantum gravity: The role of
discreteness of quantum geometry in resolving the infor-
mation loss paradox, Classical Quantum Gravity 32, 084001
(2015).

[29] P. Martin-Dussaud and C. Rovelli, Interior metric and ray-
tracing map in the firework black-to-white hole transition,
Classical Quantum Gravity 35, 147002 (2018).

[30] J. G. Kelly, R. Santacruz, and E. Wilson-Ewing, Black hole
collapse and bounce in effective loop quantum gravity,
Classical Quantum Gravity 38, 075008 (2021).

[31] K. Giesel, M. Han, B.-F. Li, H. Liu, and P. Singh, Spherical
symmetric gravitational collapse of a dust cloud: Polymer-
ized dynamics in reduced phase space, Phys. Rev. D 107,
044047 (2023).

[32] A. Ashtekar, T. Pawlowski, and P. Singh, Quantum Nature
of the Big Bang, Phys. Rev. Lett. 96, 141301 (2006).

[33] J. Yang, Y. Ding, and Y. Ma, Alternative quantization of the
Hamiltonian in loop quantum cosmology, Phys. Lett. B 682,
1 (2009).

[34] I. Agullo and A. Corichi, Loop quantum cosmology,
arXiv:1302.3833.

[35] M. Assanioussi, A. Dapor, K. Liegener, and T. Pawłowski,
Emergent de Sitter Epoch of the Quantum Cosmos from
Loop Quantum Cosmology, Phys. Rev. Lett. 121, 081303
(2018).

[36] J. Lewandowski, Y. Ma, J. Yang, and C. Zhang, Quantum
Oppenheimer-Snyder and swiss cheese models, arXiv:
2210.02253.

[37] S. Hergott, V. Husain, and S. Rastgoo, Model metrics
for quantum black hole evolution: Gravitational collapse,

singularity resolution, and transient horizons, Phys. Rev. D
106, 046012 (2022).

[38] R. Carballo-Rubio, F. D. Filippo, S. Liberati, and M. Visser,
Geodesically complete black holes, Phys. Rev. D 101,
084047 (2020).

[39] T. Schmitz, Exteriors to bouncing collapse models, Phys.
Rev. D 103, 064074 (2021).

[40] J. G. Kelly, R. Santacruz, and E. Wilson-Ewing, Effective
loop quantum gravity framework for vacuum spherically
symmetric spacetimes, Phys. Rev. D 102, 106024 (2020).

[41] H. M. Haggard and C. Rovelli, Quantum gravity effects
around Sagittarius A*, Int. J. Mod. Phys. D 25, 1644021
(2016).

[42] https://en.wikipedia.org/wiki/Smoothstep.
[43] A. Ashtekar, J. Olmedo, and P. Singh, Quantum

Transfiguration of Kruskal Black Holes, Phys. Rev. Lett.
121, 241301 (2018).

[44] R. Gambini, J. Olmedo, and J. Pullin, Spherically symmetric
loop quantum gravity: Analysis of improved dynamics,
Classical Quantum Gravity 37, 205012 (2020).

[45] N. Bodendorfer, F. M. Mele, and J. Münch, Effective
quantum extended spacetime of polymer Schwarzschild
black hole, Classical Quantum Gravity 36, 195015 (2019).

[46] M. Simpson and R. Penrose, Internal instability in a
Reissner-Nordström black hole, Int. J. Theor. Phys. 7, 183
(1973).

[47] M. Dafermos, Stability and instability of the Cauchy
horizon for the spherically symmetric Einstein-Maxwell-
scalar field equations, Ann. Math. 158, 875 (2003).

[48] R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, and
M. Visser, On the viability of regular black holes, J. High
Energy Phys. 07 (2018) 023.

[49] R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, and
M. Visser, Inner horizon instability and the unstable cores of
regular black holes, J. High Energy Phys. 05 (2021) 132.

[50] M. Christodoulou and C. Rovelli, How big is a black hole?,
Phys. Rev. D 91, 064046 (2015).

[51] M. Christodoulou and T. De Lorenzo, Volume inside old
black holes, Phys. Rev. D 94, 104002 (2016).

[52] D. M. Eardley, Death of White Holes in the Early Universe,
Phys. Rev. Lett. 33, 44 (1974).

[53] C. Rovelli and F. Vidotto, Small black/white hole stability
and dark matter, Universe 4, 127 (2018).

[54] C. Rovelli, Black holes have more states than those giving
the Bekenstein-Hawking entropy: A simple argument,
arXiv:1710.00218.

[55] E. Bianchi, M. Christodoulou, F. D’Ambrosio, H. M.
Haggard, and C. Rovelli, White holes as remnants: A
surprising scenario for the end of a black hole, Classical
Quantum Gravity 35, 225003 (2018).

[56] C. Rovelli, The subtle unphysical hypothesis of the firewall
theorem, Entropy 21, 839 (2019).

[57] S. Kazemian, M. Pascual, C. Rovelli, and F. Vidotto, Diffuse
emission from black hole remnants, arXiv:2207.06978.

[58] C. Bender and S. Orszag, Advanced Mathematical Methods
for Scientists andEngineers I (Springer,NewYork,NY, 1999).

HAN, ROVELLI, and SOLTANI PHYS. REV. D 107, 064011 (2023)

064011-16

https://doi.org/10.1142/S0218271814420267
https://doi.org/10.1142/S0218271814420267
https://doi.org/10.1103/PhysRevD.92.104020
https://doi.org/10.1103/PhysRevD.93.124018
https://doi.org/10.1103/PhysRevD.94.084035
https://doi.org/10.1103/PhysRevD.94.084035
https://doi.org/10.1088/1361-6382/aae550
https://doi.org/10.1088/1361-6382/aae550
https://doi.org/10.1103/PhysRevD.103.106014
https://doi.org/10.1103/PhysRevD.104.106014
https://doi.org/10.1103/PhysRevD.105.086003
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1088/0264-9381/32/8/084001
https://doi.org/10.1088/0264-9381/32/8/084001
https://doi.org/10.1088/1361-6382/aacb74
https://doi.org/10.1088/1361-6382/abe2d8
https://doi.org/10.1103/PhysRevD.107.044047
https://doi.org/10.1103/PhysRevD.107.044047
https://doi.org/10.1103/PhysRevLett.96.141301
https://doi.org/10.1016/j.physletb.2009.10.072
https://doi.org/10.1016/j.physletb.2009.10.072
https://arXiv.org/abs/1302.3833
https://doi.org/10.1103/PhysRevLett.121.081303
https://doi.org/10.1103/PhysRevLett.121.081303
https://arXiv.org/abs/2210.02253
https://arXiv.org/abs/2210.02253
https://doi.org/10.1103/PhysRevD.106.046012
https://doi.org/10.1103/PhysRevD.106.046012
https://doi.org/10.1103/PhysRevD.101.084047
https://doi.org/10.1103/PhysRevD.101.084047
https://doi.org/10.1103/PhysRevD.103.064074
https://doi.org/10.1103/PhysRevD.103.064074
https://doi.org/10.1103/PhysRevD.102.106024
https://doi.org/10.1142/S0218271816440211
https://doi.org/10.1142/S0218271816440211
https://en.wikipedia.org/wiki/Smoothstep
https://en.wikipedia.org/wiki/Smoothstep
https://en.wikipedia.org/wiki/Smoothstep
https://doi.org/10.1103/PhysRevLett.121.241301
https://doi.org/10.1103/PhysRevLett.121.241301
https://doi.org/10.1088/1361-6382/aba842
https://doi.org/10.1088/1361-6382/ab3f16
https://doi.org/10.1007/BF00792069
https://doi.org/10.1007/BF00792069
https://doi.org/10.4007/annals.2003.158.875
https://doi.org/10.1007/JHEP07(2018)023
https://doi.org/10.1007/JHEP07(2018)023
https://doi.org/10.1007/JHEP05(2021)132
https://doi.org/10.1103/PhysRevD.91.064046
https://doi.org/10.1103/PhysRevD.94.104002
https://doi.org/10.1103/PhysRevLett.33.44
https://doi.org/10.3390/universe4110127
https://arXiv.org/abs/1710.00218
https://doi.org/10.1088/1361-6382/aae550
https://doi.org/10.1088/1361-6382/aae550
https://doi.org/10.3390/e21090839
https://arXiv.org/abs/2207.06978

