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We quantify the degree of fine-tuning required to achieve an observationally viable period of inflation in
the strongly dissipative regime of warm inflation. The “fine-tuning” parameter λ is taken to be the ratio of
the change in the height of the potential ΔV to the change in the scalar field ðΔϕÞ4, i.e., the width of the
potential, and therefore measures the requisite degree of flatness in the potential. The best motivated warm
inflationary scenarios involve a dissipation rate of the kind Γ ∝ Tc with c ≥ 0, and for all such cases, the
bounds on λ are tighter than those for standard cold inflation by at least 3 orders of magnitude. In other
words, these models require an even flatter potential than standard inflation. On the other hand for the case
of warm inflation with c < 0, we find that in a strongly dissipative regime the bound on λ can significantly
weaken with respect to cold inflation. Thus, if a warm inflation model can be constructed in a strongly
dissipative, negatively temperature-dependent regime, it accommodates steeper potentials otherwise ruled
out in standard inflation.
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I. INTRODUCTION

Inflation [1–10] is currently the most convincing mecha-
nism to address the horizon, flatness, and monopole prob-
lems in the standard big-bang cosmology. The accelerated
expansion rate during inflation assures that when the process
ends the Universe is sufficiently flat, homogeneous and
isotropic at the largest observable scales. In addition to
solving the problems posed by the Big-Bang cosmological
theory, inflation provides a mechanism for generating the
fluctuations that seed the inhomogeneities we observe in the
cosmic microwave background (CMB) [11]. Many models
of inflation involve a single scalar field, the inflaton, slowly
rolling down a nearly flat potential, inducing a quasi–de
Sitter phase. In these models, the density fluctuations are
adiabatic and originate from the quantum fluctuations of the
inflaton. A universal feature of most potentials implemented
in this framework is that they tend to overproduce density
fluctuations, unless the potential for the slowly rolling field is
chosen very carefully.
The degree of the fine-tuning necessary for a successful

inflationary model that uses a slow-rolling field ϕ was
studied quantitatively in [12]. Specifically, they derived
general bounds on a “fine-tuning” parameter λ, defined as:

λ≡ ΔV
ðΔϕÞ4 ; ð1Þ

where ΔV is the decrease in the potential VðϕÞ during the
inflationary epoch and Δϕ is the change in the value of the
fieldϕ over the same period. The parameter λ is thus the ratio
of the height of the potential to its width, i.e., ameasure of the
degree of flatness of the potential. The authors in [12] found
that for a standard inflationary model to be observationally
consistent, the potential has to be extremely flat, with a fine-
tuning parameter λ≲ 10−6 − 10−9. This bound on λ trans-
lates into a bound on the quartic coupling constant λq of the
underlyingmicrophysical theory.Given a quartic polynomial
potential monotonically decreasing over the interval of
interest1 we have jλqj ≤ 36λ [12], where the quartic term
in theLagrangian iswritten as 1

4
λqϕ

4. Note that the numerical
values of the bounds abovewere obtained for the 8 e-folds of
inflation during which density perturbations are produced on
observable scales, so that for typical potentials the bounds
over a longer period of inflation are significantly tighter, e.g.,
for 60 e-folds λq ≲ 10−12.
Although the inflaton is often taken to be only (mini-

mally) coupled to gravity, introducing couplings to other

*montefalcone@utexas.edu 1Note, this is a necessary feature of the slowly rolling solution.
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early Universe sectors can relax various restrictions nor-
mally imposed in inflationary models. A well-established
alternative framework to conventional (cold) inflation is
warm inflation, in which the inflaton is thermally coupled
to a bath of radiation [13–15]. Fluctuations in warm
inflation are predominantly thermal in origin, with quantum
fluctuations being subdominant in the limit of a large
dissipation rate between the two sectors. Additionally, the
inflaton continually sources the production of radiation,
which alleviates the need for a separate reheating phase at
the end of inflation.2

In this paper, we investigate for the first time the bound
on the parameter λ arising in the strong dissipative regime
of warm inflation. We find that the friction induced by the
dissipation reduces the required width of the potential for a
given number of e-folds of inflation, while the size of
perturbations is increased for a non-negative temperature
positive dependence of the friction term, leading to an
overall stringent requirement on the fine-tuned potential. In
Sec. II, we review the general properties and predictions of
warm inflation. In Sec. III, we formulate the problem for
strongly dissipative inflationary models, in analogy with
what was done for standard inflationary models in [12]. In
Sec. IV, we complete the derivation and find bounds on the
fine-tuning parameter λ both for the general case and the
special cases of a constant Hubble parameter and dissipation
strength. Finally, we conclude in Sec. V with a summary of
our results. We work in natural units with c ¼ ℏ ¼ kB ¼ 1.

II. BACKGROUND ON WARM INFLATION

In the warm inflation scenario, a substantial fraction of
the inflaton energy is converted into radiation during the
inflationary period. This mechanism is parametrized by the
introduction of a non-negligible dissipation (source) rate Γ
in the dynamics of the inflaton field (radiation density):

ϕ̈þ ð3H þ ΓÞ _ϕþ V;ϕ ¼ 0; ð2Þ

_ρR þ 4HρR ¼ Γ _ϕ2; ð3Þ

where a dot denotes the derivative with respect to cosmic
time and V;ϕ ≡ dV=dϕ. The criterion for warm inflation
to occur is that the thermal fluctuations dominate over
the quantum fluctuations, which simply amounts to
H < T [13].
Inflation is realized when the Hubble expansion rateH is

approximately constant. This is achieved when the poten-
tial VðϕÞ dominates over all other forms of energy. In terms
of the background evolution this amounts to:

H2 ≃
V

3M2
pl

; ð4Þ

where H ≡ _a=a is the Hubble parameter, a is the scale
factor of the Universe and Mpl ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
≈ 2.436 ×

1018 GeV is the reduced Planck mass. During this period,
known as the slow-roll regime of the inflaton field, higher
order derivatives in Eqs. (2) and (3) can be neglected,

ϕ̈ ≪ H _ϕ; and _ρR ≪ HρR: ð5Þ

As a result, in this regime the equation of motion for the
inflaton and the radiation bath respectively read:

_ϕ ≃ −
V;ϕ

3Hð1þQÞ ; ρR ≃
3Q _ϕ2

4
; ð6Þ

where the dissipation strength

Q≡ Γ=ð3HÞ ð7Þ

is a dimensionless ratio that measures the effectiveness at
which the inflaton converts into radiation. Additionally, we
assume that the radiation thermalizes on a timescale much
shorter than 1=Γ [13,14], so that the energy density of
radiation can be taken to be

ρRðTÞ ¼ α1T4; with α1 ¼
π2

30
g�ðTÞ; ð8Þ

where g�ðTÞ is the number of relativistic degrees of
freedom of radiation at temperature T. Combining
Eq. (8) with Eq. (6) gives us the evolution of the temper-
ature of the radiation bath during the inflationary period:

T ≃
�
3Q _ϕ2

4α1

�1
4

: ð9Þ

The friction terms present in Eq. (6) modify the standard
Hubble slow-roll parameter, which now amounts to:

ϵH ≡ −
_H
H2

≃
ϵV

1þQ
¼ M2

pl

2ð1þQÞ
�
V;ϕ

V

�
2

: ð10Þ

The accelerated inflationary period terminates when
ϵH ¼ 1, i.e., when ϵV ¼ 1þQ. This can be thought of
as a generalization of the slow-roll conditions obtained in
cold inflation, for which we would set Q ¼ 0. For Q ≫ 1,
the slow-roll conditions are substantially relaxed and can in
principle be satisfied by scalar field potentials that would
otherwise violate the standard slow-roll conditions in the
cold inflation scenario.
The presence of a radiation bath and a dissipation rate

not only alters the background dynamics of the inflaton
2For a recent model of warm inflation with a double scalar

field, see [16].
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field but also its perturbations. Specifically, in the strong
dissipative regime (Q ≫ 1), the thermal inflaton perturba-
tions dominate over the usually considered quantum
fluctuations and the primordial power spectrum takes the
general form [17–20]:

Δ2
R ≃

�
H2

2π _ϕ

�
2 ffiffiffiffiffiffiffiffiffi

3πQ
p �

T
H

�
GðQÞ: ð11Þ

Here, the function GðQÞ accounts for the coupling of the
inflaton and radiation fluctuations due to a temperature-
dependent dissipative coefficient,

Γ ∝ Tc; ð12Þ

with c ≠ 0. The function GðQÞ can only be determined
numerically by solving the full set of perturbation equa-
tions. Thus, GðQÞ ¼ 1 if c ¼ 0, while for c ≠ 0 and
Q ≫ 1, we can approximate GðQÞ with a power-law
function of Q, i.e.

GðQÞ ≃ aGQbG; ð13Þ

where the prefactor is generally aG ∼Oð1Þ and the expo-
nent is bG > 0 (< 0) for a positive (negative) temperature
dependence. For c ≥ 0, the amplitude of the scalar pertur-
bations in warm inflation is enhanced compared to standard
cold inflation; the larger the power c > 0, the larger the
enhancement as the fluctuations get coupled earlier [18].
For c < 0 we have the opposite effect, and the spectrum is
diminished with respect to the c ¼ 0 case and can be lower
than the standard cool inflation prediction in an extreme
dissipative regime.
In this paper, we take Q ≫ 1, describing the limit of a

strong thermal dissipation. We focus on the strongly dis-
sipative regime since it is only in this extreme scenario that
we can expect significant changes in both the numerator and
the denominator of λ in Eq. (1), relative to cold inflation.
Specifically, the caseQ ≫ 1 has two distinct features: (i) the
function GðQÞ in Eq. (11) is substantially greater than one,
leading to a modification of the possible values for the
Hubble rate and the field velocity _ϕ once the constraint on
the size of density perturbations [see Eq. (14)] is satisfied;
(ii) the condition on the slow-roll parameter is significantly
looser which allows the field excursion Δϕ to be much
smaller than MPl as we will see in more detail in Sec. IVA.

III. FORMULATION OF THE PROBLEM FOR
WARM INFLATIONARY MODELS

The derivation of the bounds on the fine-tuning param-
eter λ presented in [12] essentially boils down to two
effects: (i) the width of the potential must allow a
sufficiently large number of e-folds during inflation and
(ii) the height of the potential is constrained by observa-
tional constraint on the density perturbations δρ=ρ, together

with the so called overdamping constraint, that arises from
the consistency of neglecting the ϕ̈ term in Eq. (2). Note
that [12] restrict their discussion to the 8 e-folds of inflation
relevant to the production of perturbations observable in the
CMB, i.e. on scales of size 1–1000 Mpc.
Here, we follow the same prescription and take the

density perturbations constraint to be3

δρ

ρ

����
cmb

≡ ΔRjcmb ≤ δ ≈ 5 × 10−5; ð14Þ

which can be rewritten by combining Eqs. (9), (11), and
(14) in the more convenient form:

�
H2

_ϕ

�
≲
�ð2πÞ8

αs

�1
6 δ

4
3

Q
1
2
þ2

3
bG

; ð15Þ

with αs ≡ 27π2a4G=ð4α1Þ. This clearly differs from the
equivalent constraint for standard cold inflation, i.e.
ðH2= _ϕÞ≲ 2πδ, specifically in the presence of an explicit

dependence in Q and by an additional factor ð2πδÞ13=α1
6
s.

We further derive the overdamping constraint on the
potential to be���� ddt

�
1

3Hð1þQÞ
dV
dϕ

����� ≤
���� 1

ð1þQÞ
dV
dϕ

����: ð16Þ

Note, Eq. (16) is valid for any value of Q ≥ 0 and in fact,
for Q ¼ 0 (standard cold inflation) it reduces to the
overdamping constraint derived in [12]. Since in this paper
we are only interested in the strong dissipative regime
(Q ≫ 1), we can always safely take 1þQ ≃Q in Eq. (16).
We assume that both constraints in Eqs. (14)–(16) hold

for the relevant period of N ≈ 8 e-foldings that can be
probed in the CMB. In addition, we adopt a new time
variable x defined in Eq. (17) in terms of the number n of
e-foldings since the beginning of the epoch, and in this new
notation rewrite the overdamping constraint as Eq. (18) and
density perturbation constraint as Eq. (19):

dx≡ dn
N

¼ Hdt
N

; ð17Þ
����H d

dx

�
F
QH

����� ≤ 3NF
Q

; ð18Þ

3QH3

F
≲
�ð2πÞ8

αs

�1
6 δ

4
3

Q
1
2
þ2

3
bG

; ð19Þ

where the variable x ranges from 0 to 1 during the relevant
time period and

3Note that δ ¼ A1=2
s , where As is the amplitude of curvature

perturbations as measured by the Planck Collaboration [11].
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FðxÞ≡ −
dV
dϕ

: ð20Þ

Finally, we write the quantities ΔV and Δϕ as

ΔV ¼ N
3

Z
1

0

ðF2=QH2Þdx ¼ NF̄2

3Q̄H̄2

Z
1

0

f2

qh2
dx; ð21Þ

Δϕ ¼ N
3

Z
1

0

ðF=QH2Þdx ¼ NF̄
3Q̄H̄2

Z
1

0

f
qh2

dx; ð22Þ

where we introduced the dimensionless functions:

fðxÞ≡FðxÞ=F̄; hðxÞ≡HðxÞ=H̄; qðxÞ≡QðxÞ=Q̄:

ð23Þ

Here, the bar refers to the value of the functions evaluated at
x ¼ x̄, which denotes the value of x such that the quantity
QH3=F, that appears in the density perturbation constraint
in Eq. (19), is maximized.4 It is useful to note that in
Eqs. (21)–(22) we chose the same sign convention as in
[12] such that ΔV is a positive quantity and x ¼ 0 at the
beginning of the constrained time period.
Using the definition of λ in Eq. (1) and Eqs. (21)–(22),

we can write the fine-tuning parameter as:

λ ¼ 3Q̄
N3

�
3Q̄H̄3

F̄

�
2

J½f; q; h�; ð24Þ

with:

J½f; q; h�≡
R
1
0 ðf2=qh2Þ dxhR
1
0 ðf=qh2Þ dx

i
4
: ð25Þ

Adding the density perturbation constraint to Eq. (24)
we find:

λ≲ 3J½f; q; h�
N3

�ð2πÞ8
αs

�1
3 δ

8
3

Q̄
4bG
3

: ð26Þ

Wenote that λ is proportional to δ
8
3 instead of δ2, as in the cold

inflation scenario. Additionally, λ has an explicit Q depend-
ence only if bG ≠ 0, which is true for a temperature-
dependent dissipation rate (bG ≠ 0 i.f.f. Γ ∝ Tc with c ≠ 0).
In order to derive an upper bound on the fine-tuning

parameter, we must derive an upper bound on the func-
tional J½f; q; h�, subject to the following constraints:

qh3ðxÞ=fðxÞ ≤ 1; ∀ x ∈ ½0; 1�; ð27Þ

���� 1f dfdx −
�
1

h
dh
dx

þ 1

q
dq
dx

����� ≤ 3N; ∀ x ∈ ½0; 1�: ð28Þ

The first one of these inequalities directly follows from the
rescaling of the functions relative to the maximum value of
QH3=F and is related to the density perturbation constraint,
while the second inequality is the overdamping constraint
in Eq. (18). Finally, we also know that there exists a point
x ∈ ½0; 1� such that fðx̄Þ ¼ hðx̄Þ ¼ qðx̄Þ ¼ 1.

IV. CONSTRAINTS ON WARM
INFLATIONARY MODELS

Using the formulation of the problem given above, we
now present the constraints on the fine-tuning parameter λ
in warm inflationary models. We begin in Sec. IVA with
the simplified case of a constant Hubble parameter H,
dissipation strengthQ, and slope of the potential Vϕ. Using
the bounds on the field excursion as well as the size of the
density fluctuations, this simple argument illustrates the
basic power-law dependence of the fine tuning-tuning
parameter λ on the dissipation strength Q. Next, in
Sec. IV B we turn to the general case, in which f, h and
q are all arbitrary functions to be chosen independently.
Finally, in Sec. IV C we consider the special case of a
constant Hubble parameter (h ¼ 1), for which a stronger
bound on λ than in the general case can be derived. For each
of the cases we study, we also quote the corresponding
bound obtained in [12] for the case of cold inflation.
In order to obtain numerical values for our limits, in the

following we consider the representative case in which
δ ¼ 5 × 10−5, N ¼ 8, aG ¼ 1 and g�ðTÞ ¼ 228.75 (corre-
sponding to the number of relativistic degrees of freedom in
the minimal supersymmetric Standard Model).

A. An intuitive picture

We begin with a simple argument for the bounds on the
fine-tuning parameter λ in the case of a constant Hubble
parameter H and dissipation strength Q, assuming a linear
potential throughout inflation. For this fiducial case, we can
compute directly the field excursion Δϕ and the potential
change ΔV by saturating the slow-roll condition, i.e.,
ϵV ≤ Q, in combination with the bound on the observations
on the scale of the fluctuations.
The field excursion Δϕ in a strongly dissipative regime

can be significantly reduced compared to the case of no
dissipation for the same number of e-folds. This is because
the decay of the inflaton into radiation is effectively playing
the role of an additional friction term on top of the usual
Hubble friction from standard cold inflation. In formulas,
we get:

Δϕ
MPl

≈
_ϕ

H
N ¼

ffiffiffiffiffiffiffiffi
2ϵV

p
Q

N ≲
ffiffiffiffi
2

Q

s
N; ð29Þ4If the maximum is not unique, we can choose x to be any of

the maxima.
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where N is the number of e-folds and we used the relation
dN ¼ Hdt, and the slow-roll condition ϵV ≤ Q.
In a similar fashion, we can apply the slow-roll condition

on ϵV on the potential change ΔV during the inflationary
period, defined according to:

ΔV ≈
Vϕ

_ϕ

H
N ¼ 2NV

ϵV
Q

≲ 2NV: ð30Þ

These bounds account for the dynamics of the inflaton
during slow-roll and need to be combined with the
observations on the scale of the fluctuations in Eq. (15)
to fix the size of the potential and obtain a bound on λ. In
fact, it turns out that the constraint in Eq. (15) can be recast
as an upper bound on the scale of the inflaton V, and thus
on ΔV via Eq. (30), by including the slow-roll condition on
ϵV .

5 In formulas, we get:

ΔV
M4

pl

≲ 12N

�ð2πÞ8
αs

�1
3

δ
8
3Q−2−4

3
bG: ð31Þ

The corresponding bound in cold inflation reads:
ΔV=M4

pl ≲ 12Nπ2δ2. Thus, for a non-negative temperature
dependence on Γ (bG ≥ 0), the constraint onΔV in Eq. (31)
is clearly more stringent than in cold inflation due to its
negative dependence on Q as well as higher power of
dependence on δ (which is a small number). The more
stringent bound we find here is related to the fact that, in
order to reproduce the observed density perturbations, the
scale of inflation is reduced to counteract the large thermal
enhancement factor in the power spectrum [see Eq. (11)].
The opposite effect occurs when Γ possesses a negative
temperature dependence, as the power spectrum is dimin-
ished compared to the case c ¼ 0, so that larger values of
ΔV can in principle be achieved.
We finally combine Eqs. (29) and (31) to obtain the

constraint on the fine-tuning parameter λ in Eq. (1), which
reads:

λ≲ 3

N3

�ð2πÞ8
αs

�1
3

δ
8
3Q−4

3
bG ≈ 2.8 × 10−12Q−4

3
bG: ð32Þ

As expected, this is equivalent to substituting J ¼ 1 in
Eq. (26), i.e., setting q ¼ f ¼ h ¼ 1 ∀ x ∈ ½0; 1�.
For a temperature-independent dissipation rate for which

bG ¼ 0, the bound on λ becomes independent of the
dissipation strength Q and amounts to λ≲ 2.8 × 10−12.
The corresponding constraint on the fine tuning parameter

for standard cold inflation is much looser: λ≲ 1.8 × 10−9

[12]. This discrepancy gets even larger if we consider a
dissipation rate with a positive temperature dependence, i.e.
bG > 0. On the other hand, if we choose a dissipation rate
with a negative temperature dependence, i.e., bG < 0, then
for large enough values of the dissipation strength (i.e.,
Q−4bG=3 ≳ 500) the bound on λ can be weaker than for cold
inflation.
Overall, the numerical values obtained for the bound and

its power-law dependence on Q match the results from the
detailed computation of the following sections. The argu-
ment presented here emphasizes the nontrivial interplay of
the constraints on the field excursion in Eq. (29) and the scale
of inflation in Eq. (31). In short, in a strongly dissipative
regime, the value of Δϕ can be much smaller than in usual
cold inflation due to the effects of friction, e.g., Δϕ can lie
significantly below the Planck scale. At the same time, for
most warm inflationary models (for which Γ ∝ Tc and
c ≥ 0), the scale of inflationΔV is also significantly reduced
in order to reproduce the observed density perturbations, so
that the corresponding bound on λ becomes more stringent
compared to standard cold inflation.

B. The general case

Along with the bound on the fine-tuning parameter λ in
Eq. (26), we derive an upper bound for the functional
J½f; q; h� in Eq. (25), subject to the constraints in Eqs. (27)
and (28). For this purpose, it is convenient to define fq ≡
f=q in terms of which Eq. (25) reads:

J½fq; q; h� ¼
R
1
0 q ðf2q=h2Þ dxhR
1
0 ðfq=h2Þ dx

i
4
;

<

R
1
0 ðf2q=h2Þ dxhR
1
0 ðfq=h2Þ dx

i
4
≡ J½fq; h�; ð33Þ

where the first inequality stems from the fact that q is a
positive definite function ≤ 1 ∀ x ∈ ½0; 1�. From Eq. (33) it
follows that to derive an upper bound on the fine-tuning
parameter λ we simply need to find an upper bound on
J½fq; h� subject to the following constraints:

h3ðxÞ=fqðxÞ ≤ 1 ∀ x ∈ ½0; 1�; ð34Þ
���� 1fq

dfq
dx

−
1

h
dh
dx

���� ≤ 3N ∀ x ∈ ½0; 1�: ð35Þ

We now note that the above constraints and the definition of
J½fq; h� are equivalent to those defined for the standard cold
inflationary scenario in [12].6 Thus, we can simply quote5To accomplish this, we first rewrite Eq. (15) in terms of V, ϵV

and Q, using Eqs. (4) and (6), and then plug in the slow-roll
condition ϵV ≤ Q and Eq. (30). 6Equations (2.8), (2.10a), (2.10b), in their manuscript.
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here the general bound on the functional J derived in [12],
which states:

J½fq; h� ≤
27N3

32
: ð36Þ

Finally, by combining Eqs. (33) and (36) with Eq. (26)
yields:

λ <
81

32

�ð2πÞ8
αs

�1
3

δ
8
3Q̄−4

3
bG ≈ 1.2 × 10−9Q̄−4bG

3 : ð37Þ

As we anticipated in Sec. IVA, the explicit Q dependence
in Eqs. (32) and (36) is the same. Therefore, the implica-
tions of this bound for different dissipation rates, i.e.,
different values of bG, are similar to those presented in the
previous section; i.e., the bound is tighter than cold
inflation for c ≥ 0 and can be weaker for c < 0.
For this general case, the constraint on the fine tuning

parameter for standard cold inflation is λ ≤ 6.3 × 10−7 [12],
which is at least 3 orders of magnitude looser than the bound
obtained here for strongly dissipative warm inflation with
c ≥ 0. For instance for bG ¼ 0, we have λ < 1.2 × 10−9,
while if we set the dimensionless dissipation strength to the
nominal value Q̄ ¼ 100 and bG ¼ 2.315,7 we obtain λ <
8.1 × 10−16which is about 9 order ofmagnitude smaller than
the corresponding bound obtained for the standard cold
inflationary scenario in [12]. Ifwe take insteadbG ¼ −1.41,8

and keep Q̄ ¼ 100 we find λ < 6.9 × 10−6 which is about 1
order of magnitude weaker than the corresponding cold
inflation bound. We also note that for the same bG ¼ −1.41
but Q̄ ¼ 20, the bound on the fine-tuning parameter is
λ < 3.4 × 10−7, which is still marginally tighter than the
corresponding cold inflation case. This emphasizes that for
c < 0 the bound on λ can loosen relative to cold inflation
when the dissipation strength is large enough to sat-
isfy Q̄−4bG=3 ≳ 500.
Finally, we note that the scenario in which the dissipation

strength is constant during the inflationary epoch, i.e.,
q ¼ 1 ∀ x ∈ ½0; 1�, is encoded already in the constraint on
λ in Eq. (37). In fact, this special case simply amounts to
taking fq → f in Eq. (33) which does not change the
derived upper bound on the functional J.

C. Constraints with a constant Hubble parameter H

We now consider the restricted problem in which the
Hubble parameter is constant during the inflationary epoch,

i.e., h ¼ 1 ∀ x ∈ ½0; 1�. For this case, the functional J can
be written as:

J½f; q�≡
R
1
0 ðf2=qÞ dxhR
1
0 ðf=qÞ dx

i
4
; ð38Þ

with updated constraints that read:

qðxÞ=fðxÞ ≤ 1; ∀ x ∈ ½0; 1�; ð39Þ
���� 1f dfdx − 1

q
dq
dx

���� ≤ 3N; ∀ x ∈ ½0; 1�: ð40Þ

By making the same convenient substitution fq ¼ f=q
as for the general case, we can rewrite J as:

J½fq; q� ¼
R
1
0 qf2qdxhR
1
0 fqdx

i
4
;

<

R
1
0 f2qdx

½R 1
0 fqdx�4

≡ J½fq�: ð41Þ

In a similar fashion to the general case, the problem now
amounts to finding an upper bound on J½fq�, subject to the
following constraints:

fqðxÞ ≥ 1; ∀ x ∈ ½0; 1�; ð42Þ
���� 1fq

dfq
dx

���� ≤ 3N; ∀ x ∈ ½0; 1�: ð43Þ

We again note that the above constraints and the
definition of J½fq� are equivalent to those defined in [12]
for the constant Hubble parameter case.9 We can therefore
quote the equivalent bound previously derived in [12],
namely:

J½fq� ≤ 3N: ð44Þ

Finally, we can combine Eqs. (41) and (44) with Eq. (26) to
obtain the desired upper limit on the fine-tuning parameter:

λ <
9

N2

�ð2πÞ8
αs

�1
3

δ
8
3Q̄−4

3
bG ≈ 6.2 × 10−11Q̄−4bG

3 ; ð45Þ

We again note that the explicit Q dependence in Eq. (45) is
the same as in Eqs. (32) and (37). The implications of this
bound for different dissipation rates are equivalent to those
described extensively in the previous sections. The only
difference is that in the case of constant Hubble parameter,
the bound on λ is roughly 2 orders of magnitude more

7This value of bG corresponds to the case c ¼ 1 as found in
[21,22].

8This value of bG corresponds to the case c ¼ −1 as found
in [23]. 9Equations (3.26), (2.10a), (2.10b), in their manuscript.
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stringent that the constraint obtained in the general case
presented above in Sec. IV B. This distinctive feature of the
constant Hubble parameter case was also found for the
standard cold inflationary scenario in [12].

V. SUMMARY

In this paper, we have studied the bounds on the fine-
tuning parameter λ in Eq. (1) for a large class of strongly
dissipative warm inflationary models, defined through the
temperature dependence of the dissipation rate Γ at which
the inflaton decays into particles in the radiation bath. The
constraints have been derived for the general case in which
both the Hubble rate and the dissipation strength evolve
with time, as well as for the case in which the Hubble rate is
assumed to be a constant. We find that in most cases, the
fine-tuning parameter is confined to be smaller than the
corresponding cold inflationary models. More precisely, if
the dissipation rate Γ has a non-negative temperature
dependence (Γ ∝ Tc with c ≥ 0), the bounds on λ are at
least 3 orders of magnitude more stringent than those
derived in standard cold inflation. Additionally, for a
strictly positive coefficient c > 0, we have an explicit
negative dependence of the bound on λ on the parameter
Q, which implies that for large values of the dissipation
strengthQ our constraints become significantly tighter, i.e.,
λ≲ 10−15 − 10−20 for Q ∼ 102 – 104 when bG ∼Oð1Þ, as
in Eq. (37). In the case of a constant value of the
Hubble parameter, the constraints on λ are around 2
orders of magnitude even more stringent than those
obtained in the general case, similarly to what is found
for cold inflation.
Overall, for all the models mentioned above the scalar

field potential has to be flatter than what is required for cold
inflation in order to build a successful warm inflationary
model. The only exception is for models characterized by a
dissipation rate with negative temperature dependence
(c < 0), for which the bound on λ shows a positive
dependence on Q. In this case, at large values of the
dissipation strength the bound on λ substantially relaxes,
implying that we can accommodate much steeper potentials
that are otherwise ruled out in standard cold inflation.
As a whole, these results are counter-intuitive. One

would expect the bounds on λ to be looser regardless of
the form of the dissipation rate Γ since, in a strongly
dissipative regime, the field excursion Δϕ is substantially
reduced, see Eq. (29). However, one must also take into
account the density perturbation constraint which, for a
non-negative temperature dependence on Γ, sets a much
tighter bound on the scale of inflation ΔV due to the
thermal enhancement factor in the amplitude of the scalar
perturbations, as in Eq. (31). In other words, unless we
significantly lower the energy scale of the inflaton potential
compared to a cold inflationary scenario, models of
strongly dissipative warm inflation (with Γ ∝ Tc and
c ≥ 0) generally overproduce density fluctuations. These

competing effects on the field excursion and the scale of
inflation interact in a nontrivial manner and result in more
stringent bounds on λ compared to standard cold inflation
for most warm inflationary models, except those with a
negative temperature dependence on Γ (i.e., those models
which allow a smaller amplitude of the scalar perturbation
compared to cold inflation).
So far, most explicit constructions of dissipative terms

for warm inflationary models show a positive dependence
with temperature. Specifically, a cubic temperature depend-
ence is obtained in the low-temperature regime for warm
inflation, in which the inflaton couples only to the heavy
intermediate fields whose masses are larger than the
radiation temperature [23–27]. In contrast, a linear temper-
ature dependence is obtained in the high-temperature
regime where the inflaton is directly coupled to the
radiation fields and is protected from large thermal cor-
rections due to the symmetries obeyed by the model
[21,23,28]. Also in a high-temperature regime of warm
inflation, one can also produce an inversely temperature-
dependent dissipation rate [23,29,30]; to date the only
explicit physical construction of this type was derived in
[31].10 This further emphasizes the main result of our work.
While it is possible to construct a model of warm inflation
with relaxed bounds on the fine-tuning parameter, for most
warm inflationary models of physical interest the require-
ments on the flatness of the scalar field potential are very
stringent and significantly more severe than those found in
the cold inflationary scenario.
As a final remark, we emphasize that the more stringent

bound demanded on the value of λ within the warm
inflation framework does not particularly lead to disfavor-
ing any inflation potential model. For example, the class of
runaway potentials such as those studied in Ref. [33]
naturally produces very small values of λ which are in
agreement with the bounds found in this work.
Additionally, models with monomial power law potentials
and a positively temperature dependent dissipation coef-
ficient are generally only compatible with observations in
the weak dissipative regime Q ≪ 1 [22], for which the
same bounds on λ from cold inflation apply.
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