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We show that dense neural networks can be used to accurately model the cooling of high-energy particles
in the early universe, in the context of the public code package DarkHistory. DarkHistory self-consistently
computes the temperature and ionization history of the early universe in the presence of exotic energy
injections, such as might arise from the annihilation or decay of dark matter. The original version of
DarkHistory uses large precomputed transfer function tables to evolve photon and electron spectra in redshift
steps, which require a significant amount of memory and storage space. We present a light version of
DarkHistory that makes use of simple dense neural networks to store and interpolate the transfer functions,
reducing their total size by a factor of ∼ 400, from ∼ 17 Gb to ∼ 45 Mb, which performs well on small
computers with limited memory and storage. This method anticipates future expansion with additional
parametric dependence in the transfer functions without requiring exponentially larger data tables.

DOI: 10.1103/PhysRevD.107.063541

I. INTRODUCTION

Darkmatter (DM) constitutes 84%of thematter content in
the universe [1] and plays an important role in the evolution
of the early universe. It has so far eluded detection in
all channels other than gravitational interactions. DM
annihilation or decay could inject energy in the form of
Standard Model particles, modifying the temperature
and ionization of the intergalactic medium (IGM) and the
anisotropies of the cosmic microwave background (CMB);
studies of these observables have placed strong constraints
on such energy injections (e.g., [2–15]).

DarkHistory [16] is a Python package developed to calculate
the evolution of the IGM temperature and ionization in the
early universe in the presence of such exotic energy
injections. For an injected spectrum of Standard Model
(SM) particles, it calculates the particle cascade by com-
puting (1) the production of photons and electrons/posi-
trons by the decay of the originally injected SM particles;
(2) the subsequent secondary particle cascade and
energy deposition arising from this exotic injection of
photons/electrons/positrons, due to interaction with the

IGM and the photon bath; and (3) modifications to the
IGM’s temperature and ionization from the secondary
particles and their energy deposition, using a simple three-
level atom (TLA) model.
These calculations are carried out in redshift steps

starting prior to recombination (at redshift 1þ z ¼ 3000

by default) and ending well after reionization near the
present day (redshift 1þ z ¼ 4). In particular, the particle
cascade in step (2) is evaluated using precomputed transfer
functions, which are matrices that take an input spectrum
and output the spectrum of secondary particles (for a given
redshift step). DarkHistory includes the backreaction effects of
changes to the ionization level of matter, which means the
transfer functions themselves are functions of the gas
ionization levels, as well as redshift. In the previous version
of DarkHistory, this dependence is realized by interpolating
tables of transfer function matrices on a grid of values for
the hydrogen and helium ionization fractions, as well as a
grid of redshift values.
At around 1.5 Gb per table with 12 tables around this

size, the transfer functions take up significant storage space
as well as memory during runtime, since they are all loaded
in a standard run. They will also be difficult to scale up to
include additional parametric dependence, as the expected
size scales exponentially with the number of added para-
meters. Intuitively, storing the transfer functions as tables is
an overrepresentation of the information content within,
since the transfer functions, despite not being smooth
globally, can be divided into multiple regions that are
relatively smooth, each of which could plausibly be fitted
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with analytical functions. However, in practice, finding
such a solution is quite nontrivial, and even if a solution
was found by ad hoc methods, it would be quite specific to
individual transfer functions and potentially difficult to
maintain under changes to the code. In this work, we
present a general solution to these issues by replacing the
transfer function tables with trained dense neural networks.
Recently, machine learning and especially neural net-

works (NNs) has seen many applications in high energy
physics and astrophysics [17–20]. NNs are often used to
capture highly nonlinear and complex relations between
inputs and outputs, and in particular, dense neural networks
(DNNs), also known as fully connected neural networks,
are a class of general function approximators given
sufficient neuron numbers [21].
In the updated version ofDarkHistorywe present in thiswork,

we use lightweight DNNs to store and automatically inter-
polate DarkHistory’s transfer functions. A transfer function is
essentially a multidimensional table, with 2 dimensions
corresponding to the input and output particle energy, and
the rest corresponding to physical parameters which in this
case will be a subset of redshift z, ionized hydrogen fraction
xHII ≡ nHII=nH, and singly ionized helium fraction
xHeII ≡ nHeII=nH. (As a matter of convenience, we define
the singly ionized helium fraction with the hydrogen number
density as the denominator, so that xHeII and xHII can be easily
summed.) The DNN-based transfer functions are shown in
schematic form in Fig. 1. We let a DNN take in all of the
relevant parameters on equal footing and predict (the natural
logarithm of) the transfer function value P.
Using DNNs as transfer functions has several benefits:
(i) The DNNs we use are smaller in size compared to

the stored transfer function tables, by a factor
of ∼400.

(ii) The computed matter temperature history and ion-
ization history match those calculated using the

transfer function tables to within a few percent
relative difference (with subpercent relative differ-
ences in regions when the species in question are
more than 10% ionized), while the spectral distor-
tion due to upscattered CMB photons (see Sec. II for
precise definition) matches to below the 10 percent
level. These errors are small compared to current
experimental uncertainties.

(iii) We expect the DNNs to have improved scaling in
size when additional parameters are added compared
to the original tables. (Including a smooth depend-
ence on an additional parameter might result in a
Oð1Þ increase in the DNN neuron number to reach
similar accuracy due to increased information con-
tent. On the other hand, adding an additional
dimension to a data table would increase its size
by a multiplicative factor of the number of bins in
the new parameter.)

(iv) The DNNs automatically interpolate to any the
physical parameter values and input/output particle
energies within the trained range. This allows the use
of flexible binning in DarkHistory, and will also allow
us to perform interpolation on sparse training data
[22,23]. The latter may become necessary in future
extensions of DarkHistory, when probing dependence
on an increasing number of physical parameters and
generating dense grids of training data becomes
computationally expensive.

(v) The DNNs predict transfer functions quickly, taking
up a similar amount of time to the rest of the
evolution routine for injected particles. Thus com-
pared to retrieving tabular data from memory on a
personal computer, the use of DNNs results in only a
Oð1Þ increase in total runtime.

(vi) Open source building and training tools for NNs and
especially simple architectures like DNNs are
readily available. (In this work we use TensorFlow

2.0 [24] with Keras [25].)
In Sec. II, we introduce DarkHistory and the roles of

transfer functions. In Sec. III, we detail the training and
implementation of the DNN transfer functions. In Sec. IV
we present test runs and discuss the performance of
DNN transfer functions compared to baseline DarkHistory.
Finally, in Sec. V we summarize our results, briefly
discuss other possible approaches, and outline some ideas
for future expansion with DNN transfer functions in
DarkHistory.

II. TRANSFER FUNCTIONS IN DarkHistory

To better illustrate the role of transfer functions, we
briefly introduce the procedure followed in DarkHistory and
sketched in Fig. 2, which is modified from a flow chart in
Ref. [16]. In Fig. 2, boxed quantities represent particle
spectra, and arrows represent transfer functions, which are
functions acting on spectra. DarkHistory stores the free

FIG. 1. Model schematics of a dense neural network transfer
function. A DNN takes in (the logarithm of) the input and output
photon/electron energy and necessary physical parameters in-
cluding the redshift z, ionized hydrogen fraction xHII, and singly
ionized helium fraction xHeII, and outputs (the logarithm of) the
transfer function value P. The transfer function matrix acting on a
given discretized spectrum is then obtained by evaluating the
DNN on the given energy abscissa.
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streaming photon spectrum, the IGM temperature, and the
IGM’s ionized hydrogen fraction and singly ionized helium
fraction at each redshift step (these quantities are assumed
to be homogeneous). For each redshift step, DarkHistory:
(1) Converts injected SM particles at that redshift

to injected photons Nγ
inj and electron/positrons

Ne
inj (hereafter referred collectively as electrons). In

DarkHistory, high energy (>3 keV) positrons are
treated as electrons since their dominant energy-loss
process, inverse Compton scattering (ICS) on the
CMB, does not depend on the particle charge. Lower-
energy positrons are assumed to annihilate and the
resulting photon spectrum is tracked; their kinetic
energy is approximated as following the same pattern
of energy deposition as that of the electrons (see
Ref. [16] for a more in-depth discussion).

(2) Computes any injected electron spectrum’s energy
deposition into ionization, excitation, or heating
by applying the transfer function R̄c. Computes
secondary photon and electron spectra produced
from injected electrons due to ICS, positronium for-
mation and decay, and atomic processes by applying
the ICS transfer function T̄ICS and secondary electron
transfer function T̄e, and evaluating the spectrum
of gamma rays produced from positron annihilation
N̄γ

pos. These secondary photon spectra are added to the
spectrumof photonsNγ propagated from the previous
step, plus any injected photon spectrum.

(3) Computes the secondary particles and energy
deposition produced by a propagating photon spec-
trum Nγ , due to a variety of processes, including
photon-photon scattering, Compton scattering,
pair production, photoionization, and redshifting.
The production of secondary electrons/positrons

in the same redshift step, and their subsequent
production of photons via ICS on the CMB or
positron annihilation, are also included. The propa-
gating photon spectrum for the next redshift step is
obtained by applying the high energy photon transfer
function P̄γ to Nγ . The low energy photon spectrum,
which stores photons below 3 keV that either photo-
ionize within the redshift step or lie below 13.6 eV, is
obtained by applying the low energy photon transfer
function D̄γ . The low energy electron spectrum,
which stores electrons with kinetic energy below
3 keV where atomic cooling dominates ICS and is
treated separately in the electron cooling module, is
obtained by applying the low energy electron transfer
function D̄e. Finally, the photon’s energy deposition
into ionization, excitation, and heating is obtained
by applying the high energy deposition transfer
function D̄high

c .
(4) Computes the change to IGM temperature and

ionization by first calculating the energy deposition
fraction fc’s, from the low-energy electron/photon
spectra and direct energy deposition by higher-
energy particles, and then performing the TLA
integration (see Ref. [16] for details).

In general, transfer functions from an input spectrum to
another spectrum (such as T̄ICS, P̄γ) take up much more
space than those outputting an energy value (such as D̄high

c )
or those that are diagonal (such as D̄γ). For this version of
DarkHistory, we focus on replacing the largest spectral
transfer functions with DNNs, but similar procedures
can be applied to the lower-dimension transfer functions
in the future. In the following we introduce the two
major types of transfer functions we will replace in more
detail.

FIG. 2. DarkHistory flow chart and transfer functions. Starting with injected photons and electrons, this flow chart illustrates the work
flow of DarkHistory in the evolution of each redshift step. The boxed quantities are particle spectra and the arrows indicate transfer
functions, which act on the particle spectra. The orange transfer functions are generated or reconstructed using DNNs, while the blue
ones only use tabulated data. (Modified from Fig. 1 in Ref. [16].)
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A. ICS transfer functions

As discussed above, the ICS transfer functions describe
the spectrum of scattered photons from the complete
cooling of injected electrons. Unlike the transfer functions
applied to the photon spectrum, the ICS transfer functions
T̄ICS, T̄e, and R̄c are not directly interpolated from tables,
but reconstructed from reference ICS transfer function
tables. Section III. D and Appendix A of Ref. [16] describe
in detail how this is achieved, and we only provide a simple
summary here: since an electron quickly deposits all of its
energy in one of our redshift steps, in order to obtain the
total secondary spectrum or energy deposition by an
electron, we need to consider multiple interaction events
(via ICS and atomic processes). This can be done recur-
sively: one can reconstruct the full ICS secondary spectrum
and energy deposition for an electron of energy E knowing
the same information for all electrons with E0 < E. With
discretized energy abscissa, the full ICS-induced photon
spectrum and energy output can be solved recursively from
the lowest energy bin. As a result, at each redshift, one can
solve for the full electron ICS transfer functions using
transfer functions describing a single ICS scattering event
(as well as functions describing the interaction rates due to
atomic processes).
The transfer functions for a single ICS scattering event

on the CMB have simple (approximate) scaling relations
with respect to the temperature of the CMB T, as described
in detail in Appendix A of Ref. [16]. As such one can derive
ICS transfer functions at different redshifts from a
single transfer function at a fixed redshift, assuming
the CMB is the dominant radiation background (in
DarkHistory, 1þ z ¼ 400 is used). These reference transfer
functions are interpolated from tables ics_thomson,
ics_rel, and ics_engloss, corresponding respec-
tively to transfer functions for the secondary photon spectra
of nonrelativistic electrons and relativistic electrons, and
the relativistic electron energy loss in a single ICS scatter-
ing event on the CMB. It is these tables that we will fit
with DNNs.

B. Photon transfer function

The high energy photon transfer function P̄γ , low energy
photon transfer function D̄γ , and low energy electron
transfer function D̄e are interpolated from corresponding
tables highengphot, lowengphot, and lowenge-
lec. They in general depend on the CMB temperature
through redshift and matter ionization levels (ionized
hydrogen fraction and singly ionized helium fraction).
For each combination of these physical parameters, low-
engphot can be represented as 1-D arrays (with the one
dimension being input/output energy) and is a factor of 500
smaller than the other transfer functions, so it is at present
not replaced with a DNN. We also found that the numerical
calculation of Compton scattering used in the previous

version of DarkHistory was inaccurate in some parts of
parameter space (in particular populating kinematically
forbidden regions), and so we have updated the relevant
tabular transfer functions to ensure sufficient accuracy.1 We
now describe some special features of the photon transfer
functions:
(a) Redshift regimes and matter ionization dependence.

All photon transfer functions depend on the redshift,
as the photon cooling processes involve interactions
with the redshift-dependent photon background and/or
interstellar medium. For late redshifts (z < 40) en-
compassing the epoch of reionization, the transfer
functions are allowed to vary with both the ionized
hydrogen fraction xHII and the singly ionized helium
fraction xHeII, which can be altered by exotic energy
injections. For redshifts between helium recombina-
tion and reionization (40 < z < 1600), the ionized
helium fraction can be safely approximated as zero
[16]; the transfer functions are precomputed assuming
no helium ionization, but can depend on the hydrogen
ionized fraction. Before helium recombination
(z > 1600), exotic energy injections consistent with
current experimental bounds have little impact on the
thermal equilibrium determining hydrogen and helium
ionization levels [16], so DarkHistory uses Recfast [27]
ionization fractions as a baseline to precompute the
transfer functions, which only depends on redshift.
For the DNN implementation, the flexibility of the

network allows one DNN to be trained on the entire
redshift range 4 < z < 3000 with a learned depend-
ence on the ionization levels, for each transfer
function. However, using different networks for differ-
ent redshift regimes gives slightly better accuracy,
and the latter approach is chosen in this version of
DarkHistory.

(b) Redshift step coarsening and energy conservation.
In the previous version of DarkHistory, photon
transfer functions are computed with redshift step
Δ logð1þ zÞ ¼ 0.001. One can choose to increase
the (log) step size to multiples of 0.001 to speed up
computation. To combine multiple redshift steps,
DarkHistory precomposes multiple propagation transfer
functions P̄γ and applies them appropriately to the

deposition transfer functions D̄γ, D̄e, and D̄high
c . Since

the DNN implementation of transfer functions intro-
duces a small amount of error that can accumulate over
many redshift steps, in order to increase numerical
stability, we train the DNNs to reproduce the pre-
composed transfer functions, and require the use of a

1This issue primarily affected secondary electrons in the 10 eV
to 3 keV range produced by Compton scattering of photons with
energies between 100 eV and 10 s of keV; the effects on
observable quantities were very small for all cases we checked.
The updated tables on Zenodo [26] incorporate this correction.
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fixed log redshift step of Δ logð1þ zÞ ¼ 0.012.2 To
further decrease numerical error, we store the total
fraction of the injected energy entering each type of
secondary particle spectrum, for an injected photon
of any given energy, and use these data (which are of
∼1% the size of the transfer functions) to ensure
energy conservation while accounting for energy loss
to redshifting. We discuss the precise procedure of
transfer function precomposing and imposing energy
conservation in Appendix A 1.

III. TRANSFER FUNCTIONS FROM
NEURAL NETWORKS

As described earlier and as indicated in Fig. 1, we update
the largest transfer function tables (ics_thomson,
ics_rel, ics_engloss, highengphot, and low-
engelec) to DNN networks that take in input and output
particle energies, redshift, and possibly (depending on
redshift) the ionized hydrogen fraction and singly ionized
helium fraction, to produce the transfer function value P. In
general, P can vary greatly across many orders of magni-
tude. (For example, after recombination the probability for
a 10 keV photon to free stream, losing energy only through
redshifting, is substantial, while the chance of it directly
producing secondary photons of 1 keV is very close to 0,
since this outcome is not kinematically allowed in a single
Compton scattering event, nor is the scattered electron
produced by Compton scattering or photoionization able to
up-scatter other photons to 1 keV.) As such, we train the
networks to output the natural logarithm of the transfer
function value logP. Similarly, since the input/output
energy abscissa and our redshift steps are also binned in
log space by default, the networks also take the log value of
these as inputs. The ionized hydrogen fraction and singly
ionized helium fraction are linearly scaled to match the
spread of other parameters before being fed into the DNN.
For high energy photons, the redshift-coarsened transfer

functions (see Sec. II B) are fitted. Note also that the transfer
function value P can be negative since by convention the
CMB spectrum is subtracted from the transfer function and
the negative values (and the positive values at higher
energies) represent CMB photons being upscattered. In this
case log jPj is predicted by theDNNs, and the negative value
region is recovered in a postprocessing step that identifies
local minima of log jPj, which takes up an negligible time
compared to the rest of the DarkHistory routine. (The sign of

the value at the minimum is ambiguous, so we linearly
interpolated the transfer function values of the two closest
bins in the output energy. We expect the errors coming from
this step to be small.) Additionally, the transfer functions
values near the diagonal in the input/output energy dimen-
sions (corresponding to the free-streaming photons) are
adjusted to enforce energy conservation up to redshifting.
For details please refer to Appendix A 1.
After optimizing hyperparameters describing the

model and training, via grid searching, we find that for
all transfer functions in question, the best performance
was obtained by using DNNs with 7 hidden layers with
400 neurons each, making the number of parameters per
DNN ∼ 4002 × ð7–1Þ ∼ 9.7 × 105, and 2.9 × 106 for each
transfer function built from 3 such networks.
Training is done with TensorFlow 2.0 [24] and Keras [25];

Adagrad [28] is used as the optimizer, with the mean squared
error of logP as the loss function. Each DNN is trained on
2 Nvidia V100 GPUs for Oð10Þ hours or equivalent. For
each epoch, training data and evaluation data are separately
generated by interpolating the multidimensional transfer
function table on uniformly random sampled inputs. Since
training data is not reused across epoch, there is no concern
of overfitting to a fixed subset of full dataset. We estimate
the number of epochs at which the loss function evaluation
stops improving significantly, and terminate trainings at
twice that number of epochs. At this point the best model is
selected. To check for systematic offsets of the table
transfer functions and the NNs, we trained multiple NNs
with random initial values and randomly sampled training
data. We found no obvious systematic offsets between the
ensemble of NNs and the tables; e.g., at any given point
the different NNs both underpredicted and overpredicted
the table data. During initial trainings, we identified
locations where the NN accuracy was limited by inter-
polation errors when the training data was generated from
linear-interpolating grid data. (This only occurred at high
redshifts of 1þ z > 1600, before recombination, thus this
error had minimal impact on viable DM energy injection
scenarios.) We then updated the interpolation table with
denser grid points such that the interpolation error is always
smaller than the errors reached by the NNs.
The codes related to the DNN transfer functions are

stored in the nntf module under DarkHistory. A new
example file “Example 12: Using Neural Network transfer
functions.ipynb” [29] is provided to demonstrate using the
DNN transfer functions and comparison with the baseline
DarkHistory (which will be available if the appropriate data
tables are present).

IV. PERFORMANCE

In this section, we describe the accuracy and speed of
generation of the DNN transfer functions, as well as the
accuracy of full runs over a range of simple DM injection
scenarios using the DNN transfer functions.

2It was shown in [16] that an increased redshift step size at this
level will lead to errors smaller than 10−3, and so will not be the
primary contributor to numerical error in our context. Note also
that using a n-fold coarsened log redshift step is not equivalent to
using every nth entry in the transfer function table. The redshift
abscissa used for the table are not directly related to (and in
general are coarser than) the redshift steps used during a run; the
table is interpolated to obtain the transfer functions at each
redshift step.
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A. Transfer function value prediction

In Fig. 3, a high energy photon transfer function generated
by a DNN is compared against one interpolated from tables.
As one can see, the errors in the raw output i.e. logarithm
value of the transfer functions are concentrated near the
distinct physical features in the transfer function, such as at
the output photon energy of ∼ 0.5 MeV corresponding to
positronium decay. The absolute values in logarithm errors
Δ log10 jPj can be interpreted as relative errors in jPj (up to a

ln 10 factor). In this particular slice through the high energy
photon transfer function, the average Δ log10 jPj when
jPj > 10−20 is 0.017, corresponding to a relative error of
∼ 4%. (The range of log10 jPj is about ∼ − 45 to 6). Overall
Δ log10 jPj is comparable to this value, for all DNN transfer
functions. A summary of the errors can be found in Table I.
To see the impact of these errors in a DarkHistory evolution

run, it is also useful to look at errors in energy (per bin)
transition rates, besides the particle number transition rates.

FIG. 3. Comparison of DNN and tabulated transfer functions. The first two panels show the high energy photon transfer functions
generated at redshift 1þ z ¼ 300, ionized hydrogen fraction xHII ¼ 0.6 (and singly ionized helium fraction xHeII ¼ 0.0). The transfer
function value in the region encircled by the black dashed line is negative and the log10 of the absolute value is shown. The third panel
shows the error in log10 P̄γ (defined as Δ log10 P̄γ ≡ log10 jP̄γDNNj − log10 jP̄γ tablej), which is concentrated on the physical features of the
transfer functions. The fourth panel shows the relative error in the energy transfer function (see more details in Sec. IVA). The errors are
concentrated on the diagonal that corresponds to photon propagation and redshifting.

TABLE I. Error, prediction time, and size of DNN transfer functions used in DarkHistory. The error of the DNN transfer functions in
comparison to the tabular transfer functions is defined as jΔ log10 jPjj≡ j log10 jPDNNj − log10 jPtablejj when jPj > 10−20. Both the
errors and prediction times are evaluated from random draws in the relevant domains for each DNN until the values stabilize. The
prediction times are evaluated on a 8-CPU personal computer and on a cluster with 2 Tesla V100 GPUs. For comparison, in each redshift
step (at certain redshift regime), the high energy photon (compounded), high energy photon (propagator), and low energy electron
transfer functions are generated, while the remainder of the run time in the step takes around 0.2–0.3 seconds. All DNN transfer
functions use 6 hidden layers of 400 neurons each, but the evaluation time differs due to the length of the input array corresponding to the
size of the evaluated transfer function matrix (∼105 for high energy photon, ∼4 × 104 for low energy electron, ∼2.5 × 105 for ICS).

Transfer function DNN jΔlog10jPjj
Prediction time

Table size (Gb) NN size (Mb)CPU (s) GPU (s)

High energy photon (compounded) regime 0 0.029 1.01 0.126
High energy photon (compounded) regime 1 0.043 1.04 0.127 4.7 11.4
High energy photon (compounded) regime 2 0.016 1.02 0.127

High energy photon (propagator) regime 0 0.029 1.02 0.128
High energy photon (propagator) regime 1 0.043 1.05 0.129 4.7 11.4
High energy photon (propagator) regime 2 0.062 1.07 0.128

Low energy electron regime 0 0.047 0.384 0.079
Low energy electron regime 1 0.049 0.380 0.080 4.7 11.4
Low energy electron regime 2 0.040 0.380 0.081

ICS Thomson 0.00199 0.045 0.037 0.93 3.8
ICS relativistic 0.00410 0.045 0.037 0.93 3.8
ICS electron energy loss 0.00250 0.046 0.037 0.93 3.8
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The energy transfer function deemphasize errors at low
energies where many particles can be produced with only a
small fraction of the original particle’s energy, and thus such
errors have a small effect on heating and ionization. Since
the standard photon transfer functions are maps between
particle number spectraNi, the transfer function values have
the physicalmeaning of number transition rates. The particle
energy spectrum is related to the number spectrum by

Ei ¼ EiNi ¼ E2
i

�
dN
dE

�
i
; ð1Þ

where Ni is the number of particles in the ith bin, and Ei its
central energy. (Note that the energy bins are log-spaced.)
For a particle number transfer function P with

Nout
i ¼

X
j

Nin
j Pji; ð2Þ

the corresponding energy transfer function PE is defined by

Eout
i ¼

X
j

Ein
j P

E
ji ⇒ PE

ji ¼ PjiEi=Ej: ð3Þ

In the last panel of Fig. 3, we show the relative error in the
high energy photon transfer function.As expected, the errors
are concentrated on the highest output energy for a given
input energy. The relative errors are generally subpercent.

Figure 4 shows that the DNN networks interpolate
sensibly between the fixed abscissa values in the transfer
function tables, for the high energy photon transfer function
in the lowest redshift regime (4 < z < 40), as an example.
The errors in the transfer function interpolation are con-
sistent with average values shown in Table I.

B. Performance over a range of scenarios

Figure 5 shows the evolution of integrated variables in
one particular setting: 0.1 GeV DM particles decaying
into electron-positron pairs (this is the same as the
example used in Fig. 4 of Ref. [16]). In this example,
the error introduced by the DNN in the matter temperature
history and hydrogen ionization history is consistently
subpercent, while the error in singly ionized helium
fraction is subpercent when nHeII=nHe > 10−3. For a
scenario where DM decays into electron-positron pairs,
over a range of DM rest masses, the maximum relative
error for temperature and ionized hydrogen fraction over
the entire redshift range is consistently below 2%, as
shown in Fig. 6. Taking into account injection scenarios
with DM decaying to photons, and also undergoing
s-wave annihilation into eþe− or photons, the relative
error is always below 8%. As a comparison, various
approximations entering the DarkHistory transfer functions
calculation—such as in certain cross sections relevant to
the secondary particle cascade, the treatment of helium,

FIG. 4. The DNN high energy photon transfer function network’s fitting and interpolation of the table transfer function values. The
panels show the DNN transfer function’s (redshift regime 4 < z < 40) dependence on each of the five input variables, in a limited region
around a central value indicated on the plot. The shaded region is where both the table value and the DNN prediction are negative (and
the log of the absolute value is shown). A fairly consistent relative error below 10% is observed.
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and the modeling of low-energy particles—can affect the
temperature and ionization history at the level of 10%, as
studied in [9,16]. Thus few-percent-level errors are a
subdominant contribution to the known error budget, and
reducing them further will not meaningfully improve the
accuracy of the forecast signals. DarkHistory also computes
the partial photon spectral distortion from high energy
photon and electron processes, mostly from ICS of
electrons or positrons on the CMB. This distortion is
stored in the low energy photon spectrum. Note that
spectral distortions arising from atomic transitions, due to
photons and electrons below 3 keV, are not included in
this spectrum (which is why we label it as “partial” or
“incomplete”). The DNN transfer functions introduce a
small amount of error in this spectral distortion, as shown

in Figs. 6 and 7. While the shape of the spectral distortion
is generally correct, the error in the location of the
distortion zero can cause errors with a magnitude up to
10% of the distortion magnitude due to the errors in the
distortion zero location. In a future update of DarkHistory,
we are anticipating an update to include the correct
treatment of the complete photon spectral distortion
including contributions from atomic transitions. A small
photon spectral error would allow the DNN functions to
be used simultaneously with these updates.
In Appendix A 2, we include the errors in some other

exotic injection scenarios, including DM decaying to
photon pairs, and DM annihilating to photon or eþe−
pairs. Although these examples cover only a few simple
injection scenarios, they can serve to test the whole range of

FIG. 5. Example evolution of matter temperature and ionization levels. The evolution of matter temperature and ionization levels, in an
example scenario where 0.1 GeV DM is decaying into eþe− pairs, as predicted using the original tabulation (black lines) and using the
DNN transfer functions (red dashed lines). The blue line shows the difference between the two, and the gray dashed line shows the
standard evolution without any external injections.

FIG. 6. Relative errors in temperature, ionization levels, and low energy photon distortion across a range of DM mass in a scenario
with DM decaying to eþe−. The left panel shows the maximum relative error at any point in the evolution in 4 < z < 3000 of matter
temperature, ionized hydrogen fraction, and singly ionized helium fraction across a range of DM exotic electron injection energies*.
(*Due to its very small absolute value, the relative error for singly ionized helium fraction xHeII when nHeII=nHe < 10−3 is not included in
this plot. Since nHeII=nHe changes rapidly betweenOð1Þ and < 10−3, we are essentially only counting its relative error when its value is
order unity.) The relative errors are generally below 5%. The right panel shows the maximum error over the maximum value in the low
energy photon spectral distortion at z ¼ 0. The spectral distortion errors at the two dashed-line values of mDM ¼ 0.1 GeV and 10 GeV
are shown in Fig. 7.
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DarkHistory’s dependence on transfer functions, since all
exotic energy injections are converted to either eþe− or
photon injections. We expect exotic energy injections with
a more complicated injection spectrum (such as, e.g.,
annihilation to quarks) to have similar amounts of error
associated with using the DNN transfer function.

C. Compute time, memory, and disk usage

The time it takes to generate a NN photon transfer
function is ≲1 second each on an 8-CPU personal
computer. In each time step, 3 photon transfer functions
are generated, thus taking more time than the remainder of
the time step, which runs at about 0.26 seconds. On 2 Tesla
V100 GPUs, the NN prediction times are reduced by about
a factor of 10 compared to on CPUs; the time to generate all
3 photon transfer functions is about 0.34 seconds, compa-
rable to the remainder of the time step. (The remainder of
the processes are not GPU-accelerated.)
The on-disk sizes of photon transfer functions are reduced

from their table counterparts of 4.7 Gb each by a factor of
420 to 11.4 Mb each, while the size of the smaller ICS
transfer functions are reduced from 0.93 Gb each by a factor
of 250 to 3.8 Mb each. The total reduction of on-disk size is
about a factor of 380. The memory usage of the NN transfer
functions will depend on the implementation of TensorFlow:
on an 8-CPU computer, the memory usage is reduced by
more than a factor of 10 compared to reading in table transfer
functions, from using 15 Gb to less than 1 Gb. On 2 Tesla
V100 GPUs, about 1 Gb of memory is used, while Oð1Þ of
the dedicated GPU memory of 64 Gb is used.
The accuracy, prediction time, and on-disk sizes for all

other transfer functions are summarized in Table I.

V. CONCLUSION

In this work, we have made use of simple dense neural
networks to approximate complex and multi-dimensional
transfer functions in DarkHistory to reduce storage and
memory usage, as well as to enable the possibility of
adding more parameter dependence to the transfer
function. The DNN transfer functions achieve good
accuracy in computing the evolution history of matter
temperature and ionization, as well as the partial CMB
spectral distortion evaluated by the current version of
DarkHistory; typical errors are at the few percent level, and
are comparable to or smaller than estimates of systematic
uncertainties in previous studies of constraints on energy
injection [9,10,16].
The DNN-based functionality is available in the

DarkHistory Github repository at https://github.com/
hongwanliu/DarkHistory, and the necessary data files
(one can choose to download the large tables, or DNN
and auxiliary files, or both) are hosted on Zenodo [26] (see
the Github repository for details).
While the use of DNNs offers one solution to this

challenge, there may well be other viable solutions. The
information in the DNNs still seems likely to be an over-
representation of the piecewise-smooth transfer functions.
We have briefly explored some alternative methods,
including fitting to conventional functions directly, and
with the assistance of symbolic regression techniques
[30]; however, DNN networks stand out as the best
solution (so far) in terms of fitting accuracy and ease
of implementation. There is work ongoing to expand the
capabilities of DarkHistory, and we look forward to explor-
ing NN-based and alternative techniques in this context.

(a) (b)

FIG. 7. Example partial low-energy photon spectral distortion in the present day. The two panels show two examples of low energy
photon spectral distortion outputs (see definition in Sec. II) from two different runs: 0.1 GeV and 10 GeV DM decaying to e−eþ pairs.
They represent the extremes of large and small relative errors for runs over the full range of DMmasses we consider, as shown in Fig. 6.
The photon number density (per bin) is normalized against the baryon number density. The black lines represent outputs generated
using tabulated transfer functions while the red dashed lines represent that using the DNN transfer functions. The blue line shows the
different between the two. Note that the relatively large errors shown in the right panel are in part due to the error in the location
of the zero.
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The code for DarkHistory with DNN transfer functions is
available at [31]. The associated data files can be down-
loaded on Zenodo at [26].

ACKNOWLEDGMENTS

It is a pleasure to thank Hongwan Liu, Wenzer Qin,
Gregory Ridgway, Jesse Thaler, Ken van Tilburg, Kathrin
Nippel, Nils Schoeneberg, Anastasia Fialkov, Stefan
Heimersheim, Julian Muñoz, Laura Lopez Honorez,
Vivian Poulin, and Yacine Ali-Haimoud for useful con-
versations pertaining to this work. Y. S. and T. R. S. were
supported by the U.S. Department of Energy, Office of
Science, Office of High Energy Physics of U.S. Department
of Energy under grant Contract No. DE-SC0012567
through the Center for Theoretical Physics at MIT, and
the National Science Foundation under Cooperative
Agreement No. PHY-2019786 (The NSF AI Institute for
Artificial Intelligence and Fundamental Interactions, [32]).
The computations in this paper were run on MIT LNS’s
Erebus machine and the FASRC Cannon cluster supported
by the FAS Division of Science Research Computing
Group at Harvard University. This research made use of
the IPython [33], Jupyter [34], Matplotlib [35], NumPy [36],
TensorFlow [24], Keras [25], and SciPy [37] software packages.

APPENDIX

1. Redshift step coarsening and energy conservation

In this appendix, we describe how the photon transfer
function change with coarsened redshift step, (expanding
on Sec. III E 3 of Ref. [16]), and how energy conservation
while correctly accounting for photon energy loss due to
redshift is implemented.

a. Transfer functions without coarsening

In DarkHistory’s main.evolve function, evolution is
discretized into log-normal redshift steps with fixed spac-
ing d (dlnz in code) where the next redshift z0 is expressed
in terms of z such that:

logð1þ z0Þ ¼ logð1þ zÞ − d: ðA1Þ

Following DarkHistory’s flow described in Fig. 2, to obtain
the propagating photon spectrum Nγ

prop, low energy photon
spectrum Nγ

low, low energy electron spectrum Ne
low and

energy deposition array Ehigh
c , we retrieve the correspond-

ing transfer functions P̄γ, D̄γ , D̄e, and D̄high
c at a middle

redshift zmid given by

logð1þ zmidÞ ¼ logð1þ zÞ − d=2: ðA2Þ

The corresponding transfer functions P̄γ, D̄γ , and
D̄e all take in the propagating photon spectrum Nγ

prop at
redshift z and produce secondary spectra at z0. (D̄high

c

produces energy deposition in this redshift step.) They
are implemented as:

Nγ
propðz0Þ ¼Nγ

propðzÞ · P̄γðzmidÞ ¼
X
j

Nγ
propjP̄γji

Nγ
lowðz0Þ ¼Nγ

propðzÞ · D̄γðzmidÞ
Ne

lowðz0Þ ¼Nγ
propðzÞ · D̄eðzmidÞ

Ehigh
c ðz0Þ ¼Nγ

propðzÞ · D̄high
c ðzmidÞ ¼

X
j

Nγ
propjD̄

high
c j; ðA3Þ

where i and j are indices of discretized energy abscissa.
Energy conservation can be enforced straightforwardly:

for an injection in any photon energy bin with central
energy Ei, the total output energy on the right hand side of
the above equations should add up to Ei minus the loss to
redshifting of the propagating photons. Photons below a
certain energy Erelevant do not contribute to redshift energy
loss because they either dump all of their energies effi-
ciently within one redshift step or free stream and no longer
interact, in which case they are stored as an array history of
low energy photons Nγ

lowðz0Þ and not immediately
redshifted.
For the propagating photons that are redshifted by P̄γ, the

energy lost is approximately:

jEredshift;ij ¼
�
1 −

1þ z0

1þ z

�
Ei ¼

z − z0

1þ z
Ei ≈ dEi

for Ei > Erelevant: ðA4Þ

Let the energy abscissa (log-central energies of each bin)
for photons and electron be Eγ

i and Ee
i respectively. We can

express the above equation as

jEredshift;ij ¼ diEi; ðA5Þ

where di ¼ d when the photon with energy Ei should be
redshifted and di ¼ 0 otherwise. (This renders di a function
of redshift and hydrogen and helium ionization levels in
general.)
Then the energy conservation constraint can be

written as

Ei ¼
X
j

ðP̄γ ijE
γ
j þ D̄γ ijE

γ
j þ D̄eijEe

j þ D̄high
c i þ diEiÞ

ðA6Þ

This relation is imposed by shifting the near diagonal
(propagating) part of the high energy photon transfer
function P̄γ . Any energy nonconservation due to numerical
errors or errors from approximating the transfer function as
DNNs can be absorbed into this shift.
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b. Coarsening

DarkHistory can enlarge the redshift step d to an multiple of
a preset step d0. Let the coarsening multiple be c, then the
next redshift step z0 to z is such that

logð1þ z0Þ ¼ logð1þ zÞ − c · d0: ðA7Þ

The photon and electron transfer functions are built with
log redshift step d0, so we have to reconstruct the transfer
functions for d. We first obtain single-step transfer func-
tions (and di) with current ionization levels and a redshift
value zmid in the middle of the large redshift step d:

logð1þ zmidÞ ¼ logð1þ zÞ − c · d0=2: ðA8Þ

Then, we approximate the large redshift step as consisting
of c single redshift steps, each with the same transfer
function applied. The compounded transfer functions can
be expressed as

Nγ
propðz0Þ ¼ Nγ

propðzÞP̄γ
c

Nγ
lowðz0Þ ¼ Nγ

propðzÞð1þ P̄γ þ P̄γ
2 þ � � � þ P̄γ

c−1ÞD̄γ

Ne
lowðz0Þ ¼ Nγ

propðzÞð1þ P̄γ þ P̄γ
2 þ � � � þ P̄γ

c−1ÞD̄e

Ehigh
c ðz0Þ ¼ Nγ

propðzÞð1þ P̄γ þ P̄γ
2 þ � � � þ P̄γ

c−1ÞD̄high
c ;

ðA9Þ

with all transfer function evaluated at zmid. In the DNN
implementation, the compounded transfer functions P̄γ

c,
ð1þ P̄γ þ P̄γ

2 þ � � � þ P̄γ
c−1Þ, and D̄e are learned as DNN

networks, and this step can be carried out without using the
value of P̄γ itself. (The low energy photon transfer function

D̄γ can be quickly reconstructed using the CMB energy loss
information.)
Imposing energy conservation is similar: At each d0 step,

the redshift energy loss is Nγ
propðzþ nd0Þ · d0iEi, where

Nγ
propðzþ nd0Þ ¼ Nγ

propðzÞ · P̄γ
n. So the total redshift

energy loss for a Ei photon is

jEredshift;ij ¼ ½ð1þ P̄γ þ P̄γ
2 þ � � � þ P̄γ

c−1Þd0E�i: ðA10Þ

Let S̄γ;c ¼ 1þ P̄γ þ P̄γ
2 þ � � � þ P̄γ

c−1. Then the energy
conservation condition is

Ei ¼ P̄γ
c
ijE

γ
j þ S̄γ;cðD̄γ ijE

γ
j þ D̄eijEe

j þ D̄high
c i þ diEiÞ

∀ i; sum on j: ðA11Þ

Again, the propagating photon spectrum can be adjusted to
account for energy nonconservation from numerical and
DNN prediction errors.

2. Performances in other DM injection scenarios

Performance metrics of DarkHistory using DNN transfer
functions are further demonstrated in Fig. 8 (DM decaying
to photon pairs), Fig. 9, (DM annihilating to electron/
positron pairs with s-wave cross section), and Fig. 10 (DM
annihilating to photon pairs with s-wave cross section).

3. Performances and prediction time of
individual DNN transfer functions

The prediction accuracy and prediction time of individ-
ual DNNs are summarized in Table I.

FIG. 8. Relative errors in physical quantities across a range of DM mass, in a scenario with DM decaying to a pair of photons. The
panels have similar construction to Fig. 6. Note that the matter temperature and ionization fractions have max relative errors below 2%,
and the errors in the low-energy photon spectral distortion are also below 10%.
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