
Resonance crossing of a charged body in a magnetized Kerr background:
An analog of extreme mass ratio inspiral
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We investigate resonance crossings of a charged body moving around a Kerr black hole immersed in an
external homogeneous magnetic field. This system can serve as an electromagnetic analog of a weakly
nonintegrable extreme mass ratio inspiral (EMRI). In particular, the presence of the magnetic field renders
the conservative part of the system nonintegrable in the Liouville sense, while the electromagnetic self-
force causes the charged body to inspiral. By studying the system without the self-force, we show the
existence of an approximate Carter-like constant and discuss how resonances grow as a function of the
perturbation parameter. Then, we apply the electromagnetic self-force to investigate crossings of these
resonances during an inspiral. Averaging the energy and angular momentum losses during crossings allows
us to employ an adiabatic approximation for them. We demonstrate that such adiabatic approximation
provides results qualitatively equivalent to the instantaneous self-force evolution, which indicates that the
adiabatic approximation may describe the resonance crossing with sufficiently accuracy in EMRIs.
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I. INTRODUCTION

Dynamical systems under nonintegrable perturbation
exhibit various extraordinary features compared to the
unperturbed ones [1]. First of all, the perturbation may
trigger chaotic motions in some regions of the phase space.
Depending on the strength of the perturbation, determin-
istic chaos may completely dominate the dynamics.
However, even in the slightly perturbed systems with
negligible amount of chaos, we observe dynamically
relevant nonintegrable effects near resonances, i.e., in parts
of the phase space, where the characteristic frequencies of
the system are commensurate. In fact, according to the
Kolmogorov-Arnold-Moser (KAM) theorem [2], parts of
the phase space of a weakly perturbed system that are far
enough from resonances remain basically unaffected by the
imposed perturbation. On the other hand, the dynamics in
the vicinity of resonances considerably differs which may
affect measurable properties of the system. Motivated by
the latter fact, there were studies trying to provide some
insight into the dynamics of an extreme mass ratio inspiral
(EMRI) crossing the resonance [3–8].
EMRIs represent a key observational target for the future

mission of Laser Interferometer Space Antenna (LISA) [9].

They are composed of a supermassive primary black hole
and a much lighter secondary compact object (black hole or
neutron star) inspiralling into the primary. The mass ratio
η ¼ m=M between the massm of the secondary to the mass
M of the primary is smaller than 10−4. The smallness of η
allows us to use it as a perturbation parameter when
expanding the background spacetime of this binary system
in orders of η to calculate the gravitational self-force (GSF)
[10,11]. Actually, the dissipative part of this self-force
causes the secondary to inspiral towards the primary as it
radiates away energy and angular momentum in the form of
gravitational waves.
The full first order self-force for a nonspinning secondary

moving on a generic orbit has been obtained relatively
recently [11,12], but using the full self-force is computa-
tionally expensive. The main cause is that the inspiralling
body revolves around the primary body for a number of
cycles inversely proportional to the mass ratio of the system
(η−1). Since themass ratio in anEMRI is small, the number of
cycles becomes very largemaking the numeric computations
highly demanding. In order to decrease the computational
demands, thegravitational self-forcemaybe approximated in
some way. In particular, we may employ an adiabatic
approximation [13], which takes into account just the
averaged dissipative part of the first order self-force, while
more advanced approximations are also available [14,15].
Actually, Ref. [14] attempts to tackle the issue that

during the many EMRI cycles, it is almost certain that the
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inspiralling body will cross resonances, i.e., some of the
orbital characteristic frequencies of the secondary will
become commensurate [3,16–19]. Not all of these cross-
ings are equally important. Only those with a small
denominator, like 1∶2, 2∶3, are expected to have a
significant impact on the inspiral [20]. It has not yet been
clarified up to which value of the denominator we should
expect this impact, but we speculate that it should be a
value of the order of 10. Most of the models we use to
approximate an EMRI are problematic at the resonan-
ces [20]; however, as was already mentioned there is an
ongoing effort to overcome this obstacle [7,14] and this
work is part of this effort.
Mutual effects of the electromagnetic and the gravita-

tional self-force in the dynamics of a charged compact body
has recently been studied in the context of EMRIs [21].
That study has shown that besides the interaction terms
previously derived in [22], additional perturbative terms
linear in the metric perturbation are generated and these
terms may become relevant in some astrophysical situa-
tions. However, here we adopt a different approach and we
do not consider combined effects of the both interactions.
In our scenario, the electromagnetic self-force exerted on
the charged body in a magnetized spacetime serves as an
analog model of a gravitational self-force [23] which we,
however, do not consider explicitly. Although, the evolu-
tion of an EMRI system and the emission of the gravita-
tional radiation are actually governed by the gravitational
self-force, here we deal with the aspects of the dynamics
correlated with the resonances and their crossing due to
dissipation within the electromagnetic analog framework,
which allows us to avoid the intricate formalism of the
gravitational self-force [24,25].
The primary motivation of this work is to study the

system with the electromagnetic self-force as an analog of
an EMRI, however, the fact that we study dynamics of an
electrically charged body in the vicinity of a magnetized
rotating black hole, makes the results of our analysis
relevant also to other astrophysical applications. Hence,
let us discuss a little bit the framework of this model. We
consider an asymptotically uniform magnetic field aligned
with the rotation axis of the black hole described by a
vacuum model derived by Wald in [26]. Albeit asymptoti-
cally uniform, the field becomes largely deformed due to
frame dragging and other relativistic effects if we get closer
to the horizon of the black hole [27,28]. Although the
employed weak-field approximation does not take into
account the effect of the field onto the curvature of the
spacetime, the geometric effects of the spinning black hole
onto the topology of the electromagnetic field are described
completely by the given model.
On the other hand, the effect of the charged matter onto

the electromagnetic field is neglected in this framework.
This might appear as an issue especially within the inner
parts of the accretion disk where the presence of charges

and currents significantly contributes to the field and, in
particular, small-scale magnetic fields may be induced here
due to turbulence driven by the magnetorotational insta-
bility [29]. Turbulence allows the transport of the angular
momentum and, thus, contributes to the viscosity of the
disk which is crucial for the accretion process.
Nevertheless, for the study of the resonance crossing,
the small-scale structure of the magnetic field and full
description of the physics of accretion is not relevant. In
fact, the organized large-scale field [26] provides an
appropriate framework allowing the dissipation of the
energy and angular momentum due to radiation losses of
the charged test body [30].
The model of an axisymmetric vacuum magnetosphere

of the rotating black hole described by the Wald’s solution
[26] of the Maxwell’s equations on the Kerr background
has been employed in various contexts. For instance, it has
been shown that this model (unlike the pure Kerr or Kerr-
Newman background) allows stable off-equatorial circular
orbits [31], which are astrophysically relevant as a basic
model to study the dynamics of diluted plasma in an
accretion disk coronae. Moreover, the magnetic field acts as
a nonintegrable perturbation triggering (deterministic)
chaos in some regions of the phase space [32] and chaotic
dynamics may contribute to launching the outflow of
escaping jetlike trajectories [33–35]. Hence, although,
the model of vacuum magnetosphere does not attempt to
provide a complete description of the field topology of an
accreting black hole, it represents an useful approximation
which allows the study of various astrophysically relevant
processes.
The rest of the article is organized as follows. Section II

introduces the system of a charged body moving in a Kerr
background with a test external magnetic field without self-
force. Section III discusses how a resonances grow in this
system. Section IV studies the crossings of resonances
when the dissipation due to instantaneous electromagnetic
self-force is imposed, while Sec. V compares the instanta-
neous self-force results with the adiabatic ones. Finally,
Sec. VI examines our parameter choices and Sec. VII
discusses our main findings.

II. MOTION OF A CHARGED BODY IN AN
EXTERNAL ELECTROMAGNETIC FIELD

In this section, we discuss the motion of a charged body
around a magnetized Kerr black hole without the electro-
magnetic self-force. We start with the equations of motion
and the conserved quantities, and then we discuss the
integrability of the system and the existence of a Carter-like
constant.

A. Equations of motion

The equations of motion for a charged body in a curved
background read
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DUμ

dτ
¼ q̃Fμ

νUν; ð1Þ

where, ‘D’ denotes a covariant derivative, τ is the proper
time, q̃ ¼ q=m denotes the specific charge of a body with
rest mass m, U is the 4-velocity, and Fμν is the electro-
magnetic field tensor.
The equations of motion (1) actually represent a set of

second-order differential equations in Boyer-Lindquist
coordinates xμ ¼ ðt; r; θ;ϕÞ. However, one can employ
the Hamiltonian formalism to obtain equivalent set of first
order equations for the canonical coordinates ðxμ; πνÞ,
where πν ¼ ðπt; πr; πθ; πϕÞ are components of the canoni-
cal four-momentum. The Hamiltonian of a body with
electric charge q and rest mass m in a vector potential
field Aμ can be defined as [36]

H ¼ 1

2
gμνðπμ − qAμÞðπν − qAνÞ; ð2Þ

where gμν is the metric of the background spacetime. The
vector potential Aμ is related to the electromagnetic field
tensor as Fμν ¼ ∂μAν − ∂νAμ.
The equations of motion are

dxμ

dλ
≡ Pμ ¼ ∂H

∂πμ
;

dπμ
dλ

¼ −
∂H
∂xμ

; ð3Þ

where λ≡ τ=m is a dimensionless affine parameter. By
employing the first equation we obtain the kinematical
four-momentum Pμ ¼ πμ − qAμ, and the conserved value
of the Hamiltonian is therefore H ¼ −m2=2.

B. Kerr spacetime

Within this study we consider a fixed spacetime back-
ground of a rotating black hole. The line element of the
Kerr metric in Boyer-Lindquist coordinates reads

ds2¼ gttdt2þ2gtϕdtdϕþgϕϕdϕ2þgrrdr2þgθθdθ2; ð4Þ

where

gtt ¼ −
�
1 −

2Mr
Σ

�
; gtϕ ¼ −

2aMrsin2θ
Σ

;

gϕϕ ¼ ðϖ4 − a2Δsin2θÞsin2θ
Σ

; grr ¼
Σ
Δ
;

gθθ ¼ Σ; ð5Þ

with

Σ¼ r2þa2cos2θ; Δ¼ϖ2−2Mr; ϖ2¼ r2þa2; ð6Þ

whereM is the mass of the black hole and a is the Kerr spin
parameter.

C. Asymptotically uniform magnetic field

We employ a simple model of a vacuum magnetosphere
consisting of an asymptotically uniform magnetic field
aligned with the spin of the black hole. The relevant test-
field solution of Maxwell’s equations on the Kerr back-
ground may be derived exploiting the fact that in this case
the Killing vectors themselves, as well as their linear
combinations, solve the Maxwell’s equation [26]. In
particular, the vector potential Aμ ¼ ðAt; 0; 0; AϕÞ of the
solution corresponding to the magnetic field of the asymp-
totic strength B0 may be expressed in terms of covariant
components of the Kerr metric tensor gμν as follows:

At ¼
B0

2
ðgtϕ þ 2agttÞ; Aϕ ¼ B0

2
ðgϕϕ þ 2agtϕÞ: ð7Þ

Since the vector potential of a stationary axisymmetric
field does not depend on the coordinates t and ϕ, we obtain
the following set of nonzero components of the electro-
magnetic field tensor:

Fθt ¼ −Ftθ ¼
2B0Marx̃ ỹ ða2 − r2Þ

Σ2
; ð8Þ

Frt ¼ −Ftr ¼
B0Maðx̃2 − 2Þðr2 − a2ỹ2Þ

Σ2
; ð9Þ

Frϕ ¼ −Fϕr

¼ B0x̃2

Σ2
ða4rx̃4 − 2a4rx̃2 þ a4r −Ma4x̃4

þ 3Ma4x̃2 − 2Ma4 − 2a2r3x̃2 þ 2a2r3

−Ma2r2x̃2 þ 2Ma2r2 þ r5Þ; ð10Þ

Fθϕ ¼ −Fϕθ

¼ B0ỹ x̃
Σ2

ða6ỹ4 þ a4r2ỹ4 þ 2a4r2ỹ2

− 2Ma4rỹ4 − 2Ma4rþ 2a2r4ỹ2 þ a2r4

− 4Ma2r3ỹ2 þ r6Þ; ð11Þ

where we set x̃≡ sin θ and ỹ≡ cos θ.
We consider the model of a weakly-magnetized black

hole, in which the contribution of the electromagnetic field
to the stress-energy tensor Tμν is neglected and the field,
thus, does not affect the spacetime geometry nor the motion
of electrically neutral bodies. Using such test-field approxi-
mations is justified in astrophysical conditions, while the
relevant field intensities encountered in cosmic environ-
ments are too low to affect the geometry significantly even
in extreme cases of neutron stars and magnetars [37].
Even if the field given by Eq. (7) is asymptotically

uniform, in the vicinity of a rotating black hole the field
structure becomes distorted by the frame-dragging and
other effects of strong gravity [e.g., [28] ]. In particular, the
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horizon of the Kerr black hole tends to expel the magnetic
field as the spin increases. With the extreme rotation
(a ¼ M), the expulsion becomes complete and the invariant
magnetic flux through each hemisphere of the horizon
drops to zero in what is known as black hole Meissner
effect [27,38,39]. While this effect only operates in an
axisymmetric field [40], other remarkable effects like the
emergence of magnetic null points may arise in non-
axisymmetric vacuum magnetospheres of black holes or
neutron stars [41,42]. Nevertheless, in the present paper we
restrict the discussion to the perfectly axisymmetric model
of Kerr black hole immersed into a weak asymptotically
uniform magnetic field aligned with the spin axis described
by Eq. (7).

D. Conserved quantities

In this section, we consider the system without the
electromagnetic self-force. Therefore, the value of the
Hamiltonian given by Eq. (2) remains conserved as
H ¼ −m2=2. Due to the stationarity and the axisymmetry
of the system, the relevant components of the canonical
four-momentum πt and πϕ are also conserved and define
the integrals E (energy) and Lz (axial component of the
angular momentum) as follows:

−E≡ πt ¼ Pt þ qAt; Lz ≡ πϕ ¼ Pϕ þ qAϕ: ð12Þ

In addition to the timelike and spacelike Killing vectors, the
Kerr spacetime is also endowed with a Killing tensor. Due
to this, once we switch off the magnetic field (or consider
electrically neutral bodies which are not affected by the
weak field), we find the fourth conserved quantity, namely
the Carter constant [43]. The existence of four independent
and in involution integrals of motion in a system of four
degrees of freedom assures full Liouville integrability of
the system [1].
Below we discuss the existence of a Carter-like constant

in the presence of the external magnetic field. In order to
investigate that, we employ the Carter’s theorem [44,45].
This theorem assumes an axisymmetric spacetime with
metric coefficients which may be expressed as

gtt ¼ ðT tt þ ΘttÞ=ðΣr þ ΣθÞ; grr ¼ T rr=ðΣr þ ΣθÞ;
gθθ ¼ Θθθ=ðΣr þ ΣθÞ; gtϕ ¼ ðT tϕ þ ΘtϕÞ=ðΣr þ ΣθÞ;
gϕϕ ¼ ðT ϕϕ þ ΘϕϕÞ=ðΣr þ ΣθÞ; ð13Þ

where T tt, T tϕ, T ϕϕ, T rr, and Σr are functions that only
depend on the radial coordinate r, while Θtt, Θθθ, Θtϕ, Θϕϕ,
and Σθ are functions of θ only. In such spacetime, if we can
express a Hamiltonian Hc in the form

Hc ¼
1

2m
Hr þHθ

Wr þWθ
; ð14Þ

where Hr and Wr are functions of r only, and Hθ and Wθ

are functions of θ only, then the following quantity
commutes with the Hamiltonian,

K¼ 2WrHc−Hr¼Hθ−2WθHc ¼
WrHθ−WθHr

WrþWθ
: ð15Þ

Given that our work concerns the Kerr background, by
comparing the expressions in Eq. (13) with the Kerr metric
coefficients, we arrive at

T tt ¼ −ðr2 þ a2Þ2=Δ; T tϕ ¼ −aðr2 þ a2Þ=Δ;
T ϕϕ ¼ −a2=Δ T rr ¼ Δ; T θθ ¼ 1;

Θtt ¼ a2sin2θ; Θθθ ¼ 1; Θtϕ ¼ a;

Θϕϕ ¼ 1=sin2θ; Σr ¼ r2; Σθ ¼ r2cos2θ: ð16Þ

To check if we can write the Hamiltonian (2) in a manner
similar to Eq. (14), we first expand it

2H ¼ gμνPμPν

¼ gttðPtÞ2 þ 2gtϕPtPϕ þ gϕϕðPϕÞ2
þ grrðPrÞ2 þ gθθðPθÞ2: ð17Þ

In the above, the four-momentum is related with the
4-velocity as Pμ ¼ mUμ. Note that Pr and Pθ are arbitrary,
while Pt and Pϕ can be obtained from the relations given in
Eq. (12),

Pt ¼ −E − ðϵ=2Þðgtϕ þ 2agttÞ;
Pϕ ¼ Lz − ðϵ=2Þðgϕϕ þ 2agtϕÞ; ð18Þ

where ϵ ¼ qB0 is a key parameter which scales the
electromagnetic interaction and introduces the nonintegr-
able perturbation to the geodesic motion. Note that as we
employ the weak-field solution given by Eq. (7), the charge
q and the asymptotic magnetic induction B0 always couple
as qB0 leaving ϵ as the only independent parameter.
Having done the above two steps allow us to rewrite the

Hamiltonian as follows:

2H ¼ gttE2 þ 2gtϕELz þ gϕϕL2
z þ grrðPrÞ2 þ gθθðPθÞ2

þ ϵE½gttðgtϕ þ 2agttÞ þ gtϕðgϕϕ þ 2agtϕÞ�
− ϵLz½gϕϕðgϕϕ þ 2agtϕÞ þ gtϕðgtϕ þ 2agttÞ�
þ ϵ2F ; ð19Þ

where we define F as
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F ¼ 1

4
½gttðgtϕ þ 2agttÞ2 þ gϕϕðgϕϕ þ 2agtϕÞ2

þ 2gtϕðgtϕ þ 2agttÞðgϕϕ þ 2agtϕÞ�: ð20Þ

The Hamiltonian can be written in a more compact form as
follows:

H ¼ H0 −
ϵ

2
ðLz − 2aEÞ þ ϵ2F ¼ Hint þ ϵ2F ; ð21Þ

where H0 and Hint are defined as

Hint ¼ H0 −
ϵ

2
ðLz − 2aEÞ; ð22Þ

H0 ¼
1

2
ðgttE2 − 2gtϕELz þ gϕϕL2

z þ grrP2
r þ gθθP2

θÞ

¼ 1

2Σ
½ðT ttE2 − 2T tϕELz þ T ϕϕL2

z þ ΔP2
r Þ

þ ðΘttE2 − 2ΘtϕELz þ ΘϕϕL2
z þ P2

θÞ�: ð23Þ

In the above, H0 corresponds to the Hamiltonian for a Kerr
geodesic. Interestingly, the linear-order perturbation in ϵ is
only introducing an additional constant term to this
Hamiltonian, as can be seen from Eq. (21). Therefore, if
the Hamiltonian H0 is separable in r and θ, so should be
Hint. On the other hand, F is a coupling term in r and θ,
which renders the total Hamiltonian H not separable in
these coordinates. Therefore, to be able to employ Carter’s
theorem, we drop the term F , which linearizes H in ϵ, and
work with Hint. By using the metric components given in
Eq. (13), we can break Eq. (22) into two pieces,

H0
r ¼ ΔP2

r þ T ttE2 − 2T tϕELz þ T ϕϕL2
z ;

H0
θ ¼ P2

θ þ ΘttE2 − 2ΘtϕELz þ ΘϕϕL2
z ; ð24Þ

and the Hamiltonian given in Eq. (21) now reads

Hint ¼
1

2Σ
ðH0

r þH0
θ − ΣH1Þ

¼ 1

2Σ
ðH0

r − r2H1 þH0
θ − a2 cos2 θH1Þ; ð25Þ

where, H1 ¼ ϵðLz − 2aEÞ. By rewriting the above with
Hr ¼ H0

r − r2H1, and Hθ ¼ H0
θ − a2 cos2 θH1, we obtain

finally

Hint ¼
1

2Σ
ðHr þHθÞ: ð26Þ

Hence, by ignoring the Oðϵ2Þ term in Eq. (22), there is
essentially a constant term added to the unperturbed
Hamiltonian H0, and, therefore, the overall integrability
is retained. This is given by the Hamiltonian Hint. Below

we present the expression for the Carter-like constant for
future references. By using Eq. (15) we get

K ¼ 1

Σ
ðr2Hθ − a2 cos2 θHrÞ: ð27Þ

We have verified that the Poisson bracket between
K and Hint identically vanishes, i.e., fK; Hintg ¼ 0, while
fK; Hg ¼ Oðϵ2Þ, as argued before. This serves as a sanity
check for the derivation of the Carter-like constant K in
Eq. (27). Note that originally, the quantity K − ðLz − aEÞ2
was described as the Carter’s constant in Kerr spacetime
[43]. However, we will confine ourselves with the defi-
nition (27) throughout the rest of the paper. In addition, we
will use the notation Ẽ ¼ E=m, L̃z ¼ Lz=m, H̃ ¼ H=m2

and K̃ ¼ K=m2, to denote specific energy, momentum,
Hamiltonian and Carter-like constant respectively.
Moreover, we define ϵ̃ ¼ ϵ=m ¼ q̃B0. Finally, we should
stress that the linearization of the Hamiltonian is only to
introduce the concept of Carter-like constant in the present
section. For future references in the paper, we will always
use the full Hamiltonian H and not Hint.
Recall that unlike gravity, electromagnetism has both

repulsive and attractive nature. In our system, assuming
a > 0 and q > 0, the repulsion occurs when the external
magnetic field is parallel to Lz component of the angu-
lar momentum of the body while the force is attractive
when they are antiparallel. We discuss both cases until
Sec. IV B; however, then we restrict ourselves on the case
of attraction since we study this system as an analog of
an EMRI.

III. RESONANCE GROWTH

In the previous section, we have shown that a system of
nonradiating charged particle in a magnetized Kerr back-
ground preserves its integrability if the terms Oðϵ2Þ are
neglected. Nevertheless, in the rest of paper we consider the
full Hamiltonian system (2) and we focus on particular
effects, which the nonintegrable perturbation has upon
resonances. This section, in particular, discusses how a
resonance grows as the perturbation increases, which is
achieved by measuring the resonance width w.
The width w of a resonance is formally defined as the

difference between the maximum and the minimum values
of the action on the separatrix of a pendulum to which a
resonance can be approximated to by a normal form (for
more details see [7,46]). Here we adapt an approach applied
in [7] and we measure this width from rotation curves
obtained by the analysis of Poincaré sections. The rest of
this section outlines the employed procedure.

A. The resonance in Poincaré section and rotation curve

A resonance occurs when two or more characteristic
frequencies of the system are commensurate. In our work,
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we are interested in resonances between the polar ωθ

frequency and the radial frequency ωr. Resonances play
an important role when an integrable system, like the
geodesic motion on a Kerr background, is perturbed in
such way that integrability is lost. According to the KAM
theorem [2], the tori of the integrable system that are
sufficiently away from a resonance survive the perturbation
and are just slightly deformed. On such tori we observe
quasiperiodic orbits which are characterized by irrational
frequency ratios. On the other hand, the resonant tori in the
perturbed system dissolve and only an even number of
periodic orbits survive according to the Poincaré-Birkhoff
theorem [47]; half of these orbits are stable with secondary
islands of stability forming around them and the other
half unstable with corresponding asymptotic manifolds
stemming from them. These orbits form the so-called
Birkhoff chain.
A way to investigate the resonance growth is to track

them on Poincaré sections for different values of ϵ, while
keeping fixed the energy E, the angular momentum Lz and
the Kerr parameter a. Practically, in our system a Poincaré
section is formed, when we register the momentum πr and
the radial coordinate r in the Hamiltonian flow crossings of
the equatorial plane with a specific orientation, e.g., when
an orbit crosses the plane with πθ > 0. Spotting a resonance
on a Poincaré section just by inspecting it is often quite
difficult, see, e.g., the top panel of Fig. 1. To achieve it in a
two degrees of freedom system, a useful tool is the rotation
number [48,49], which provides the ratio of the character-
istic frequencies.
A rotation number can be calculated from a Poincaré

section. The first step is to identify a fixed point x⃗c on the
Poincaré section, around which closed curves are nested.
This point is often called the center of the main island of
stability and the curves correspond to cuts through tori, for
which the frequency ratio is an irrational number. In the top
panel of Fig. 1 the position of the fixed point is marked by a
black dot. In the next step, rotation angles between
successive intersections x⃗i with the section with respect
to x⃗c are calculated as

ϑi ¼ ang½ðx⃗iþ1 − x⃗cÞ; ðx⃗i − x⃗cÞ�: ð28Þ

The rotation number is then defined as

νϑ ¼ lim
n→∞

1

2πn

Xn
i¼1

ϑi: ð29Þ

For finite n the accuracy of the rotation number is of the
order of 1=n. For an integrable nondegenerate Hamiltonian
system, the rotation number changes monotonically for
initial conditions getting radially further away from x⃗c. The
respective curve is called rotation curve. When the inte-
grability is broken, then at the resonances the rotation curve
fluctuates randomly, when it is calculated on a chaotic

layer, or provides a plateau, when it is calculated on a
secondary island of stability. The bottom panel of Fig. 1
shows how the rotation curve looks like when we scan the
section depicted in the top panel along πr ¼ 0.
In both panels of Fig. 1, we do not see direct signs of a

resonance. However, the rotation curve indicates where we
have to look to find one. For example, to find the 1∶3
resonance, one has to look between the first two initial
conditions from the left of Fig. 1 or beyond the first initial
condition from the right. Doing the latter provides a detail
of the Poincaré section shown in the left panel of Fig. 2.
The inset of this panel provides all the three expected

FIG. 1. The top panel shows a Poincaré section for the
parameters: Ẽ ¼ 0.98, L̃z ¼ 3.3M, and ϵ̃ ¼ −10−3M−1, while
the bottom panel shows the respective rotation curve when we
take initial conditions along the πr ¼ 0 line of the Poincaré
section. We show 12 initial conditions along this line starting
from ri ¼ 4.5M and changing the initial distance with a step of
3.2M. Each point on the rotation curve indicates the respective
initial condition for a KAM curve depicted on the Poincaré
section. The coloring indicates whether an initial condition lies
left (black) or right (brown) from the center of the main island of
stability.
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islands, while the main panel focuses just on one of the
three islands of stability. The respective rotation curve is
depicted in the right panel of Fig. 2, in which one can spot
easily the characteristic plateau of the resonance. The
length of this plateau measured along the radial coordinate
r provides an adequately good measurement of the width of
the resonance w.

B. Growth of resonance

As was already mentioned, resonances in dynamical
systems can be approximated locally by the dynamics of a
pendulum [46]. Using the above fact one can find that the
square of the width of a resonance is proportional to the
perturbation parameter [7,46,50]. By plotting the width of a
resonance as a function of ϵ as we do in Fig. 3, we can
correlate the perturbation parameter with ϵ. We investigate
two main resonances (1∶2 and 2∶3) and the width of the
resonances for each ϵ is determined by the length of each
plateau on the corresponding rotation curve [7].
In Fig. 3 we fitted the data points for each resonance with

the curve,

logðwÞ ¼ Aþ B logðϵÞ: ð30Þ

For the two under study 1∶3 and 1∶2 resonance, we found
that B ¼ 0.997577, and B ¼ 0.992058, respectively. Given
the slope in both cases is 1 (within a numerical error of 1%),
we deduce that the perturbation parameter driving the

system away from integrability is proportional to ϵ2. In
other words, the system is integrable up to OðϵÞ.
This confirms our finding in Sec. II D, where we

obtained that the Carter-like constant is valid up to
OðϵÞ. It is interesting to note that in this feature the system
is similar to the case of a spinning body moving in a Kerr
black hole background. Namely, there is a Carter-like
constant valid up to linear order in the spin of the secondary
[51–55], while the perturbation parameter driving the
system to nonintegrability appears to be proportional to
the square of the spin [50].

FIG. 2. The left panel shows a detail from the Poincaré section shown in Fig. 1 focusing on an island of stability of the 1∶3 resonance,
while the right panel shows the respective rotation curve with the characteristic plateau. The inset plot in the left panel represents the
Poincaré section for a particular initial condition. For the radial distance, we choose from 40.026M to 40.674M with a step size of
0.027M. Note that in the right curve for the rotation number, we have included all these data points. However, for the illustration of the
resonance in the left panel, we have only shown a subset of the entire data set. This is only to make the plots more reader friendly. To
indicate the resonance width w, we have drawn two lines parallel to νϑ-axis at the endpoints of the plateau. The distance between these
two endpoints along the r-axis corresponds to the width of the resonance w.

0

FIG. 3. The growth of the width of resonances as a function of
the parameter ϵ in a log-log plot. The stars indicate the actual
cases studied, while the lines are interpolations through these
cases. To construct the above figures, we have used the following
set of parameters: Ẽ ¼ 0.98, L̃z ¼ 3.8M, and a ¼ 0.5M.
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IV. EFFECTS OF THE ELECTROMAGNETIC
SELF-FORCE

The motion of accelerated charged body constitutes an
interesting theoretical problem and has a long-standing
history [56]. Starting with the seminal works of Lorentz,
Abraham, and Poincaré in the Newtonian case [57], the
contributions from Dirac [58], Landau [59], Dewitt, and
Brehme for the relativistic domain have made remarkable
expansion of the field [60]. Recent times have also
witnessed a significant growth of interest in this topic
[30,61]. For an excellent review we refer to [23]. In this
section, we introduce the respective equations of motion in
a ready to use format, and we discuss the resonant crossing
effects for different initial conditions.

A. Equations of motion with the self-force

Before delving into the relativistic case, let us first discuss
the Newtonian counterpart. In this limit, the equations of
motion are given by Abraham-Lorentz equation [62]

m
dV⃗
dt

¼ F⃗ext þ
2q2

3

d2V⃗
dt2

; ð31Þ

where V⃗ is thevelocity, F⃗ext is the external Lorentz force, and
t is the time. Note that the second term on the right side
captures the effect of the self-force of themoving charge, and
it is provided by a derivative one order higher than the left
side. This would lead to runaway solutions, which are
physically inconsistent. One easy way to appreciate this is
to switch off the external force, i.e., Fext ¼ 0, and we obtain
V ∼ exp½3mt=ð2q2Þ�. This diverges as t approaches infinity,
and leads to a unphysical system. In order to avoid this
pathology, one typically adopts the approach introduced by
Landau and Lifshitz in [59], that is known as an “order-
reduced” formalism. Within this approximation, the above
expression can be written as

m
dV⃗
dt

¼ F⃗ext þ
2q2

3m
dF⃗ext

dt
: ð32Þ

In the case of Lorentz force, we have

F⃗ext ¼ qðE⃗ext þ V⃗ × B⃗extÞ; ð33Þ

where E⃗ext and B⃗ext are the electric and magnetic field
respectively. Ifwe assume that these fields are independent of
time, we arrive at

dV⃗
dt

¼ F⃗ext þ
2q3

3m

�
dV⃗
dt

× B⃗ext

�
;

¼ F⃗ext þ
2q3

3m2
ðF⃗ext × B⃗extÞ: ð34Þ

Once the external fields are known, we can obtain the final
trajectory of the body. Therefore, this approach gives a

self-consistent way to deal with the electromagnetic self-
force of a charged body.
The relativistic correction to the Abraham-Lorentz equa-

tion was first introduced by Dirac and it is known as
Abraham-Lorentz-Dirac equation [58]

m
dUμ

dτ
¼ Fμ

ext þ
2q2

3

�
δμν þ UμUν

�
daν

dτ
; ð35Þ

where, Fμ
ext is the external Lorentz force, and given as

Fμ
ext ¼ qFμ

νUν, and aμ is the acceleration vector. By
following the “order-reduced” approach discussed in the
Newtonian case, we can write

aμ ¼ ð1=mÞFμ
ext ¼

q
m
Fμ

νUν: ð36Þ

With the above substitution, we obtain

daμ

dτ
¼ d2Uμ

dτ2

¼ q
m

��
dFμ

ν

dτ

�
Uν þ ðq=mÞFμ

νFν
αUα

�
;

¼ q̃
dFα

β

dxμ
UμUβ þ q̃2Fα

βFβ
μUμ: ð37Þ

Finally, we can rewrite the above expression in a more
reader friendly way as follows:

dUμ

dτ
¼ q̃Fμ

νUν

þ 2q2

3m
ðδμν þ UμUνÞ

�
q̃
dFν

β

dxγ
UγUβ þ q̃2Fν

βFβ
γUγ

�
:

ð38Þ

For our future reference, we will call the prefactor of the
second term in Eq. (35), i.e., 2q2=3m as radiation param-
eter k, which actually scales the electromagnetic self-force
felt by the charged body. In the case of EMRI driven by
GSF, the analogous parameter would be the mass ratio
η ¼ m=M. In our system, the both parameters are formally
related as follows:

k
M

¼ 2

3
q̃2η; ð39Þ

Note that even if we fix the value of k (with respect to M),
the mass ratio still depends on the arbitrary choice of
specific charge. For instance, in our subsequent numerical
examples we employ the value k ¼ 10−3M, for which
η ∼ 10−1ðq̃Þ−2. However, one has to keep in mind that the
GSF and the electromagnetic self-force (ESF) are intrinsi-
cally different. Therefore, the mass ratio found from the
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above formula is not directly relevant for GSF applied in
EMRI systems.
In the curved spacetime, the self-forced motion of

charged body is derived by DeWitt and Brehme [60],

DUμ

dτ
¼ q̃Fμ

νUν þ fμR; ð40Þ

where fμR is the radiation reaction given by the following
expression:

fμR ¼ k

�
D2Uμ

dτ2
þ UμUν

D2Uν

dτ2

�

þ q2

3m
ðRμνUν þ Rν

λUνUλUμÞ þ 3kfμνtailUν; ð41Þ

with fμνtail being the tail term

fμνtail ¼
Z

τ−0þ

−∞
D½μGν�

þλ0 ðzðτÞ; zðτ0ÞÞUλ0dτ0: ð42Þ

The above expression contains an integral over the entire
past of the body.
In the present case, we can simplify Eq. (40) further by

considering the advantage of working in vacuum, and set
the Ricci tensor to zero. Therefore, the second parenthesis
in Eq. (41) vanishes and does not contribute. Moreover, by
following the discussion in [30,61], we can also neglect the
tail term, and finally arrive at

DUμ

dτ
¼ q̃Fμ

νUν þ k

�
D2Uμ

dτ2
þ UμUν

D2Uν

dτ2

�
: ð43Þ

We note that in its gravitational analog (i.e., in EMRI driven
by GSF), the tail term (which corresponds to the effect of
the backscattered gravitational radiation) remains relevant.
Nevertheless, in the present electromagnetic model, its
contribution is negligible as further discussed in Sec. VI,
hence, we ignore this term in our calculations. This
approximation is sufficient for our study as the key
objective of our work is to study resonance crossing in a
EMRI analog model with the help of a slow dissipation
introduced by ESF.
Note that Eq. (43) matches with the flat spacetime

relation given in Eq. (35), except for the fact that the
ordinary derivative is now replaced with the covariant
derivative. With this in mind, the expression for D2Uν=dτ2

can also be obtained directly from Eq. (37) by switching to
covariant derivatives,

D2Uμ

dτ2
¼ q̃

DFμ
ν

dxγ
UγUν þ q̃2Fμ

νFν
γUγ: ð44Þ

Unlike the Hamiltonian system discussed in Sec. II where
the single parameter ϵ̃ is sufficient to describe the

interaction with the EM field, here the situation becomes
slightly more complicated and two independent parameters
are needed. Namely, we have to deal with ϵ̃ and k, when the
radiation reaction is taken into account. Indeed, by inspect-
ing Eqs. (43) and (44), we observe that although B0 again
couples with q̃ in both terms, the multiplication by the
factor k is present only in the second term. Therefore, we
need to set both values ϵ̃ and k independently.
Moreover, by inserting (44) into (43), one notices that the

leading perturbation parameter is ϵ, which comes from the
Lorentz force Eq. (1) and the self-force introduces higher-
order perturbations, i.e., kϵ and kϵ2. This indicates that even
if the self-force is taken into account, the width of the
resonance is mainly defined by ϵ.
In all the future references to ESF, we consider the

equation of motion given by Eq. (43) and we parametrize
the dissipating trajectories by ϵ̃, k, and the initial values of Ẽ
and L̃z.

B. Resonance crossings

From the Hamiltonian system, we are already informed
about the existence of resonant islands for different initial
conditions. We can place a body on an initial condition right
outside a known resonance layer and dissipate the system
using the self-force (43). The expectation is that the inspiral-
ling body at a point will hit the resonance and cross it. Such a
resonance crossing is shown in Fig. 4. Since theHamiltonian
system is nonintegrable, in accordance to the EMRI termi-
nology we call these resonances prolonged [7,50].
The top panel of Fig. 4 shows a stroboscopic depiction of

a 1∶3 resonance crossing on a Poincaré section,1 which
means that we used only every third point in the section’s
sequence. Using each point of this sequence as an initial
condition we can evolve the system without the self-force
in order to find the rotation number for each of these points
as was also done in [7]. The result is a rotation curve shown
in the bottom panel of Fig. 4, where the rotation numbers
are plotted with the respect to the proper time. The plateau
at 1∶3 indicates the points corresponding to the crossing of
the resonance.
With the dissipation turned on, previously constant

quantities will be evolving. Figure 5 shows a typical
evolution of the energy Ẽ, the angular momentum L̃z,
the relative error of the Hamiltonian ΔH̃=H̃ and K̃.2 The
energy and the angular momentum follow an almost linear
decline, while the Hamiltonian is conserved up to numeri-
cal precision. The behavior of the quantity K̃ deserves more
attention. Unlike the other three quantities, it is actually not
an integral of motion and its value oscillates even without

1Note that since the system is dissipating the use of the term
Poincaré section is approximative, i.e., a loan from the Hamil-
tonian nondissipative case.

2Recall that K̃ is actually not a constant when the system is
nonlinear in ϵ.
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the self-force. Moreover, if the self-force is introduced, K̃
exhibits an abrupt drop during the resonance crossing. Such
jumps are quite common at resonance crossings induced by
GSF [16,20] and they typically scale as the square root of
the parameter which perturbs the system and induces
dissipation (i.e., the square root of the mass ratio in the
case of GSF). In our model, the perturbation parameter ϵ̃ is
independent of the self-force effects captured by the
parameter k. As was already discussed in Sec. IV, the
width of the resonance should be determined mainly by ϵ̃.
A reasonable expectation is that the jump in K̃ should be
proportional to the width of the resonance. To confirm this,
we did some numerical checks. For resonance 1∶2, with
ϵ̃ ¼ 10−3M−1, and ri ¼ 41.2M, the jump in K̃ (the change
in its value between entering and leaving the resonance) is
∼0.08M2 which is approximately ∼

ffiffiffiffiffiffiffi
ϵ̃M

p
. For resonance

1∶3, the jump in K̃ for ri ¼ 40.098M and ϵ̃ ¼ 10−3M−1 is

∼0.6M2, i.e., an order of magnitude higher than
ffiffiffiffiffiffiffi
ϵ̃M

p
. We

speculate that this discrepancy is caused by different
coefficients entering the proportional relation between
the width and the jump. However, this demands a meticu-
lous investigation, which we plan for a future work.

V. COMPARISON BETWEEN THE ADIABATIC
APPROXIMATION AND FULL SELF-FORCE

One of the key objectives of this paper is to compare the
adiabatic approximation with the instantaneous electro-
magnetic self-force computations. This may hint us to
shape our ideas in the GSF sector as well. As the
application of self-force is relatively easier in the electro-
magnetic case than its gravitational counterpart, we can
exploit this advantage. For the adiabatic approximation, we
have not followed the traditional approach to obtain the
fluxes due to energy and angular momentum, as typically
done in literature [13]. Namely, in the traditional adiabatic
approach of an EMRI the evolution of the system tracks the
slow dissipation of the constants of motion; energy,
momentum and Carter constant. Since the geodesic motion
in a Kerr background is integrable, one can correlate
the values of the constants with the orbital parameters of
the body and track the inspiral. In our case, however, the
system (unless being linearized in ϵ) is nonintegrable and
lacking the Carter-like constant. To employ an adiabatic
scheme for the nonintegrable system and compare it with
the full self-force results we do the following. We use the
energy and angular momentum values obtained from the
instantaneous self-force to fit the respective data sets, and
obtain the energy and momentum as functions of time. In
other words, we can write energy and momentum as
follows:

EðτÞ ¼ Eð0Þ þ
XN
n¼1

anτn;

LzðτÞ ¼ Lzð0Þ þ
XN
n¼1

bnτn; ð45Þ

where an and bn are usual expansion coefficients capturing
the effects of the self-force, and Eð0Þ and Lzð0Þ are the
initial values of energy and momentum, respectively. The
instantaneous self-force comes with the advantage of add-
ing as many order of correction as we want, and it is only a
matter of higher-order fitting, i.e., higher N. In an example
discussed in the Appendix, we indicate that the order of
fitting may affect the final outcome of the resonance
crossing. Our numerical investigation showed that the
mismatch is marginal if we consider N ≥ 2. In most cases
when reproducing the plots, we consider the fitting to be a
fourth-order polynomial (N ¼ 4).
Our adiabatic scheme is similar with those used in

[4,6,7,63], the only difference is that those studies used

FIG. 4. The plots show a case of a resonance crossing in the
dissipative system with an attractive Lorentz force. The trajectory
of the inspiral starts with Ẽ ¼ 0.98, L̃z ¼ 3.3M, πr ¼ 0, θ ¼ π=2,
initial value of the radial coordinate is chosen to be
r ¼ 40.0995M, and the rest parameters of the system are
ϵ̃ ¼ −10−3M−1, and k ¼ 10−3M. The top panel shows a strobo-
scopic depiction of the Poincaré section, with the red dot
indicating the entrance of the inspiral into the resonance and
the green the exit. The arrows indicate the way the stroboscopic
depiction evolves on the section. The bottom panel shows the
rotation curve, i.e., the rotation number as a function of the proper
time. The 1∶3 resonance is indicated by the presence of the
characteristic plateau on the rotation curve.
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averaged fluxes instead of using the instantaneous self-
force. As in these studies the absence of a Carter-like
constant limits our dissipation scheme in using just the
energy and the angular momentum losses. By using the
fitted function of the energy and momentum as pointed out
in Eq. (45), we obtain Pt and Pϕ as a function of time,

Pt ¼ EðτÞ þ 2Mr½EðτÞðr2 þ a2Þ − aLzðτÞ�
ΔΣ

− aϵ;

Pϕ ¼ LzðτÞcsc2θ
r2 þ a2

þ 2aMr½EðτÞðr2 þ a2Þ − aLzðτÞ�
ðr2 þ a2ÞΔΣ − ϵ=2:

ð46Þ

The self-force corrections are encoded within the time
evolution of energy and angular momentum. To obtain the
other components namely Pr and Pθ, we use Eq. (1), which
does not include the dissipative effects. The entire premise
of using the adiabatic approximation here is to averaged out
the instantaneous self-force contribution and ignore some
of its components. By comparing the results obtained from
the adiabatic evolution with the self-force one, we intend to
deduce arguments relevant for the EMRI gravitational
counterpart.
In Fig. 6, we consider a typical example where the

adiabatic evolution is shown. The detailed parameter space
and the fitting parameters are given in the caption of the
plot. If we ignore the scattered points, we can see that the
relative error in the Hamiltonian steadily grows (top panel

FIG. 5. Dissipation for various adiabatically changing quantities are shown: the initial values of different parameters are
ri ¼ 40.09950M, Ẽ ¼ 0.98, and L̃z ¼ 3.3M. The top left shows the dissipation of the energy with the inset focusing on a small part
of the graph so that the oscillations becomevisible; the bottom left shows how the angular momentum is dissipating over time; the top right
panel shows that the variation of the relative errorΔH̃=H̃ is∼Oð10−15Þ toOð10−10Þ. The bottom right depicts the evolution of K̃, as given
in Eq. (15). This evolution differs significantly from the other quantities and it is easy to spot the jumpwhich corresponds to the resonance.

FIG. 6. The change in the relative error of the Hamiltonian (top
panel) and of the K̃ quantity (bottom panel) as the binary evolves
within the adiabatic approximation. The initial conditions are
similar to what being used in Fig. 5. We use a fourth order
polynomial fit for the energy and momentum, and the fitting
parameters for the energy andmomentum are a1 ¼ −1.42 × 10−9,
a2 ¼ −1.37 × 10−15, a3 ¼ 2.17 × 10−21, b1 ¼ −5.1 × 10−8,
b2 ¼ −1.06 × 10−14, and b3 ¼ 1.38 × 10−20.
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of Fig. 6) in contrast to the self-force calculation (right top
panel of Fig. 5). The latter shows that the Hamiltonian
remains conserved up to Oð10−10Þ, which implies a
numerical precision accuracy. Hence, one of the side-
effects of using our scheme for adiabatic approximation
is that the mass of the inspiralling body changes with time.
The evolution of K̃ is also affected by the adiabatic

approximation as can be seen form the bottom plot of
Fig. 6, where it is compared with the instantaneous
electromagnetic self-force calculations. In particular, the
difference grows in time, and becomes more prominent
near the resonance. This might be an artifact of the
employed adiabatic approximation, which could be
enhanced by the fact that we ignored the evolution of K̃.
It has been shown by Isoyama et al. [64,65], and recently
by Nasipak and Evans [66], that the evolution of the Carter
constant is crucial in order to describe the adiabatic
evolution of EMRIs through resonances. Therefore, it
could be interesting to include it in the case of electro-
magnetic case as well, but, we leave this for a future work.
The above discussed discrepancies have as a result that

the evolution from the same initial conditions are not giving
the same time Δtr that the inspiral spends in the resonance
for the adiabatic and the self-force approach (Fig. 7). In
order to obtain Δtr for different initial conditions, we
follow the prescription shown in Ref. [7]. Given an initial
condition, we evolve the dissipative system for a suffi-
ciently long time to obtain ∼103 to 104 points on a Poincaré
section. By referring to Fig. 4, we encounter similar
structure in the Poincaré section which hints where and
when the particle meets the resonance. Once we pin down
the locations of the resonance, we note the coordinates
of these points, along with the corresponding four-
momentum, energy, angular momentum and the value of
the Hamiltonian. Afterwards, we evolve each of these
points without the ESF for a significant amount of time
and evaluate the rotation number. We repeat this procedure

for each initial condition given in Fig. 7. By looking at the
values of Δtr shown in Fig. 7 it appears that the time spent
by the inspiral in the resonance to be qualitatively the same
for both approaches. Even exotic cases, like those that the
inspiral enters a resonance, but does not leave, seems to be
reproduced both by a self-force and an adiabatic evolution.
Note that this exotic effect is similar with the sustained
resonances [67] appearing in EMRI studies [68]. Hence,
the adiabatic scheme appears to be sufficiently faithful to
the instantaneous self-force evolution.
In Fig. 7 the initial conditions giving the “sustained” type

of resonance crossings are indicated by two nearby vertical
lines. These lines lie between a maximum and a minimum
of the ΔtrðrÞ plot. The absence of these lines in the self-
force evolution scheme through the 1∶3 resonance (left plot
of Fig. 7) is probably caused by its very small width. The
minima of the ΔtrðrÞ plot correspond to inspirals crossing
through the vicinity of the unstable periodic orbit of the
resonance. The maxima of the ΔtrðrÞ plot correspond to
inspirals entering sufficiently deep into the islands of
stability (formed around the stable periodic orbit), which
spend a considerable time period within the island before
they exit the resonance. On the other hand, if an inspiral
enters too deep into the island of stability, it becomes
trapped by the resonance for a very long time which
exceeds the integration time.

VI. ASTROPHYSICAL RELEVANCE
OF THE PARAMETERS

The model was discussed in geometrized units scaled by
the rest mass of the central black hole. In order to check the
astrophysical consistency of the employed values we
employ the relation between radiation parameter k, mass
ratio η, and specific charge q̃ given by Eq. (39). In
particular, for our numerical examples we employ the
value k ¼ 10−3M, for which the mass ratio yields

FIG. 7. Periods of time Δtr spent by a body within the resonance (as a function of the initial radius) comparing the full self-force
description (black) with the approximated adiabatic evolution (blue). The space between two nearby vertical dashed blue lines indicates
the initial radii for which the body following the adiabatic evolution enters the resonance and we do not see it leaving it. In the right plot
the space between two nearby vertical continuous black lines indicate the same thing for the self-force driven evolution. The left plot
shows the 1∶3 resonance, while the right the 1∶2. The following values for the parameters were used: Ẽð0Þ ¼ 0.98, L̃zð0Þ ¼ 3.8M,
a ¼ 0.5M, ϵ̃ ¼ −10−3M−1, and k ¼ 10−3M.
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η ∼ 10−1ðq̃Þ−2. Fixing the mass ratio at the value relevant
for EMRI systems as η ¼ 10−4 thus leads to q̃ ∼ 1.
Generally, the upper limit on the relevant value of the
specific charge would be set by an electron with jq̃ej ∼ 1021

in geometrized units. On the other hand, the theoretical
limit on the charge of the static (Reissner-Nordström) black
hole is jq̃RNj ¼ 1. For the value employed in our analysis,
jϵ̃j ¼ jq̃B0j ¼ 10−3M−1, we may then retrieve the value of
magnetic induction in physical units if M is specified,

ðBÞSI ¼
ϵ̃

q̃
c

1472

�
M⊙

M

� ffiffiffiffiffi
kC
G

r
: ð47Þ

In particular, for a black hole in the center of M87 galaxy
with mass M ∼ 1010M⊙ [69] we obtain ðBÞSI ∼ 102T. This
is several orders of magnitude more than the value derived
from the recent observations of M87 with the Event
Horizon Telescope [70]; however, still within the range
of realistic estimates for accreting black holes [71,72].
Dissipative trajectories studied in the present paper were

evolved by Eq. (43) in which the contribution of the tail
term was neglected. While the estimates presented in [61]
justify such approximation for the case of a single charged
particle such as electron near a magnetized black hole, we
need to verify its validity for our scenario of an EMRI
analog. To proceed, we employ results from [73], where the
self-force on the static point charge q of mass m near a
(Schwarzschild) black hole of massM is computed. In such
system with no external electromagnetic field, the self-
force appears solely due to the interaction between the field
of the point charge and the black hole curvature and thus
allows us to estimate the contribution of the tail term (the
only part of the self-force which remains when the
magnetic field is switched off in our model). The ratio
Ψ between the self-force and the gravitational force (which
remains dominant in our case as we set jϵj ¼ 10−3), is
shown [73] to have its maximum close to horizon (namely
at r ¼ 3M in Schwarzschild spacetime) and drops as Ψ ∝
1=r farther from the black hole. In particular, the maximum
value Ψmax (expressed by quantities in SI units) is given as

Ψmax ¼ kC
3

ffiffiffi
3

p
G

�
q2

mM

�
SI
¼ kCðq̃Þ2SIη

3
ffiffiffi
3

p
G

; ð48Þ

where kC and G are he Coulomb and the gravitational
constants, respectively.
For an electron and a black hole of one stellar mass we

get Ψmax ∼ 10−19. For the most unfavourable EMRI case of
η ¼ 10−4 and q̃ ¼ 1 (extremal Reissner-Nordström black
hole) the ratio yields Ψmax ∼ 10−5 which makes this
contribution negligible even in this worst-case scenario,
while for radii corresponding to our numerical examples
this ratio reduces at least to Ψmax ∼ 10−6.

The above analysis shows that our model and employed
approximations are generally consistent with the conditions
encountered in astrophysical systems. However, we stress
that it is not proposed as a model directly corresponding to
an EMRI and, in particular, the values of mass ratio
formally expressed in Eq. (39) cannot be straightforwardly
identified with the mass ratio parameter in EMRI system
driven by GSF. Instead of modeling particular dynamic
properties of an EMRI, the motivation of our analog model
is more general and our aim is to study fundamental
properties of resonances affected by a nonintegrable
perturbation and the behavior of trajectories crossing such
resonances due to dissipation caused by a self-force. Our
setup allows us to test the reliability of the adiabatic
approximation. In particular, in the present work we raised
(and positively answered) the question whether the evolu-
tion of resonance-crossing trajectories might be reasonably
approximated by the adiabatic (averaged) prescription for
the dissipation of Ẽ and L̃z.

VII. SUMMARY AND DISCUSSION

In this work we studied the dynamics of a charged body
orbiting a magnetized Kerr black hole. This nonintegrable
system bears some dynamical similarities with the system
of a spinning body moving in the pure Kerr background. In
particular, the trajectories in both systems deviate from the
geodesics; in the first system, this is due to Lorentz force,
while in the second due to spin-curvature coupling. In both
systems, the induced perturbation breaks the full integra-
bility. In the first case, it is the presence of the magnetic
field, while in the second, it is the spin of the secondary
body, which makes the system nonintegrable. In both
systems there is a Carter-like constant, which holds up
to linear order in the perturbation term and effects of
nonintegrability appear due to terms quadratic in the
perturbation. This fact has recently been demonstrated
for the spinning body [50,55], while for the charged body
orbiting a magnetized Kerr black hole we showed that in
Sec. II of the present paper. The above reasons make the
latter system an interesting electromagnetic analog of an
EMRI, which allows to study the dynamics of the inspiral-
ling body during the resonance crossing induced by the
self-force.
In our study we induced dissipation to the charged body

using two approaches. First, we considered the instanta-
neous electromagnetic self-force without its tail terms. We
evolved the system through a 1∶3 and 1∶2 resonances and
studied the crossings of these resonances for various initial
conditions. During the evolution of these crossings, we
computed losses of the energy, the angular momentum
along z and the Carter-like quantity K̃. We noticed that
although the energy and the angular momentum were
changing relatively smoothly, K̃ experienced an abrupt
change due to resonance crossing. It is not clear why only
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K̃ (and not the other constants) exhibits such behavior. Is it
a feature of the electromagnetic self-force, which will not
be reproduced in the GSF case? Further investigation is
needed to determine the reason of this discrepancy.
Since we calculated how the energy and angular momen-

tum change along each trajectory, we were able to inter-
polate the time evolution of these quantities. Using these
interpolations, we applied an adiabatic scheme to evolve
orbits crossing 1∶3 and 1∶2 resonances. This allowed us to
test whether the adiabatic scheme represents a faithful
approximation of an instantaneous self-force. We were able
to check that the adiabatic crossings of the resonance last
for time intervals that are quantitatively comparable with
those given by the instantaneous self-force. This does not
mean that there are not discrepancies, like the presence of
“sustained” resonances in the case of the 1∶3 resonance,
which occur in the adiabatic approximation, but not with
the full self-force. However, this discrepancy might be an
artifact of our adiabatic scheme in which the dissipation of
the Carter-like constant is not prescribed. We plan to further
investigate this issue and possibly optimize our adiabatic
approximation.
Nevertheless, the fact that we got faithful results regard-

ing the resonance crossing duration without prescribing the
dissipation of the Carter-like constant is remarkable and
might also have an application in nonintegrable systems
where a Carter-like constant does not exist even to a linear
order with respect to the perturbation. Our results strongly
indicate that it is sufficient to adiabatically dissipate the
system just through the energy and angular momentum, in
order to find the correct times that resonance crossings last
in EMRIs.
Since we studied an analog model driven by an electro-

magnetic self-force, any particular numerical values of the
observable quantities (e.g., time intervals spent in reso-
nances) are not directly relevant from the observational
perspective of EMRIs. However, the main result of our
analysis, which is the remarkable correspondence between
the instantaneous self-force and its adiabatic approxima-
tion, is supposed to hold for a significantly broader class of
nonintegrable dynamical systems with dissipation. In
particular, our results provide an indication that adiabatic
approximation might be sufficient to faithfully model
intricate dynamics of resonance crossing of an EMRI.
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APPENDIX: ADIABATIC APPROXIMATION

Let us now point out a few artifacts of the adiabatic
approximation employed in our work. We found that close

to the change from the maxima to the minima in Fig. 7 the
adiabatic framework begins to encounter a problematic
behavior.
We demonstrate in Fig. 8 how the polynomial fit of

energy and angular momentum may affect the adiabatic
evolution. Figure 8 shows the radial coordinate of every
third crossing of the inspiral through the equatorial plane
when πθ > 0 as a function of the proper time τ. Basically,
we use a stroboscopic depiction of a Poincaré section as
was discussed when introducing the top panel of Fig. 4.
The orbit starts on the equatorial plane with πr ¼ 0 and
r ¼ 40.09966M, but we use for aesthetic reasons the
immediately next crossing through the Poincaré section
to produce the stroboscopic picture in both the top panel of
Fig. 4 and in Fig. 8. In the latter figure high peaks
correspond to the part of the inspiral moving on KAMs
away from the resonance, while low peaks correspond to
the phase of the evolution spend in the resonance on an
island of stability (see top panel Fig. 4). To reproduce the
top panel of Fig. 8, we use a second-order polynomial fit for
the energy and the angular momentum. The multiple low
peaks indicate that the inspiral spend a significant number
of cycles in the resonance. However, this feature simply
disappears if we consider a higher order polynomial fit, as
depicted in the lower panel of Fig. 8. Hence, as we move
closer and closer to the jump from maxima to minima, we

FIG. 8. This figure shows how higher-order terms in the fitted
energy and angular momentum affect the resonance crossing. For
the upper panel, we set EðτÞ ¼ E0 þ a1τ þ a2τ2, while for the
lower pane, we set EðτÞ ¼ E0 þ a1τ þ a2τ2 þ a3τ3. The upper
case, the body seems to repeat the loop several times, while for
the lower case, the body only cross it once. This example is for
the initial distance r ¼ 40.09966M, Ẽð0Þ ¼ 0.98, L̃zð0Þ ¼ 3.8M,
a ¼ 0.5M, ϵ ¼ −10−3, and k ¼ 10−3.
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need higher-order polynomial fit to avoid such artifacts.
Nonetheless, for some initial conditions, as shown within
the dashed blue lines of Fig. 7, it is not possible to avoid
inspirals being trapped in the resonance. This kind of
entrapment seems to be a feature of the system, since
we can see it happening also in the self-force driven
evolution.
For the second example, we again consider the

adiabatic approximation close to the jump from maxima
to minima. In Fig. 9, we provide an example of the
adiabatic evolution such that it crosses a 1∶2 resonance.
We notice that the journey through the resonance is not
smooth, and some points deviate from this plateau. This is
not an numerical artifact and not present for the full self-
force computations. However, we observe this feature for
both 1∶2 and 1∶3 resonances when evolving the system
adiabatically.
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