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We present a detailed analysis of a general relativistic static spherical symmetric distribution in which
both the radial and tangential pressures follow a master polytropic equation of state that generalizes the
standard treatment and avoids the appearance of singularities in the system. In particular, we find the
corresponding Lane-Emden equation and integrate it for a wide range of values of the parameters involved.
We explore the parameter space with the aim to find the set of parameters leading to reasonable physical
solutions. Also, we considered the effect of spherically symmetric perturbations of the matter variables in
order to analyze the possible apparition of cracking within the compact distribution.
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I. INTRODUCTION

In the study of self-gravitating matter distributions,
either in the Newtonian or relativistic regimes, it is a
known fact that we need to provide, by hand, some
information about the system under study. This can be
done by providing an equation of state that could be
related to some local physical properties of interest. In this
regard, one particular case that allows dealing with a large
variety of physical scenarios is the polytropic equation of
state (see Refs. [1–18]), that have been extensively used to
study the stellar structure, for both Newtonian and general
relativistic objects. Indeed, the application of this equation
goes from the description of the internal regions of
compact objects (as white dwarf or neutron stars)
[1,3,4] to the dynamics of galaxies [19]. The outstanding
success of the polytropic equation of state lies in the
simplicity of the ensuing main equation (Lane-Emden).
For a relativistic matter distribution with isotropic

pressure, the polytropic equation of state can be written
in two different ways:

P ¼ Kρ1þ1=n; ð1Þ

P ¼ Kρ1þ1=n
0 ; ð2Þ

where ρ; ρ0; n; K are the energy density, the baryonic mass
density, the polytropic exponent, and the polytropic con-
stant, respectively. It is important to mention that, in the
Newtonian limit, there is no difference between ρ and ρ0;
therefore, we have only one polytropic equation of state.
Now, although the isotropy in pressure (Pascalian fluid)

is a common assumption in the literature for the study of
compact objects, in the last decades there has been a
growing and justified interest in the study of matter
distributions with local anisotropy in pressures [20–52]).
Under the assumption of local anisotropy of pressures
(in the case of spherical symmetry), we can identify two
different principal stresses, Pr and P⊥. The general
formalism to study anisotropic polytropes (Newtonian or
relativistic) was developed in [53–55] (see also [56–63] for
more recent studies). In this case, the polytropic equation of
state is given by

Pr ¼ Kρ1þ1=nr ; ð3Þ

Pr ¼ Kρ1þ1=nr
0 : ð4Þ

However, since this assumption introduces a new degree of
freedom (P⊥), the polytropic equation of state is not
enough to solve Einstein’s equations. Thus, it is necessary
to provide additional information about the system under
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consideration [26,27] related to the local physics or
restrictions on the metric variables such as the conformally
flat [55,64], the Karmarkar condition [65] or the complex-
ity factor [66] which are summarized by the statement of a
particular form that takes the anisotropic function Δ≡
P⊥ − Pr [67–71]. Some years ago, it was developed a
general formalism to incorporate anisotropy in polytropic
Newtonian and relativistic spheres [53,54], using a heuris-
tic strategy that assumes an anisotropy function propor-
tional to the gravitational force present in the hydrostatic
equilibrium equation [72]. Very recently, a novel strategy
was adopted to solve the same problem, based on the
plausible assumption that both principal stresses satisfy a
polytropic equation of state [59,60].
However, in a recent work, [62], the authors showed that

implementing the polytropic equation of state leads to a
singular tangential sound velocity at the surface of the
distribution for n > 1. One way to address this problem is
to consider a modification of the polytropic equation of
state, known as the “master” polytropic equation of state
[62,63], which is given by

Pr ¼ Krρ
1þ1=nr þ α̃rρ − β̃r; ð5Þ

where α̃r and β̃r are constants, allowing us to model
material configurations where the density is different from
zero (discontinuous) at the boundary. It is worth mention-
ing that Eq. (5) has been used to describe several cosmo-
logical scenarios as the construction of early universe
models in addition to being able to be used for various
particular cases. A special case occurs when n ¼ 1, which
corresponds to Pr ¼ Krρ

2 þ α̃rρ − β̃r that has been used to
describe possible compact anisotropic charged objects [73].
Another interesting case results when β ¼ 0 that has
been used to find mathematical models of compact
objects incorporating the radiation factor [74]. Note that,
although (5) is not an equation of state that comes from
some known thermodynamic process, there are a couple of
reasons to consider it a suitable approach in the context
of the study of self-gravitating spheres. As claimed in
Ref. [62], the master equation avoids the appearance of
a singularity in the tangential sound velocity when α ¼
β ¼ 0 (the standard polytropic equation) with 1 < γ < 2.
Also, in a very recent article [75], it was explored the
physical acceptability conditions for anisotropic compact
relativistic matter configurations considering the master
polytrope and a heuristic anisotropy [72], and certainly,
several models emerging from this study could represent
real astrophysical compact objects.
In this work, we will analyze the internal structure of a

general realistic self-gravitating matter distribution where
not only the radial but the tangential pressure satisfies a
master polytropic equation of state [60], namely

P⊥ ¼ K⊥ρ1þ1=n⊥ þ α̃⊥ρ − β̃⊥: ð6Þ

At this point, a couple of comments are in order. First, note
that after demanding (6), the system is closed, and not any
extra condition is required. To be more precise, we do not
require any ad hoc assumption for the anisotropy function
which in some cases seems to be artificial. Second,
although Eq. (6) can be written in terms of the baryonic
mass density also, we shall restrict here to the case in which
the master polytropic equation of state is expressed in terms
of the energy density (since the analysis in both cases is
very similar). In addition to this, polytropes based on the
total energy density seem to be more viable than those with
baryonic density, if also they present small positive local
anisotropies [75].
In order to show here a complete study regarding the

response of these systems to perturbations, we shall use the
scheme developed in [76] to study the apparition of
cracking in our model. The concept of cracking was
initially introduced in [77] (for more recent works see
Refs. [78–84]) to describe a fluid distribution at the exact
moment in which the system departures from equilibrium.
At this point, radial forces will appear in the matter
distribution. We say that there is cracking if the radial
force is directed inward in the inner part of the sphere and
reverses its sign beyond some value of the radial coor-
dinate. In the opposite case, we say that there is an
overturning. The apparition of cracking (overturning) is
closely related to local anisotropy in pressures. In fact,
in [79], it was shown that cracking results only in the cases
in which the local anisotropy is perturbed and it may lead to
drastic changes in the evolution of the system [79]. Besides,
it is important to mention that the concept of cracking is
related to the problem of structure formation [82,85]. In this
work, it has been assumed that spherical symmetry is
preserved by perturbations on the matter variables. It
should be mentioned that it is possible to consider systems
that, although initially spherically symmetric, are submitted
to perturbations deviating the system from this symmetry. It
has been studied the fact that perturbations deviating the
system from spherical symmetry may induce transverse
cracking in the fluid distributions [80].
This manuscript is organized as follows: In the next

section, we present the Einstein field equations and
conventions for a spherically symmetric distribution with
local pressure anisotropy. In Sec. III, we give a brief
summary of the general perturbation scheme to study the
appearance of cracking for our adopted master polytrope
models. Section IV is dedicated to briefly reviewing the
main aspects of anisotropic polytropes. We devote Sec. V
to formulating the double master polytrope. In Sec. VI we
compare the physical properties of the standard double
polytrope with those of the double master polytrope and
we study the conditions of physical acceptability. In
Sec. VII, we will analyze the appearance of cracking in
our model. Finally, in the last section, we will discuss all
our results.
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II. THE EINSTEIN FIELD EQUATIONS

Let us consider a static, spherically symmetric distribu-
tion of an anisotropic fluid bounded by a surface Σ. In like-
Schwarzschild coordinates, the metric is given by

ds2 ¼ eνdt2 − eλdr2 − r2ðdθ2 þ sin2 θdϕ2Þ; ð7Þ

where ν and λ are functions of r that satisfy regularity
conditions at r ¼ rc ¼ 0: λc ¼ 0 and ν0c ¼ λ0c ¼ 0 (where
the subscript c refers to the center of the distribution).
The matter content of the sphere is described by a non-

Pascalian fluid represented by the energy-momentum
tensor

Tμν ¼ ðρþ P⊥Þuμuν − P⊥gμν þ ðPr − P⊥Þsμsν; ð8Þ

where,

uμ ¼ ðe−ν=2; 0; 0; 0Þ; ð9Þ

is the four-velocity of the fluid, sμ is defined as

sμ ¼ ð0; e−λ; 0; 0Þ; ð10Þ

with the properties sμuμ ¼ 0, sμsμ ¼ −1 (we are assuming
geometric units c ¼ G ¼ 1). The metric (7), has to satisfy
the Einstein field equations, which are given by

ρ ¼ −
1

8π

�
−

1

r2
þ e−λ

�
1

r2
−
λ0

r

��
; ð11Þ

Pr ¼ −
1

8π

�
1

r2
− e−λ

�
1

r2
þ ν0

r

��
; ð12Þ

P⊥ ¼ 1

8π

�
e−λ

4

�
2ν00 þ ν02 − λ0ν0 þ 2

ν0 − λ0

r

��
; ð13Þ

where primes denote derivative with respect to r.
Outside the fluid distribution, the spacetime is given by

the Schwarzschild exterior solution, namely

ds2 ¼
�
1 −

2M
r

�
dt2 −

�
1 −

2M
r

�
−1
dr2

− r2ðdθ2 þ sin2 θdϕ2Þ: ð14Þ

Furthermore, we require the continuity of the first and
the second fundamental form across the boundary surface
r ¼ rΣ ¼ constant, which implies,

eνΣ ¼ 1 −
2M
rΣ

; ð15Þ

e−λΣ ¼ 1 −
2M
rΣ

ð16Þ

PrΣ ¼ 0; ð17Þ

where the subscript Σ indicates that the quantity is
evaluated at the boundary surface Σ.
From the radial component of the conservation law,

∇μTμν ¼ 0; ð18Þ

one obtains the generalized Tolman-Oppenheimer-Volkoff
equation for anisotropic matter which reads,

R≡ P0
r þ

ν0

2
ðρþ PrÞ −

2

r
ðP⊥ − PrÞ ¼ 0; ð19Þ

whereR defines the total radial force on each fluid element.
Alternatively, by using

ν0 ¼ 2
mþ 4πPrr3

rðr − 2mÞ ; ð20Þ

where the Misner “mass” function m is defined through

e−λ ¼ 1 − 2m=r; ð21Þ

or, equivalently as

dm
dr

¼ 4πr2ρ ⇒ m ¼ 4π

Z
r

0

r̃2ρdr̃; ð22Þ

we may rewrite Eq. (19) in the form

P0
r ¼ −

mþ 4πr3Pr

rðr − 2mÞ ðρþ PrÞ þ
2

r
Δ; ð23Þ

where

Δ ¼ P⊥ − Pr; ð24Þ

measures the anisotropy of the system. The term 2
rΔ is

known as the anisotropic strength, which competes to shape
the reacting pressure gradient, and the first term on the right
of (23) clearly represents the gravitational force [20]. It is
important to note that R has dimensions of force per unit
volume so, it is the total force per unit volume over each
fluid element. Now, if the system is in equilibrium, these
contributions cancel out so that R ¼ 0 (a vanishing total
force). Nevertheless, in the case of generating (via pertur-
bations) a dynamic instability, we will obtain a nonzero
local contribution representing the hydrodynamic force on
each fluid element.
We emphasize that it is equivalent to solve the Einstein

system (11)–(13) or to integrate the structure equations (22)
and (23). In the first case, we obtain the physical variables
ρðrÞ, PrðrÞ and P⊥ðrÞ given the metric functions λðrÞ and
νðrÞ, while in the second approach, we integrate the

DOUBLE RELATIVISTIC MASTER POLYTROPE FOR … PHYS. REV. D 107, 064010 (2023)

064010-3



structure Eqs. (22) and (23) providing two equations of
state or other physical conditions. These equations of state
that involve the pressure thermodynamic variables are used
together with the coupling conditions (15), (16), and (17),
leading to a system of differential equations for ρðrÞ which
can be solved to complete the inner structure of a self-
gravitating relativistic compact object.
As already mentioned in the previous section, in order to

integrate (23), we shall need additional conditions. The
main objective of this work is to build a model consisting of
a master equation of state for both, radial and tangential
pressures, i.e., the master double polytrope [60]. This
constitutes our main ansatz in order to solve the system
of equations. Before doing so, in the next section, we
introduce the perturbative scheme used to study cracking in
our models.

III. PERTURBATION SCHEME

The concept of cracking was introduced to describe the
behavior of a fluid distribution just after its departure from
equilibrium. Specifically, we consider perturbations that
lead to a departure from the equilibrium of the system on a
timescale that is smaller than the hydrostatic one, which is
the typical time in which a system reacts to a perturbation
of its equilibrium. In this regard, the perturbation scheme
we present in this section to analyze the occurrence of
cracking consists, basically, of taking a snapshot of the
system just after leaving equilibrium. For this reason, we
consider that the perturbations are time-independent. It is
important to emphasize that cracking represents only the
tendency of the system just after leaving hydrostatic
equilibrium, what actually happens next depends on a full
dynamical treatment of Einstein’s equations. In what
follows we will summarize the perturbation scheme pro-
posed in [76].
Let us start with a spherical anisotropic relativistic fluid

distribution satisfying the generalized hydrostatic equilib-
rium equation (19). Besides, the pressures are considered as
functions of the energy density and the anisotropic func-
tion, i.e.

Prðρ;ΔÞ; P⊥ðρ;ΔÞ: ð25Þ

Now, to study the appearance of cracking, we shall perform
perturbations of the energy density and the local pressure
anisotropy

ρ̃ ¼ ρþ δρ; ð26Þ

Δ̃ ¼ Δþ δΔ; ð27Þ

where δρ and δΔ indicate small perturbations that may
depend on r. It is worth emphasizing that, the assumption
on the timescale does not guarantee that the system will
lose its symmetry or reach another equilibrium stage after

the perturbation. In order to figure out if this is the case, it is
necessary to solve the time-dependent Einstein’s equations
for a period of time greater than the hydrostatic timescale,
which is clearly out of the scope of this work. Thus, we can
write the perturbed quantities (up to first order) like,

Pr → P̃r ¼ Pr þ
�
∂P̃r

∂ρ̃

�
ρ̃¼ρ
Δ̃¼Δ

δρþ
�
∂P̃r

∂Δ̃

�
ρ̃¼ρ
Δ̃¼Δ

δΔ; ð28Þ

m → m̃ ¼ mþ
�
∂m̃
∂ρ̃

�
ρ̃¼ρ
Δ̃¼Δ

δρ; ð29Þ

Δ → Δ̃ ¼ Δþ δΔ: ð30Þ

Now, let us assume

P̃r ¼ ð1þ δϕÞPr; jδϕj ≪ 1; ð31Þ

where δϕ is a constant that ensures that the radial pressure
maintains the same functional behavior. As a consequence,
we have

dP̃r

dr
¼ ð1þ δϕÞ dPr

dr
⇒ δP0

r ¼ P0
rδϕ: ð32Þ

Moreover, this implies a restriction over the perturbation
functions, which is

�
∂P̃r

∂ρ̃

�
ρ̃¼ρ
Δ̃¼Δ

δρþ
�
∂P̃r

∂Δ̃

�
ρ̃¼ρ
Δ̃¼Δ

δΔ ¼ Prδϕ;

which leads to

δρ ¼
��

∂P̃r

∂ρ̃

�−1�
Prδϕ −

�
∂P̃r

∂Δ̃

�
δΔ

��
ρ̃¼ρ
Δ̃¼Δ

: ð33Þ

and in this way (31) is satisfied. Then, after perturbation,
we can write

R̃ðρ̃; Δ̃Þ ¼ Rðρ;ΔÞ þ δRðρ;ΔÞ; ð34Þ

where

δR ¼
�
∂R
∂Pr

�
ρ̃¼ρ
Δ̃¼Δ

δPr þ
�
∂R
∂ρ

�
ρ̃¼ρ
Δ̃¼Δ

δρ

þ
�
∂R
∂m

�
ρ̃¼ρ
Δ̃¼Δ

δmþ
�
∂R
∂Δ

�
ρ̃¼ρ
Δ̃¼Δ

δΔþ
�
∂R
∂P0

r

�
ρ̃¼ρ
Δ̃¼Δ

δP0
r:

ð35Þ

Now, in order to avoid a singularity at the center of the
distribution we will choose δΔ ¼ Δδβ with δβ ≪ 1 a
constant. Thus, the total radial force after the perturbations
can be written as (see Ref. [76] for more details)
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R̃ ¼
�
Pr

�
4πrðρþ PrÞ
1 − 2m=r

þ ð1þGðrÞÞ
�

mþ 4πr3Pr

r2ð1 − 2m=rÞ
��

þ 4πðρþ PrÞð1þ 8πr2PrÞF1ðrÞ
r2ð1 − 2m=rÞ2 þ P0

r

�
δϕ

−
�
GðrÞΔðrÞ

��
∂Pr

∂Δ

��
mþ 4πr3Pr

r2ð1 − 2m=rÞ
��

þ 4πðρþ PrÞð1þ 8πr2PrÞF2

r2ð1 − 2m=rÞ2 þ 2

r
ΔðrÞ

�
δβ: ð36Þ

where

F1ðrÞ≡
Z

r

0

r̄2GðrÞPrdr̄; ð37Þ

F2ðrÞ≡
Z

r

0

r̄2GðrÞ
�
∂P̃r

∂Δ̃

�
ΔðrÞdr̄; ð38Þ

GðrÞ≡
�
∂P̃r

∂ρ̃

�−1
: ð39Þ

Now, it is clear that the change of sign which has to be
present in the total radial force, required for the existence of
cracking (or overturning), implies R̄ ¼ 0 for some
r ∈ ð0; rΣÞ. This leads to

δϕ ¼ Γδβ; ð40Þ

where

Γ−1 ¼
�
Pr

�
4πrðρþPrÞ
1−2m=r

þð1þGðrÞÞ
�

mþ4πr3Pr

r2ð1−2m=rÞ
��

þ4πðρþPrÞð1þ8πr2PrÞF1ðrÞ
r2ð1−2m=rÞ2 þP0

r

���
GðrÞΔðrÞ

×

��
∂Pr

∂Δ

��
mþ4πr3Pr

r2ð1−2m=rÞ
��

þ4πðρþPrÞð1þ8πr2PrÞF2

r2ð1−2m=rÞ2 þ2

r
ΔðrÞ

�
: ð41Þ

Note that with Eqs. (36)–(41) is possible to evaluate the
occurrence of cracking (overturning) in any spherically
symmetric system satisfying a barotropic/polytropic equa-
tion of state (when a perturbation is introduced using this
scheme, the modified (anisotropic) TOV equation does not
vanish anymore). Furthermore, if the system satisfies the
physical acceptability conditions, it is easy to show that the
total radial force will be free of singularities and will be
equal to zero at the center of the distribution. Next, we shall
expose the basics of the theory of relativistic master
polytropes for anisotropic matter.

IV. RELATIVISTIC MASTER POLYTROPE
FOR ANISOTROPIC MATTER

In this section, we shall derive the corresponding rela-
tivistic hydrostatic equilibrium equation for a generalized
polytropic equation of state, known as the Lane-Emden
equation, which essentially constitutes the dimensionless
form of Tolman-Oppenheimer-Volkoff expression (23) for a
polytrope. So, we dedicate this section to discussing the
basic set of equations for the relativistic master polytrope for
anisotropic matter [62,63]. The starting point, in this case, is
to adopt the following master polytropic equation of state
for the radial pressure

Pr ¼ Krρ
1þ1=nr þ α̃rρ − β̃r: ð42Þ

Notice that Kr, αr and βr are nonindependent parameters
since they are related by the fact that the radial pressure
satisfies the matching condition on the surface Σ (Pr ¼ 0).
Then, we have

β̃r ¼ Krρ
1þ1=nr
Σ þ α̃rρΣ: ð43Þ

Now, defining the variable ω as

ρ ¼ ρcω
nr ; ð44Þ

where ρc denotes the energy density at the center (from now
on the subscript c indicates that the variable is evaluated at
the center). For simplicity, we shall define the following
constants

P0
r ¼ Kρ1þ1=nr

c ; α̃¼ q0α; β̃ ¼ P0
rβ; q0 ¼ P0

r=ρc:

Thus, Eq. (42) can be expressed as

Pr ¼ P0
r ½ωnrðωþ αrÞ − βr�: ð45Þ

Notice that P0
r is not the pressure at the center of the

distribution but satisfies

Prc ¼ P0
rð1þ αr − βrÞ: ð46Þ

From (45), we can write

P0
r ¼ P0

rω
nr

�
nr þ 1þ αrωnr

ωnr

�
ω0: ð47Þ

Now, by using the matching conditions we can find the
following relation

βr ¼ ωnr
Σ ðωΣ þ αrÞ; ð48Þ

which determines the radius of the distribution.
From the above, it can be written the TOVequation (19)

like
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�
1þ q0

�
ðωþ αrÞ −

βr
ωnr

��
dν
dr

¼ 4Δ
ρcrωnr

− 2q0

�
1þ nr þ

nrαr
ωnr

�
ω0; ð49Þ

from where

ν0 ¼
�

4Δ
ρcrωnr

− 2q0

�
1þ nr þ

nrαr
ωnr

�
ω0
�

×

�
1þ q0

�
ðωþ αrÞ −

βr
ωnr

��
−1
: ð50Þ

Introducing this expression in Eq. (12) and defining the
following dimensionless variables

r ¼ Ax; m ¼ 4πρcA3η; A2 ¼ ð1þ nrÞq0
4πρc

ð51Þ

we obtain

�
x− 2ð1þ nrÞq0η

1þ q0ðωþ αr − βrω
−nrÞ

��
x
dω
dx

�
1þ nrαr

ð1þ nrÞω
�

−
2Δ

ρcq0ð1þ nrÞωnr

�
þ ηþ q0xðωþ αrÞ

dη
dx

− q0βrx3 ¼ 0

ð52Þ

and from Eq. (22)

dη
dx

¼ x2ωnr : ð53Þ

Equations (52) and (53), form a system of two first-order
ordinary differential equations for the three unknown func-
tions ω, η, Δ, depending on the parameters nr; αr; βr; q0
attached to the boundary conditions ηð0Þ ¼ 0, ωð0Þ ¼ 1.
They correspond to the differential equations that represent
the modified Lane-Emden system for the master anisotropic
polytrope. Thus it is obvious that in order to proceed further
with the modeling of a compact object, we need to provide
additional information that depends on the specific physical
problem under consideration. The fact that the principal
stresses are unequal produces an extra indeterminacy so the
introduction of an additional condition to close the system is
compulsory [26,27]. For example, in [53,54] it was consid-
ered a particular ansatz which allowed us to obtain an
anisotropic model continually linked with the isotropic
case [72]. Another interesting choice for the local pressure
anisotropy was introduced in [59,60] where the main idea
was the additional assumption that both principal stresses
satisfy polytropic equations of state. Such an approach, based
on assuming a “natural” description, was called the double
relativistic polytrope. Our main objective is the study of the
master double polytrope (among other possible interesting

master polytropic models). Also, notice that in the limit
αr; βr → 0, Eqs. (52) and (53) constitute the standard system
for amatter distributionwith a polytropic equation of state, as
expected.
It will be useful to calculate the Tolman mass, which

is a measure of the active gravitational mass [23],
defined by

mT ¼ 1

2
r2e

ν−λ
2 ν0: ð54Þ

Alternatively, we can calculate the Tolman mass from the
equivalent expression [22],

mT ¼ e
νþλ
2 ðmþ 4πr3PrÞ: ð55Þ

Now, as before, we define

mT ¼ 4πA3ρcηT; ð56Þ

where

ηT ¼ eν=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xΣz
xΣz − 2q0ðnr þ 1Þη

r
× ðηþ q0x3Σz

3½ωnrðωþ αrÞ − βr�Þ; ð57Þ

is a dimensionless function and z ¼ x
xΣ
. On the other

hand, using Eq. (19) we obtain

dν
dz

¼ 2

ðρþ PrÞ
�
2Δ
z

−
dPr

dz

�
: ð58Þ

Then, by integrating this expression we get

νΣ − ν ¼
Z

1

z

4Δ
z½ωnrð1þ q0ðωþ αrÞÞ − q0βr�

dz

− 2

Z
ωΣ

ω

q0ωnr−1½ðnr þ 1Þωþ nrαr�
ωnr ½1þ q0ðωþ αrÞ� − q0βr

dω; ð59Þ

where νΣ is given by the matching conditions (15).
Now, defining the potential at the surface of the
distribution as

y ¼ M=rΣ ð60Þ

and the following functions

G1 ¼ −
Z

1

z

4Δ
z½ωnrð1þ q0ðωþ αrÞÞ − q0βr�

dz; ð61Þ

G2 ¼ 2

Z
ωΣ

ω

q0ωnr−1½ðnr þ 1Þωþ nrαr�
ωnr ½1þ q0ðωþ αrÞ� − q0βr

dω; ð62Þ
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we can write the dimensionless Tolman mass as

ηT ¼ e
G1þG2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2yÞxΣz

xΣz − 2q0ðnr þ 1Þη

s

× ðηþ q0x3Σz
3½ωnrðωþ αrÞ − βr�Þ: ð63Þ

Finally, it is worth noticing that, for the usual polytrope
theory, after restoring the speed of light, we can express the
stiffness at the center of the matter distribution as [60]

qc ≡ Pc

ρcc2
; ð64Þ

implying, in this case, that the Newtonian limit is given by
c → ∞, and then we have qc → 0. So consequently, the
Newtonian regime for the master polytrope is obtained by
performing the limit

qc ¼
Prc

ρc
¼ q0ð1þ αr − βrÞ → 0; ð65Þ

which, in general, is equivalent to taking the limit q0 → 0.
Thus, combining Eqs. (52) and (53) and taking the limit
q0 → 0 reveals that the Newtonian Lane-Emden equation
for the master polytrope reads

�
1þ nrαr

ð1þ nrÞω
�
d2ω
dx2

þ
�
2

x
þ nrαr
1þ nr

�
2

xω
−

1

ω2

dω
dx

��
dω
dx

−
2

P0
rð1þ nrÞ

�
1

xωnr

��
dΔ
dx

þ Δ
x
−
nrΔ
ω

dω
dx

�
¼ −ωnr :

ð66Þ

Notice that we can recover the usual form of the anisotropic
Newtonian Lane-Emden equation by taking the limit
αr → 0. However, to recover the boundary condition
ωΣ ¼ 0, is necessary to take the limit βr → 0. It is worth
mentioning that Eq. (66) can be used to model stellar
configurations, in the Newtonian (nonrelativistic) regime,
that satisfy a master polytropic equation of state. This
represents an interesting fact in itself that could be
developed in other works.

V. THE DOUBLE MASTER POLYTROPE

As we mentioned before, we need to provide further
information to integrate the system of equations (52) and
(53). The neuralgic approach of this work comes from
assuming that the tangential pressure (P⊥) also satisfies a
master polytropic equation of state, so we propose to follow
the same strategy as in [59,60] for the master polytrope,
this is

P⊥ ¼ K⊥ρ1þ1=n⊥ þ α̃⊥ρ − β̃⊥; ð67Þ

which can be written as

P⊥ ¼ P0⊥½ωnrðωθ þ α⊥Þ − β⊥�; ð68Þ

where θ ¼ nr=n⊥ and as before P0⊥ ¼ K⊥ρ1þ1=n⊥
c ,

P0⊥α⊥ ¼ α̃⊥ρc, and P0⊥β⊥ ¼ β̃⊥. Thus the anisotropic
function Δ is given by

Δ ¼ P0⊥½ωnrðωθ þ α⊥Þ − β⊥� − P0
r ½ωnrðωþ αrÞ − βr�:

ð69Þ

Now, since Δð0Þ ¼ 0, it is easy to find

P0⊥ ¼ P0
r

�
1þ αr − βr
1þ α⊥ − β⊥

�
; ð70Þ

which allow us to write

Δ ¼ P0
r

��
1þ αr − βr
1þ α⊥ − β⊥

�
½ωnrðωθ þ α⊥Þ − β⊥�

− ωnrðωþ αrÞ þ βr

�
: ð71Þ

Introducing this expression in Eq. (52) we obtain�
x − 2ð1þ nrÞq0η

1þ q0ðωþ αr − βrω
−nrÞ

��
x
dω
dx

�
1þ nrαr

ð1þ nrÞω
�

−
2

ð1þ nrÞωnr
faðωnrðωθ þ α⊥Þ − β⊥Þ

− ωnrðωþ αrÞ þ βrg
�

þ ηþ q0xðωþ αrÞ
dη
dx

− q0βrx3 ¼ 0; ð72Þ

where

a≡ 1þ αr − βr
1þ α⊥ − β⊥

: ð73Þ

Now, we proceed to integrate the system (72) and (53)
numerically by exploring the set of parameters involved
with the aim to study the behavior of the matter sector,
namely, the density energy, the pressures, the anisotropy,
the Tolman mass, and the surface potential.
In the first row of Fig. 1 we show the behavior of the

matter sector, namely the energy density and both, the
radial and tangential pressure, as a function of the dimen-
sionless-normalized radial coordinate z ¼ x=xΣ for differ-
ent choices of the parameters shown in the legend. The
matter functions are shown for different values of the index
that defines the radial polytrope nr. The junction conditions
on the surface (for the radial pressure) determine a single
size for the stellar object and depending on the pair (αr, βr)
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we will have different values for the energy density which
is not necessarily continuous on the surface of the object.
The distribution of the active gravitational mass toward the
inner or outer regions of the sphere depends on the values
chosen for these constants, where the blue curve corre-
sponds to the model for which both values are zero. All
thermodynamic variables are positive inside the star, reach
their maximum at the center and decrease monotonously
toward the surface where the radial pressure becomes zero,
as expected (while the tangential pressure does not).
Observe that, in our case, the energy density (encoded
in ω) does not vanish at the surface of the object. The
behavior of the normalized Tolman (“active” gravitational)
mass (63) and the anisotropy function, useful when
analyzing cracking later, (71) is shown in the second
row (left panel) of Fig. 1, for the parameters chosen in

the legend of the figure. The active gravitational mass is zero
at the center of the fluid distribution and grows to its
maximum value on the surface. In the interior of the fluid
distribution, the local anisotropy (Fig. 1, right panel) is an
increasing function (as usual) but it modifies its behavior as
we approach the surface. This behavior depends radically on
the index nr that determines the structure of the polytrope.
We notice that by increasing the index associated with the
radial polytrope, the behavior of the anisotropy function
changes notably near the surface of the object.
In the left panel of Fig. 2 we represent the normalized

gravitational “active” mass as a function of z for the values
indicated in the figure legend by varying the parameters
associated with the radial pressure of the master polytrope,
specifically the pair of parameters (αr, βr). We note that for
the values (0, 0) we return to the usual double polytrope

FIG. 1. w (top left), ηT=ðηTÞΣ (bottom left), and Δ=P0
r (bottom right) as a function of z for θ ¼ 0.9, q0 ¼ 0.2, αr ¼ −0.15, βr ¼ 0,

α⊥ ¼ 0, β⊥ ¼ 0, and n ¼ 0.1 blue (solid) curve, n ¼ 0.4 orange (dashed) curve, n ¼ 1.0 blue (dot-dashed) curve, n ¼ 1.4 red (short
double dot-dashed) curve. In the top right its represented Pr=P0

r (solid) and P⊥=P0
r (dashed) as a function of z for θ ¼ 0.9, q0 ¼ 0.2,

αr ¼ −0.15, βr ¼ 0, α⊥ ¼ 0, β⊥ ¼ 0, and n ¼ 0.1 blue curve, n ¼ 0.4 orange curve, n ¼ 1.0 green curve, n ¼ 1.4 red curve.
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case [60]. Negative values of αr produce a shift of the
Tolman mass toward the interior regions of the sphere,
while increasing positive values of βr produce the opposite
effect, shifting the active gravitational mass toward the
surface of the compact object. Therefore, it may be inferred
from this figure that more stable configurations correspond
to more positive values of βr since they are associated with
a sharper reduction of the Tolman mass in the inner regions.
In the right panel of the same figure, we show the behavior
of the Tolman mass as a function of z but now by changing
the pair of parameters (nr, q0). In the case of the master
polytrope q0 measures how relativistic the polytrope is (in
fact q0 is related to the Newtonian limit). We observe that as
q0 increases the mass is concentrated in the outer layers of
the sphere effect that could represent the search for stability
(avoiding collapse) as the object becomes more compact.
As we have already seen nr represents the type of polytrope
we are considering (its radial index). By changing nr the
distribution of the active gravitational mass is different for
each master polytrope fluid configuration as usual.
The parameter y, which is an observable related to the

redshift of the object’s surface (“the surface potential”), and
can be used to measure the degree of compactness, is
plotted in Fig. 3 as a function of the anisotropy parameter θ
[60] for different pairs of parameters as shown in the legend
of the figure. From expression (63) we see that, in fact,
we need the values of y to obtain the behavior for the
normalized Tolman mass ηT shown in Fig. 2. All curves
show that the compactness of the object (y) decreases when
the θ parameter grows. We observe that we have consid-
erable changes in the magnitude of the compactness
parameter of the relativistic sphere associated with changes

in the surface potential as the set of parameters associated
with the master polytrope varies and this may be an
advantageous fact of our model since this potential is
related to the redshift at the surface. Specifically, the
potential decreases with the increasing of the radial poly-
trope index nr. In contrast, y increases, when the relativistic
parameter q0 grows as can be seen in the left panel of the
first row in Fig. 3, where the doublet (nr, q0) were
systematically considerate. So, if we stick to a specific
polytropic model (fixed nr) and increase q0 the compact-
ness will increase (as expected) and therefore the potential
y, as we see for the red, purple, and brown curves. In the top
right panel, the results are clearly visible showing the
dependence of y with the specific variations of the radial
parameters (αr, βr). In the second row of Fig. 3, the same is
done, fixing (αr, βr) while changing separately the tangen-
tial parameters (α⊥, β⊥) and in this way achieve a complete
study of the properties (or possible advantages) of the
master double polytrope. Different values for these param-
eters can produce noticeable effects that could be measured
observationally and that can distinguish this model from the
usual double polytrope (blue line) [60].
From the expression (71) we get that θ modulates the

anisotropy of the system, for a specific polytrope configu-
ration, and we plotted this dependency in the left panel of
Fig. 4. As the parameter θ increases (for a specific
polytrope given by the index nr), the anisotropy decreases
for the whole object although, near the center, the variation
is less abrupt. Although this fact, certainly, is subject to the
choice of the parameters (αr, βr; α⊥, β⊥), the behavior of
the curves is qualitatively the same for a wide range of
values of the parameters involved. In the right panel (of the

FIG. 2. Left: ηT=ðηTÞΣ as a function of z for n ¼ 1.5, θ ¼ 0.5, q0 ¼ 0.5, α⊥ ¼ 0, β⊥ ¼ 0 and the pairs ðαr; βrÞ ¼ ð0; 0Þ blue (solid)
curve, ð−0.2; 0Þ orange (dashed) curve, ð−0.1; 0Þ green (dot-dashed) curve, (0,0.1) red (short double dot-dashed) curve, (0,0.2) purple
(dotted) curve and ð−0.1; 0.1Þ brown (large double dot-dashed) curve. Right: ηT=ðηTÞΣ as a function of z for θ ¼ 0.5, αr ¼ −0.1, βr ¼ 0,
α⊥ ¼ 0.1, β⊥ ¼ 0.001 and the pairs ðnr; q0Þ ¼ ð0.5; 0.1Þ blue (solid) curve, (1.5,0.1) orange (dashed) curve, (2.5,0.1) green
(dot-dashed) curve, (1.5,0.6) red (short double dot-dashed) curve, (1.5,0.8) purple (dotted) curve and (1.5,1.0) brown (large double
dot-dashed) curve.
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same figure) we relate the normalized Tolman mass
ηT=ðηTÞΣ with the θ parameter. There is no noticeable
effect of the system to diminish the Tolman mass in the
inner regions and to concentrate it in the outer ones as it
does in the usual double polytrope. Virtually no effect is
observed near the center or near the surface of the object.
Due to the fact that our model is based on a double

polytrope that complies with a generalized master equation
of state, in general, adequate behaviors for the functions
involved are possible, but their reliance on (α⊥, β⊥) is
significantly more sensitive. Indeed, even for small values
of β⊥, there are cases in which we could not find any

solution for the Lane-Emden system of equations. In the
cases where we find a valid solution the behavior of the
metric and thermodynamic functions becomes very similar
to the one presented in Fig. 1. The effect of (α⊥, β⊥) will be
analyzed in more detail in the next section.

VI. ACCEPTABILITY CONDITIONS
OF THE MODEL

In order to explore the effects of the new variables
αr; βr; α⊥; β⊥, we check the set of tuples ðnr; q0Þ and
ðnr; θÞ that satisfy the following conditions:

FIG. 3. Different plots of y vs θ. Top left panel: αr ¼ −0.05; βr ¼ 0; α⊥ ¼ 0.1; β⊥ ¼ 0.001 and the pairs ðnr; q0Þ ¼ ð0.5; 0.1Þ blue
(solid) curve, (1.5,0.1) orange (dashed) curve, (2.5,0.1) green (dot-dashed) curve, (1.5,0.6) red (short double dot-dashed) curve, (1.5,0.8)
purple (dotted) curve and (1.5,1.0) brown (large double dot-dashed) curve. Top right panel: nr ¼ 1.0; q ¼ 0.5; α⊥ ¼ 0.5; β⊥ ¼ 0.001 for
ðαr; βrÞ ¼ ð0; 0Þ blue (solid) curve, ð−0.2; 0Þ orange (dashed) curve, ð−0.1; 0Þ green (dot-dashed) curve, (0,0.1) red (short double dot-
dashed) curve, (0,0.2) purple (dotted) curve and ð−0.1; 0.1Þ brown (large double dot-dashed) curve. Bottom panel: nr ¼ 1.0; q ¼
0.5; αr ¼ −0.1; βr ¼ 0.1 for ðα⊥; β⊥Þ ¼ ð0; 0Þ blue (solid) curve, (0.5,0) orange (dashed) curve, (1.5,0) green (dot-dashed) curve,
(0.5,0.003) red (short double dot-dashed) curve, (1.5,0.004) purple (dotted) curve and (2.0,0.001) brown (large double dot-dashed)
curve.
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FIG. 4. Δ=P0
r (left) and ηT=ðηTÞΣ (right) as a function of z for nr ¼ 0.1 q0 ¼ 1.3, αr ¼ −0.15, βr ¼ 0.08, α⊥ ¼ 0.15, β⊥ ¼ 0 and

θ ¼ 0.2 blue (solid) curve, θ ¼ 0.3 orange (dashed) curve, θ ¼ 0.4 green (dot-dashed) curve, θ ¼ 0.5 red (short double dot-dashed)
curve, θ ¼ 0.6 purple (dotted) curve and θ ¼ 0.7 brown (large double dot-dashed) curve.

FIG. 5. Tuples (nr; q0) that satisfy the conditions 1–6 for α⊥ ¼ β⊥ ¼ 0, θ ¼ 0.9. Each color in this graphic represents a set of
conditions that are satisfied. These are: blue region (A) only condition 1, green region (B) conditions 1–2, red region (C) conditions 1–3,
violet region (D) conditions 1–4, yellow region (E) conditions 1–5 and dark green region (F) conditions 1–6.
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(1) The thermodynamic variables ρ; Pr and P⊥ are
positive and finite at the center of the configuration
with Pr ¼ P⊥.

(2) ρ; Pr and P⊥ are monotonously decreasing func-
tions, having the maximum at the center of the
configuration: ρ0c ¼ P0

rc ¼ P0⊥c ¼ 0.
(3) The strong energy conditions ρþ Pr þ 2P⊥ ≥ 0, for

imperfect fluids [86].
(4) The anisotropy function Δ ¼ P⊥ − Pr is positive.
(5) The anisotropy function Δ is a monotonously

increasing function.
(6) The sounds velocities satisfy the causality condi-

tions 0 < vsr ≤ 1 and 0 < vs⊥ ≤ 1 [81,87].
In Figs. 5–8 we show our results regarding the points listed
above. Figures 5 and 6 represent different values of αr and
βr with α⊥ ¼ β⊥ ¼ 0 while Figs. 7 and 8, represent
different values of α⊥ and β⊥ with αr ¼ βr ¼ 0. From
these figures we can summarize the following points:

(i) We found that negative values of αr slightly increase
the number of matter distributions satisfying all the
conditions 1-6. This is clear from Figs. 5 and 6.
Especially in the top panels.

(ii) We see that positive values of βr lead to a huge
improvement in the number of matter distributions
satisfying all the conditions 1–6. This is clear also
from Figs. 5 and 6.

(iii) Analyzing the Figs. 7 and 8 we observe that
positives values of αr with βr ¼ 0 leads, in general,
to a worse behavior. However, we found an improve-
ment in this when both αr > 0 and βr > 0.

(iv) In general, negative values of βr lead to worse
behaviors for compact object fluid distribution.

(v) Smallest values of q0 lead to better behavior, in
particular for the conditions 5–6.

(vi) In general, the increase of the θ parameter (used to
“control” the anisotropy) up to a certain value helps

FIG. 6. Tuples (nr; θ) that satisfy the conditions 1–6 for α⊥ ¼ β⊥ ¼ 0, q0 ¼ 0.2. Each color in this graphic represents a set of
conditions that are satisfied. These are: blue region (A) only condition 1, green region (B) conditions 1–2, red region (C) conditions 1–3,
violet region (D) conditions 1–4, yellow region (E) conditions 1–5 and dark green region (F) conditions 1–6.
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to fulfill the conditions, having beyond that value the
opposite effect. A certain amount of anisotropy can
contribute to stability and better behavior of stars
and this seems to be crucial in the proper behavior of
relativistic compact objects [81].

(vii) For nr we found that smaller values lead to better
behaviors to satisfy the matter conditions for the
fluid distributions, at least for conditions 1–5.
However, in some cases, there is a peculiar behavior
that leads to the fact that the condition 6 is broken for
small values of nr (see Figs. 5 and 6).

(viii) For αr ¼ 0 and βr ¼ 0 and the values of α⊥; β⊥
considered in this work, we could not find any case
in which conditions 5–6 were satisfied, as seen in
Figs. 7 and 8. This scenario improves when both
αr ≠ 0 and βr ≠ 0, in particular, is accentuated for

the last. However, as can be checked by the reader,
the behavior only change slightly with respect to the
shown in Figs. 7 and 8 so we do not present these
results here.

(ix) Positive values of α⊥ may improve the behavior of
the solutions, but it seems that only affect the
conditions 1–4 and not 5–6.

(x) In general, we obtain that β⊥ ≠ 0 decreases the
number of cases in which conditions 1–6 are
satisfied. For small values of β⊥ the behavior may
improve with the inclusion of positive values of
α⊥; βr and negative values of αr. However, if we
continue increasing β⊥, the negative effects of this
constant will be dominant and this trend does not
improve appreciably with the inclusion of the other
constants.

FIG. 7. Tuples (nr; q0) that satisfy the conditions 1–6 for αr ¼ βr ¼ 0, θ ¼ 0.9. Each color in this graphic represents a set of conditions
that are satisfied. These are: blue region (A) only condition 1, green region (B) conditions 1–2, red region (C) conditions 1–3, violet
region (D) conditions 1–4, yellow region (E) conditions 1–5 and dark green region (F) conditions 1–6.
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VII. CRACKING OF THE MASTER DOUBLE
POLYTROPE

In this section, we will use the perturbation scheme
presented in Sec. III to find an expression for the total radial

force after perturbations of the energy density and local
pressure anisotropy are performed. In order to achieve
such a goal, we introduce Eqs. (45) and (71) in (36)
obtaining

R̂ ¼ q0½ωnrðωþ αrÞ − βr�
�
bðxÞx2
cðxÞ þ dðxÞ

xcðxÞ
�
1þ nr

q0ðωðnr þ 1Þ þ nrαrÞ
��

þ bðxÞfðxÞF̃1

cðxÞ2 þ 1

ð1þ nrÞ
ωnr

�
nr þ 1þ nrαr

ω

�
dω
dx

−
2

ð1þ nrÞxΓ
½aðωnrðωθ þ α⊥Þ − β⊥Þ − ωnrðωþ αrÞ þ βr�; ð74Þ

FIG. 8. Tuples (nr; θ) that satisfy the conditions 1–6 for αr ¼ βr ¼ 0, q0 ¼ 0.2. Each color in this graphic represents a set of conditions
that are satisfied. These are: blue region (A) only condition 1, green region (B) conditions 1–2, red region (C) conditions 1–3, violet
region (D) conditions 1–4, yellow region (E) conditions 1–5 and dark green region (F) conditions 1–6.
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where

F̃1 ¼
Z

x

0

x̄2
�
ω

nr
ðnr þ 1Þ þ αr

�
−1
ðωnrðωþ αrÞ − βrÞdx̄;

bðxÞ≡ ωnr þ q0ðωnr ½ωþ αr� − βrÞ;
cðxÞ≡ x − 2ð1þ nrÞq0η;
dðxÞ≡ ηþ x3q0ðωnr ½ωþ αr� − βrÞ;
fðxÞ≡ 1þ 2ð1þ nrÞq20x2ðωnr ½ωþ αr� − βrÞ

and

R̂≡ R̃
4πρ2cAδϕ

: ð75Þ

In Figs. 9–11, we show R̂ as a function of z for the
different values of the parameters involved, specified in the
legend of the figures.

(i) The left panel of the first row in Figs. 9(a) and 10(a)
corresponds to the case of the usual double poly-
trope [60] and coincides, as it should, with the study
of cracking presented in [76].

(ii) From Figs. 9 and 10 it is clear that αr and βr have a
great impact on the total radial force, and therefore
in the apparition of cracking, after the system is
perturbed. They are relevant parameters associated
with this fact. The results indicate that negative
values for αr in combination with slightly positive
values for βr have some influence in avoiding (see
Fig. 9) or promoting (see Fig. 10) cracking.

(iii) In Figs. 9 and 10 we can see that bigger values of βr
along with the most negative values of αr have the
effect of gradually changing the radial force direction
compared to the case were αr ¼ βr ¼ 0. This is very
clear fromFig. 10(b). Thus, in the casewhere cracking
is present forαr ¼ βr ¼ 0, the change of singwill take
place in the deeper regions of the fluid for bigger
positivevaluesofβr andmore negativevalues ofαr. In
the case of overturning the contrary holds.

(iv) In this sense, we can have cases where there is no
cracking (overturning) when αr ¼ βr ¼ 0 but it may
appear when αr ¼ βr ≠ 0. The opposite is also
possible.

(v) In Fig. 11 we isolate the role played by the tangential
parameters α⊥ and β⊥ related to our master relativ-
istic double polytrope model. It can be observed that
they do not have a big impact on the total radial
force, at least for the values used in the previous
section. We found the same results for different
values of q0, θ, and Γ. These aspects, described in
the last two items, are considered to be interesting
peculiarities that our model presents and deserve
special attention since they could be related to
“stability” facts against cracking that relativistic
fluids present.

(vi) We found that bigger values for the tangential
pressure parameters α⊥ and β⊥ may affect the radial
force. However, from the results of the previous
section, this will lead to ill-behaved matter distri-
butions. Thus small variations of α⊥ have a great
impact on the behavior of the thermodynamics

FIG. 9. (a) R̂ vs z for q0 ¼ 0.2, θ ¼ 1.2, Γ ¼ 0.15, α⊥ ¼ β⊥ ¼ 0 and nr ¼ 0.1 blue (solid) curve, nr ¼ 0.2 orange (dashed) curve,
nr ¼ 0.3 green (dot-dashed) curve, nr ¼ 0.4 red (short double dot-dashed) curve, nr ¼ 0.5 purple (dotted) curve. (b) R̂ vs z for q0 ¼ 0.2,
nr ¼ 0.5, Γ ¼ 0.15, α⊥ ¼ β⊥ ¼ 0 and θ ¼ 0.90 blue (solid) curve, θ ¼ 0.95 orange (dashed) curve, θ ¼ 1.00 green (dot-dashed) curve,
θ ¼ 1.05 red (short double dot-dashed) curve, θ ¼ 1.10 purple (dotted) curve.
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variables but not in the radial force just after the
system departs from hydrostatic equilibrium.

VIII. DISCUSSION

Thisworkmay be interpreted as a natural generalization of
the approach described in [60], in the relativistic regime,

building an anisotropic model where it is assumed that both
pressures satisfy the polytrope master equation, which has
some versatility and could be applied to other types of
scenarios. Modeling compact objects with anisotropic poly-
tropes started in 2013 [78] and generated many exciting
candidates. The fact of using a polytropic equation of state to
describe compact objects has been carried out for several
years producing some interesting candidates. Also, due to the
great relevance that anisotropic internal solutions have
acquired in recent years in the structure of self-gravitating
objects, andby the fact that polytropes represent fluid systems
with a wide range of applications in astrophysics as Fermi
fluids, super-Chandrasekhar white dwarfs, we have described
hereby a general framework for modeling of general relativ-
istic polytropes in the presence of anisotropic pressure, when
both pressures satisfy a master polytropic equation of state.
Furthermore, as a theoretical motivation for our work, we
have the fact that polytropes have been very successful in
describing astrophysical objects such as white dwarfs and
neutron stars (in both, Newtonian and relativistic realms) and
constitute a versatile way of obtaining the Chandrasekhar
limit value (and even the upper limit for the mass of stars
composed of degenerate neutron matter). It is worth empha-
sizing that some of the physical phenomena present in such
configurations (e.g., very strong magnetic fields) could break
the spherical symmetry, implying thereby that our approach
should be taken, in this case, as an approximation.
The reason to adopt such an assumption is provided by

the simple fact that for small anisotropies it is always a
good approximation and also because of the wealth

FIG. 11. R̂ vs z for q0 ¼ 0.2, θ ¼ 1.2, Γ ¼ 0.15, αr ¼ βr ¼ 0
and n ¼ 0.1 blue (solid) curve, nr ¼ 0.2 orange (dashed) curve,
nr ¼ 0.3 green (dot-dashed) curve, nr ¼ 0.4 red (short double
dot-dashed) curve, nr ¼ 0.5 purple (dotted) curve.

FIG. 10. (a) R̂ vs z for nr ¼ 0.5, θ ¼ 1.2, Γ ¼ 0.15, α⊥ ¼ β⊥ ¼ 0 and q0 ¼ 0.2 blue (solid) curve, q0 ¼ 0.4 orange (dashed) curve,
q0 ¼ 0.6 green (dot-dashed) curve, q0 ¼ 0.8 red (short double dot-dashed) curve, q0 ¼ 1.0 purple (dotted) curve. (b) R̂ vs z for
q0 ¼ 0.2, nr ¼ 0.2, θ ¼ 1.2, α⊥ ¼ β⊥ ¼ 0 and Γ ¼ −0.3 blue (solid) curve, Γ ¼ −0.2 orange (dashed) curve, Γ ¼ −0.1 green (dot-
dashed) curve, Γ ¼ 0.1 red (short double dot-dashed) curve, Γ ¼ 0.2 purple (dotted) curve and Γ ¼ 0.3 brown (large double dot-dashed)
curve.
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provided by using both equations of state of a master
polytrope for each pressure. This type of equation of state
(the master polytrope) has been very versatile to include
several particular cases found in the literature (see for
example the Refs. [62,63]). The variation of the variables
involved generates a parameter space representing a wide
range of possible astrophysical candidates [75]. Our case
associated with a double master polytrope presents a
greater number of parameters (nr, q0, θ, αr, βr, α⊥, β⊥,
etc.) with interesting behaviors when studying possible
realistic configurations. Note that, although the double
master polytrope is not an equation of state that comes from
some known thermodynamic process, there are a couple of
reasons to consider this equation of states that motivate
their use in this work. First, note that the master equation of
state was used in Ref. [62] with the aim to avoid some
pathologies that, exist in all polytropic non-Pascalian
fluids. Namely, it is known that those models having α ¼
β ¼ 0 with 1 < γ < 2 present a singularity in the tangential
sound velocity at the boundary of the matter distribution.
Second, by considering the double polytropic equation we
ensure that the system is closed enough in the sense that
as both the tangential and the radial pressure fulfill an
equation of state, we do not need to provide any extra (and
sometimes arbitrary) information.
Also, we have investigated the conditions under which

general relativistic double master polytropes exhibit crack-
ing (and/or overturning), when submitted to fluctuations of
energy density and anisotropy. To achieve this, we used the
general and systematic method proposed in [76] to study
the departure from equilibrium for any internal, anisotropic,
and spherically symmetric solution of Einstein field equa-
tions. Thus, we have shown that cracking occurs for a wide
range of the parameters and the main conclusions are
basically the determining role played by αr and βr to create
or avoid cracking, and the very small impact of the role of
the same variables associated with the tangential pressure
P⊥. As previously stated in the preceding sections, the

impact of the new parameters on the occurrence or
avoidance of cracking will play a role in the structure
and evolution of the systems presented here on a timescale
smaller than the hydrostatic timescale. In order to obtain
more information about the system over a longer timescale,
it will be necessary to integrate the full dynamical field
equations, which is outside the scope of our analysis.
Although the purpose of this work is not to model any

particular astrophysical object,wewould like to call attention
to the potential application or connection of the approach
presented here to interpret and explain some aspects con-
cerning super-Chandrasekhar white dwarfs. These stars may
attain masses of the order of 2.8M⊙ and are modeled
resorting to a polytropic equation of state (see Ref. [88]
and references therein).Now, given that ourmodel has a great
variety of free parameters, we are tempted to think that our
results could possibly fit the observational data of these
unusual configurations. We must stress that it is not yet fully
understood why these distributions violate the upper bound
mass for the white dwarfs. Different theories have been
proposed to explain this phenomenon, however, these
massive stars possess very little luminosity, and hence cannot
be detected directly by any observations. For each of them,
it is evident that general relativistic effects as well as
the inclusion of pressure anisotropy, are unavoidable.
Nevertheless, care must be exercised with the fact that some
of the physical phenomena present in such configurations
(e.g., the presence ofmagnetic field and rotation) could break
the spherical symmetry, implying thereby that our approach
should be taken as an approximation.
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