
Is a black hole shadow a reliable test of the no-hair theorem?

Kostas Glampedakis 1,2,* and George Pappas 3,†

1Departamento de Física, Universidad de Murcia, Murcia E-30100, Spain
2Theoretical Astrophysics, University of Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany

3Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

(Received 23 November 2022; accepted 6 February 2023; published 1 March 2023)

Capturing the image of the shadow cast by the event horizon of an illuminated black hole is, at the most
basic level, an experiment of extreme light deflection in a strongly curved spacetime. As such, the
properties of an imaged shadow can be used to probe the general relativistic Kerr nature of astrophysical
black holes. As an example of this prospect, it is commonly asserted that a shadow can test the validity of
the theory’s famous “no hair theorem” for the black hole’s mass and spin multipole moments. In this paper,
we assess this statement by calculating the shadow’s equatorial radius in spacetimes with an arbitrary
multipolar structure and within a slow rotation approximation. We find that when moments higher than the
quadrupole are taken into account, the shadow acquires a high degree of degeneracy as a function of the
deviation from the Kerr multipole moments. The results of our analysis suggest that dark objects with
strongly non-Kerr multipolar structure could nevertheless produce a Kerr-like shadow with its characteristic
quasicircular shape.
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I. INTRODUCTION

The last ten years or so have seen a revolution in the
ways we probe strong-field relativistic gravity. The main
breakthrough came in 2015 with the first observation of
gravitational waves (GWs) from merging black holes
by the LIGO-Virgo Collaboration [1]. Since then, these
detectors have chalked up many more merging compact
binary systems, allowing for new precision tests of general
relativity (GR) and new astrophysical information on
compact objects (for a review, see [2]). The second most
important milestone, and the one most relevant to this
paper, was reached by the spectacular high-resolution
image of the supermassive black hole in the M87 galactic
center (usually dubbed M87*), obtained by the Event
Horizon Telescope (EHT) Collaboration [3]. During the
preparation of this paper, a second sister image was
released, picturing the supermassive black hole SgrA* in
our Galactic Center [4]. These images serve as direct
evidence for the existence of black holes and can also
be used as probes of GR (for a review, see, e.g., Ref. [5]).
Motivated by this exciting possibility, a significant amount
of work over the last decade or so has focused on the
calculation of shadows of black holes beyond GR (e.g.,
Refs. [6–17]) as well as on improving our understanding of
the image produced by general relativistic Kerr black holes
(e.g., Refs. [18–22]).

The centerpiece in these images is the shadow cast by
the black hole as silhouetted against its luminous accretion
flow. The shape and overall scale of the shadow, as
projected onto the “optical plane” of a distant observer,
is formed by photons freely moving along geodesics of the
black hole’s spacetime. In principle then, a shadow image
like that of M87* is a geodetic experiment that could
enable tests of GR via the so-called Kerr hypothesis, that
is, the theoretically predicted uniqueness of the Kerr metric
as the correct description of astrophysical black holes.
As far as Kerr black holes are concerned, and assuming
a source of illumination of angular size much greater
than the hole itself, it is known that light rays that are
asymptotically captured at the location of the unstable
photon orbit give rise to a shadow that is nearly circular-
shaped, provided the black hole spin is not close to the
maximum allowed limit [23,24]. This “Bardeen shadow,”
which also coincides with the black hole’s capture cross
section for light rays incoming from infinity and moving
parallel to the equatorial plane, can de defined in a
mathematically invariant way by expressing its equatorial
and polar radii in terms of the corresponding impact
parameters, which themselves are combinations of the
geodesic constants of motion [23].
These considerations were exploited in a recent EHT

paper [25] where the shape of the M87* shadow was used
to set limits on the non-GR parameters of Johannsen’s
deformed Kerr metric [26] (see, however, Refs. [27,28] for
a discussion on the limitations of black hole shadows as
probes of GR gravity, when the deviations arise purely from
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non-GR gravitational degrees of freedom and are com-
pletely unrelated to accretion physics [29,30]).
A closely related notion has to do with the connection

between the shape of a black hole shadow and the hole’s
mass and spin multipole moments fMl; Slg (where the
index l is a non-negative integer). According to GR’s no-
hair theorem, Kerr black holes are characterized by a finely
tuned set of multipole moments that are fully determined
algebraically by the first two, the mass M ¼ M0 and spin
angular momentum J ¼ S1. The theorem is encapsulated in
the formula [31]

Ml þ iSl ¼ MðiJ=MÞl: ð1Þ

With the help of a Kerr-like metric with an adjustable
quadrupole moment M2, previous work has shown that a
deviation from the Kerr quadrupole momentM2 ¼ −J2=M
manifests itself as an oblate or prolate deformation of the
Kerr shadow [5,6]. These results have led to the commonly
stated claim that the no-hair theorem itself is testable by the
shape of a black hole shadow.
A nearly circular shadow is not an exclusive character-

istic of Kerr black holes; in fact, there are known non-Kerr
black hole spacetimes that enjoy the same property.
Examples include the aforementioned Johannsen met-
ric [7,26] and the more general metric of Carson and
Yagi [32]. These spacetimes, however, are special in the
sense that they are separable, i.e., they admit a third integral
of motion for geodesic motion (in Kerr this is the well-
known Carter constant [33]). This observation could be
taken as evidence for a plausible intrinsic relation between
the near circularity of the shadow and the spacetime’s
separability.
In this paper, we make contact with the above consid-

erations and assess to what extent a shadow image like that
of M87* could provide a reliable test of the no-hair theorem
relation (1). To this end, we revisit the dependence of the
shadow shape on the multipole moments by making use of
stationary-axisymmetric spacetime metrics with an arbi-
trary structure in the quadrupole and higher multipole
moments.
Our analysis is performed within the framework of GR

and the employed metrics are vacuum solutions of the
theory, taking the form of an expansion in the spin J or in
the inverse radial distance 1=r and the multipole order. It
should be emphasized that, as a consequence of GR’s
uniqueness theorems for black holes [33], these metrics do
not represent true black holes in the sense that they are
infested with horizon-piercing curvature singularities.
Nevertheless, as long as the spacetime’s circular photon
orbit does not approach the event horizon, this pathology
has little bearing on the properties of the shadow.
Alternatively, the central body could have a material
surface (with negligible emission) instead of a horizon,
i.e., something akin to a “gravastar” [34]. In both cases, the

aforementioned spacetimes can describe the exterior space-
time of the putative non-Kerr compact object or even serve
as proxies for the spacetime of non-GR black holes. These
are precisely the systems likely to violate the no-hair
theorem of canonical Kerr black holes. As a secondary
topic of our paper, we provide an analysis of the multipolar
structure of the Johannsen metric in order to explore a
connection (if any) to the spacetime’s Kerr-like shadow.
A key assumption underpinning our analysis is that the

deformation away from Kerr, and the ensuing “decircula-
rization” of the shadow, is caused by the rotation of the
“black hole.” As a consequence, the effect is maximized at
the equatorial plane where the shadow radius of a backlit
system is identical to the impact parameter bph associated
with the radius rph of the unstable equatorial photon orbit
(the so-called light ring). This implies that, as long as we
are limited to modest deviations from the Kerr spacetime,
the photon orbit impact parameter provides an accurate
measure of the shadow’s noncircularity (as, in fact, it does
for Kerr black holes).
The remainder of the paper is organized as follows. In

Sec. II we describe the formalism for the calculation of the
radius and associated impact parameter of the equatorial
light ring of a general stationary-axisymmetric spacetime.
The following two sections comprise the paper’s main
calculation and results. In Sec. III we obtain relations for
the shadow equatorial radius as a function of the first few
multipole moments in the Hartle-Thorne vacuum space-
time. A similar calculation is repeated in Sec. IV in the
context of another general stationary-axisymmetric space-
time. Section V is dedicated to the multipole moment
analysis of the Johannsen metric. Our concluding remarks
can be found in Sec. VI. Throughout the paper, we adopt
relativistic units G ¼ c ¼ 1 and use a prime to denote a
radial derivative.

II. PHOTON RING AND IMPACT PARAMETER:
GENERAL FORMALISM

The formation of a shadow is the manifestation of
extreme light bending in the spacetime of a massive “dark”
body, caused by the presence of an unstable photon orbit,
the so-called light ring. Therefore, the first step of our
analysis is the calculation of the light ring radius rph and the
associated impact parameter bph, which describes photons
that approach the black hole from infinite distance and get
trapped at the light ring.
Here we consider an arbitrary axisymmetric and sta-

tionary metric of the form

ds2¼ gttdt2þgrrdr2þ2gtφdtdφþgθθdθ2þgφφdφ2; ð2Þ

with gαβ ¼ gαβðr; θÞ, assuming a spherical-like coordi-
nate system. The assumed symmetries allow us to
write the following equations for the ut; uφ four-velocity
components,
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ut ¼ 1

D
ðgtφbþ gφφÞ; uφ ¼ −

1

D
ðgtφ þ gttbÞ; ð3Þ

where D ¼ g2tφ − gttgφφ. The orbital constants E (energy
per unit mass) and L (angular momentum per unit mass)
enter through the impact parameter b ¼ L=E. Upon
inserting these in the normalization condition uμuμ ¼ 0

and setting uθ ¼ 0, we end up with a radial motion
equation,

grrðurÞ2 ¼
1

D
ðgttb2 þ 2gtφbþ gφφÞ≡ Veffðr; bÞ: ð4Þ

A circular orbit obeys

Veffðrph; bphÞ ¼ 0; V 0
effðrph; bphÞ ¼ 0: ð5Þ

These two conditions lead to the light ring equation,

f4ðgtφg0tt − gttg0tφÞðgtφg0φφ − gφφg0tφþÞ
þ ðgφφg0tt − gttg0φφÞ2gr¼rph ¼ 0; ð6Þ

and the associated impact parameter,

bph ¼
1

2

gφφg0tt − gttg0φφ
gttg0tφ − gtφg0tt

: ð7Þ

These formulas describe both prograde and retrograde
photon motion, the two cases being distinguished by the
sign of the spin parameter (which does not appear explicitly
here). As a benchmark example, we may consider the
standard Kerr metric in Boyer-Lindquist parameters. We
find

rphðrph − 3MÞ2 ¼ 4a2M3; ð8Þ

bph ¼ M

�
aþ

�
rph
M

�
3=2

�
; ð9Þ

where a ¼ J=M2 is the dimensionless spin parameter.
Prograde (retrograde) motion would correspond to a > 0
(a < 0).
From its definition (and its association with the light

ring), bph coincides with the equatorial radius of the
shadow cast by a black hole that is backlit from a source
of large angular size (e.g., a distant luminous plane) and
viewed from the opposite direction by an equatorial
observer. As discussed, for example, in Ref. [23], this is
a coordinate invariant identification. Rotation causes the
bifurcation of the light ring into prograde (corotating) and
retrograde (counterrotating) branches and, as a conse-
quence, the shadow develops a left-right asymmetry. The
two orbits vary asymmetrically with the black hole spin,
resulting in a relative displacement between the center of
the black hole (at r ¼ 0) and that of the noncircular shadow.

Nevertheless, knowledge of the prograde and retrograde
impact parameters bph ¼ fbpro; bretrog allows us to calcu-
late an invariant equatorial shadow radius (as viewed by an
equatorial observer) defined by the geometric average,

b̄ph ¼
1

2
ðbpro þ bretroÞ: ð10Þ

The equatorial plane (or, more generally, the latitude slice
θ ∼ π=2) is where the shadow’s shape is expected to show
the most pronounced deviation from circularity because of
the maximum differential dependence of rph and bpro; bretro
on the spin. The opposite arrangement is expected to
happen near the symmetry axis θ ¼ f0; πg, where the
impact of rotation is at its minimum. This situation is
exemplified by the shadow shape found in a number of
deformed Kerr spacetimes (see, e.g., [7,32]) and of course
by the Kerr shadow itself, where as the spin parameter
a → 1 it acquires a characteristic “D” shape as a result
of the rapid shrinkage of bpro with respect to the much
slower changing bretro, see, e.g., Ref. [6]. The example most
relevant to this paper is the shadow obtained in Ref. [35]1

using the Hartle-Thorne spacetime (the subject of the next
section); it is found that, in spite of the presence of
moderate rotation, the shadow’s polar radius remains very
close to the radius of a Schwarzschild black hole.

III. SHADOW RADIUS IN THE
HARTLE-THORNE SPACETIME

A. The OðJ4Þ Hartle-Thorne spacetime

The purpose of this and the following section is to put on
a quantitative basis the relation between the black hole
shadow size and a given spacetime’s multipole moment
structure. Perhaps the best available tool for undertaking
this task in GR is the celebrated exterior Hartle-Thorne
(HT) metric [36] in its modern incarnation of OðJ4Þ
precision [37], where J represents the central body’s
angular momentum.
The HT metric has the advantage of allowing arbitrary

values for the first five mass and spin multipole moments,
fM; S1;M2; S3;M4g; these are Geroch-Hansen moments,
see Ref. [38] for a review. In addition, it is generically
nonseparable with respect to the Hamilton-Jacobi equation
for geodesic motion; that is, it does not admit a Carter
constant. As already mentioned in the Introduction, we
employ the HT metric to describe the exterior spacetime
of a rotating ultracompact body with a surface or as an
effective black hole spacetime, ignoring the fact that it is
not well behaved in the vicinity of the event horizon. This is

1In that work, the Hartle-Thorne metric is used “as it is,”
without further expansion of the geodesic equations with respect
to the spin. An interesting consequence of this approach is the
emergence of nonequatorial light rings, a property not present in
our model where all equations are consistently spin expanded.
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not a problem as long as the light ring stays well clear of the
horizon radius. It should be pointed out that the HT metric
includes the Kerr spacetime as a special limit (and as an
expansion in the spin) with the added property of being
singularity-free (except at the center) and separable.
The HT metric is an expansion in the spin and takes the

following functional form [37] (here ϵ is the spin-order
bookkeeping parameter, μ ¼ cos θ and ν ¼ ft; r; μ;φg):

gννðr; μÞ ¼ gð0Þνν ðrÞ þ
�
gð20Þνν ðrÞ þ gð22Þνν ðrÞP2ðμÞ

�
ϵ2

þ
�
gð40Þνν ðrÞ þ gð42Þνν ðrÞP2ðμÞ þ gð44Þνν ðrÞP4ðμÞ

�
ϵ4

þOðϵ6Þ; ð11Þ

gtφðr; μÞ ¼ ð1 − μ2Þ
�
gð1Þtφ ðrÞϵ

þ
�
gð31Þtφ ðrÞ þ gð33Þtφ ðrÞ dP3

dμ
ðμÞ

�
ϵ3
�

þOðϵ5Þ; ð12Þ

where PnðμÞ is the standard Legendre polynomial. The
coordinate change μ → θ in the line element results in

gθθðr; θÞ ¼ gμμ sin2 θ. The radial metric functions gðnmÞ
μν ðrÞ

are given by rather lengthy expressions and therefore are
not presented here. The interested reader can find them
in Ref. [37].
Apart from their dependence on the coordinates fr; μg,

the metric components depend on a number of parameters
associated with the central body. These are

fMs; J; C20; C40; C22; C42; C44; C31; C33g; ð13Þ

where Ms is the mass of the spherical body in the limit of
zero rotation. A given Cnm parameter is of order ϵn in the
spin and appears in tandem with the PmðμÞ polynomial. As
we are about to see, these are related to the source’s first
five multipole moments fM; S1;M2; S3;M4g. The simplest
way for extracting the HT moments is to expand gtt; gtφ in
powers of 1=r,

gtt ¼−1þ2Ms

r
ð1þC20ϵ

2þC40ϵ
4Þ

−
2

r3

�
C42M3

sϵ
4þ

�
J2

Ms
þ8

5
C22M3

s

�
ϵ2
�
P2

þ2P4

r5

�
107

105

J4

M3
s
þ9428

735
C22J2Ms−

4

7
C33JM3

s

þ
�
C44þ

3144

245
C2
22

�
M5

s

�
ϵ4þO

�
ϵ2

r4
;
1

r6
;ϵ6

�
; ð14Þ

gtφ ¼ sin2θ

�
−
2

r
ðJϵþ C31M2

sϵ
3Þ − 2

3

C33M4
s

r3
dP3

dμ
ϵ3
�

þO
�
1

r5
; ϵ5

�
: ð15Þ

Following the same practice as in Newtonian gravity, we
can read off the multipoles from the coefficients of the 1=r
powers (see discussion in Ref. [39]). We find,

M ¼ M0 ¼ Msð1þ C20ϵ
2 þ C40ϵ

4Þ þOðϵ6Þ; ð16Þ

S1 ¼ Jϵþ C31M2
sϵ

3 þOðϵ5Þ; ð17Þ

M2 ¼ −
�
J2

Ms
þ 8

5
C22M3

s

�
ϵ2 − C42M3

sϵ
4 þOðϵ6Þ; ð18Þ

S3 ¼ C33M4
sϵ

3 þOðϵ5Þ; ð19Þ

M4 ¼
�
107

105

J4

M3
s
þ 9428

735
C22J2Ms −

4

7
C33JM3

s

þ
�
C44 þ

3144

245
C2
22

�
M5

s

�
ϵ4 þOðϵ6Þ: ð20Þ

Themass correction terms can be set to zero,C20 ¼ C40 ¼ 0,
so thatwe can replaceMs → M in all expressions henceforth.
This amounts to a simple shift in themass scale of the system
without any further physical importance.
The Kerr limit of the HT spacetime is retrieved for

C22 ¼ C42 ¼ C31 ¼ 0; ð21Þ

C33 ¼ −
J3

M6
s
; C44 ¼ −

62

105

J4

M8
s
; ð22Þ

and corresponds to the following set of multipole moments
[see Eq. (1)]:

SK1 ¼ J; MK
2 ¼−

J2

M
; SK3 ¼−

J3

M2
; MK

4 ¼ J4

M3
: ð23Þ

(In this and other formulas below, the index “K” labels a
Kerr metric quantity.)
Instead of the original Cnm parameters, it is more

convenient to work with a new set of dimensionless
parameters cnm, defined as

Cnm ¼ cnm
Jn

M2n : ð24Þ

We then define the Kerr deviation parameters εnm as

cnm ¼ cKnm þ εnm; ð25Þ

with ðcK22; cK42; cK31; cK33; cK44Þ ¼ ð0; 0; 0;−1;−62=105Þ.
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B. The equatorial shadow radius

It is straightforward to use the general expressions (6) and (7) in the HT spacetime and obtain the light ring radius rph and
the associated impact parameter bph as expansions in the dimensionless spin parameter a ¼ J=M2 (or in ϵ). For example, for
the latter parameter, we find

bph
M

¼ 3
ffiffiffi
3

p
− 2aþ 1

2
ffiffiffi
3

p ½−1þ 18c20þ 9c22ð−16þ 15 log3Þ�a2

þ
�
425957471

15552
þ 605

8
c20þ

27

2
c40þ

585

8
c42þ

1534869

128
c44 −

6380937

256
log3−

2025

32
log3c20 −

2025

32
log3c42

−
5587785

512
log3c44þ

9

2
ð45 log3− 52Þc20c22þ

c31
48

ð6075 log3− 7132Þ− c33
384

ð7096815 log3− 7798684Þ

−
13

40320
ð510678081 log3− 561143860Þc22þ

3

1120
ð41913428− 39495033 log3þ 1225854 log32Þc222

�
a3

þ a4

19595520
ffiffiffi
3

p
�
−176359680c220 − 11664ð2520553852− 3237502203 log3þ 858538926 log32Þc222

þ 20412c20f8417925 log3− 9265540þ 8640c31þð8037225 log3− 8848980Þc33þ 48c22ð500175 log3− 550652Þg
− 7f588719779672þ 50388480c40þ 1214222400c42þ 272213921700c44 − 535888505070 log3

− 1110121200 log3c42 − 247788794925 log3c44þ 38880ð57105 log3− 62576Þc31
− 16200ð24047847 log3− 26418796Þc33g
þ 108c22f−292460091548þ 296252520363 log3− 27342639450 log32þ 181440c31ð297 log3− 310Þ

− 39690c33ð842680− 1523826 log3þ 688905 log32Þg
�
þOða5Þ: ð26Þ

With the help of the Kerr limit of this expression we can
benchmark the precision of the HT metric if we compare it
against the full Kerr result (9). Although these formulas
assume different coordinate systems, the comparison is
nevertheless meaningful because bph is itself a gauge-
invariant quantity. The outcome of this exercise is shown in
Fig. 1 where we plot bphðaÞ. It is clear that, at least as far as
bph is concerned, the OðJ4Þ HT metric performs extremely
well for −0.8≲ a≲ 0.8. We expect the same level of

accuracy to be representative of the HT spacetime in
general.
Moving away from Kerr, in Fig. 2 we show bph as a

function of a for fixed εnm (top panel) and as a function of
the deviation parameters for a ¼ 0.5 (bottom panel).
According to the displayed results, a moderate deviation
jεnmj ∼ 1 from Kerr is more than enough to cause a notable
change in bph, especially for the prograde case, even for a
moderate value of the spin. As expected from the expan-
sions (14) and (15), the quadrupole parameter ε22 is the one
typically associated with the largest deviation.
The key parameter in relation with the shape of the

shadow is the averaged prograde-retrograde impact param-
eter b̄ph as defined in Eq. (10). This parameter is obtained
most easily by simply removing the odd-order spin terms in
an expansion like the one in Eq. (26); these are the terms
that cancel out when we sum bpro and bretro. As already
discussed, b̄ph coincides with the equatorial radius of the
shadow cast by a backlit black hole, as viewed by an
equatorial observer. This is displayed in Fig. 3 in the form
b̄ph=bSchw (where bSchw ¼ 3

ffiffiffi
3

p
M is the radius of the

Schwarzschild black hole’s circular shadow) as a function
of a and for different values of the deviation parameters εnm
(each one “switched on” individually). The top (bottom)
panel shows results for εnm > 0 (εnm < 0); in general,

FIG. 1. Comparison of the light ring impact parameter bph,
calculated using the Kerr limit of the HT spacetime (26) and the
exact Kerr metric (9), across the allowed spin range −1 ≤ a ≤ 1.
The prograde (retrograde) bph corresponds to a > 0 (a < 0).
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flipping sign in a given εnm causes b̄ph to move to the
opposite side of the circular bSchw radius. All εnm param-
eters appear to be correlated in this respect, with the
exception of ε31 which is anticorrelated.
The results of Fig. 3 suggest that a moderate jεnmj ∼ 0.5

deviation could produce a minimum 10%–20% variation
with respect to a circular shadow for 0.6≲ a≲ 0.8. At the
same time, the Kerr “yardstick” discussed earlier suggests
that the accuracy of the HT shadow radius begins to
deteriorate at a ≈ 0.8. Once again, the quadrupole defor-
mation ε22 stands out as the shadow’s dominant decircula-
rization factor. The moderate degree of variation of the
equatorial radius with a implies that the corresponding
change in the shadow’s polar radius should be even less
pronounced, thus essentially retaining its zero-rotation
value bSchw.
A perhaps surprising situation could arise when

several of the deformation parameters are present at the
same time. For instance, it is fairly easy to produce a very
Kerr-like shadow that remains nearly circular for the entire
spin range despite having a strongly non-Kerr multipolar
structure. An example is shown in Fig. 4 where a dominant
ε22 < 0 is counterbalanced by the combined presence of

ε42; ε44; ε33 > 0. What this really means is that the con-
nection between the shadow shape and the multipole
moments of the spacetime (or their proxies εnm) is not
as direct as suggested in previous work [5,6]. This
important issue is further explored in the following section,
where we express bph and the shadow in terms of the
multipole moments themselves.

FIG. 3. The HT spacetime’s equatorial shadow radius b̄ph ¼
ðbpro þ bretroÞ=2 (normalized to the Schwarzschild radius bSchw)
as a function of the spin a for εnm < 0 and εnm > 0Kerr deviation
parameters (top and bottom, respectively). In all cases, only a
specific εnm is set to a nonzero value. For the purpose of
comparison, the figure includes the radius b̄ph for the exact Kerr
metric (solid black curves) and for the Kerr limit of the HT metric
(dashed curves).

FIG. 4. An example of a HT spacetime with a nearly circular
shadow despite a strongly non-Kerr structure. We show the
normalized equatorial shadow radius b̄ph=bSchw as a function of
the spin a for Kerr deviation parameters ðε22; ε33; ε42; ε44Þ ¼
ð−0.1; 0.5; 0.5; 0.5Þ. The HT result (designated as “non-Kerr”) is
compared against the shadow radius of the full Kerr spacetime
(solid curve) and the Kerr limit of the HT spacetime (dashed
curve).

FIG. 2. The light ring impact parameter bph of the HT
spacetime as a function of the dimensionless spin a ¼ J=M2

and the Kerr deviation parameters εnm defined in Eq. (25). Top:
individually fixed εnm < 0 and varying a (both prograde a > 0
and retrograde a < 0 cases). The plot also shows the Schwarzs-
child impact parameter bSchw (thin horizontal line) as well as the
Kerr limit of the HT bph (dashed curve). Bottom: fixed spin
a ¼ 0.5 and individually varying deviation parameters x ¼ εnm.
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C. The shadow radius as a function of the
multipole moments Ml;Sl

The previous section provided us with some under-
standing of the dependence of the equatorial shadow radius
as a function of the original Cnm parameters of the HT
metric, expressed as deviations from the Kerr spacetime.
Here we complete this analysis by expressing the shadow
radius directly in terms of the Geroch-Hansen multipole
moments fMl; Slg.
As a first step, we define a new set of dimensionless

moments fMl;Slg by factoring out the spin dependence
together with the suitable powers of M,

Sl ¼ Sl
Jl

Ml−1 ; Ml ¼ Ml
Jl

Ml−1 : ð27Þ

The next step is to express J; Cnm in terms of these new
parameters and the spin a. In particular, J is replaced with
the help of J → S1 − C31M2ϵ2, which means that the
parameter c31 is expected to be present in bph. The same
is true for c42 after replacing C22 → C22ðM2; J; c42Þ.
Once bphða;Ml;SlÞ is calculated, we can easily obtain

the shadow radius b̄ph. The final Oða4Þ expression is

b̄ph
M

¼ 3
ffiffiffi
3

p
þ a2

16
ffiffiffi
3

p
�
S2
1ð712−675 log3Þþ45M2ð16−15 log3Þ

�
þ a4ffiffiffi

3
p

�
5

8
c42ð−622þ567 log3Þ

þ315

256
M4ð−79028þ71937 log3ÞþS4

1

ð403363330924þ2226769271865 log3−2361245507100 log32Þ
22394880

þM2S2
1

ð2538443668þ25485296247 log3−25302890160 log32Þ
82944

þS1c31
ð70118−64395 log3Þ

72

þ 35

6912
S1S3ð−18414152−3671082 log3þ18600435 log32Þþ 35

256

M2S3

S1

ð842680−1523826 log3þ688905 log32Þ

þ 5

6144
M2

2ð121182452−379769553 log3þ245296836 log32Þþ5

8

M2c31
S1

ð310−297 log3Þ
�
: ð28Þ

The numerical value of this result is given by the much
shorter expression

b̄ph
M

≈ 5.19615− a2ð0.778098M2 þ 1.06677S2
1Þ

þ a4
�
0.329511c42 − 11.1427M2

2 þ 2.04045M4

− 16.6617M2S2
1 − 4.72798S4

1 − 5.87737c31
M2

S1

þ 4.67328
M2S3

S1

− 5.02887c31S1 þ 7.39031S1S3

�
:

ð29Þ

Let us first focus on the Oða2Þ portion of this formula;
we can see that a M2 < 0 quadrupole counteracts the
shadow shaping action of the “frame-dragging” multipole
S1. This is indeed what happens in Kerr, which has SK

1 ¼ 1

and MK
2 ¼ −1 and is in agreement with the analysis of

Ref. [5]. A near perfect cancellation of the two effects takes
place for

M2 ≈ −1.371S2
1; ð30Þ

which means that non-Kerr bodies too can produce
quasicircular shadows. At the other end of the spectrum,

prolate bodies have M2 > 0 and are likely to cast a
markedly noncircular shadow.
The inclusion of the Oða4Þ term in the shadow radius

opens the door to more possibilities. An interesting exercise
in this respect is to set some of the parameters to their Kerr
values, S1 ¼ 1;M2 ¼ −1; c42 ¼ c31 ¼ 0. The resulting
shadow radius now depends on the higher multipoles
S3, M4,

b̄ph
M

≈ 5.19615 − 0.288675a2 þ ð0.79105
þ2.04045M4 þ 2.71703S3Þa4: ð31Þ

The extent to which these two multipoles can decircularize
the shadow can be understood by looking at the top
panel of Fig. 5 where we show the contour plot of the
fractional difference Δb ¼ b̄ph=bSchw − 1 (for a ¼ 0.7).
For the ð−1; 3Þ × ð−3; 1Þ “box” shown in the figure, the
shadow radius can vary up to ∼40%–50% with respect to
the circular Schwarzschild value. For the Kerr spacetime,
MK

4 ¼ 1;SK
3 ¼ −1, the deviation from a circular shadow is

small, jΔbj ≲ 0.1 (this is indicated in Fig. 5 by a black dot).
However, it is also clear that there is a high degree of
degeneracy in the sense that we can have jΔbj ≪ 1 even for
a markedly non-Kerr multipolar structure; an example is the
point ðM4;S3Þ ¼ ð−1; 0.5Þ.
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We can repeat the same exercise by varying the mass
moments M2, M4 while setting the rest of the parameters
equal to their Kerr values (i.e., S1¼−S3¼1;c31¼c42¼0).
The associated shadow radius is

b̄ph
M

≈ 5.19615 − ð1.06677þ 0.778098M2Þa2

þ ð2.04045M4 − 12.1183 − 21.335M2

− 11.1427M2
2Þa4: ð32Þ

Compared to (31), this radius displays a markedly larger
Oða4Þ piece. This effectively limits how much we can vary
M2while being consistentwith the spin-expansion character
of bph. For example,M2 ≳ 1 could easily result in a negative
radius, which is clearly unphysical. In order to account for
this limitation, the corresponding contour plot of Δb is
calculated for a somewhat lower spin, a ¼ 0.5, see middle
panel of Fig. 5. The dominant role of M2 as a shadow
decircularization factor is clearly visible in this figure: the
contour lines are almost vertical and a variation across the
−2 ≤ M2 ≤ 0.5 range causes a reduction in the equatorial
radius up to ≈40% with respect to the Kerr radius. At the
same time, however, we can tweak M4 so that Δb remains
close to its Kerr value even if M2 deviates from Kerr.
An example of this is the point ðM2;M4Þ ¼ ð−1.5; 1.5Þ
in Fig. 5.
Finally, we consider the shadow radius as a function of

M2, S3 with the rest of the parameters set equal to their
Kerr values (SK

1 ¼ MK
4 ¼ 1; c31 ¼ c42 ¼ 0). The associ-

ated equatorial shadow radius is

b̄ph
M

≈ 5.19615 − ð1.06677þ 0.778098M2Þa2

þ ð−2.68753 − 11.1427M2
2 þ 7.39031S3

− 16.6617M2 þ 4.67328M2S3Þa4: ð33Þ

The quadrupole M2 is still the dominant factor (leading to
a similar deviation from a spherical shadow as the previous
case), but its decircularizing influence is much more easily
counteracted by a variation in S3 than in M4.
The upshot of this analysis, and in combination with the

results of the previous section, is that a quasicircular
shadow does not provide a reliable test of the no hair-
theorem [Eq. (1)], as different combinations of multipole
moments beyond the quadrupole can produce the same,
more or less, deviation from circularity as the Kerr
spacetime. In terms of the dimensionless parameters
Ml;Sl, this statement entails comparable magnitude shifts
away from the Kerr moments.

FIG. 5. Contour plot of the equatorial HT shadow radius
expressed as a fractional difference Δb ¼ b̄ph=bSchw − 1 with
respect to the circular Schwarzschild radius. Top: Δb is shown
as a function of the M4, S3 multipole moments for spin a ¼ 0.7,
see Eq. (31). The remaining moments have been set equal to
their Kerr values, M2 ¼ −1;S1 ¼ 1. Middle: Δb is shown as a
function of theM2,M4 mass moments for a ¼ 0.5, see Eq. (32).
The remaining moments have been set equal to their Kerr values,
S1 ¼ 1;S3 ¼ −1. Bottom: Δb is shown as a function of
the M2, M4 mass moments for a ¼ 0.5, see Eq. (32).
The remaining moments S1, S3 have been set equal to their
Kerr values. In all cases, we have set the remainingmetric constants
c42, c31 equal to zero. The black dot marks the HT Kerr
limit of Δb.
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IV. SHADOW RADIUS IN A GENERAL
STATIONARY-AXISYMMETRIC SPACETIME

As a second case study of the shadow produced by a non-
Kerr spacetime, in this section we consider a general
stationary-axisymmetric spacetime in GR with an arbitrary
multipolar structure. This model is hinged on a double
expansion; first with respect to the multipole moment order
(which in practice is a slow rotation approximation if an l
pole is assumed to scale as ∼Jl) and subsequently with
respect to M=r for a given multipole moment order. The
moments themselves are written with the Kerr and non-
Kerr parts separated,

Ml ¼ MK
l þ δMl; Sl ¼ SKl þ δSl;

and the former part is resummed so that the full Kerr part
of the metric is recovered. This step ensures that the metric
has the correct Schwarzschild and Kerr limits when,
respectively, rotation is turned off or the moments are
set to their Kerr values. In essence, this metric is what
comes out when we superimpose Ryan’s post-Newtonian
metric of arbitrary multipole moments [40] with the Kerr
spacetime, making sure not to count terms twice (details on
the construction of this spacetime will appear elsewhere).
This makes it an ideal complement to the HT metric which
is fully accurate at each spin order but is truncated to a
lower multipole order than the metric discussed here. This
spacetime is a direct descendant of the metric first intro-
duced in Ref. [41], which was designed with an arbitrary
set of multipole moments up to M4 and the correct
Schwarzschild limit. The present model improves on that
earlier construction by pushing the expansion beyond M4

and having the correct Kerr limit. Therefore, the new metric
can be used as a parametrized non-Kerr solution within GR,
with arbitrary deformations in the multipole moments.
A general stationary-axisymmetric vacuum spacetime

can be constructed algorithmically via the Ernst potential

formalism [42]. For the case at hand, we employ the
cylindrical-like Weyl-Papapetrou coordinates ft; ρ; z;ϕg
and the resulting line element takes the form [43]

ds2 ¼ −fðdt − ωdϕÞ2 þ f−1
�
e2γðdρ2 þ dz2Þ þ ρ2dϕ2

�
:

ð34Þ
The three metric potentials ff;ω; γg are functions of fρ; zg;
they can be written in a separable form, comprising Kerr
and non-Kerr parts (their full functional forms can be found
in Appendix A),

f ¼ fK þ δf; ð35Þ

ω ¼ ωK þ δω; ð36Þ

e2γ ¼ e2γKð1þ δγÞ: ð37Þ

The functions ffK;ωK; γKg represent the baseline Kerr
solution in Weyl-Papapetrou coordinates and depend on M
and the dimensionless Kerr spin parameter a ¼ S1=M2 (not
to be confused with the Kerr parameter a ¼ J=M2 used
elsewhere in the paper).
The arbitrary deformations fδMl; δSlg in the multipole

moments enter through thenon-Kerr correctionsfδf; δω; δγg.
Once themetric is known, we can use the general formulas (6)
and (7) to obtain rph and bph as expansions in the spin-/
multipolar-order parameter a. The results take a somewhat
simpler form when written in terms of the dimensionless
multipolar deformation (this definition assumes that any
deformation away from Kerr is rotation induced),

δMl ≡ δMl

alMlþ1
; δSl ≡ δSl

alMlþ1
: ð38Þ

After a numerical evaluation, we arrive at the following
expressions:

bph
M

¼ 3
ffiffiffi
3

p
− 2a − 1.19772ð0.646842δM2 þ 0.24102Þa2 − 0.0800267ð16.1044δM2 − 4.47113δS3

þ 1.85123Þa3 þ 6.16711ð0.0321565δM4 − 0.0838228ðδM2Þ2 − 0.342846δM2 þ 0.126939δS3

− 0.0151695Þa4 − 31.0214ð0.0951536ðδM2Þ2 − 0.0199417δM2δS3 þ 0.163008δM2

− 0.0189δM4 − 0.0357977δS3 þ 0.00330828δS5 þ 0.00212252Þa5 þOða6Þ; ð39Þ

b̄ph
M

¼ 3
ffiffiffi
3

p
− 1.19772ð0.646842δM2 þ 0.24102Þa2 þ 6.16711ð−0.0838228ðδM2Þ2 − 0.342846δM2

þ 0.0321565δM4 þ 0.126939δS3 − 0.0151695Þa4 þOða6Þ: ð40Þ

As pointed out earlier, b̄ph is given by the same
expression as bph after removing the odd powers of a.
These results look very similar to those obtained in the

HT spacetime [e.g., Eq. (29)] but, as expected, are not

identical. By construction, the general metric of this section
is a function of the multipole moments only, while the HT
metric contains the structure constants Cnm. As we have
seen, it is not possible to replace all of these parameters
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with Ml; Sl. The proximity of the two b̄ph results can be
gauged if we calculate the M2 that makes the shadow
circular at Oða2Þ. We find

δM2 ≈ −0.373 ⇒ M2 ≈ −1.373S2
1; ð41Þ

which lies very close to our earlier HT result (30).
Without further ado we calculate the degree of deviation

of this new b̄ph from the circular radius bSchw and the Kerr
shadow radius. In Fig. 6 we show contour plots of the
fractional difference Δb ¼ b̄ph=bSchw − 1 in the shadow
radius for a dimensionless spin a ¼ 0.7 and three comple-
mentary choices for the multipole moments: (i) We fix
M2 ¼ MK

2 and vary δS3; δM4 (top panel). In both cases,
the Kerr limit is indicated by a black dot and is clearly seen
to represent a nearly circular shadow for the chosen
spin value. (ii) We fix S3 ¼ SK3 and vary δM2; δM4

(middle panel). (iii) We fix M4 ¼ MK
4 and vary δM2; δS3

(bottom panel).
Considering first b̄ph as a function of the higher multi-

poles M4, S3, we can observe a much smaller variation in
Δb (≲15%) with respect to the previous HT case, for the
same ð−2; 2Þ × ð−2; 2Þ box and spin. In other words, for
the spacetime discussed in this section, the shadow remains
nearly circular for a wide range of deviation around the S3,
M4 moments. The degree of decircularization of the
shadow becomes much higher (≲50% for the range shown
in Fig. 6) and similar to the one found in the HT spacetime,
when the mass quadrupole M2 is varied. In all cases,
however, we can draw the same conclusion as before: we
can shift two or more multipoles away from Kerr while
maintaining a Kerr-like shadow radius.

V. THE JOHANNSEN METRIC: MULTIPOLE
MOMENTS AND SHADOW RADIUS

A. Extracting the multipole moments

The widely used Johannsen metric [44] (hereafter
“J metric,” see Appendix B) is an example of a deformed
Kerr spacetime with the characteristic property of sepa-
rability; that is, it admits a Carter-like constant. The
purpose of this section is to study the multipolar structure
of the J spacetime in relation to its black hole shadow.
In reality, this is an ill-defined objective; the formal

calculation of a spacetime’s multipole moments in a given
theory of gravity requires the use of field equations and
appropriate asymptotic conditions [39,45]. No such field
equations are available for the J spacetime for the simple
reason that it is not a solution of GR or any other known
theory of gravity.
In the absence of field equations that could determine the

multipole moments, we follow a more practical approach

FIG. 6. Contour plot of the equatorial shadow radius expressed
as a fractional difference Δb ¼ b̄ph=bSchw − 1 with respect to the
circular Schwarzschild radius. Top: Δb as a function of the
δS3; δM4 deviation parameters, assuming δM2 ¼ 0 (i.e.,
M2 ¼ MK

2 ¼ −1). Middle: Δb as a function of the δM2; δM4

deviation parameters, assuming δS3 ¼ 0 (i.e., S3 ¼ SK
3 ¼ −1).

Bottom: Δb as a function of the δM2; δS3 deviation parameters,
assuming δM4 ¼ 0 (i.e.,M4 ¼ MK

4 ¼ 1). In all cases, the spin is
set to a ¼ 0.7. The black dot marks the Kerr limit of Δb.
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by deriving post-Newtonian expansions for the orbital
frequencies of a test body in a small eccentricity/inclination
orbit. These expressions can be compared against the ones
obtained by Ryan [40] for a stationary-axisymmetric
spacetime of arbitrary multipolar structure in GR with
the aim of extracting some information about the multipolar
structure of the J spacetime from the coefficients of the
post-Newtonian expansion. Two of the body’s equations of
motion are

ut ¼ 1

D
ðgtφLþ gφφEÞ; uφ ¼ −

1

D
ðgtφEþ gttLÞ: ð42Þ

In addition, we can define an effective potential (not to be
confused with the one used earlier for null geodesics)

grrðurÞ2 þ gθθðuθÞ2 ¼
1

D
ðgttL2 þ 2gtφLEþ gφφE2Þ − 1

≡ Veffðr; θ; E; LÞ: ð43Þ

Circular equatorial orbits (θ ¼ π=2) are required to solve

Veffðr0; E; LÞ ¼ V 0
effðr0; E; LÞ ¼ 0; ð44Þ

where r0 denotes the orbital radius. These two conditions
can be solved for any pair of parameters; in the present
case, we are interested in the angular frequencyΩ ¼ uφ=ut.
Making the substitutions

E ¼ −utðgtt þΩgtφÞ; L ¼ utðgtφ þΩgφφÞ; ð45Þ

we can solve the above system for fΩ; utg. The V0
eff ¼ 0

equation becomes a binomial,

g0φφΩ2 þ 2g0tφΩþ g0tt ¼ 0; ð46Þ

with solutions

Ω� ¼ 1

g0φφ

	
−g0tφ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g02tφ − g0ttg0φφ

q 

: ð47Þ

The condition Veff ¼ 0 yields the “redshift” formula,

ut ¼ ð−gtt − gφφΩ2 − 2gtφΩÞ−1=2: ð48Þ

A perturbed circular orbit is characterized by a small
inclination/eccentricity. In addition to Ω, we now have
to consider the epicyclic orbital frequencies Ωr, Ωθ. To
leading order in the perturbation, these are given by

Ωr ¼
1

ut

ffiffiffiffiffiffiffiffiffiffiffiffi
−
V 00
eff

2grr

s
; Ωθ ¼

1

ut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
∂
2
θVeff

2gθθ

s
; ð49Þ

where the right-hand-side terms are to be evaluated for the
unperturbed circular equatorial orbit. The orbital precession
frequencies are defined as

ωi ≡Ω −Ωi; i ¼ fr; θg: ð50Þ

These general formulas can now be applied to the J metric
(the detailed form of this metric is given in Appendix B).
Using ϵ as a collective bookkeeping parameter for the
metric’s deformation parameters fα13; α22; α52; ε3g, we can
write Ω as an expansion in ϵ and M=r0. The result is
Eq. (B10) in Appendix B. The Ω expansion can be inverted
and furnishes M=r0 as an expansion in ϵ and the orbital
velocity v3 ¼ MΩ, see Eq. (B11).
This latter result can be subsequently used in Eqs. (49)

and (50) to obtain expansions for the precession frequen-
cies. For the normalized frequencies ω̃i ¼ ωi=Ω, we find
(here a ¼ J=M2 is the Kerr spin parameter)

ω̃r¼3v2−4av3þ1

2
½3ð3þa2Þþϵð6α13−α52−3ε3Þ�v4

þ1

2

�
27þ17a2þ3ϵðα52−4α13þ5ε3Þ

�
v6

−5að2þϵα22Þv5þa

�
−4ð12þa2Þ

þ1

3
ϵð3α13−21α22−8α52−15ε3Þ

�
v7þOðϵ3;v8Þ; ð51Þ

ω̃θ ¼ 2av3 −
3

2
a2v4 þ ϵaα22v5 þ 4a2v6

þ a

�
−5a2 þ ϵð3ε3 − 5α13Þ

�
v7 þOðϵ3; v8Þ: ð52Þ

Note that no Oðϵ2Þ terms appear in these results. These
expressions can be compared against the multipole moment
expansions of Ref. [40] for ω̃i, derived for orbits in an
arbitrary axisymmetric-stationary spacetime in GR,

ðω̃rÞGR¼3v2−
4S1
M2

v3þ3

2

�
3−

M2

M3

�
v4−10

S1
M2

v5

þ
�
27

2
−2

S21
M4

−
21

2

M2

M3

�
v6

þ
�
−48

S1
M2

−5
S1
M2

M2

M3
þ9

S3
M4

�
v7þOðv8

�
; ð53Þ

ðω̃θÞGR ¼ 2S1
M2

v3 þ 3

2

M2

M3
v4 þ

�
7
S21
M4

þ 3
M2

M3

�
v6

þ
�
11

S1
M2

M2

M3
− 6

S3
M4

�
v7 þOðv8

�
: ð54Þ
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Inspection of the first four vn pairs leads to the following
identifications [the first (second) entry in each line corre-
sponds to ω̃r (ω̃θ)]:

Oðv3Þ∶S1 ¼ aM2; ð55Þ

Oðv4Þ∶M2

M3
¼ a2 −

1

3
ϵð6α13 − α52 − 3ε3Þ;

M2

M3
¼ −a2; ð56Þ

Oðv5Þ∶ unbalanced termsf5aα22;−aα22g; ð57Þ

Oðv6Þ∶M2

M3
¼ −a2 −

1

7
ϵðα52 − 4α13 þ 5ε3Þ;

M2

M3
¼ −a2: ð58Þ

The predicted quadrupole moment from the Oðv4Þ terms is
unique and identical to the Kerr value, M2 ¼ −a2M3,
provided we set α52 ¼ 6α13 − 3ε3. Similarly, in order to
avoid inconsistency in the Oðv5Þ terms, we must set
α22 ¼ 0. Using this information in the Oðv6Þterms fixes
one more parameter, α13 ¼ −ε3. Finally, the highest-order
terms lead to

Oðv7Þ∶ S3
M4

¼ −a3 þ 2aε3;
S3
M4

¼ −a3 −
4

3
aε3: ð59Þ

We have thus hit an inconsistency wall: setting ε3 ¼ 0
makes the rest of the parameters vanish and the metric
reduces to Kerr. Based on our earlier comment, this result is
hardly surprising; the J metric is not a solution of the
vacuum GR equations and therefore we should not have
expected a fully consistent correspondence with Ryan’s
post-Newtonian multipolar expansion.

B. Shadow radius in the Johannsen metric

The second (and last) part of our discussion of the J
spacetime is concerned with the black hole’s shadow
(previous work on the subject can be found in [7]).
The light ring radius and impact parameter are calculated

with the help of Eqs. (6) and (7), without expanding in the
deformation parameters. As it turns out, both quantities
depend only on two parameters, fα13; α22g.
As already discussed, the equatorial shadow radius is

given by the prograde-retrograde averaged impact param-
eter, b̄ph ¼ ðbpro þ bretroÞ=2. The ratio b̄ph=bSchw is shown
in Fig. 7 as a function of the dimensionless spin a (top
panel) and of the deformation parameters (bottom panel).
These results suggest that not all deformation parameters

lead to the same degree of deviation from a circular-shaped
shadow. In the example shown in Fig. 7, the departure from
the a ¼ 0 shadow radius is negligible when α13 > 0; in

contrast, a positive α22 makes the shadow markedly less
circular than its Kerr counterpart for any spin a≳ 0.5.

VI. CONCLUDING REMARKS

The purpose of this paper was to build a bridge between
the no-hair theorem’s multipolar relation (1) and the
equatorial radius of the shadow cast by a Kerr black hole
mimicker (this term includes ultracompact objects with a
material surface but negligible surface emission as well as
non-Kerr black holes) within the framework of GR.
With the help of two stationary-axisymmetric vacuum

metrics endowed with rotation and an arbitrary set of
multipole moments, we have been able to produce analytic
formulas, in the form of slow rotation expansions, for the
shadow radius as an explicit function of the moments
themselves (or, equivalently, their deviation from the Kerr
moments). These formulas have subsequently allowed us to
explore the variation in the equatorial shadow radius (which
serves as a measure of the shadow’s degree of circularity or
lack thereof) in the multipole moment parameter space. Our
model represents a significant improvement on previous
work on the subject [5,6] by making use of GR spacetimes
with rotation several non-Kerr moments beyond quadru-
pole order and by directly expressing the shadow radius as a
function of these multipoles.

FIG. 7. The normalized equatorial shadow radius b̄ph=bSchw of
a black hole in the J spacetime (solid curves). Top: as a function
of the dimensionless spin a ¼ J=M2 for fixed deformation
parameters α13 ¼ α22 ¼ 1.5. Bottom: as a function of α13, α22
for a ¼ 0.9. For comparison, we also show the Kerr equatorial
shadow (dashed curves).
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The main result of our analysis is rather clear: a
quasicircular shadow which typically characterizes a
Kerr black hole could also be the result of light propagating
in a spacetime with a significant degree of deviation from
the Kerr multipolar structure. Therefore, addressing the
question posed in the title of this paper, we can say that a
black hole shadow may not necessarily be a reliable test of
the no-hair theorem. This conclusion appears to be at odds
with Refs. [5,6], but there is no real contradiction here
because those earlier papers assumed a spacetime with a
single non-Kerr multipole moment (the quadrupole). This
would correspond to a variation along a horizontal line
passing through the “Kerr point” in some of the panels of
Figs. 5 and 6. It should be emphasized that our analysis
does not imply that a black hole shadow image cannot be
used as a test of the Kerr spacetime. In fact, the results
shown in aforementioned figures do allow for an appreci-
able deviation from a Kerr-like shadow if one “moves”
along a suitable direction in the multipole moment plane.
The real impact of our results is to weaken the link between
the moments and the shadow shape in the sense that an
observation of a Kerr-like shadow does not necessarily
imply a small deviation from the Kerr moments.
A secondary implication of our results is that a nearly

circular shadow does not appear to be an exclusive property
of separable stationary-axisymmetric metrics with a Carter-
like geodesic constant of motion. Indeed, the two space-
times explored in this paper (and in contrast to the Kerr and
J metrics) are not separable with respect to the Hamilton-
Jacobi equation for point particle motion.
It is conceivable that the analysis presented in this paper

could be extended to non-GR theories of gravity, thus
enabling a connection between the black hole shadow
shape and the multipole moments of genuine non-Kerr
black holes. For example, Refs. [45,46] have developed an
Ernst formalism-based framework for the definition and
calculation of multipole moments of asymptotically flat,
stationary-axisymmetric spacetimes in scalar-tensor grav-
ity. The resulting metric could be used in the same way as
the two metrics of the present paper for the calculation
of a black hole shadow radius in a slow rotation approxi-
mation. It is unclear, however, if the same method could
work equally well for other theories of gravity whose
field equations cannot be reduced to an Ernst potential
formalism.
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APPENDIX A: A GENERAL STATIONARY
AND AXISYMMETRIC METRIC

WITH A KERR LIMIT

This appendix provides the full functional form of the
metric potentials ff;ω; γg introduced in Sec. IV, see
Eqs. (34)–(37). The Kerr part of the metric, expressed in
Weyl-Papapetrou coordinates, is

fKðρ; zÞ ¼ 1 −
2ð1þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ

a2y2 þ ð1þ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ2
; ðA1Þ

ωKðρ; zÞ ¼
2aðy2 − 1Þð1þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ

ðx2 − 1Þ þ a2ðy2 − x2Þ ; ðA2Þ

γKðρ; zÞ ¼
1

2
log

�ðx2 − 1Þ þ a2ðy2 − x2Þ
ð1 − a2Þðx2 − y2Þ

�
; ðA3Þ

where a ¼ S1=M2 is the dimensionless Kerr spin parameter
and

x ¼ rþ þ r−
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p ; y ¼ rþ − r−
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p ; ðA4Þ

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
� zÞ2 þ ρ2

q
: ðA5Þ

The non-Kerr portion of the metric consists of the functions
fδf; δω; δγg. (While δγ does not enter in any of the analytic
calculations for the light ring and the impact parameter,
we show it here for completeness.) They depend on the
deviations fδMl; δSlg off the Kerr multipole moments as
well as their dimensionless combinations,

λM ≡ ðδM2Þ2
MδM4

; λS ≡ δS3δM2

MδS5
: ðA6Þ

The three functions are given by the significantly lengthier
expressions
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δf¼
�
1−

2M
ρ

þ16M2−63z2

14ρ2
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7
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APPENDIX B: THE JOHANNSEN METRIC
AND THE EXPANSIONS OF Ω AND M=r0

Using Kerr-like coordinates ft; r; θ;φg, the separable
Johannsen metric is given by [26]

gtt ¼ −
Σ̃
N
ðΔ − a2A2

2 sin
2 θÞ; ðB1Þ

gtφ ¼ −
aΣ̃
N

sin2 θ½ðr2 þ a2ÞA1A2 − Δ�; ðB2Þ

gφφ ¼ Σ̃
N
sin2 θ½ðr2 þ a2Þ2A2

1 − a2Δ sin2 θ�; ðB3Þ

grr ¼
Σ̃

ΔA5

; gθθ ¼ Σ̃; ðB4Þ

where a ¼ J=M2 is the dimensionless spin parameter and

Δ ¼ r2 − 2Mrþ a2; ðB5Þ

N ¼ ½ðr2 þ a2ÞA1 − a2A2 sin2 θ�2; ðB6Þ

Σ̃ ¼ r2 þ a2 cos2 θ þ fðrÞ: ðB7Þ
The deformation away from Kerr is encapsulated in the
radial functions fA1ðrÞ; A2ðrÞ; A5ðrÞ; fðrÞg, which can be
written as power series of 1=r. To leading order in the
deviation from Kerr, these take the simple form

A1 ¼ 1þ α13

�
M
r

�
3

; A2 ¼ 1þ α22

�
M
r

�
2

; ðB8Þ

A5 ¼ 1þ α52

�
M
r

�
2

; f ¼ ε3
M3

r
; ðB9Þ

where α13, α22, α52, ε3 are the constant deformation
parameters.
Considering a test body’s circular orbit of radius r0, the

expansion of the angular frequency Ω in M=r0 and the
deformation parameters (with ϵ used as a collective book-
keeping parameter) is

Ω ¼
�
M
r30

�
1=2

�
1 − a

�
M
r0

�
3=2

þ a2
�
M
r0

�
3

− a3
�
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þ ϵ

�
3

4
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�
M
r0
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2

− aα22

�
M
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þ
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9

4
ε3 − 4α13

��
M
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3

−
3

2
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�
M
r0

�
7=2

þ 1

2
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4
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1
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að4a2α22 − 16α13 þ 9ε3Þ
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�
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9ϵ2

32
ðε3 − 2α13Þ2

�
M
r0

�
4

þO
�
ϵ3;

M5

r50

��
: ðB10Þ

The “inverse” expansion of M=r0 in v3 ¼ MΩ and ϵ is

M
r0

¼ v2 þ 2

3
av5 þ 1

2
ϵðε3 − 2α13Þv6 þ

2

3
ϵaα22v7 þ

�
5

9
a2 þ ϵ

6M
ð16α13 − 9ε3Þ

�
v8 þ ϵað2ε3 − 3α13Þv9

þ 1

9
½9ϵ2ðε3 − 2α13Þ2 − ϵa2ð15α13 þ 16α22Þ�v10 þOðϵ3; v11Þ: ðB11Þ
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