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A topological approach has been successfully used to study the properties of the light ring and the null
circular orbit in a generic black hole background. However, for the equatorial timelike circular orbit, quite
different from the light ring case, its radius is closely dependent of the energy and angularmomentumof a test
particle. This fact seems to restrict the extension of the topological treatment to the timelike circular orbit. In
this paper, we confirm that the angular momentum does not affect the asymptotic behavior of the constructed
vector with its zero points denoting the equatorial timelike circular orbits. As a result, a well-behaved
topology to characterize the equatorial timelike circular orbits can be constructed. Our study shows that the
total topological number of the timelike circular orbits vanishes for a generic black hole, which is dependent
of the energy of the particle. Significantly, it reveals that if the timelike circular orbits exist, they always come
in pairs for fixed angularmomentum.Meanwhile, the stable andunstable timelike circular orbits havepositive
or negative winding number. Of particular interest is that the marginally stable circular orbit corresponds to
the bifurcation point of the zero point of the constructed vector.Moreover, we also examine the casewhen the
particle energy acts as the control parameter. It is shown that there will be topological phase transition when
the value of the particle energy is one. Below this value, the timelike circular orbits always come in pairs for
fixed energy. Otherwise, we will have one more unstable timelike circular orbit. Such a topological phase
transition actually measures whether there are bounded orbits. We further apply the treatment to the Kerr
black hole. All the results given in a generic black hole background are exactly reproduced. These strongly
indicate that our topological approach can be generalized to the equatorial timelike circular orbits.
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I. INTRODUCTION

Topology provides a powerful tool to understand the light
rings (LRs) around compact objects and black holes. It was
shown that LRs can be well-explored by calculating the
topological charge while ignoring where the LRs are located
[1,2]. Due to the fact that the LRs are closely related to the
ringdown stage of a black holemerger and formation of black
hole shadow, further study of the topology approach may
peek into the modern observations of the LIGO/Virgo
Collaboration [3] and EHT Collaboration [4,5].
In 2017, Cunha, Berti, and Herdeiro [1] constructed a

special vector by using the null geodesics and found that the
LRs are exactly at the zero points of the vector. Then in the
vector space, thewinding number of a zero point can provide
us with some interesting topological results. Meanwhile,

summing the winding numbers of all the zero points, one
can obtain the topological charge for the LRs. Via such a
topological approach, they originally proposed that under
a stationary and axisymmetric equilibrium ultracompact
object, the topological charge of the LRs always vanishes.
This indicates that if the LRs exist, they must come in pairs
for such ultracompact objects. Moreover, if one of the LRs is
stable, the other one must be unstable [6,7].
Shortly afterwards, the study was generalized to the black

hole backgrounds [2]. The result suggests that for a sta-
tionary, axisymmetric, asymptotically flat black hole space-
time in four dimensions, it possesses at least one standard LR
outside the horizon for each rotation sense. Other related
issues including the stability of angular motion were dis-
cussed in Refs. [8–10]. In particular, it was found that there
exists a topological phase transition for the dilatonic Melvin
spacetime and Schwarzschilld-dilatonic-Melvin black hole
at a certain value of the dilatonic parameter [11].
Combining this with Duan’s topological current

ϕ-mapping theory [12], we also applied the study to the
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nonrotating black hole case [13]. The inner structure of
the topological charge, as well as the bifurcation phenom-
ena was investigated. For the Dyonic black hole solution
[14], the previous study showed that there exist several
photon spheres (PSs), which are the counterpart of LRs in
spherically-symmetric spacetime. This provides us with a
good opportunity to test the nontrivial topological argu-
ment. After calculating the topological charge, we found
that its value is always −1 independent of other parameters.
This implies that the standard PSs are always one more than
the exotic ones. So the topological approach holds even
when multi-PSs are presented. The black hole spin will also
not affect the value of the topological charge.
Inspiring by the study, we proposed a topological

approach for the black hole thermodynamics [15].
Starting with the first law of black hole thermodynamics,
we constructed a vector. The critical point of the phase
transition was found to exactly locate at the zero point of
the vector. By making use of the Duan’s topological current
ϕ-mapping theory, we endowed each critical point with a
winding number. Summing the winding numbers for all the
critical points, we shall obtain the topological charge,
which remains unchanged for the system. Unexpectedly,
we found that besides the conventional critical point of
negative winding number, there is another novel critical
point with positive winding number. Combining with the
black hole thermodynamics, we pointed out that only the
conventional critical point acts as an indicator of the first
order black hole phase transition. Such a topological study
was also extended to the Gauss-Bonnet black hole [16],
where three critical points appear. Nevertheless, the total
topological charge remains unchanged with the black hole
electric charge.
Considering that the black hole solutions with the critical

points are very limited, we introduced another topological
approach by the free energy of the black hole system [17].
Each actual black hole solution corresponds to the zero
point of a constructed vector. Thus, it will be endowed with
a winding number in the vector space. Taking the inverse
Hawking temperature as the control parameter, the total
topological number is universal and independent of the
black hole temperature and other parameters. By taking
advantage of such topological properties, different black
hole systems are divided into different topological classes.
For example, the Schwarzschild, Reissner-Nordström,
and Reissner-Nordström-anti–de Sitter (AdS) black holes,
respectively, have topological number −1, 0, 1, which
indicates they belong in different topological classes. All
these results indicate that the topological approach is a
promising way to study the LRs and thermodynamic
properties of the black hole systems.
Comparing with the photons, the massive particles can

also go around the black hole along the timelike circular
orbits (TCOs). In certain astronomical processes, such
orbits serve as the endpoints of dynamical evolution due

to the dissipative effects [18,19]. In particular, there is the
innermost stable circular orbit (ISCO), below which the
massive particles shall quickly plunge into the black hole.
Therefore, the stable accretion disk can only be formed
above this bound, and provide a light source to illuminate
the black hole, which may cast potential features of the
black hole shadow in the observation of EHT [4,5]. For a
particle falls towards the black hole at a large radius, it will
pass through a series of TCOs by losing angular momen-
tum, and converting its energy into radiation, and finally
reaches the ISCO before it plunges into the black hole. In
the extremal Kerr black hole background, a particle could
convert its 42% energy, or achieve a higher efficiency in
compact bosonic objects [20]. Via this process, which leads
to the possible fact that black holes could be the powerful
luminosity sources to trigger energetic astronomical phe-
nomena in strong gravity regime.
On the other hand, very recently, the general properties

of the TCOs have been explored in Refs. [20,21]. It was
found that the stable and unstable LRs delimit the region
of stable and unstable TCOs. However, the topological
approach for the TCOs remains to be established despite
the great success gained for the LRs. In the backgrounds
of compact objects or black holes, the locations of LRs are
only dependent of the parameters of the compact objects
or black holes, while independent of the energy and
angular momentum of the photon. This states that the
LRs are intrinsic properties of the spacetime. However,
not all the photons can surround the black hole along these
LRs. Considering that these photons come from far away
from the black hole, some of them will fall into and some
of them will fly past it. Only those with appropriate energy
and angular momentum will surround the black hole along
the LRs. Moreover, if the background is fixed, the relation
of the energy and angular momentum of the photon is
linear.
Now we wonder whether a massive test particle with

certain energy and angular momentum can feel the TCOs.
Similar to the photon, there must be some conditions. As is
well-known, the radius of the TCO depends both on the
black hole parameters and the massive particles themselves.
For a given TCO, the relation of the energy and angular
momentum of these particles orbiting along the black hole
is not linear anymore. Due to these facts, it seems that we
cannot construct a well-behaved topological approach for
the TCOs as expected, or it is impossible to obtain the
corresponding topological information of the TCOs.
However, it is worthwhile pointing out that the greatest

advantage of the topological approach is that it ignores the
specific details, such as the relation of the energy and
angular momentum, as well as the locations of the TCOs.
Keeping this in mind, in order to establish a well-behaved
topological approach, we just require that, in certain
parameter regions, the asymptotic behavior of the con-
structed vector does not change. Motivated by this idea, we
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manage to construct a topological approach for the TCOs
for the first time. We shall show that when taking the
angular momentum as the control parameter, the energy of
themassive particle does not change the asymptotic behavior
of the considered vector, indicating awell-behaved topology.
In such approach, the marginally stable circular orbit
(MSCO) acts as a bifurcation point of the zero points of
the vector. More importantly, we find that the TCOs with the
same angular momentum (or energy less than one) always
come in pairs for the Kerr-like black holes.
The present paper is organized as follows. InSec. IIwe start

with the geodesics and construct a vector with its zero points
corresponding to the TCOs. The asymptotic behavior of the
vector is examined when we take the angular momentum as
thecontrol parameter,whichmeans that theTCOsevolvewith
the angular momentum. In Sec. III, we calculate the global
and local topological charges for the TCOs. Meanwhile, the
topological property of the MSCO is also discussed.We then
apply this approach to the Kerr black hole in Sec. IV as an
example. Adopting energy as the control parameter, we
investigate the corresponding topology in Sec. V. Finally,
we summarize and discuss our results in Sec. VI.

II. CIRCULAR GEODESICS AND EFFECTIVE
POTENTIAL

We consider a four-dimensional stationary, axisymmet-
ric, asymptotically-flat black hole spacetime possessing
two Killing vectors, ξμ ¼ ð∂tÞμ and ψμ ¼ ð∂φÞμ. Moreover,
we assume the metric is circular, i.e., ξμR½ν

μ ξρψσ� ¼
ψμR½ν

μ ξρψσ� ¼ 0, and has a north-south Z2 symmetry. As
a result, the circular orbit motion can only be on the
equatorial plane. Then under these conditions, the most
generic metric reads

ds2 ¼ gttðr; θÞdt2 þ grrðr; θÞdr2 þ gθθðr; θÞdθ2
þ gφφdφ2 þ 2gtφdtdφ; ð1Þ

assuming a signature ð−;þ;þ;þÞ. In addition to the Kerr
black hole, most known black holes can also be described by
this metric. For a black hole, we suppose that its horizon
is located at a constant (positive) radial coordinate r ¼ rh.
So in the exterior region of the black hole, one should have
rh < r < ∞. We also have grr > 0, gθθ > 0, and gφφ > 0
outside the horizon. The angular coordinates θ ∈ ½0; π� and
φ ∈ ½0; 2π�. According to the Z2 symmetry, the equatorial
plane is at θ ¼ π=2. Althoughweonly concern the equatorial
TCOs, here we still expect to leave θ as a free variable.
Considering the condition detð−gÞ > 0, one easily obtains

Bðr; θÞ≡ g2tφ − gttgφφ > 0: ð2Þ

At the horizon, we have Bðrh; θÞ ¼ 0. Under the metric (1),
the motion of a test particle can be described by the
Lagrangian

L ¼ 1

2
gμν _xμ _xν ¼ −

1

2
μ2; ð3Þ

where the dots denote the derivative with respect to an affine
parameter, and μ2 ¼ 1, 0, −1 are for the timelike, null, and
spacelike geodesics, respectively. The conjugate momenta
can be calculated as

πμ ¼
∂L
∂_xμ

¼ gμν _xν: ð4Þ

Therefore, the Hamiltonian for the test particle reads

H ¼ πμ _xμ − L

¼ 1

2

�
gtt_t2 þ grr _r2 þ gθθ _θ

2 þ gφφ _φ2 þ 2gtφ_t _φ

�

¼ −
1

2
μ2: ð5Þ

Rearranging it, we get

grr _r2 þ gθθ _θ
2 þ gtt_t2 þ 2gtφ_t _φþgφφ _φ2 þ μ2 ¼ 0: ð6Þ

Following the treatment for the null geodesics [22,23], we
denote the kinetic term K and potential term V as

K ¼ grr _r2 þ gθθ _θ
2; ð7Þ

V ¼ gtt_t2 þ 2gtφ_t _φþgφφ _φ2 þ μ2: ð8Þ

Therefore, the motion of the test particle (6) turns to

Kþ V ¼ 0: ð9Þ

Note that the kinetic term K ≥ 0, and the inequality is only
saturated at _r ¼ _θ ¼ 0. Then the motion of the particle is
completely governed by the effective potential V. On the
other hand, these twoKillingvectors, ξμ andψμ, are related to
two constants, the energy and orbital angular momentum of
the test particle, along each geodesic

−E ¼ gμνuμξν ¼ gtt_tþ gtφ _φ; ð10Þ

l ¼ gμνuμψν ¼ gtφ_tþ gφφ _φ; ð11Þ

whereuμ denotes the tangent vector of the geodesics. Solving
the above two equations, one can obtain

_t ¼ 1

B
ðEgφφ þ lgtφÞ; ð12Þ

_φ ¼ −
1

B
ðEgtφ þ lgttÞ: ð13Þ

Plugging them into the potential (8), one has
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V ¼ −
1

B
ðE2gφφ þ 2Elgtφ þ l2gttÞ þ μ2: ð14Þ

When μ2 ¼ 0, this exactly reduces to the potential of a
photon [22,23]. Similarly, we can re-express this potential as

V ¼ −
l2gφφ
B

�
E
l
−Hþ

��
E
l
−H−

�
þ μ2; ð15Þ

whereH� are only dependent of the black holemetric and are
given by

H� ¼ −gtφ �
ffiffiffiffi
B

p

gφφ
: ð16Þ

For a photon with μ2 ¼ 0, it is quite clear that the LR related
with V ¼ ∂rV ¼ 0 satisfies [22,23]

E
l
¼ H�; ð17Þ

∂H�
∂r

¼ 0: ð18Þ

This is an amazing result that the radius rLR of the LR (or the
photon sphere for the static spherically black hole) of the
black hole can be solved by Eq. (18) and is independent
the properties of the photon, indicating that it is an intrinsic
structure of the black hole just like the horizon. Then
plugging it into (17), one shall get E=l ¼ H�ðrLRÞ for these
photons orbiting along the LR. In Ref. [2], by defining a new
vector v ¼ ðð∂rH�Þ= ffiffiffiffiffiffi

grr
p

; ð∂θH�Þ= ffiffiffiffiffiffi
gθθ

p Þ, one finds the
location of the LR is exactly at the zero point of v from
(18). As a result, by calculating the winding number in the
vector space, we can obtain some properties of the LR. In
particular, considering all the regions of (r, θ), the global
property of the LR in a black hole background will be
obtainedby examining the asymptotic behaviors ofv near the
boundary. This treatmentmainly takes advantage of the result
that H� are independent of the energy and angular momen-
tum of the photon. However, due to the presence of the extra
term μ2 in (15), the case becomes unclear.
In order to establish the topology for the TCO, we

reexpress the effective potential (14) in the following form

V ¼ −
gφφ
B

ðE − e1ÞðE − e2Þ; ð19Þ

where

e1 ¼
−lgtφ þ

ffiffiffiffi
B

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ μ2gφφ

q
gφφ

; ð20Þ

e2 ¼
−lgtφ −

ffiffiffiffi
B

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ μ2gφφ

q
gφφ

: ð21Þ

Obviously, V ¼ 0 leads to the energy of the test particle
E ¼ e1;2. Considering the condition (2) and gφφ > 0, it is
easy to obtain e2 < gtφðjlj − lÞ=gφφ. For l ≥ 0, it is easy to
obtain e2 < 0, and for l < 0, e2 < −2lgtφ=gφφ < 0 due to
negative gtφ. Therefore, it is notable that for any value of
l, e2 takes a negative value. As a result, we abandon it.
Then, the conditions V ¼ ∂rV ¼ 0 for determining the
TCO become

E ¼ e1; ð22Þ

∂re1 ¼ 0: ð23Þ
Quite different from the LR, ∂re1 here not only depends on
r, but also on the angular momentum l of the test particle,
so it seems that we cannot construct the topology for the
TCO as expected.
However, we would like to propose a new viewpoint

while is still similar to that for the photon. For each given
angular momentum l, we can obtain the radius of the TCO
by solving (23). Whether the equation has solution or not,
the angular momentum l of the test particle does not affect
our treatment. After obtaining the radius of the TCO, we
can substitute it into (22), and then the energy of the test
particle will be obtained.
In order to give a global topology, we only require that

the values of the angular momentum do not change the
asymptotic behavior of ∂re1 at the boundary of the (r, θ)
plane. Aiming at it, we define a new vector ϕ ¼ ðϕr;ϕθÞ by
analog to Ref. [2] for the photon,

ϕr ¼ ∂re1ffiffiffiffiffiffi
grr

p ; ϕθ ¼ ∂θe1ffiffiffiffiffiffi
gθθ

p ; ð24Þ

in a flat vector space. In order to be consistent with the
notations of Ref. [12], we write these indices with up ones.
Obviously, ϕ ¼ 0 corresponds to the TCO and θ ¼ π=2 as
expected.Next, we turn to the asymptotic behavior ofϕ at the
boundary of the (r, θ) plane; this shall further confirm that the
construction of the topology for the TCO is meaningful.
For our case, we should examine four asymptotic

behaviors of ϕ near the horizon r → rh, infinity r → ∞,
and θ → 0, π.

A. Axis limits

Here we shall consider the axis limits of the vector ϕ. In
order to clearly show them, we here follow Ref. [2] and
give a detailed calculation. Defining a local coordinate
ρ ¼ ffiffiffiffiffiffiffigφφ

p , one can find when θ → 0 or π, dρ=dθ is positive
or negative. Since the metric functions are independent of
the particles, one has the same result as that of Ref. [24] by
expanding the metric function at small ρ

gtt ∼ g0tt þOðρÞ; gρρ ∼ g0ρρ þOðρÞ; ð25Þ
gφφ ¼ ρ2; gtφ ∼ b0ρn þOðρnþ1Þ; ð26Þ
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where g0tt, g0ρρ, b0 are constants, and n ∈ N. Assuming C2

smoothness and regularity close to the axis, one shall have
n ≥ 2 [24]. Plugging them into Eq. (20), we obtain

e1 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0ttl2ρ2 þ

ffiffiffiffiffiffiffiffi
−g0tt

p
μ2ρ3

q
ρ2

: ð27Þ

At zero order in ρ, one has gρρdρ2 ∼ gθθdθ2, and thus

ϕθ ∼ sign

�
dρ
dθ

�
∂ρe1 ∼ −sign

�
dρ
dθ

� jlj
ffiffiffiffiffiffiffiffi
−g0tt

p
ρ2

;

ϕθ ∼ sign

�
dρ
dθ

�
∂ρe1 ∼ −sign

�
dρ
dθ

� ð−g0ttÞ14μ2
2ρ

3
2

; ð28Þ

for nonvanishing and vanishing l, respectively. Therefore, it
is clear that ϕθ diverges at ρ → 0 and the angular momen-
tum do not affect the behavior of ϕθ at small ρ. Further
combining with ϕr ∼ ρ−1, we have ϕθ ≫ ϕr. This indicates
that the direction of the vector is vertical near θ ¼ 0 and π.
Moreover, considering the fact that dρ=dθ is positive and
negative as θ → 0 and π, we find the vector is outward at
θ ¼ 0 and π.

B. Horizon limit

Here we would like to consider the behavior of the vector
ϕ when r → rh. As discussed in Ref. [25], we can set a
local radial coordinate x such that gxx ¼ 1, and x ¼ 0 at the
black hole horizon. Near the horizon, one can obtain these
metric functions [25]

ω ≃ ωH þOðx2Þ; gφφ ≃ gHφφ þOðx2Þ; ð29Þ

gtφ ≃ −ωHgHφφ; B ≃ gHφφκ2x2; gtt ≃ ω2
Hg

H
φφ; ð30Þ

where ω ¼ −gtφ=gφφ and κ denotes the surface gravity of
the black hole. gHφφ and ωH are zero-order terms of the
expansions in x. Then

∂xe1 ≃ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

gHφφ
þ μ2

s
þOðxÞ: ð31Þ

By using ð1= ffiffiffiffiffiffi
gxx

p Þð∂=∂xÞ ¼ ð1= ffiffiffiffiffiffi
grr

p Þð∂=∂rÞ, one shall
obtain

ϕr ¼ ∂re1ffiffiffiffiffiffi
grr

p ≃ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

gHφφ
þ μ2

s
: ð32Þ

For a nonextremal black hole with κ > 0, we see that ϕr

takes a positive value. In order to determine the direction of
the vector ϕ at the horizon, one needs to calculate ϕθ.
However, no matter whether ϕθ is positive or negative, we

can claim that the direction of the vector ϕ must be to the
right, with at most an inclination.

C. Asymptotic limit

Here let us consider the asymptotic behavior of the
vector at infinity. Here we require the spacetime tends to a
flat one in standard spherical coordinates, namely

gtφ ≃−O
�
1

r

�
; gφφ ≃ r2sin2θþOð1Þ;

gtt ≃−1þ 2M
r

þO
�
1

r2

�
; grr ≃ 1þ 2M

r
þþO

�
1

r2

�
:

ð33Þ

ParameterM is a positive constant and can be treated as the
black hole mass in the asymptotically flat spacetime.
Therefore, we have

ϕr ≃
M

ffiffiffiffiffi
μ2

p
r2

þO
�
1

r3

�
; ð34Þ

on the equatorial plane by taking θ ¼ π=2, which is small
but a positive value. As a result, by ignoring the specific
value of ϕθ, the direction of the vector ϕ is to the right
similar to that in the horizon limit.
In summary, we see that the angular momentum l of the

test massive particle do not affect the behavior of the vector
ϕ at the boundary of the (r, θ) plane in our above approach.
This result strongly implies that we can construct the
topology for the TCOs of the massive particle in a black
hole background.

III. GLOBAL AND LOCAL TOPOLOGIES

Based on the asymptotic behavior of ϕ at the boundary
of the (r, θ) plane, we here investigate the global and local
topological properties for the TCOs. Moreover, we also
examine the topology for the MSCO and ISCO.

A. Global property

As we have shown that the TCOs locate exactly at the
zero points of the vector ϕ. Hence, we can calculate the
topological number W defined as [12]

W ¼
Z
Σ
j0d2x ð35Þ

for a giving region Σ in the (r, θ) plane for the TCOs. Here
j0 is the zeroth component of the topological current

jμ ¼ 1

2π
ϵμνρϵab

∂na

∂xν
∂nb

xρ
; ð36Þ
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where xμ ¼ ðt; r; θÞ, and the unit vector na ¼ ðnr; nθÞ ¼
ðϕr=jϕj;ϕθ=jϕjÞ. Here, x0 ¼ t denotes the time control
parameter. One can study the evolution of the zero points
with that parameter as expected. On the other hand, other
parameters of the black hole or particle can also be chosen
as the control parameter. For a good definition, we require
that the zero points cannot reach the boundary of the (r, θ)
plane at finite value of the control parameter. In the
following study, we mainly treat the angular momentum
l of the particle as a control parameter. The brief discussion
on choosing energy will also be given.
After some calculations, one arrives at [12]

W ¼
XN
n¼1

wn; ð37Þ

which is the sum of the winding number w for all the zero
points on the region Σ. On the other hand, we can also
obtain the topological charge for a region Σ by counting the
number of the loops that the vector makes in the vector ϕ
space when xμ moves along the closed curve ∂Σ in a
counterclockwise direction,

W ¼ 1

2π

I
C
dΩ ¼ 1

2π

I
C
ϵabnadnb; ð38Þ

where Ω denotes the change of the direction of the vector.
Considering that the curve C ¼ ∂Σ encloses the entire

parameter region, one will obtain the global property of the
topology. Here we can divide the closed curve into two
parts L1 and L2 such that C ¼ L1 ∪ L2. As shown in Fig. 1,
we can see that the direction of the vector are outward at
θ ¼ 0 and π, and is to the right at r ¼ rh and∞ by ignoring
the possible inclination. According to the asymptotic
behaviors of ϕ, we easily get

W ¼ 1

2π

Z
L1

dΩþ 1

2π

Z
L2

dΩ

¼ 1

2π
× ð−πÞ þ 1

2π
× ðπÞ ¼ 0: ð39Þ

This states that the total topological number vanishes for
the TCOs. Significantly, it is universal result and is
independent of the angular momentum of the massive test
particle, as well as the black hole spin. This is an amazing
result, and based on which, we can conclude that the TCOs
with the fixed angular momentum always come in pairs for
the four-dimensional stationary, axisymmetric, asymptoti-
cally flat black hole. This property is quite different from
that of the LR, whose topological number is −1 indicating
that at least one LR exists.
As shown above, the total topological number for the

TCOs vanishes where the direction of the vector ϕ is
outwards at θ ¼ 0 and π. However, even under the Z2

symmetry, one may wonder whether the topological num-
ber still vanishes if the direction of the vector ϕ is inwards
at θ ¼ 0 and π, see Fig. 2(a). After considering the change
of the direction of the vector ϕ, we still obtain W ¼ 0. On
the other hand, it is valuable to examine the total topo-
logical number if we abandon the Z2 symmetry. We further
exhibit these two possible cases in Figs. 2(b) and 2(c), where
the Z2 symmetry is broken as expected. Surprisingly, we
still have

W ¼ 0; ð40Þ

for both the cases without Z2 symmetry.
In short, we find that the result W ¼ 0 always holds for

the case with or without Z2 symmetry.

B. Local property and stability

As shown above, we confirm that the global topological
number of the TCOs is zero. So they either disappear or
appear in pairs. However, quite different from the LR which
is the intrinsic structure of the spacetime, TCOs are closely
dependent of the test particle. For some certain values of
the energy and angular momentum, the TCOs may be
present, while for other values, they may be absent. In this
subsection we focus on the local topological charge and the
stability for the TCOs.
For each TCO at a given radius rt, the energy and angular

momentum are not independent of each other, and they
must satisfy the conditions (22) and (23). From (23), one
can solve the angular momentum as [20]

l� ¼ gtφ þ gφφΩ�ffiffiffiffiffiffi
β�

p
����
rt

; ð41Þ

where

Ω� ¼ −g0tφ �
ffiffiffiffi
C

p

g0φφ
; ð42Þ

β� ¼ −gtt − 2gtφΩ� − gφφΩ2
�; ð43Þ

C ¼ ðg0tφÞ2 − g0ttg0φφ; ð44Þ

FIG. 1. Representation of the contour C ¼ ∂Σ ¼ L1 ∪ L2

(which encloses all the parameter region Σ) on the (r, θ) plane.
L1 and L2 are the left and right parts of the contour marked in
blue and red colors, respectively. Black arrows indicate the
approximate directions of the vector ϕ in the boundaries.
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with the prime denoting the derivative with respect to the
radial coordinate. Plugging the angular momentum l into
(22), one obtains the energy

E� ¼ −
gtt þ gtφΩ�ffiffiffiffiffiffi

β�
p

����
rt

: ð45Þ

By making use of (19), we have

∂
2V
∂r2

¼ ðe1 − e2Þgφφ ffiffiffiffiffiffi
grr

p
B

∂ϕr

∂r
; ð46Þ

for the TCOs. Since e2 < 0, the coefficient is positive.
Therefore, it is easy to know

∂
2V
∂r2

����
rt

> 0ð< 0Þ ⇒ ∂ϕr

∂r

����
rt

> 0ð< 0Þ: ð47Þ

Note that the stable and unstable TCOs correspond to
positive and negative ∂

2V=∂r2, respectively. Via (47), we
can also examine the radial stability of the TCOs by using
ϕr. In Fig. 3 we show an example that there are two TCOs
located at r1 and r2 (suppose r1 < r2), respectively. Via the
asymptotic behaviors of ϕr at horizon and infinity, we
know ϕr is positive in the regions ðrh; r1Þ ∪ ðr2;þ∞Þ, and
negative in ðr1; r2Þ. So near r ¼ r1, ∂ϕr=∂r is negative,
while near r ¼ r2, ∂ϕr=∂r is positive. This indicates that the
TCO is unstable at r1, while stable at r2.
Here, we would like to briefly discuss the local stability

in the angular direction. Here we only consider the

equatorial TCOs with θ ¼ π=2. As we have shown in
Sec. II, the presence of l does not change the axis limit of
the vector at θ ¼ 0 and π. Moreover, we can obtain the
result that the local stability in the vertical direction of the
TCOs is the same as that of the LRs. Then according to
Refs. [2,8], it is easy to find that the TCOs are stable in the
vertical direction.
After addressing the stability of the TCOs, we expect to

examine the value of the winding number for these two
TCOs. Considering that the component ϕr of vector ϕ or nr

of the unit vector n changes its sign at r1 and r2, we also
mark the direction of the vector in Fig. 3. Counting the
change of the direction of the vector, one can easily get the
winding number w ¼ −1 and 1 for the zero points located
at r1 and r2, respectively. So we can conclude that the
unstable and stable TCOs correspond to negative and
positive winding numbers. Nevertheless, the sum of the
winding numbers vanishes.

(a) (b)

(c)

FIG. 2. Different patterns for the direction of the vector ϕ at θ ¼ 0 and π.

rh
r

0

r1 r2

FIG. 3. Representation of the direction of the vector ϕ along the
contours enclosing two zero points at r1 and r2.
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C. MSCO and bifurcation point

We have shown above that positive or negative winding
numbers correspond to stable or unstable TCO with
∂
2V=∂r2 > 0 or < 0. Between these two cases, there is a
critical case with ∂

2V=∂r2 ¼ 0, which exactly corresponds
to the MSCO or ISCO for the Kerr-like black holes.
As noted in Refs. [20,26,27], MSCO and ISCO are two

different concepts for (hairy) black hole or generic ultra-
compact objects. The MSCO denotes the stable TCO with
the smallest radius, which can be continuously connected to
spatial infinity by a set of stable TCOs. While ISCO
denotes the stable TCO with the smallest radius among all
the TCOs, which can be determined by C ¼ 0 (44). For the
Schwarzschild and Kerr black holes, the MSCO meets the
ISCO; however, for other rotating black holes, such as
the boson stars, Proca stars, and the hairy black holes, they
are different. In order to avoid confusing, we here adopt the
treatment of Ref. [20].
In general, the MSCO is determined by

V ¼ 0;
∂V
∂r

¼ 0;
∂
2V
∂r2

¼ 0: ð48Þ

The first condition is naturally satisfied with E ¼ e1, which
is dependent of the angular momentum l and radius rt of the
TCOs. Meanwhile, the radius rt can be obtained by solving
the second equation. As expected, we denote its solution as
r ¼ rtðlÞ. For different values of l, the TCOs have different
orbit radii, so we can treat the angular momentum as a
control parameter. After a simple calculation, the third
condition ∂

2V=∂r2 ¼ 0 or ∂ϕr=∂r ¼ 0 turns to

dl
drt

����
ðl�;r�t Þ

¼ 0: ð49Þ

According to Duan’s topological current theory, the point
ðl�; r�t Þ related by the MSCO is a bifurcation point. Near the
point, we can expand the angular momentum as

l − l� ¼ 1

2

d2l
dr2t

����
ðl�;r�t Þ

ðrt − r�t Þ2 þOðrt − r�t Þ3: ð50Þ

Via this equation, one can obtain two branch solutions in
the rt − l plane. When d2l

dr2t
jðl�;r�t Þ > 0, these two branch

solutions are present for l > l�, and otherwise, they are
present for l < l�. According to this property, the bifurca-
tion point can be, respectively, divided into the generated
and annihilated points [28].
Here, let us focus on the topological number of the

MSCO. To clearly show it, we take the BP2 branch
described by the blue curve in Fig. 7(a) as an example.
For the large angular momentum, there are two TCOs,
while no TCO for small one. This implies that BP2 is a
generated point. As we have shown above, for the fixed
angular momentum, the TCOs with large and small radius

are stable and unstable, and which have positive winding
number w ¼ 1 and −1, respectively. Therefore, the upper
branch has positive winding number, while the lower
branch has negative winding number. Obviously, we can
see that the branches with positive slope and negative slope,
or equivalently with ∂

2V
∂r2 > 0 and < 0 have w ¼ 1 and −1,

respectively. Starting with a large angular momentum, the
upper and lower branches have ∂

2V
∂r2 > 0 and < 0. This

property holds with the decrease of the angular momentum.
However, when the point BP2 is reached, such pattern
changes. These two branches merge and only one MSCO
with ∂

2V
∂r2 ¼ 0 leaves. So one can regard the MSCO as one

degenerated TCO. For any angular momentum slightly
larger than that of BP2, the MSCO will be split into two
TCOs, one of which have w ¼ 1, while other one has
w ¼ −1. Considering that ∂

2V
∂r2 > 0 and < 0, respectively,

correspond to w ¼ þ1 and −1. The MSCO with ∂
2V
∂r2 ¼ 0

will not take w ¼ þ1 or −1. Therefore, The MSCO must
have w ¼ 0. This result is exactly consistent with the result
of Ref. [12]. Thus, we can say that the topological charge of
the MSCO vanishes. It can also be further confirmed in
Fig. 6(a) and Fig. 6(c) by calculating the change of the
vector direction along the constructed closed loop.

IV. TIMELIKE CIRCULAR ORBITS AND
TOPOLOGY IN KERR BLACK HOLE

In the previous section, we constructed the topology
for the TCOs in a generic black hole background. In this
section we manage to apply it to the Kerr black hole and to
confirm whether the above study is applicable. This shall
uncover the detailed properties for a specific example.

A. Effective potential

The metric of the Kerr black hole is given by

ds2 ¼ −
Δ
ρ2

ðdt − asin2θdφÞ2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ sin2θ
ρ2

ðadt − ðr2 þ a2ÞdφÞ2; ð51Þ

where the metric functions read

ρ2 ¼ r2 þ a2cos2θ; ð52Þ
Δ ¼ r2 − 2Mrþ a2: ð53Þ

Solving Δ ¼ 0, one can obtain the radii of the black hole
horizons

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð54Þ

Obviously, for a black hole, its spin must be a=M ∈ ð0; 1Þ.
From (19), the effective potential V can be obtained, and
e1;2 are given by
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e1;2 ¼
2alMr� ρ csc θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðða2 þ r2Þ2sin2θ þ l2ρ2 − a2Δsin4θÞ

p
ða2 þ r2Þ2 − a2Δsin2θ

; ð55Þ

where we have taken μ2 ¼ 1. In the equatorial plane, they
reduce to

e1;2 ¼
2alMr� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðða2 þ r2Þ2 þ l2r2 − a2ΔÞ

p
ða2 þ r2Þ2 − a2Δ

: ð56Þ

In order to show the characteristic behavior of the
potential, we plot it in Fig. 4 for the black hole with

a ¼ 0.98 and M ¼ 1. When l ¼ −4.5, we observe from
Fig. 4(a) that there are two extremal points for fixed
energy E. When E ¼ 0.9691 and 0.9776, there exists
one point with V ¼ ∂rV ¼ 0 for each curve. It is
obvious that these points are just the locations of
TCOs, where the surrounding particles have zero
radial velocity. So there are two TCOs for l ¼ −4.5.
Slightly increasing the angular momentum such that
l ¼ −4.2209, we can find from Fig. 4(b) that there are
two extremal points for the small value of the energy.
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0.0
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0.6

0.8

r

(f)

FIG. 4. Behavior of the effective potential V with a ¼ 0.98 andM ¼ 1. (a) l ¼ −4.5. E ¼ 0.9650, 0.9691, 0.9750, 0.9776, and 0.9850
from top to bottom. (b) l ¼ −4.2209. E ¼ 0.9450, 0.9500, 0.9620, 0.9700, and 0.9800 from top to bottom. (c) l ¼ −4. E ¼ 0.9450,
0.9500, 0.9620, 0.9700, and 0.9800 from top to bottom. (d) l ¼ 1.5. E ¼ 0.65, 0.70, 0.75, 0.80, and 0.85 from top to bottom.
(e) l ¼ 1.6827. E ¼ 0.75, 0.76, 0.7661, 0.77, and 0.78 from top to bottom. (f) l ¼ 1.9. E ¼ 0.81, 0.8210, 0.83, 0.8474, and 0.86 from
top to bottom. Black dots denote these points satisfying V ¼ ∂rV ¼ 0.

TOPOLOGY OF EQUATORIAL TIMELIKE CIRCULAR ORBITS … PHYS. REV. D 107, 064006 (2023)

064006-9



With the increase of the energy, these two extremal
points coincide at the black dot with energy
E ¼ 0.9620, and an extra condition ∂r;rV ¼ 0 is sat-
isfied. Actually, the black dot denotes the MSCO as
expected. In particular, it is worthwhile pointing out
that such MSCO exactly meets the ISCO for the Kerr
black hole. When the energy is beyond 0.9620, no
extremal point will be present. Taking l ¼ −4, and 1.5,
we describe the effective potentials in Figs. 4(c) and
4(d), respectively. Although the angular momenta have
different signs, their patterns are quite similar. Even
varying the energy, we see that there is no extremal
point which strongly indicates that TCOs do not exist
for these cases. When l ¼ 1.6827 shown in Fig. 4(e),
the effective potential shows a similar behavior as that
of Fig. 4(b). The MSCO is present for the certain values

of a, l, and E. For l ¼ 1.7, two TCOs marked with the
black dots are shown in Fig. 4(f). These disclose the
characteristic behaviors of the effective potential. In
summary, by varying the angular momentum, we find
that there can be two TCOs, one MSCO, or no TCO.

B. Vector and asymptotic behaviors

As shown above, the TCOs are related with the zero
points of the vector. Here we would like to examine the
asymptotic behavior of the vector in the background of
the Kerr black hole and to see whether it is consistence with
the generic case shown in Sec. II.
The vector can be obtained via (24), which is in a

complicated form and we will not show them. Expanding
the vector near θ ¼ 0, we have

ϕrðθ → 0Þ ¼ −
lða2ðM þ rÞ þ r2ðr − 3MÞÞ

ða2 þ r2Þ52 θ−1 þ 2a
ffiffiffiffi
Δ

p
lMða2 − 3r2Þ

ða2 þ r2Þ72 þOðθÞ; ð57Þ

ϕθðθ → 0Þ ¼ −
l

ffiffiffiffi
Δ

p

ða2 þ r2Þ32 θ
−2 þ

ffiffiffiffi
Δ

p ð3a6 þ a4ð9r2 − 2l2Þ þ a2rð9r3 − l2ð12M þ rÞÞ þ r4ðl2 þ 3r2ÞÞ
6lða2 þ r2Þ72 þOðθÞ; ð58Þ

and near θ ¼ π, we have

ϕrðθ → πÞ ¼ lða2ðM þ rÞ þ r2ðr − 3MÞÞ
ða2 þ r2Þ52 ðθ − πÞ−1 þ 2a

ffiffiffiffi
Δ

p
lMða2 − 3r2Þ

ða2 þ r2Þ72 þOðθ − πÞ; ð59Þ

ϕθðθ → πÞ ¼ l
ffiffiffiffi
Δ

p

ða2 þ r2Þ32 ðθ − πÞ−2 −
ffiffiffiffi
Δ

p ð3a6 þ a4ð9r2 − 2l2Þ þ a2rð9r3 − l2ð12M þ rÞÞ þ r4ðl2 þ 3r2ÞÞ
6lða2 þ r2Þ72 þOðθ − πÞ:

ð60Þ

Therefore, at θ ¼ 0 and θ ¼ π, the direction argϕ ¼
arctanðϕθ=ϕrÞ of the vector is

argϕðθ → 0Þ ∼ arctan

�
−

l
ffiffiffiffi
Δ

p

ða2 þ r2Þ32 θ
−2
�

∼ arctan ð−θ−2Þ ¼ −
π

2
; ð61Þ

argϕðθ→ πÞ∼arctan

�
l

ffiffiffiffi
Δ

p

ða2þ r2Þ32 θ
−2
�
∼ arctanðθ−2Þ¼ π

2
:

ð62Þ

As a result, the direction of the vector is up at θ ¼ π and is
down at θ ¼ 0. On the equatorial plane, we can also expand
the vector at large r, which gives

ϕr

�
θ ¼ π

2
; r → ∞

�
¼ M

r2
−
l2

r3
þO

�
1

r4

�
: ð63Þ

Near the horizon, we denote the small positive parameter
ϵ ¼ r − rh. Then expanding the vector near the horizon, we
obtain

ϕr

�
θ ¼ π

2
; ϵ → 0

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 − a2Þðl2 þ 4M2Þ

p
ðM −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ

4a2M2
þOðϵ12Þ:

ð64Þ
Note that the zero order is positive. Since ϕθðθ ¼ π

2
Þ ¼ 0,

the direction of the vector is right both at the horizon and
large r. In particular, taking a ¼ 0, we obtain

ϕr

�
θ ¼ π

2
; r → rþ

�
¼ 1

4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

4M2
þ 1

r
: ð65Þ

For the Schwarzschild black hole, one has κ ¼ 1=4M and
gHφφ ¼ 4M2, so this exactly produces the result given in (32).
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In summary, we conclude that the asymptotic behaviors
of the vector for the Kerr black hole are the same as that of
the generic discussion given above. And based on this
result, we must have the fact that total topological number
of the TCOs in the Kerr black hole background is zero.

C. Topological charge and stability

Here wewould like to calculate the topological charge for
theTCOs in theKerr blackhole background. In order to show
the characteristic behavior of the unit vector n, we take the
angular momentum l ¼ 1.5, 1.6827, and 1.9, respectively.
For the negativevalue of l, the behaviors are quite similar. For
simplicity, we take a ¼ 0.98 and M ¼ 1.
For l ¼ 1.5, we exhibit the unit vector n in Fig. 5, where

the arrows denote the direction of the vector. It is clear that
for different r and θ, the direction of the vector is different.
In the equatorial plane, one can see that the vector is
towards to right, and near θ ¼ 0 and π=2, the vector is up
and down as expected. More importantly, there is no zero
point for the vector. Thus, the topological number defining
as the sum of the winding number for all the zero points is
zero, i.e., W ¼ 0.
If we set l ¼ 1.6827, the MSCO or ISCO will be present.

For this particular case, we show the unit vector n in
Fig. 6(a). Its behavior is similar to that of Fig. 5. However,
one IP1 point can be discovered at r ¼ 1.61, which actually
relates to the MSCO of the black hole. To calculate the
winding number for the MSCO, we construct a closed loop
parametrized by the following parametrized form

�
r ¼ c1 cosψ þ c0;

θ ¼ c2 sinψ þ π
2
:

ð66Þ

For the closed loop C1, we have ðc0; c1; c2Þ ¼
ð1.61; 0.2; 0.6Þ. Along the loop C1, we calculate the
deflection angle ΩðψÞ defined as [13]

ΩðψÞ ¼
Z
C1

ϵabna∂inbdxi: ð67Þ

The result is listed in Fig. 6(c). With the increase of ψ
from 0 to 2π, ΩðψÞ first increases, then decreases, and
finally increases. However, it does not make one complete
loop. So the winding number for the MSCO is zero, and
thus W ¼ 0.
As a third characteristic example, we take the angular

momentum l ¼ 1.9. The unit vector n is exhibited in
Fig. 6(b). Quite different from previous cases, there are two
zero points ZP2 and ZP3 located at r ¼ 1.36 and 2.46. In
order to calculate their winding numbers, we construct two
closed loops C2 and C3 with parametrized coefficients
ðc0; c1; c2Þ ¼ ð1.36; 0.12; 0.6Þ and (2.46, 0.4, 0.2), respec-
tively. Along these loops, we show the deflection angle in
Fig. 6(d). With the increase of ψ , ΩðψÞ decreases for C2

and increases for C3. When ψ vary from 0 to 2π denoting a
complete loop, we find that the vector makes one loop
clockwise along C2, and counterclockwise along C3.
Therefore, we obtain wZP2 ¼ −1 and wZP3 ¼ 1 for the zero
points ZP2 and ZP3. Considering that the TCOs with small
and large radii, respectively, are unstable and stable, one
can conclude that the unstable TCOs have negative winding
number, while the stable ones have positive winding
number. Since the topological number is the sum of the
winding numbers of all the zero points, we still have
W ¼ −1þ 1 ¼ 0. This indicates that the total topological
number still holds unchanged for this case even when two
zero points are present.

D. Evolution of control parameter

In the above, we have shown several characteristic
behaviors of the vector for different values of the angular
momentum acting as a control parameter. Here we would
like to consider the TCOs and their topological number
under the evolution of the control parameter.
We plot the radii of the TCOs as a function of the angular

momentum l in Fig. 7(a), which can vary from −∞ to þ∞.
There are four different branches. The signs “þ” and “−”
denote that the branches have positive and negative wind-
ing numbers, respectively. For sufficiently negative angular
momentum, there are two branches of TCOs. The upper
branch has a positive winding number, while the lower one
has a negative winding number; their sum vanishes. With
the increase of the angular momentum, these two branches
approach each other, and coincide at BP1 at l ¼ −4.22. In
the region l ∈ ð−4.22; 1.68Þ, no TCO branch can be
observed, and thus the topological number is zero.
Further increasing the angular momentum, we observe
that two branches extend from the point BP2 at l ¼ 1.68.
The upper and the lower ones have positive and negative
winding numbers, respectively. The sum of the winding
number is still zero.

1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

r

FIG. 5. The blue arrows represent the direction of the unit
vector n for M ¼ 1, a ¼ 0.98, and l ¼ 1.5.
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From this behavior of rt of the TCOs, we can find that
the topological number always stays at zero for different
values of the angular momentum l. We show the details in
Fig. 7(b). The dashed lines denote the winding number of
different TCO branches, and the black solid line is the total
topological number of the TCOs. It implies that the total
topological number always vanishes.
Moreover, from Fig. 7(a), one can clearly see that the

points BP1 and BP2 are two bifurcation points. Actually,
they are the MSCOs for the Kerr black hole with a ¼ 0.98
and M ¼ 1. Near these two points, we have

d2l
dr2t

¼ −0.05 and 2.31; ð68Þ

which indicates that BP1 and BP2 are the annihilated and
generated points, respectively. This is also consistent with
the result shown in Fig. 7(a).
Before ending this section, we briefly summarize our

results. For the Kerr black hole, the topological number
relating to the TCOs vanishes, indicating if the TCOs exist,
they always come in pairs for the fixed angular momentum.

Note that although we here take a ¼ 0.98 andM ¼ 1 for an
example, this result holds for other values of the black hole
mass and spin.

V. CONTROL PARAMETER AND TOPOLOGY

As shown above, we take the angular momentum l as
the control parameter to construct the topology. Since the
energy E is also an alternative parameter for the massive
test particle, it is interesting to consider this case.
Here we need to reformulate the effective potential V as

V ¼ −
gtt
B
ðl − l1Þðl − l2Þ; ð69Þ

where l1;2 are given by

l1 ¼
−Egtϕ þ

ffiffiffiffi
B

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt þ E2

p
gtt

; ð70Þ

l2 ¼ −
Egtϕ þ

ffiffiffiffi
B

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt þ E2

p
gtt

: ð71Þ
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FIG. 6. (a) The blue arrows represent the direction of the unit vector n for M ¼ 1, a ¼ 0.98, and l ¼ 1.6827. (b) The red arrows
represent the direction of unit vector n for M ¼ 1, a ¼ 0.98, and l ¼ 1.9. (c) The deflection angle ΩðψÞ along the closed loop C1.
(d) The deflection angle ΩðψÞ along the closed loops C2 (red solid curve) and C3 (blue dashed curve). “IP” and “ZP” denote the
locations of the ISCO and the zero points of the vector.
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It is obvious that l1 ≤ 0 corresponds to the retrograde
orbits. Otherwise, l2 corresponds to prograde orbits. So the
conditions of the TCO reduces to

l ¼ l1; and ∂rl1 ¼ 0; ð72Þ

for retrograde cases, and

l ¼ l2; and ∂rl2 ¼ 0; ð73Þ

for prograde cases. As a result, we need to construct two
different vectors to describe theTCOs for each rotating sense.
Case I: the vector ϕ1 is constructed as

ϕr
1 ¼

∂rl1ffiffiffiffiffiffi
grr

p ; ϕθ
1 ¼

∂θl1ffiffiffiffiffiffi
gθθ

p : ð74Þ

Via solving the zero point of ϕ1, we obtain that the
corresponding energy is E ¼ E− given in (45). Plugging
E− into l1, one can obtain the angular momentum l ¼ l− as
expected.
Case II: the vector ϕ2 reads

ϕr
2 ¼

∂rl2ffiffiffiffiffiffi
grr

p ; ϕθ
2 ¼

∂θl2ffiffiffiffiffiffi
gθθ

p : ð75Þ

For such case, we can obtain the zero point of ϕ2 at E ¼ Eþ
and l ¼ lþ.
For each rotating sense, we can follow the treatment

shown in Sec. III to obtain the topological number by
analyzing the asymptotic behaviors of the vectors ϕ1 and
ϕ2. Owing to that the process is quite similar, we just
present our result here. For both the retrograde and
prograde TCOs, we observe that, the topological number
W vanishes for E ∈ ð0; 1Þ, while when the energy is larger
than one, the topological number isW ¼ −1. This is mainly
because that the direction of vectors ϕr

1;2 at large r changes
when the energy crosses E ¼ 1. So there is a topological
phase transition at E ¼ 1 for both the rotating senses.

As we know, in an asymptotically-flat spacetime, the
motion of the massive particles with energy E < 1 is
bounded and cannot reach the infinity. Instead, these
particles with E > 1 still keep moving at the infinity,
and bounded orbits cannot be observed. So the critical
case is that these particles with energy E ¼ 1 can stay at
rest in the infinity. As a result, the energy E ¼ 1 plays a
characteristic point to distinguish these particles which
cannot reach or freely move at infinity. It also measures
whether the bounded orbits exist or not. From our topo-
logical approach, we clearly see that this physical feature
can be well-described by the topological phase transition
at E ¼ 1.
In order to clearly show them, we exhibit our results in

Figs. 8 and 9 for the Kerr black hole with M ¼ 1 and a ¼
0.98 for these two rotating senses. In Figs. 8(a) and 9(a), we
plot the evolutions of the radii rt of the TCOs as the control
parameter E for the retrograde and prograde cases, respec-
tively. For the retrograde case, when E < 0.96, there is no
TCO branch, and thus the total topological number is zero.
When E ¼ 0.96, two branches of negative and positive
winding numbers emerge from the point BP1, And for the
prograde case we observe a similar behavior near BP2
at E ¼ 0.77.
Near these two points BP1 and BP2, we have

d2E
dr2t

¼ 0.0018 and 0.7631; ð76Þ

which indicates that all these bifurcation points are gen-
erated points. Note that the bifurcation points BP1 and BP2
are exactly the ones shown in Fig. 7(a).
As the energy approaches one, these two branches

possessing positive winding number tend to infinity
rt → ∞. Nevertheless, the total topological number always
stays at zero as expected. When the energy is larger than
one only one branch is left for each rotating sense, but
both them have negative winding number w ¼ −1.
Therefore, the topological number is W ¼ −1 for each

BP1
BP2
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+ +
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r t
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2
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W
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FIG. 7. (a) The evolution of the radius rt of the TCO as the angular momentum l. BP1 and BP2 are two bifurcation points. The signs
“þ” and “−” denote that the branches have positive and negative winding numbers, respectively. (b) The total topological number W
(black solid line) relating to the TCOs as a function of the angular momentum l. Dashed lines denote the winding numbers of these TCO
branches. These black dots are for the bifurcation points (BP). The black hole parameters are set to M ¼ 1 and a ¼ 0.98.
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case. These behaviors suggest that there is a topological
phase transition at E ¼ 1, where the topological numberW
turns from 0 to −1. Note that the values of the winding
number correspond the stability of the TCOs. As we have
shown, the TCCOs with a negative winding number are
unstable. Any tiny perturbation will make the particle
deviate from the TCO, so for the particles with E > 1
only unstable TCOs exist. Although these TCOs are very
limited for the study of astronomical observable effects, it
can help us understand the complete structure of TCOs in
the black hole backgrounds.
We show the topological numberW in Figs. 8(b) and 9(b)

for the retrograde and prograde cases, respectively. It is clear
that the topological number stays at zero when E < 1 for
both cases, regardless of the bifurcation point. WhenE > 1,
the topological number turns to −1 as expected. Thus, there
is a topological phase transition at E ¼ 1.
Noting that in our discussion above we only take

a ¼ 0.98, it is worth examining whether topological pattern
and phase transition depend on the mass and spin of the

black hole. As shown in Sec. IV B, even though the black
hole mass and spin modify the coefficients of the expansion
of the vector, they do not affect the asymptotic behaviors.
Thus, the total topological number is independent of the
black hole mass and spin. Nevertheless, the locations of the
TCOs and the MSCOs will be shifted. On the other hand,
the topological phase transition at E ¼ 1, is only dependent
of the behavior of ϕr at the infinity, so such a phase
transition holds for arbitrary values of the black hole mass
and spin.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we constructed a well-behaved topology
for the TCOs in a generic black hole spacetime, even
though the TCOs are closely dependent of the energy and
angular momentum of the massive particle.
At first, we treated the angular momentum as the control

parameter. Similar to the treatment of the photon [1,2], we
started with the timelike geodesics and constructed a vector

(a) (b)

FIG. 9. Topological behaviors for the prograde TCOs. (a) The evolution of the radius rt of the TCO as the control parameter E. BP2 is a
bifurcation point at E ¼ 0.77. The signs “þ” and “−” denote that the branches have positive and negative winding numbers,
respectively. (b) The total topological number W (black solid line) relating to the TCOs as a function of the energy E. Dashed lines
denote the winding numbers of these TCO branches. The first and second black dots are for the bifurcation point and phase transition
point. The black hole parameters are set to M ¼ 1 and a ¼ 0.98.

(a) (b)

FIG. 8. Topological behaviors for the retrograde TCOs. (a) The evolution of the radius rt of the TCO as the control parameter E. BP1 is
a bifurcation point at E ¼ 0.96. The signs “þ” and “−” denote that the branches have positive and negative winding numbers,
respectively. (b) The total topological number W (black solid line) relating to the TCOs as a function of the energy E. Dashed lines
denote the winding numbers of these TCO branches. The first and second black dots are for the bifurcation point and phase transition
point. The black hole parameters are set to M ¼ 1 and a ¼ 0.98.

SHAO-WEN WEI and YU-XIAO LIU PHYS. REV. D 107, 064006 (2023)

064006-14



ϕ by using the effective potential. The TCO exactly locates
at the zero point of ϕ. Thus, one can endow each of them
with a local topological charge—the winding number, for
the TCO. Moreover, we studied the asymptotic behaviors
of ϕ near the boundaries in the r-θ plane. Via examining the
axis limit, horizon limit, and asymptotic limit, we found
the value of the angular momentum does not change the
asymptotic behaviors of the vector. This strongly implies
that the topological approach can be applied to the TCOs,
just like that for the LRs.
Then we considered the global and local topologies

relating with the TCOs. From the local viewpoint, we found
that the positive or negative winding number, respectively,
corresponds to stable or unstable TCO. In particular, the
MSCO is just the bifurcation point that the stable and
unstable TCOs can generate from or annihilate into.
Nevertheless, the sum of the winding number stays the
same before or after the bifurcation point. From the global
viewpoint, we observed that the total topological number,
defined as the sum of the winding numbers of all the zero
points, always vanishes for a generic black hole spacetime.
It suggests that the TCOs with fixed angular momentum
come in pairs with one being stable and another being
unstable. It is worth pointing out that this result is universal
and is independent of the angular momentum of the particle
and the black hole parameters. However, the total topo-
logical number for the LR is −1, indicating there exists a
standard LR at least for a generic black hole.
As a specific example, we studied the Kerr black hole.

As expected, the vector is outwards at θ ¼ 0 and π. Also the
vector is to the right both at r ¼ rh and ∞. This pattern
indicates that the total topological number of the TCO is
W ¼ 0 for the Kerr black hole. So, if one treats the angular
momentum as the control parameter, the stable and unstable
TCOs always come in pairs. Of particular interest is that
the two MSCOs for both the rotating senses act as the
bifurcation points. The one with negative angular momen-
tum is an annihilated point and the other one with positive
angular momentum is a generated point. Although for

different values of the angular momentum there may two or
zero TCO branches, the total topological number is always
zero as expected.
Besides the angular momentum, the energy of the test

particle is also an alternative control parameter. Hence, we
examine the corresponding topology for both the rotating
senses, respectively. The results show that the total topo-
logical number isW ¼ 0 for 0 < E < 1, whileW ¼ −1 for
E > 1. This suggests that there exists a topological phase
transition at E ¼ 1 both for the retrograde and prograde
cases, which actually measures different motions of the
massive particles at infinity. Moreover, the MSCOs in this
case exactly correspond to two generated points.
Before ending this paper, we would like to address three

points for the topology of the TCO that are different from
the LR: (i) For the LR, the energy and angular momentum
are linear, while for the TCO they have a nonlinear relation;
(ii) When the black hole background is fixed the radius of
the LR is independent of the parameters of the photon,
while for the TCO its radius closely depends on the test
particle. It appears that the degeneracy of the circular orbit
is broken when the test particle gets mass, see Fig. 10 for an
example; (iii) The total topological number is W ¼ −1 for
LR, while 0 for TCO. This implies that for a generic black
hole, there exists at least one standard LR, while the TCOs
always come in pairs for the fixed angular momentum.
Here we developed a general topological treatment for the
TCOs, and applied it to the Kerr black hole. We believe that
more information about the TCOs could be disclosed for
other rotating and nonrotating black holes in GR or
modified theories of gravity by employing this topological
approach and more general black hole solutions withoutZ2

will be further investigated.
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APPENDIX: REMOVAL OF DEGENERACY
OF THE CIRCULAR ORBIT

Taking M ¼ 1 and a ¼ 0.98 as an example, we shown
the removal of degeneracy of the circular orbit due to the
black hole spin and mass of the test particle in Fig. 10. For
the Schwarzschild black hole, the radius of the photon
sphere rPS ¼ 3. When the black hole spin is present it is
split into two; the prograde and retrograde LRs located at
rLR ¼ 1.24 and 3.98, respectively. Here a� denotes that
the black hole spin a and angular momentum l have the
same or opposite direction. When the test particle gains

mass, its motion will be described by the timelike geo-
desics rather than the null geodesics. Each LR will turn
into a continuous set of TCOs with the radius extending
from the value of LR to infinity. The unstable and stable
TCOs are separated by the MSCOs or ISCOs. Note that
the radii of the unstable TCOs are bounded by the ISCOs
and LRs. For the aþ branch, the particle angular momen-
tum starts at the MSCO with l ¼ 1.68 to ra

�
TCO ¼ 1.24 and

∞ with l ¼ ∞, and for the a− branch, the particle angular
momentum starts at the MSCO with l ¼ −4.22 to ra

�
TCO ¼

3.98 and ∞ with l ¼ −∞.
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