
Gravitational potential in spherical topologies

Quentin Vigneron 1,* and Boudewijn F. Roukema 1,2,†

1Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University,
Grudziadzka 5, 87-100 Toruń, Poland

2Univ Lyon, Ens de Lyon, Univ Lyon 1, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574,
F–69007, Lyon, France

(Received 7 November 2022; accepted 24 February 2023; published 31 March 2023)

We study the properties of the Newtonian gravitational potential in a spherical Universe for different
topologies. For this, we use the non-Euclidean Newtonian theory developed in Vigneron [On non-
Euclidean Newtonian theories and their cosmological backreaction, Classical Quantum Gravity 39, 155006
(2022)]. describing Newtonian gravitation in a spherical or hyperbolic Universe. The potential is calculated
for a point mass in all the globally homogeneous regular spherical topologies, i.e., whose fundamental
domain is unique and is a platonic solid. We provide the exact solution and the Taylor expansion series of
the potential at a test position near the point mass. We show that the odd terms of the expansion can be
interpreted as coming from the presence of a nonzero spatial scalar curvature, while the even terms relate to
the closed nature of the topological space. A consequence is that, compared to the point mass solution in a
3-torus, widely used in Newtonian cosmological simulations, the spherical cases all feature an additional
attractive first order term dependent solely on the spatial curvature. The choice of topology only affects the
potential at second order and higher. For typical estimates of cosmological scales (curvature and topology),
the strongest topological effect occurs in the case of the Poincaré dodecahedral space, but in general the
effect of curvature dominates over topology. We also provide the set of equations that can be used to
perform N-body simulations of structure formation in spherical topologies.
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I. INTRODUCTION

In the ΛCDM model, three cosmological expansion
scenarios are possible depending on the Thurston topologi-
cal class adopted for the spatial 3-manifold: spherical,
Euclidean, or hyperbolic [1] (the other five classes, which
forbid local isotropy, are not described by the ΛCDM
model). Each of these classes corresponds to an ensemble
of topological spaces whose covering space is, respectively,
the 3-sphere S3, the Euclidean space E3, or the hyperbolic
space H3. However, due to the homogeneity hypothesis of
the model, the specific choice of topology within a class does
not affect the global expansion. In contrast, taking into
account the presence of inhomogeneities allows for the
search of the specific topology (e.g., multiply connected) of
our Universe by searching for correlations of matter dis-
tributions using either catalogs of extragalactic objects
(the methods of cosmic crystallography, e.g., [2–4]), or
the cosmic microwave background (CMB) map (the
method of circles in the sky [5]). These studies currently
give typical lower bounds of around (ð11–18 Gpc=hÞ3
(e.g., [6–9], where h ≔ H0=100 km=s=Mpc is the

dimensionless Hubble-Lemaître constant) for the comoving
volume of our Universe for the 3-manifolds studied so
far (hereafter, “topologies”; see Sec. III A). These methods
are all based on some form of the spatial correlations of
the matter distribution projected to a single (early or late)
time slice. Thus, they do not probe the potential effects
of topology on the dynamics, either global [10,11] or
local [12,13], of our Universe.
The effects of topology and curvature on structure

formation are generally expected to be weak in our
Universe. The reason is that the homogeneity scale
(∼100 Mpc=h, e.g., [14]) is much smaller than the recent
estimates of the lower bounds (of a few gigaparsecs) for the
finite size of our Universe and its curvature radius.
However, the constraints on topology are not general but
are limited to a small subset of possible topologies [15]; and
an increasing debate on the value of the spatial curvature
preferred from the data has arisen during the past few years
(e.g., [16–19]). Therefore, in a era of precision cosmology,
performing nonlinear structure formation simulations in
different (non-Euclidean) topologies (other than the 3-torus
currently considered in most cosmological simulations)
remains of interest to properly quantify the role, especially
in the shape parameters of the structures, that can be
attributed to topology and/or curvature.
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The nonlinear structures in our Universe being non-
relativistic, i.e., having velocity dispersions small com-
pared to the speed of light, a nonrelativistic calculation/
simulation is generally considered precise enough to
describe the dynamics of these structures. This is one
of the reasons why we currently use Newtonian cosmo-
logical simulations to study them. However, Newton’s
theory being defined on a Euclidean topology (i.e., on a
3-manifold whose covering space is E3, taken to be the
3-torus in simulations), that theory cannot be used to study
structure formation in non-Euclidean (e.g., spherical)
topologies. Therefore, until recently, the only theory that
could allow for such a study was general relativity.
However, simulations that directly solve the Einstein
equation in a cosmological context (e.g., [20] and refer-
ences therein) are still far from reaching the precision that
is possible with Newtonian N-body simulations and
needed to fully take into account the nonlinear regime.
In [21], we extended the validity of Newton’s theory

of gravity to spherical and hyperbolic topologies with
the aim of describing the nonrelativistic regime in these
spaces. That theory, called non-Euclidean Newtonian theory
(NEN theory), is to be understood as an extension (to include
non-Euclidean topologies) and not a modification of
Newtonian gravitation, since Newton’s second law is still
valid, contrary to Modified Newtonian Dynamics (MOND)
theory. As for Newton’s theory, the NEN theory allows for
the encoding of nonlinearities and all the global properties
(i.e., topology) of general relativity, while being simpler to
use. In particular, an exact N-body description of gravity for
point masses exists in this theory, making “fast” (non-
relativistic) N-body cosmological simulations in spherical
or hyperbolic topologies practical. Performing such simu-
lations requires knowledge of the point-mass gravitational
potential in these topologies.
The goal of this paper is to calculate this potential and

analyze its properties by solving the NEN equations in
different topologies, focusing for now on the spherical
ones, and thus paving the way for future structure formation
simulations in these topologies. This extends beyond the
work of [13], as our NEN theory is better justified and
does not feature physical inconsistencies (see Sec. II A).
Our approach also differs from [22], who calculated the
gravitational potential in a spherical universe, the main
differences being that we do not introduce a screening
length and we consider multiconnected spherical topol-
ogies, i.e., not only the 3-sphere.
In Sec. II, we summarize the system of equations

of the NEN theory [21], and simplify it for the case of
a single point mass in a spherical topology. Section III
presents our characterization of the “regular” spherical
topologies and the Taylor expansion series of the gravi-
tational potential near the point mass in each of these
topologies. We interpret these results in Sec. IV and
conclude in Sec. V.

II. NON-EUCLIDEAN NEWTONIAN THEORY

A. What is NEN theory and how is it constructed?

A NEN theory is a theory which is invariant under local
Galilean transformations (hence “Newtonian,” or equiva-
lently “nonrelativistic”) and defined on a non-Euclidean
topology (see Sec. III A in this work, Sec. IV. A in [11], and
Sec. 2 in [21] for a precise definition of that term). A non-
Euclidean topology necessarily has a nonzero spatial Ricci
tensor. The purpose of this theory is to describe the
nonrelativistic regime of a Universe having a non-
Euclidean topology (of which the spherical and hyperbolic
cases are of most interest), in the same way Newton’s
theory describes this regime in a Euclidean topology.
Therefore, this extension of Newton’s theory does not
aim at taking into account post-Newtonian terms or effects
of spatial curvature that would come from general relativity
(as in, e.g., [23]), nor does it modify Newton’s second law
of gravitation as in MOND theory [see Eq. (8)].
The study of topology within a nonrelativistic theory is

possible because, fundamentally, such a theory is con-
structed on a 4-manifold (as in general relativity), which is
the mathematical object carrying the topological property
[21,24]. In other words, the notion of topology does not
only belong to Lorentz invariant theories (i.e., relativistic),
but also to Galilean invariant theories (i.e., nonrelativistic).
A prototype of NEN theory was already proposed before

that ofRef. [21] byRefs. [25,26], based on the introduction of
a nonzero spatial curvature into the Poisson equation.
However, that theory suffers from two major problems: it
cannot describe cosmological expansion, and, in spherical
topologies, the gravitational field of a point mass is neces-
sarily matched by a white hole (a repulsive singular gravi-
tational field) at the antipode of the point mass, making the
theory physically dubious (see Sec. 4.2 in [21] for a detailed
discussion of the problems). The approach of [25,26] is to
consider the Poisson equation as a fundamental feature of a
nonrelativistic theory, regardless of the topology.
In [21], we instead constructed a NEN theory where

Galilean invariance is considered to be a fundamental
principle of a nonrelativistic theory no matter the topology.
This has been made possible by using the concept of
Galilean manifolds [27] and a minimal modification of the
Newton-Cartan equations. Wewere able to define two NEN
theories with this approach, but only one (that of Sec. 5.6
in [21]) turned out to be physically reasonable, and we
argued that it should be considered as the “right” extension of
Newton’s theory for non-Euclidean topologies. This theory
solves, in particular, the two problems quoted above that
were present in the proposal of [25,26]. The detailed
construction of this theory can be found in [21], showing,
in particular, how the 3-dimensional gravitational system of
equations can be obtained from the 4-dimensional modified
Newton-Cartan equation. Thus, we adopt this gravitational
system, i.e., featuring the gravitational field. We present its
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general form in Sec. II B and the specific form used for
calculations in the current paper in Sec. II C.

B. General form of the gravitational
system in the NEN theory

The gravitational system of the NEN theory as derived
by [21] is defined on a closed 3-manifold Σwhose topology
belongs to the class of spherical or hyperbolic topologies of
the Thurston classification1 (i.e., whose covering space is
either S3 or H3). The NEN theory is currently defined only
for these two classes, but may be extended in a later study
to the remaining five non-Euclidean irreducible classes
of 3-dimensional closed topologies of the Thurston
classification.
The most general form of the gravitational system in the

NEN theory is2

ga ¼ ð∂t − LβÞva þ vcDcva þ 2vcðHδc
a þ Ξc

aÞ
− ða≠gravÞa; ð1Þ

Dcgc ¼ −4πGρ̂ − dΞcdΞcd; ð2Þ

D½agb� ¼ 0: ð3Þ

These equations are completed by

Rab ¼
RðtÞ
3

hab; ð4Þ

ð∂t − LβÞhab ¼ 2ðHhab þDðavbÞ þ ΞabÞ; ð5Þ

ð∂t − LβÞρ ¼ −ρð3H þDcvcÞ; ð6Þ

and the expansion law

3ð _H þH2Þ þ 4πGhρiΣ − Λ ¼ −hΞcdΞcdiΣ; ð7Þ

with hρiΣ ¼ Mtot
VΣðtÞ and where

(i) g is the gravitational field.
(ii) Lβ is the Lie derivative with respect to the vector β.

This vector is a free parameter that corresponds to a
choice of spatial coordinates (see the next section).

(iii) v is the spatial velocity of the fluid.
(iv) D is the Levi-Civita connection relative to the metric

h whose Ricci tensor R is given by formula (4).
(v) H ¼ ∂tVΣ=ð3VΣÞ is the expansion rate of Σ with

VΣðtÞ its volume.
(vi) Ξ is a traceless (i.e., Ξc

c ≔ 0) and transverse (i.e.,
DcΞa

c ≔ 0) tensor.
(vii) a≠grav is the nongravitational 3-acceleration acting

on the fluid.
(viii) ρ is the mass density of the fluid, andMtot is the total

mass in Σ.
(ix) The operator bacts on a scalar ψ as ψ̂ ≔ ψ − hψiΣ,

with hψiΣðtÞ ≔ 1
VΣ

R
Σ ψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðhabÞ

p
d3x being the

average over the whole volume of Σ.
The gravitational system (1)–(7) is algebraically equivalent
to the gravitational system in classical Newton’s theory
with the presence of an anisotropic expansion [24,28]. The
only difference is the spatial Ricci tensor R, relative to the
spatial metric h and its connection D, which is not zero but
given by formula (4). This curvature tensor allows these
equations to be defined on either a spherical or hyperbolic
topology, depending on the sign of the scalar curvature R.
If we assume R to be zero, then we retrieve Newton’s
equations exactly.
Equation (1) corresponds to Newton’s second law for the

spatial acceleration of the fluid spatial velocity (this is also
the Navier-Stokes equation, since it is written for a fluid),
with ð∂t − LβÞva þ vcDcva being the spatial acceleration
of the spatial velocity v in any coordinate system; Eq. (2) is
the cosmological Poisson equation; (3) constrains the
gravitational field to be irrotational (i.e., no gravitomag-
netism); Eq. (5) is the evolution equation for the spatial
metric; Eq. (6) is the continuity equation; and Eq. (7) is the
expansion law for the volume of the manifold Σ, and
corresponds to the Friedmann law in the case of isotropic
expansion.
Ξ is a transverse shear and is also present in Newton’s

theory [24,28–30], where it models an anisotropic expan-
sion. If this term is assumed to be zero, then there exists a
coordinate system, i.e., a choice of β, in which the spatial
metric takes the simple form hab ¼ a2ðtÞh̃abðxiÞ with
_a=a ¼ H and where the Ricci tensor R̃ associated to h̃
is R̃ab ¼ Ri=3h̃ab ¼ Rab, where the subscript i stands for
initial. The coordinate system implying this form of the
spatial metric corresponds to β ¼ −v and is called an
inertial coordinate system, or Eulerian coordinate system
in the language of fluid dynamics. In this system, the spatial
metric has no local dynamics as it is separated in space
and time.

C. Simplified form of the gravitational
system in the NEN theory

Hereafter, we set β ¼ −v and Ξ ¼ 0. This latter choice,
in addition to implying a separation between the space and

1Cosmology textbooks often use the term “open” to refer
uniquely to hyperbolic curvature and the associated universe
expansion history; and “closed” to refer to spherical curvature
and the associated expansion history. Here, we do not adopt this
confusing terminology, and instead use the language of topo-
logical manifolds, since general-relativistic cosmology requires
the universe to be a pseudo-Riemannian 4-manifold.

2We assumed that the harmonic 2-formω present in the system
(60)–(66) in [21] is zero. This is expected if these equations result
from the nonrelativistic limit of general relativity (see Appendix B
in [24]).

GRAVITATIONAL POTENTIAL IN SPHERICAL TOPOLOGIES PHYS. REV. D 107, 063545 (2023)

063545-3



time dependence of the spatial metric, is also in agreement
with the fact that there are no strong observational claims
of a global anisotropy in the expansion of our Universe.
Thus, we end up with the following simplified gravitational
system, where we introduce the gravitational potential Φ,
defined by g ¼ −DΦ:

ð∂t − vcDcÞva þ 2vaH ¼ −hacDcΦþ ða≠gravÞa; ð8Þ

ð∂t − vcDcÞρ ¼ −ρð3H þDcvcÞ; ð9Þ

hcdDcDdΦ ¼ 4πGρ̂; ð10Þ

where ρ̂ is the density deviation (defined in Sec. II B), and
the expansion law

3ð _H þH2Þ þ 4πG
Mtot

VΣðtÞ
− Λ ¼ 0; ð11Þ

where we have in spherical coordinates ðξ; θ;φÞ

hab ¼
6a2ðtÞ
Ri

diag½1; sinn2ξ; sinn2ξ sin2 θ�ab; ð12Þ

with a being dimensionless and _a=a ¼ H and

sinnξ ≔
�
sinh ξ; if Ri < 0 ðhyperbolicÞ
sin ξ; if Ri > 0 ðsphericalÞ : ð13Þ

Once again, this system of equations is equivalent to the
cosmological Newton equations, but with the (implicit)
presence of spatial curvature (i.e., Rij ¼ R=3hij) in the
spatial derivative. In particular, as in cosmology based on
Newton’s equations, the density in the Poisson equation
arises as the difference from the average density on Σ; i.e., it
is the density deviation ρ̂ rather than the absolute density ρ.
This is the main difference with respect to the NEN theory
proposed by [25,26], who used the absolute density that led
to a white hole (see Sec. 3 in [21]).
From Eq. (11), we see that the expansion law is the same

as in Newton’s theory, which corresponds to Friedmann’s
expansion law, and this holds for any inhomogeneous
solution for ρ and v. This implies that there are no effects
of the inhomogeneities in the global expansion (such an
effect is often called the cosmological backreaction in
general relativity), no matter the class of topology chosen
(here Euclidean, spherical, or hyperbolic), thus answering
the question raised in [11]. Therefore, the only difference
with (Euclidean) Newton’s theory that might come from a
non-Euclidean topology will be a local influence on
structure formation, coming either from spatial curvature
or the precise choice of topology, i.e., the choice of
multiconnexity. A full study of these effects requires a
N-body simulation with the above system of equations. A
N-body simulation requires knowledge of the gravitational

potential related to a single point mass obtained as a
solution of the Poisson equation (10) with a Dirac δ field
for ρ. In the following we present this solution in the case
where Σ is a spherical manifold and as a function of the
(multiconnected) topology, i.e., as a function of the shape
of the Universe.

III. GRAVITATIONAL POTENTIAL IN THE
REGULAR SPHERICAL TOPOLOGIES

A. Topological terminology

For an introduction to topology-related terminology in the
context of cosmic topology, see [31], and for the spherical
case, see [32].Key terms include the 3-manifold itselfΣ (here
referred to loosely as “a topology,” to focus on topological
properties); the covering space Σ̃ (which in the case of
interest here will be Σ̃ ¼ S3); and the group Γ of holonomies
(a particular type of smooth mapping from Σ̃ to itself) that
relatesΣ and Σ̃ viaΣ ¼ Σ̃=Γ. Applying everymapping γi that
is a member of Γ to a single “tile”—a fundamental domain
(FD, which in this case is a filled-in polyhedron) ofΣ—gives
a full tiling of, in our case, the 3-sphere. We use the index 0
for the identity holonomy: γ0ðxÞ ¼ x; ∀ x ∈ Σ. The funda-
mental domain shape of Σ is not, in general, unique—for
instance the Klein bottle (a 2-dimensional manifold) can be
tiled by either a hexagon or a rectangle.
A topology is said to be globally homogeneous if the

distance between a test particle and its image in a
neighboring tile (within the covering space) is independent
of the particle’s position. For a more formal definition of
global homogeneity and the role of Clifford translations,
see (see Sec. 4.1 in [32]). We describe a topology as regular
if its fundamental domain is unique (a consequence of
global homogeneity) and is a platonic solid.

B. Choice of topologies

There are an infinite number of multiply connected
spherical and hyperbolic topologies. In practice, studies
of cosmic topology, whether observational or theoretical,
usually only consider a small number of topologies, in
particular, those for which the fundamental domain is
unique and is a Platonic solid.3 The main reason behind
this choice is that these topologies are globally homo-
geneous and regular, which follows the spirit of the
cosmological principle. In the present paper, we will only
focus on the spherical “Platonic” topologies, leaving the
hyperbolic ones for a later study. The reason for this is
that solving the NEN equations is highly nontrivial in the
multiply connected hyperbolic case in comparison with
the spherical case (see the remark in the Appendix).

3Some examples of “non-Platonic” topologies studied in
cosmology are the duct space [33], the slab space [7], and the
truncated cube space [26,34], which we will not consider in this
paper.
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Furthermore, several recent studies of cosmological data
that infer a nonzero spatial curvature favor a spherical
topology (e.g., [16,17,19]).
Among 3-dimensional spaces, there are exactly eight

orientable spherical topologies that can be defined starting
from a Platonic solid as a fundamental domain (see Tables 1
and 3 in [35]). These are labeledM1;…;M8 in (see Table 1
in [36]), and are listed in Table I of the present paper. Two
of these (spaces M1 and M2) can be equivalently con-
structed using a lens fundamental domain (see Sec. 4 in
[32]).4 Thus, the fundamental domain is not unique in these
two cases, which are therefore not globally homogeneous.
Among the six remaining spaces, M3;…;M8, the

fundamental domain used for the construction is either
the cube, the octahedron, or the dodecahedron. Spherical
spaces that are single-action spherical 3-manifolds are
necessarily globally homogeneous (see Sec. 4.1 in [32]).
In conclusion, from Table I, the topologies of interest for
this paper are the spaces M3, M6, and M7. They, respec-
tively, correspond to a regular tiling of the 3-sphere
by 8, 24, and 120 copies of the FD.
Remark. The tilings of the 3-sphere by 5, 16, or 600

black holes considered in lattice cosmology (e.g., [37]) do
not correspond to either a globally homogeneous topology,
or to a topological space, and therefore are not of interest
for the present paper.

C. Gravitational potential of a point
mass in spherical topologies

In this paper we want to calculate the gravitational
potential ΦΣ of a point mass M in the spherical topologies
chosen above. This potential is required to be able to

perform N-body simulations in these topologies, which is
one of the goals of the NEN theory.
We consider the mass to be at rest and for simplicity

(without loss of generality) we assume that it is placed at
the north pole of the 3-sphere with initial curvature radius 1,
i.e., Ri ¼ 6. Therefore, the density is described

by the Dirac field ρ ¼ Mδð0;0;0ÞΣ ðξ; θ;φÞ, centered on the
coordinates (0,0,0), of the Riemannian manifold ðΣ; hÞ;
and the average density is hρiΣ ¼ M=VΣ. The Poisson
equation (10), constraining the gravitational potential ΦΣ
created by the mass M, becomes

hcdDcDdΦΣ ¼ 4πGM

�
δð0;0;0ÞΣ ðξ; θ;φÞ − 1

VΣ

�
; ð14Þ

where the spatial metric in spherical coordinates is given
by (12).
To solve (14) we use the same method as in [26] by

splitting the equation over all the images of M in the
covering space S3. We have

δð0;0;0ÞΣ ðξ; θ;φÞ ¼
X
γi∈Γ

δγiðð0;0;0ÞÞS3 ðξ; θ;φÞ; ð15Þ

where δγiðð0;0;0ÞÞS3 denotes the Dirac field of S3 centered at the
holonomy position γiðð0; 0; 0ÞÞ. This split is well defined
because there are a finite number of images on S3. This is
not the case for the 3-torus [38] or hyperbolic topologies
(see the remark in the Appendix). Using VΣ ¼ VS3=NΣ,
where NΣ is the number of images of the fundamental
domain of Σ on S3, we have

δð0;0;0ÞΣ ðξ;θ;φÞ− 1

VΣ
¼
X
γi∈Γ

�
δγiðð0;0;0ÞÞS3 ðξ;θ;φÞ− 1

VS3

�
: ð16Þ

By linearity of the Laplacian and because the above sum is
finite, we can write ΦΣ in the form

TABLE I. List of the eight orientable spherical topologies definable with a Platonic solid fundamental domain (FD) (see Tables 1 and 3
of [35], and Table 1 of [36]). Columns indicate the 3-manifold name Σ defined in Table 1 of [36]; the shape of the initial choice of FD
for defining the space; other names; whether or not the space is guaranteed to be globally homogeneous by being a single-action
spherical 3-manifold (Sec. 4.1 in [32]); the number NΣ of copies of the FD that tile S3.

Space Σ Initial FD Names Single action NΣ

M1 Tetrahedron Lð5; 3Þ [36] No 5
M2 Cube Lð8; 3Þ [36] No 8
M3 Cube Quaternion space, four-sided prism space, S3=D�

2
(Sec. 4.1 in [32]) Yes 8

M4 Octahedron S3=Q8×Z3
(Table 4 in [36]) No 24

M5 Octahedron S3=D24
(Table 4 in [36]) No 24

M6 Octahedron Octahedral space, S3=T� (Sec. 4.1 in [32]) Yes 24
M7 Dodecahedron Poincaré homology 3-sphere, Poincaré dodecahedral

space, S3=I� (Sec. 4.1 in [32])
Yes 120

M8 Dodecahedron S3=P24×Z5
(Table 4 in [36]) No 120

4Section 3 of [36] shows that M1 is equivalent to Lð5; 3Þ and
M2 is equivalent to Lð8; 3Þ, where Lðp; qÞ, for p, q coprime and
0 < q < p, means that p copies of the lens fundamental domain
of central thickness 2π=p fill the 3-sphere, each matched after a
rotation of 2πq=p.
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ΦΣ ¼
X
γi∈Γ

Φγiðð0;0;0ÞÞ
S3 ; ð17Þ

with each Φγiðð0;0;0ÞÞ
S3 solution of the equation

hcdDcDdΦ
γiðð0;0;0ÞÞ
S3 ¼ 4πGM

�
δγiðð0;0;0ÞÞ
S3 ðξ; θ;φÞ − 1

VS3

�
:

ð18Þ
In other words, the gravitational potential of one point mass
in Σ corresponds to the sum of the potential (as calculated
in S3) of all the point mass images on S3. Thus, it is
sufficient to solve the Poisson equation for a single generic
image in S3; i.e., we need to solve

∂
2
ξΦ

ð0;0;0Þ
S3 þ 2 cot ξ∂ξΦ

ð0;0;0Þ
S3 ¼ 4πGM

�
a2δðξÞ − 1

2π2a

�
:

ð19Þ

The solution is

Φð0;0;0Þ
S3 ðt; ξ; θ;φÞ ¼ −

GM
a

½ðcot ξÞð1 − ξ=πÞ þ A�; ð20Þ

where A is an integration constant which is not physical and

sets the convention wewant to take for the value ofΦð0;0;0Þ
S3 at

the south pole (ξ ¼ π). Imposing limξ→π Φ
ð0;0;0Þ
S3 ðt; ξÞ ¼ 0

corresponds to A ¼ 1=π.
We see that the potential (20) depends only on ξ, which

is the comoving distance between the image at (0,0,0) and
the point at coordinates ðξ; θ;φÞ. Therefore, any term

Φγiðð0;0;0ÞÞ
S3 ðξ; θ;φÞ entering in the sum (17) can be obtained

by replacing ξ in (20) with the comoving distance
dðiÞðξ; θ;φÞ between the point at coordinates ðξ; θ;φÞ and
the ith image at coordinates γiðð0; 0; 0ÞÞ. Equation (17)
becomes

ΦΣðt;ξ;θ;φÞ

¼ −
GM
aðtÞ

X
γi∈Γ

�
cot ðdðiÞðξ;θ;φÞÞ

�
1−

dðiÞðξ;θ;φÞ
π

�
þA

�
:

ð21Þ
This is thegravitational potential createdbyonemass point in
any spherical topology.
Remark. We only consider globally homogeneous topol-

ogies, so changing the position of the point mass only
changes the gravitational field by a 4-dimensional rotation
on the 3-sphere. This is not the case for an inhomogeneous
topology. Applying the full group of holonomies Γ to the
point mass in an inhomogeneous topology yields a set of
images whose distribution varies depending on the position
of the point mass in Σ.

D. Embedding method for calculation

In view of calculating the Taylor series of formula (21), it
can be cumbersome to keep the 3-dimensional coordinates
ðξ; θ;φÞ. A simpler method, allowing in particular for an
easier computation of the distances dðiÞðξ; θ;φÞ, is to use an
embedding of S3 in E4 so that the metric on S3 is preserved
(as in [26]): a point ðξ; θ;φÞ on the 3-sphere is described
by a four-vector X in E4 such that XμXμ ¼ 1, where
Greek indices run from 0 to 3.5 The embedding is
not physical but just a mathematical trick to simplify the
calculation of the dðiÞ. The mapping onto the 3-sphere, i.e.,
from fXμgμ¼0;1;2;3 to ðξ; θ;φÞ, is made with hyperspherical
coordinates:

8>>><
>>>:

X0 ¼ cos ξ

X1 ¼ sin ξ sin θ cosφ

X2 ¼ sin ξ sin θ sinφ

X3 ¼ sin ξ cos θ

; ð22Þ

and the distance d½X;Y�, on the 3-sphere, between two
points Xμ and Yμ is given by

d½X;Y� ¼ arccosðX · YÞ: ð23Þ

Thus, the calculation of distances on S3 corresponds to
the calculation of a scalar product in E4 (introduced in
observational cosmology for the spherical and hyperbolic
cases in [39]). Setting the positions of the topological images
of the point mass as unit four-vectors YðiÞ, we obtain
dðiÞ ¼ arccosðX · YðiÞÞ, with X defined by (22). Then, using

the trigonometric relation cot arccos x ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
, the

gravitational potential (21) becomes

aðtÞ
GM

ΦΣðt;XÞ

¼ −NΣA −
X

fYi∶ γi∈Γg

X · YðiÞð1 − arccos ðX · YðiÞÞ=πÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðX · YðiÞÞ2

q :

ð24Þ

For the specific cases considered in this paper (spaces
M3,M6 andM7 in Table I), the positions Yi ≔ γiðð0; 0; 0ÞÞ
can be found in Clifton et al. (Table 3 in [40]) forM3 (eight
terms in the sum), and in Gausmann et al. (Appendix B in
[32]) for M6 (24 terms) and M7 (120 terms). The results of
Table II are derived from formula (24) with these positions.

5The pullback of the flat metric of E4 on the hypersurface
defined by XμXμ ¼ 1 is a three metric of constant scalar
curvature. This means that this embedding of the 3-sphere in
E4 preserves the spatial metric.
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E. N-body description

Formula (21) is the gravitational potential induced by one point mass in Σ. For a distribution of N massesMn at positions
ðξnðtÞ; θnðtÞ;φnðtÞÞ, the total gravitational potential at ðξ; θ;φÞ is given by

Φtotðt; ξ; θ;φÞ ¼ −
GMtot

aðtÞ NΣA −
XN
n¼1

�
GMn

aðtÞ
X
fγi∈Γg

cot ðdðn;iÞðt; ξ; θ;φÞÞ
�
1 −

dðn;iÞðt; ξ; θ;φÞ
π

��
; ð25Þ

where dðn;iÞðt; ξ; θ;φÞ is the distance between the point at ðξ; θ;φÞ and the ith image of the mass Mn. We recall that the
expansion law describing the evolution of the scale factor aðtÞ is given by Eq. (11) and does not depend on local dynamics.
Using the embedding in E4 and denoting by YðnÞðtÞ the position of Mn [inducing a set of images at positions Yðn;iÞðtÞ],

formula (25) can be rewritten

Φtotðt;XÞ ¼ −
GMtot

aðtÞ NΣA −
XN
n¼1

�
GMn

aðtÞ
X

fYi∶ γi∈Γg
X · Yðn;iÞðtÞ

ð1 − arccos ðX · Yðn;iÞðtÞÞ=πÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðX · Yðn;iÞðtÞÞ2

q �
: ð26Þ

As with Newton’s theory, the dynamics of the point masses is then solved via Newton’s second law (8), which writes for
each mass, denoting xiðnÞðtÞ ¼ ðξnðtÞ; θnðtÞ;φnðtÞÞ,

ẍiðnÞ þ Γi
cdðxkðnÞÞ_xcðnÞ _xdðnÞ þ 2H _xiðnÞ ¼ −ðhij∂jΦtotÞðt; xkðnÞÞ; ð27Þ

where Γi
klðxkðnÞÞ are the Levi-Civita coefficients at position xkðnÞ of the metric (12).

Relations (25) and (27) are valid for N-body simula-
tions of nonrelativistic structure formation in any spheri-
cal topology. For performing such simulations, the
quaternion space M3 is likely to be the easiest to imple-
ment numerically (see also [42], 5.4]). The advantage of
M3 is that the fundamental domain of this topology is a
cube, as in the case of the 3-torus usually used in
cosmological simulations. However, the M3 case differs
in that curvature is positive rather than zero and faces are
identified differently than in the 3-torus case: each
holonomy is a screw motion, corresponding to a trans-
lation by a fundamental domain length and a turn of π=2.
Implementation ofM6 andM7 will be more difficult, but is
likely to be needed (especially the case of M7) to study
how separable the effects of curvature and topology
are (see Sec. IV C).
While the exact solution (21) [which is generalized to N

bodies in (25)] is needed for (analytically) exact N-body
simulations, the calculations of its Taylor series can give
interesting information on the effects that topology and
curvature may have on structure formation. This Taylor
series is derived in the next section up to fifth order. We also
discuss different conventions for the choice of the (non-
physical) integration constant A.

F. Leading order solutions

In this section we analyze the form of the potential close
to the location of the point mass. We calculate the Taylor
expansion series of the potential as a function of the

physical distance r ¼ aξ to that point mass, where we
define the different orders Φn with

1

GM
ΦΣðt;XÞ ¼

X∞
n¼−1

Φnðr; θ;φÞrn: ð28Þ

We provide the results for each topology in Table II,
obtained using the software Maxima(see “Data and code
availability” at the end of the paper). We only give the
orders that remain isotropic (i.e., depend only on r) and
write them as a function of the volume VΣ ≔ 2π2a3=NΣ of
the manifold (i.e., volume of the fundamental domain, if
defined) and its curvature R (if nonzero). We also provide
the solution in the case in which the manifold is E3, T 3

(with VT3 ¼ a3), or H3. The zeroth order Φ0 is not shown
as it depends on the value of A present in the sum (24).
We stress that Φ0 ≠ −NΣA.
Two natural conventions are possible for setting the

value of the constant A as a function of the topology.
(1) Require Φ0 ¼ 0. This is similar to requiring the

vanishing of the potential at infinity in E3. The
values of A for this convention are given in Table III.
Using formula (24) with these values in N-body
numerical simulations would avoid the need to
calculate the zeroth order for each particle, which
might increase numerical efficiency.

(2) Require the average of the potential over the volume
of Σ to be zero:
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Z
VΣ

ΦΣðt;XÞa3 sin2 ξ sin θ dξ dθ dφ ¼ 0: ð29Þ

In this convention, adopted in crystallography and
plasma physics for T 3, we haveΦ0 ≠ 0. The value of
Φ0 in this case (called the Madelung constant) is
generally interpreted as the total interaction energy
created by one particle in Σ (e.g., [41]). However, it
is unclear if this interpretation is meaningful in the
case of spherical topologies. The values of Φ0V

1=3
Σ

(i.e., scaled to be adimensional at a fixed volume)
in this convention are provided for completeness
in Table IV. These are obtained by choosing
A ¼ −1=ð2πÞ for each topology.

While we do not expect the value of A for convention (i) to
have physical significance, the value of Φ0 in convention
(ii) could be interpreted physically, as is the case in the
relation between crystallography and the 3-torus [41].

1. Consistency check

To be coherent with the nonrelativistic theory in
Euclidean topologies, i.e., Newton’s theory, we should
retrieve Newton’s law from the limit R → 0þ of the S3

TABLE III. Values of the constant A in formula (24) in case (1),
where we impose the convention Φ0 ¼ 0, as a function of the
regular spherical topologies.

Integration constant A for Φ0 ¼ 0

Topology NΣ Analytical Numerical

S3 1 1
π

0.3183
M3 8 1

4π
0.0796

M6 24 ð9−4 ffiffi
3

p
πÞ

108π
−0.0376

M7 120 1
60π −

1
50

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 22ffiffi

5
p

q
− 1

18
ffiffi
3

p −0.1159

TABLE II. Taylor expansion series of the gravitational potential (GM ¼ 1) near a point mass in the infinite flat
space and the 3-torus (given by, e.g., formula (4.24) in [38]); in all the regular spherical topologies, as a function of
R and VΣ when they are nonzero; and for the simply connected hyperbolic case as given below in (32). The two
natural conventions for the zeroth order Φ0 are shown in Tables III and IV. The rows with entries for NΣ refer to
quotients of S3 (Table I). Anisotropic terms, i.e., featuring a dependence on θ or φ, are not shown; these are labeled
“anis.” The case of a point mass in the hyperbolic space H3 is also presented, to support the interpretations of these
results made in Sec. IV B, in this case R ¼ −6. However, H3 has the same topology as E3, so these are the same
topological 3-manifold, but with different curvatures (see the discussion in the Appendix concerning the physical
relevance of this solution).

Topology NΣ Φ−1 Φ1 Φ2 Φ3 Φ4 Φ5

Euclidean (infinite or Thurston-type)
E3 −1 0 0 0 0 0
T 3 −1 0 − 2π

3
1
VΣ

0 anis. 0

Spherical
S3 1 −1 1

3
R
6

− 2π
3

1
VΣ

1
45

�
R
6

	
2 − 2π

45
R=6
VΣ

2
945

�
R
6

	
3

M3 8 −1 1
3
R
6

− 2π
3

1
VΣ

1
45

�
R
6

	
2 anis. 2

945

�
R
6

	
3

M6 24 −1 1
3
R
6

− 2π
3

1
VΣ

1
45

�
R
6

	
2 anis. 2

945

�
R
6

	
3

M7 120 −1 1
3
R
6

− 2π
3

1
VΣ

1
45

�
R
6

	
2 − 2π

45
R=6
VΣ

2
945

�
R
6

	
3

Hyperbolic (infinite)
H3 −1 1

3
R
6

0 1
45

�
R
6

	
2 0 2

945

�
R
6

	
3

TABLE IV. Values of Φ0V
1=3
Σ (adimensional value at fixed

volume) in case (2), in which we impose the integral convention
(29), as a function of the regular spherical topologies. These
values are obtained with the choice A ¼ −1=ð2πÞ, which cancels
the average of the potential for each topology. We also provide
the value in the case of T 3 given by the zeroth order of the Ewald
summation [38,41].

Topology NΣ Φ0V
1=3
Σ for

R
VΣ

ΦdV ¼ 0

Euclidean
T 3 2.837

Spherical
S3 1 1.290
M3 8 2.581
M6 24 2.733
M7 120 2.847
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solution (20). For this, we reintroduce R and write the
solution as function of the physical distance r ¼ ξ=

ffiffiffiffiffiffiffiffiffi
R=6

p
:

ΦS3ðt; rÞ ¼ −
GM
a

cotðr
ffiffiffiffiffiffiffiffiffi
R=6

p
Þ
h
1 − ðr

ffiffiffiffiffiffiffiffiffi
R=6

p
Þ=π

i
;

ð30Þ

setting A ¼ 0. Then, in the limit R → 0þ we obtain
ΦðrÞ ¼ − GM

ar , which is Newton’s law with expansion.6

This limit is, of course, defined for R > 0, not at R ¼ 0
itself, where the topology is changed. The limit is also
defined, and the result equivalent, if we consider r → 0þ

instead ofR → 0þ, as done with the Taylor series. In other
words, the form of the Green function solution of the
(cosmological) Poisson equation around the singularity
does not depend on the boundary conditions, i.e., the
topology, even though these conditions are needed to
calculate that function.
The fact that in the small scale limit r → 0þ, the potential

is equivalent for any topology (as can be seen in the Φ−1
column of Table II), implies that the modification of the
large-scale properties of space only has weak effects on
small-scale gravitational effects.

IV. DISCUSSIONS

One of the main purposes of the formulas derived in
Secs. III C and III E is to provide a framework to perform
N-body simulations of structure formation in spherical
topologies. With Newton’s theory (i.e., in a Euclidean
topology), such simulations are mainly used to study the
non-linear regime of structure formation, while the linear
regime is usually described analytically with the weak-field
limit of general relativity. Since the scales of nonlinearities
(≲10 Mpc), as well as the largest linear inhomogeneity
scale (∼100 Mpc), are small compared to typical estimates
(≳10 Gpc) of lower bounds (in certain cases) of the finite
size of our Universe and its curvature radius, we expect the
effects of topology and curvature on (non)linear structures
to be weak.
We showed above in Table II that the lowest order terms

of the Taylor series of the potential are isotropic. Thus, an
alternative numerical strategy to using the exact expres-
sions of Secs. III C and III E would be to use the lower
orders of the Taylor series. This would be justified to
third order.
Independently of numerical strategies, these expansions

help to understand the roles of curvature and topology, that
are to some degree separated. This is discussed in the
following sections.

A. Isotropic terms

Table II shows the terms of the expansion series of each
regular spherical topology through to the highest isotropic
term, i.e., that does not depend on θ or φ. For S3, i.e., the
1-cell topology, the solution is formula (20) and is therefore
isotropic at full order. This is not the case for the other
regular spherical topologies, where the isotropic property
of the gravitational potential is violated at a high order,
depending on the topology. The Poincaré space, which tiles
S3 with 120 cells, is the most isotropic space, in the sense
that the potential remains isotropic up to and including the
fifth order, which corresponds to the fourth order for the
gravitational field g ≔ −DΦ.
This newly found uniqueness of the Poincaré space is

qualitatively similar to that found with the earlier, adjacent-
images heuristical approach, in which the Poincaré space
was the “best-balanced” [26], but is better justified physi-
cally using the current approach. What also remains
qualitatively confirmed in the study of topological accel-
eration [13] is that the local kinematics and the integrated
spacetime paths of extragalactic objects carry, in principle,
information that characterizes the global topology of
the Universe.
We expect anisotropic terms for spherical topologies

to be generically much more common than the isotropic
terms. However, averaging of observations under the
assumption of intrinsic isotropy often enables the extraction
of information with a minimum of free parameters: it will
generally be easier to infer isotropic terms than anisotropic
ones. Nevertheless, investigating if these anisotropic terms
are useful for distinguishing different topologies would be
worth followup work.

B. Interpretation of the even and odd orders

In Table II, we see that the spherical topologies have the
same isotropic odd orders of their expansion series at fixed
curvature, and the same even orders at fixed volume. For
the 3-torus, the first order is missing, in contrast to the
spherical cases, but again, the second order is the same at
fixed volume. To interpret this remarkable feature let
us consider the solution of the Poisson equation (10)
in H3 (we discuss the physical relevance of this solution
in the Appendix), which can be thought of as R3 on
which a nonzero spatial curvature of the form Rij ¼
ðRi=ð3a2ÞÞhij ¼ −ð2=a2Þhij is imposed: we have
DcDcΦH3 ¼ 4πGMδH3 , which leads to

∂
2
ξΦH3 þ 2 coth ξ∂ξΦH3 ¼ 4πGMδH3 ; ð31Þ

where sinnðξÞ ¼ sinhðξÞ in formula (13). The solution is

ΦH3 ¼ −
GM
aðtÞ cothðξÞ: ð32Þ6In the limit, using Eq. (11), the expansion actually disappears

since we obtain an infinite Universe with a finite mass.
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We give the expansion series around ξ ∼ 0 of this solution,
as a function of the distance r ¼ aξ from the origin, in the
last line of Table II. The odd positive orders are the same
as in the spherical topologies when normalized by the
scalar curvature. However, the even terms are missing.
Thus, it appears that we can interpret the odd (positive)

orders as an effect of nonzero spatial curvature, as these are
present for the spherical topologies, but are absent for T 3

and E3, where R ¼ 0. Moreover, we can interpret the even
orders to be an effect of the closedness (volume finiteness,
in this context) of the manifold, as these are missing for H3

and E3 (which are both open manifolds), but are present for
all the spherical topologies (which are necessarily closed)
and for T3. However, while the odd terms depend solely
on the curvature, the even terms can depend on both, and
not solely on the volume. This is the case for the fourth
(isotropic) order.
In summary, it appears that, apart from the classical term

in 1=r, the odd (isotropic) orders indicate curvature and the
even (isotropic) orders indicate finiteness.

C. Dominant effects: Curvature versus topology

For a fixed curvature, Table II shows that the gravita-
tional potential starts differing among the spherical topol-
ogies at the second order (VΣ depends on the number of
images, and thus on the holonomy group Γ). This implies
that in cases where the first order term of the Taylor series
dominates, the departure from the classical Newtonian law
1=r is mainly controlled by the spatial curvature, and the
specific choice of topology has a subdominant effect on the
gravitational potential.7 Since the inhomogeneity length
scale of cosmic structures is small compared to the minimal
size of the Universe typically inferred from WMAP and
Planck data [7,9], the first few orders of the Taylor series
will tend to be sufficient to describe curvature and
topological effects on the gravitational potential and struc-
ture formation.
We estimate the correction to the classical Newtonian

law that can be attributed to spatial curvature and topology
by evaluating Φ1=Φ−1 and Φ2=Φ−1 for the homogeneity
scale (rh ∼ 100 Mpc=h) and restoring the powers of r.
We consider the value of the curvature parameter jΩkj ≔
jRjc2=ð6H2

0Þ ∼ 0.05, currently given by studies of the
CMB inferring a positive curvature (e.g., [16]), i.e.,
jRj ≈ 0.033h2 Gpc−2. This is not the usually accepted
value, but is the highest estimate of non-negligible spatial
curvature currently debated. Thus, for the four spherical
topologies, we have



 Φ1rh

Φ−1=rh





 ≈ 1.9 × 10−5 for S3;M3;M6;M7; ð33Þ

and





 Φ2r2h
Φ−1=rh





 ≈
8>>><
>>>:

4.4 × 10−8 S3

3.5 × 10−7 M3

1.1 × 10−6 M6

5.3 × 10−6 M7

; ð34Þ

independently of H0. In the case of the Poincaré space, the
second order term is only four times weaker than the first
order, making the separation between curvature and topologi-
cal effectsmore difficult than for the other topologies, inwhich
the second order is even weaker. The third and fourth order
terms are several orders of magnitude weaker. Nevertheless,
the overall amplitudes are weak compared to the classical
Newtonian term. On typical scales of interest, the effects of
spatial curvature or topology that are directly detectable from
high accuracy estimates of the gravitational potential are likely
to be very weak. Still curvature may be probed via large scale
structure observations by several other methods, such as the
clustering ratio recently proposed in Ref. [43].
What has a better prospect of detectability is that the

long-term effect of Φ1 and Φ2, integrated over gigayear
timescales. This makes N-body simulations in a spherical
or hyperbolic universe a relevant study that might be able to
constrain global curvature, topology or both. For such a
study, the NEN theory in the form presented in Sec. III E
provides an ideal mathematical tool.

V. CONCLUSION

In this paper we used the non-Euclidean Newtonian
theory developed in [21] to study nonrelativistic effects
of spherical topologies on the gravitational potential. We
provided the general formula for the potential in any
spherical topology [Eq. (21)]. We calculated its Taylor
series near a point mass in the globally homogeneous
“regular” spherical topologies (the geometrically simplest
spherical topologies). The results are summarized in
Table II. Since the size of the cosmic structures are
expected to be small compared to the curvature radius or
the finite size of the Universe, the first orders of this Taylor
series provide a good estimation of the gravitational effects
that curvature and topology should have on structures.
As in the case of the (Euclidean) 3-torus, the potential in

spherical topologies includes terms in the Taylor series
beyond the classical 1=r term, for which we propose an
interpretation of the different orders: (i) the isotropic even
orders can be interpreted as an effect of the closedness of
the manifold; (ii) the isotropic odd orders can be interpreted
as an effect of nonzero spatial scalar curvature. A conse-
quence is that, compared to the point mass solution in a
3-torus, widely used in Newtonian cosmological simula-
tions, the spherical cases all feature an additional attractive
first order term dependent solely on the spatial curvature.
We also showed that the effect of the choice of topology is
moderately weaker than that of global spatial curvature for

7This result might not hold for globally inhomogeneous
topologies.
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the Poincaré dodecahedral space, M7, and significantly
weaker than the effect of curvature for the other three
spherical spaces. This suggests that topology and curvature
should have separable effects on the dynamics of structures.
We provided formulas to be used to perform N-body

simulations aiming at studying structure formation in
spherical topologies (Sec. III E). The main concern for
performing these simulations is that the current constraints
given by interpreting the Planck data and baryon acoustic
oscillation measurements within the homogeneous and
isotropic Friedmann models [8] imply a negligible spatial
curvature (jΩkj≲ 10−3). However, there has been a grow-
ing debate over the past few years whether or not the CMB
power spectrum alone favors positive curvature (e.g.,
[16,19]). A structure formation simulation in a spherical
universe under the assumption of the NEN theory would
test global curvature both by its usual Friedmannian effects
and by its effects in the first order of the potential: the two
effects would have to agree on the value of the scalar
curvature R. The NEN theory should thus lead to exper-
imentally falsifiable predictions.
Finally, in this paper we only considered spherical

topologies, and we focused on the spaces most likely to
have isotropic effects. Calculating the gravitational potential
inmultiply connected hyperbolic 3-manifolds is left to future
work. Generalizing the non-Euclidean Newtonian theory to
all of the topologies of the Thurston classificationwould also
be an interesting study that would provide a more complete
understanding of topological effects in cosmology.
Data and code availability.—The scripts for calculating

and confirming the results in Tables II, III, and IV are
available as free-licensed software (GPL-2 or later) at
https://codeberg.org/boud/topoaccel. These can be run
using the free-licensed software package Maxima (https://
maxima.sourceforge.io/documentation.html).
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APPENDIX: IS THE SOLUTION
IN H3 PHYSICAL?

While of interest in the current work, the solution of
the Poisson equation in the infinite space H3 would not

normally be considered to be physical as a non-Euclidean
Newtonian gravitational potential in the sense of NEN
theory, which prioritizes topological classification over
geometrical properties. Thus, for two manifolds having
the same topology, only one nonrelativistic (in other
words Newtonian-like) theory should be considered
physically valid. In particular, if the topology of the
manifold is that of E3, we should necessarily take a zero
Ricci tensor, and use (Euclidean) Newton theory. So, even
though H3 and E3 are not the same Riemannian manifold
in the sense that the Riemann structures defined on the
manifolds are different, they are the same topological
manifold. Therefore, there exists only one Newtonian
gravitational field, which is that given by considering the
Ricci tensor to be zero. Thus, the solution of the equation
DcDcϕ ¼ 4πGMρ with Rij ¼ ðR=3Þhij and R < 0

should not normally be considered as the gravitational
potential in the corresponding topological space.
For clarification, the procedure for calculating the

gravitational field in a 3-manifold in NEN theory is the
following:
(1) We choose the topology of the manifold Σ in which

we want to calculate the gravitational field.
(2) Following the procedure proposed in [21], the Ricci

tensor that needs to be considered should be the
“simplest” one that can be defined in the topological
space Σ. If the topology is irreducible in the sense
given by the Thurston decomposition (necessarily
closed, i.e., of finite volume), then Rij is given by
the spatial metrics in [31]; if instead the topology is
that of R3, then one must take Rij ¼ 0.

Thus, this procedure excludes a Riemannian manifold
which has the topology of R3 but a nonzero Ricci tensor,
i.e., we cannot have H3, and instead we only have E3.
This is a consequence of hyperbolic topologies in the
Thurston classification only including closed manifolds. For
closed hyperbolic 3-manifolds, the equation DcDcϕ ¼
4πGMðδΣ −M=VΣÞ is valid, with Rij ¼ R=3hij and
R < 0, since VΣ is defined (finite).
Remark. The splitting (16) is only possible because the

volume of the covering space S3 is finite. For Euclidean
or hyperbolic topologies, performing this decomposition
“naively” would lead to an infinite, divergent sum. In these
two cases, a method to enable the calculation of the
potential is to renormalize the divergent sum (see [38]
for the case of a 3-torus and the Poisson equation using the
absolute density). For example, the Ewald summation used
in some N-body codes corresponds to such a renormaliza-
tion in the case of the (Euclidean) 3-torus.
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