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We present nonlinear solutions of Vlasov perturbation theory (VPT), describing gravitational clustering
of collisionless dark matter with dispersion and higher cumulants induced by orbit crossing. We show that
VPT can be cast into a form that is formally analogous to standard perturbation theory (SPT), but including
additional perturbation variables, nonlinear interactions, and a more complex propagation. VPT nonlinear
kernels have a crucial decoupling property: for fixed total momentum, the kernels become strongly
suppressed when any of the individual momenta cross the dispersion scale into the nonlinear regime. This
screening of UV modes allows us to compute nonlinear corrections to power spectra even for cosmologies
with very blue power-law input spectra, for which SPT diverges. We compare predictions for the density
and velocity divergence power spectra as well as the bispectrum at one-loop order to N-body results in a
scaling universe with spectral indices −1 ≤ ns ≤ þ2. We find a good agreement up to the nonlinear scale
for all cases, with a reach that increases with the spectral index ns. We discuss the generation of vorticity as
well as vector and tensor modes of the velocity dispersion, showing that neglecting vorticity when
including dispersion would lead to a violation of momentum conservation. We verify momentum
conservation when including vorticity, and compute the vorticity power spectrum at two-loop order,
necessary to recover the correct large-scale limit with slope nw ¼ 2. Comparing to our N-body
measurements confirms the cross-over from k4 to k2 scaling at large scales. Our results provide a
proof-of-principle that perturbative techniques for dark matter clustering can be systematically improved
based on the known underlying collisionless dynamics.
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I. INTRODUCTION

Perturbative techniques play a central role in under-
standing the formation and evolution of large-scale struc-
tures in the universe. The foundation for this understanding
rests on the gravitational clustering of collisionless cold
dark matter (CDM). As such it is fully described by the
Vlasov equation, which follows the evolution of the phase-
space distribution function (DF) coupled to gravity via the
Poisson equation at scales below the Hubble radius. The
conventional approach of standard perturbation theory
(SPT) is a truncation of this description, in which only
density (zeroth moment of the DF) and velocity (first
moment of the DF) fields are taken into account (see
Ref. [1] for a review).
This truncation is motivated by the fact that CDM has

negligible primordial velocity dispersion (second cumulant

of the DF). However, even if absent initially, second and
higher cumulants of the DF are generated by orbit crossing,
and they should play a role in the transition to the nonlinear
regime. This is particularly so for initial conditions with
significant small-scale power, i.e., blue spectral indices, for
which SPT loop corrections describing this transition are
UV divergent [2,3]. These UV divergences stand in sharp
contrast to what is seen in N-body simulations [4], showing
that for such initial conditions fluctuations in the nonlinear
regime are most suppressed compared to linear evolution
in SPT.
This motivates to systematically improve the perturbative

description by taking second and higher cumulants into
account, which obey a coupled hierarchy of equations of
motion [5]. Linearized solutions to this hierarchy were
developed in paper I [6], showing a structure that is much
richer than in SPT as a result of the backreaction of orbit
crossing on linear modes. This leads to a suppression on
small scales that saturates (for a given fixed wave number)
when truncating the cumulant expansion at sufficiently high
order. This damping of linear UV modes sets in at a new
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scale, the dispersion scale, determined by the background
value of the second cumulant, i.e., the velocity dispersion
tensor. Physically, this damping corresponds to the back-
reaction of halo formation at small scales on linear modes.
The purpose of the present paper is to present nonlinear

solutions obtained by expanding around this new linear
theory. We call this new perturbative expansion Vlasov
perturbation theory or VPT. We show that VPT can be cast
into a form that is formally analogous to SPT, but including
additional perturbation variables, nonlinear interactions,
and a more complex propagation. This all follows from
the Vlasov-Poisson equation in a straightforward way,
without having to adhere to any ad hoc assumptions.
The final outcome is to replace the well known nonlinear

kernels of SPT describing the perturbative solutions by new
kernels that have a crucial decoupling property: for fixed total
momentum k, the kernels become strongly suppressed when
any of the individual momenta cross the dispersion scale into
the nonlinear regime.Aswe shall see, this is preciselywhat is
needed to bring the UV divergencies of SPT for blue spectra
under control. This screening of UV modes is also what is
expected physically to happen in the nonlinear regime,where
the predominant structures are fairly stable darkmatter halos.
For CDM spectra, this regime is characterized by the “virial
turnover,” where the nonlinear power grows with wave
number less than in the weakly nonlinear regime. The
physical reason for this turnover can, at least approximately,
be understood by the stable clustering picture [7–9], where
pairwise velocities cancel the Hubble flow.
It may be convenient to illustrate here the main ideas

behind how VPT accounts for the screening mechanism of
UV modes for the simplest case, the density power
spectrum (analogous results hold for other variables,
e.g., velocity divergence, and other statistics, e.g., the
bispectrum). Consider scaling universes, i.e., scale-free
Gaussian initial conditions with initial power spectra
P0 ∝ kns and Ωm ¼ 1. Then the power spectrum in VPT
follows a perturbative expansion of the form,

Pðk; ηÞ
e2ηP0

¼
X∞
L¼0

�
k

knlðηÞ
�ðnsþ3ÞL

HLðk=kσðηÞ; ω̄;…Þ; ð1Þ

where eη is the scale factor, L is the number of loops, knlðηÞ
is the usual nonlinear scale, kσðηÞ≡ 1=

ffiffiffi
ϵ

p
is the dispersion

scale obtained from the background value of the velocity
dispersion tensor ϵij (suitably rescaled, see Eq. (10) below),
ω̄≡ ω=ϵ2 is a constant that characterizes the background
value of the fourth cumulant ω, and the dots denote other
(even) background values of the cumulants, describing the
DF non-Gaussianity.1 By self-similarity kσ=knl is a constant
that depends only on ns. The dispersion scale is a new scale
induced by orbit crossing, and as such is absent in SPT.

The prefactors of ðk=knlÞ in Eq. (1) are the standard loop
factors that appear in SPT, while the functions HL describe
the scale-dependence due to dispersion and higher cumu-
lants that give rise to the screening of UV modes. For
example, H0 is the square of the linear kernel which is
highly suppressed when k ≫ kσ . As stressed in paper I [6],
this suppression is physically different from a Jeans scale
due to pressure, or viscosity in a normal fluid. In fact, the
linear theory of collisionless matter is much richer than that
of such fluids, with an effective description in terms of
density and velocity divergence that is nonlocal in time,
which is key to satisfy the cosmic energy equation [6]. The
dispersion scale can in principle be measured independ-
ently from simulations, and as we show in this paper it can
be estimated from basic properties of dark matter halos.
Intuitively we know the dispersion scale is close to the
nonlinear scale from the “fingers of god” features seen in
the redshift-space matter distribution.
The SPT limit of Eq. (1) is somewhat delicate. Naively, it

is reached by taking the kσ → ∞ limit (zero dispersion,
including vanishing higher cumulants). In that case, how-
ever, the functions HL for L ≥ 1 only have a finite limit
(giving k-independent finite functions of ns) when
ns < −1.2 This means that the limit of zero dispersion
only exists for spectra which are sufficiently red-tilted. For
such spectra though, there is still orbit crossing, kσ is still
finite and corrections to SPT are predicted.
In this paper we focus on spectra with ns ≥ −1, in order

to comprehensively assess the applicability of VPT in a
situation where the limitations of SPT are most severe.3 We
compare one-loop predictions for the density power spec-
trum and bispectrum, the velocity divergence power spec-
trum and the density-velocity divergence power spectrum
against N-body simulations. In addition, we discuss the
generation of vorticity, presenting solutions up to two-loop
in order to capture the correct scaling of the vorticity power
spectrum at large scales. We also highlight the importance
of backreaction of vorticity modes on the density contrast,
both from theoretical considerations as well as numerical
results.
To illustrate the screening of UV modes captured by

VPT (as opposed to SPT) we show in Fig. 1 the integrand
of the one-loop density power spectrum for blue power-law
input spectra P0 ∝ kns with ns ¼ 2; 1; 0;−1. The normali-
zation is such that P1L

δδ ðk; ηÞ ¼
R
d ln qPIntegrand

δδ ðk; q; ηÞ.
This integrand is closely related to the one-loop contribu-
tion to the response function studied in [12,13].4 In SPTone
would have

1These are the normalized cumulants Ē2n discussed in
paper I [6].

2For example, for the one-loop density power spectrum H1

becomes the function αðnsÞ given by Eq. (58) and Fig. 9 in [10].
3For an effective field theory description of these spectra at the

one-loop level see Ref. [11].
4PIntegrand

δδ ðk; q; ηÞ ¼ T1Lðk; qÞqP0ðq; ηÞP0ðk; ηÞ with response
Tðk; qÞ in the notation of [12].
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PIntegrand
δδ ðk; q; ηÞjSPT ∝ qnsþ1; ð2Þ

such that the loop integration is UV divergent for all
ns ≥ −1. In contrast, the prediction from the Vlasov theory
is that the integrand drops as

PIntegrand
δδ ðk; q; ηÞjVPT ∝ q−2; ð3Þ

independently of ns, rendering the integral well behaved
and implying that perturbation modes with wave number
far above the dispersion scale (which is of order of the
nonlinear scale, as will be discussed in detail below) give a
negligible contribution, in accordance with physical
expectations. We emphasize that also the linear theory in
VPT is changed compared to SPT, and we find that the sum

of linear and integrated one-loop contributions matches
well with N-body results.
Previous work in the literature on corrections to SPT

implied by the Vlasov equation spans a number of different
fronts. In [5] the equation of motion for the Vlasov cumulant
generating function hierarchy was written down, explaining
the conditions under which it matches solution of the Vlasov
equation after shell-crossing. They usedmeasurements of the
stress tensor in simulations to close the hierarchy and estimate
the backreaction of shell-crossing on large-scale density and
velocity divergence power spectra, including a study on the
growth of vorticity. In [14] a low-k expansion of the
linearized hierarchy truncated at the second cumulant is used
to obtain the impact of velocity dispersion on density and
velocity divergence. In addition, an approximate treatment of
nonlinear evolution is presented to show that the growth of

FIG. 1. Integrand of the one-loop contribution to the density power spectrum in VPT and SPT, for a scaling universe with power-law
input spectrum P0 ∝ kns with spectral indices ns ¼ 2; 1; 0;−1 shown in the four panels. In SPT the integrand grows as
F3ðk; q;−qÞP0ðqÞd3q ∼ qnsþ1d ln q for large loop wave number q, i.e., the well-known suppression F3 ∝ k2=q2 due to momentum
conservation is not sufficient to render the one-loop integral UV finite for all ns ≥ −1. In contrast, the physically expected screening of
UV modes within the full collisionless Vlasov-Poisson dynamics is captured by VPT, compensating the increase for large q for blue
spectra with high ns and leading to a finite integral with asymptotic decay of the integrand as F1;δðk; ηÞF3;δðk; q;−q; ηÞP0ðqÞd3q ∼
q−2d ln q independently of the spectral index ns. The sum of linear and one-loop contributions within VPT matches well with N-body
results (see Fig. 10, including details on the cumulant hierarchy truncation used for this figure). Note that the 1=q2 scaling within VPT is
universal and occurs for all truncations considered in this work, see Fig. 2 and Eq. (62) for details.
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the velocity dispersion background is sustained by mode
coupling. Still within the second-cumulant truncation, [15]
and [16] discuss the growth of the velocity dispersion tensor,
with the latterwork featuring the evolution of the background
dispersion at the nonlinear level while keeping the fluctua-
tions in the dispersion linear (see also [17]). Different
strategies for closing the Vlasov hierarchy are presented
in [18]. Complementary approaches from the Lagrangian
picture include [19] and [20] that computes the growth of
vorticity driven by velocity dispersion.
This work is structured as follows. In Sec. II we discuss

the basics of the Vlasov cumulant hierarchy, splitting
cumulants of the DF into their expectation values and
fluctuations and presenting their equations of motion. We
also introduce the nonlinear kernels, and study analytically
their scaling in the limit of small wave number compared to
the dispersion scale. In addition, we study numerically the
case when wave numbers cross the dispersion scale high-
lighting the screening of UV modes. Along the way we
discuss the properties of these kernels in detail for various
truncations of the cumulant hierarchy. Section III discusses
the symmetry properties of the nonlinear kernels, including
Galilean invariance and mass and momentum conservation.
In Sec. IV we discuss the generation of vorticity, and vector
and tensor modes of the velocity dispersion tensor.
Section V computes the dispersion scale in two different,
complementary ways. First, using perturbation theory, and
second, using knowledge of dark matter profiles together
with the halo mass function measured in our N-body
simulations. In Sec. VI we present the predictions of
VPT against measurements in our simulations, including
the density power spectrum and bispectrum, velocity
divergence power spectrum, the cross-spectrum between
density and velocity divergence, and the vorticity power
spectrum. Section VII presents our conclusions.
A number of appendices contain supplementary results

that support the discussion in the main text. Appendix A
discusses our approach to tadpoles, Appendix B presents
analytic results for time integrations over the background
dispersion, and Appendix C proves the scaling of nonlinear
kernels in the squeezed limit due to Galilean invariance.
Appendix D discusses our implementation of vorticity,
vector and tensor modes in the numerical scheme, and
Appendix E shows how to rescale solutions to different
values of the dispersion scale. Appendix F presents our
N-body simulations, Appendix G discusses the determi-
nation of the halo mass function and details about the
calculation of the dispersion scale from halos, and
Appendix H presents our algorithm for measuring velocity
divergence and vorticity in the simulations.

II. NONLINEAR KERNELS WITH DISPERSION
AND HIGHER CUMULANTS

We follow the formalism for perturbation theory intro-
duced in paper I [6], which presents linear solutions for the

density and velocity perturbations in the presence of a
nonzero velocity dispersion tensor and higher cumulants.
We start from the fact that the phase-space distribution
function fðτ; x; pÞ of nonrelativistic matter can be charac-
terized by its cumulants, obtained by expanding the
cumulant generating function in the auxiliary vector l [5,6],

Cðτ; x; lÞ ¼ ln
Z

d3pel·p=afðτ; x; pÞ

¼ lnð1þ δÞ þ livi þ
1

2
liljσij þ

1

6
liljlkCijk

þ 1

24
liljlklmCijkm þ…; ð4Þ

where δðτ; xÞ is the density contrast, viðτ; xÞ the peculiar
velocity, σijðτ; xÞ the velocity dispersion tensor, and
CijkðCijkmÞ the third (fourth) cumulant. Furthermore, a is
the scale-factor, τ the conformal time and p the comoving
momentum per unit particle mass. In this section we first
review the relevant equations and notation, and then
describe how to recursively obtain nonlinear kernels.
These characterize the nonlinear solutions, generalizing
the well known nonlinear kernels of standard perturbation
theory (SPT) [1,21,22].

A. Setup

The Vlasov or collisionless Boltzmann equation for the
phase-space distribution in the nonrelativistic, subhorizon
limit yields the following equation of motion for the
cumulant generating function [5]

∂τCþHðl ·∇lÞCþð∇CÞ ·ð∇lCÞþð∇ ·∇lÞC¼−l ·∇Φ; ð5Þ

where Φ is the gravitational potential given by ∇2Φ ¼
3
2
H2Ωmδ, with conformal Hubble rate H ¼ ∂τ ln a and

time-dependent matter density parameter Ωm.
The cumulants satisfy a coupled, nonlinear hierarchy of

differential equations, obtained by Taylor expanding
Eq. (5) in l, given by the continuity and momentum
conservation equation at zeroth and first order,

∂τδþ∇i½ð1þ δÞvi� ¼ 0;

∂τvi þHvi þ vj∇jvi þ∇iΦ ¼ −∇jσij − σij∇j lnð1þ δÞ;
ð6Þ

with the latter containing the velocity dispersion tensor on
the right-hand side. Its equation of motion is obtained when
expanding Eq. (5) to second order in l, and it is in turn
coupled to the third cumulant, whose equation follows from
expanding to third order. They are given by
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∂τσij þ 2Hσij þ vk∇kσij þ σjk∇kvi þ σik∇kvj

¼ −∇kCijk − Cijk∇k lnð1þ δÞ;
∂τCijk þ 3HCijk þ vm∇mCijk þ σkm∇mσij þ σim∇mσkj

þ σjm∇mσik þ Cjkm∇mvi þ Cikm∇mvj þ Cijm∇mvk

¼ −∇mCijkm − Cijkm∇m lnð1þ δÞ: ð7Þ

The framework of SPT is based on neglecting the velocity
dispersion in the momentum conservation equation, which
then becomes the standard Euler equation for a perfect fluid
with zero pressure. Here we include the dispersion tensor
and also higher cumulants, systematically taking nonlinear
terms in their equations of motion into account within
perturbation theory.
In order to be able to deal with the occurrence of the log-

density field

A≡ lnð1þ δÞ; ð8Þ

on the right-hand side of the evolution equations, we follow
the hybrid scheme introduced in paper I [6] and perturba-
tively solve for both δ as well as A, complementing the set
of evolutions equations by

∂τAþ∇ivi þ vi∇iA ¼ 0; ð9Þ

which follows directly from the continuity equation. It is
convenient to consider the rescaled cumulants,

ui ¼
vi

−Hf
; ϵij ¼

σij
ðHfÞ2 ;

πijk ¼
Cijk

ð−HfÞ3 ; Λijkm ¼ Cijkm
ðHfÞ4 ; ð10Þ

where f ¼ d lnD=d ln a is the usual growth rate, with
DðaÞ being the conventional growth factor. In addition,
we switch from conformal time τ to η ¼ lnðDÞ using
∂τ ¼ Hf∂η and for any quantity X we have,

ð∂τ þ nHÞ½ð−HfÞnX�

¼ −ð−HfÞnþ1

�
∂η þ n

�
3

2

Ωm

f2
− 1

��
X: ð11Þ

Rotational invariance allows all even cumulants to possess
a homogeneous background value, that we parametrize for
the second and fourth cumulant by ϵðηÞ and ωðηÞ via

hϵijðη; xÞi ¼ δijϵðηÞ;

hΛijkmðη; xÞi ¼ ðδijδkm þ 2 cycÞωðηÞ
5

: ð12Þ

Equations of motion for the background values can be
obtained by taking an ensemble average of the evolution

equations of the second and fourth cumulant, respectively
(see paper I [6]). For the second cumulant, it is given by

∂ηϵðηÞ þ 2

�
3

2

Ωm

f2
− 1

�
ϵðηÞ ¼ QðηÞ; ð13Þ

with source term

QðηÞ ¼ 1

3
hul∇lϵiii þ

2

3
hϵil∇luii

þ 1

3
hπiil∇l lnð1þ δÞi: ð14Þ

Note that while hδi ¼ 0 is ensured by mass conservation,
the zeroth cumulant A ¼ lnð1þ δÞ does also have a back-
ground valueA ¼ hAi. Nevertheless, sinceA enters only via
∇i lnð1þ δÞ in the equations of motion, the background
value is not needed explicitly [6].
To obtain equations for the perturbations we expand the

cumulants around their background values, in particular

ϵijðη; xÞ ¼ δijϵðηÞ þ δϵijðη; xÞ: ð15Þ

While δ; ui; Cijk have no background contribution, a similar
split is necessary for A and analogously for Λijkm.
Following the previous discussion, it is understood in
the following that A denotes the perturbation part only,
with A subtracted. The equation of motion for δϵij is
obtained by subtracting from Eq. (7) its ensemble average,
and similarly for A and higher cumulants.
The velocity can be split into its divergence θ ¼ ∇iui

and vorticity wi ¼ εijk∇juk contributions via

ui ¼ uSi þ uVi ¼ ∇i

∇2
θ −

εijk∇j

∇2
wk; ð16Þ

corresponding to one scalar and two vector modes, while
δϵij consists of two scalar modes g and δϵ, two vector
modes contained in the divergence-free vector νi, and two
tensor modes represented by the symmetric, transverse-
traceless matrix tij,

δϵij ¼ δϵSij þ δϵVij þ δϵTij; ð17Þ

where

δϵSij ¼ δijδϵþ
∇i∇j

∇2
g;

δϵVij ¼ −
εilk∇l∇j

∇2
νk −

εjlk∇l∇i

∇2
νk;

δϵTij ¼ tij ≡ PT
ij;lsδϵls; ð18Þ

and the tensor projector PT
ij;ls is given in [6].
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The impact of third, fourth and higher cumulants in
the linear approximation has been analyzed in detail in
paper I [6]. In this work, we assess their impact at nonlinear
level by including the two scalar perturbations π and χ of
the third cumulant,

πSijk ¼ −
�
δij

∇k

∇2
þ 2 cyc

�
χ

5
−
∇i∇j∇k

∇4
ðπ − χÞ; ð19Þ

as well as the background value ωðηÞ of the fourth
cumulant. Note that the latter enters the evolution equations
of πijk via the last term in the last line of Eq. (7). We neglect
nonscalar contributions to πijk as well as perturbation
modes of the fourth cumulant, in order to obtain a tractable
approximation scheme. The impact of higher cumulants
will be quantified by comparing solutions with and without
taking πSijk into account.
Apart from the complete set of perturbation modes for

the zeroth, first and second cumulant, it is important to note
that our present setup includes all higher cumulant pertur-
bation modes relevant for the source term of the back-
ground dispersion, given by

QðηÞ¼1

3

Z
d3kðPθg̃ðk;ηÞþ2Pwiνiðk;ηÞþPAπðk;ηÞÞ; ð20Þ

where g̃≡ g − δϵ.
The scalar, vector and tensor perturbation modes can be

collected in a component vector

ψ ¼ ðψS;ψV;ψTÞ; ð21Þ

with

ψS ¼ ðδ; θ; g; δϵ; A; π; χÞ;
ψV ¼ ðwi; νiÞ;
ψT ¼ ðtijÞ: ð22Þ

In Fourier space, the evolution equations can be written in
the form

ψ 0
k;aðηÞ þ Ωabðk; ηÞψk;bðηÞ ¼

Z
pq

γabcðp; qÞψp;bðηÞψq;cðηÞ;

ð23Þ

where ψk;a stands for the Fourier mode k of ψ , and a runs
over all perturbation modes, including their spatial indices
in case of vectors and tensors, with summation over
repeated indices implied. Furthermore, 0 ¼ d=dη andR
pq ¼

R
d3pd3qδð3Þðk − p − qÞ. The linear evolution is

characterized by the scale- and time-dependent matrix
Ωabðk; ηÞ. Due to rotational invariance it has a block-
diagonal structure for scalar, vector and tensor modes, with
the blocks given by

ΩS ¼

0
BBBBBBBBBBBB@

−1
− 3

2
d 1

2
e k2 k2 k2ϵ

−2ϵ e 1 − 3
5

e 1
5

−1
−3k2ϵ −5k2ϵ −k2ω 3

2
e

−5k2ϵ −k2ω 3
2
e

1
CCCCCCCCCCCCA
;

ΩV ¼
� 1

2
e k2

−ϵ e

�
; ΩT ¼ e; ð24Þ

with dðηÞ≡Ωm=f2 and eðηÞ≡ 3dðηÞ − 2, with d; e ↦ 1
in the EdS approximation. Note that the upper two-by-two
part of ΩS corresponds to the well-known form within SPT.
In addition, each entry in ΩV is understood to act on all
three vector components of wi and νi, respectively, with the
off-diagonal entries describing a mixing of vorticity and
vector modes of the dispersion tensor. Similarly, ΩT acts
equally on all components of tij.
It is worth emphasizing that background values of the

second and fourth cumulant, ϵðηÞ and ωðηÞ, are not
considered to be a priori of any particular order in the
perturbative expansion as they are sourced by one-point
moments [see Eq. (14)] that correspond to integrals of power
spectra over all momenta [see Eq. (20)]. That is, these
quantities are not proportional to the fluctuation modes
ψk;aðηÞ, andwe treat them as any function of time (e.g.,Ωm),
as we are explicitly agnostic about the size of velocity
dispersion effects in our approach. This is crucial and allows
us, as discussed in paper I [6], to obtain the expected
decoupling of large-scale modes from halo formation at
small scales. As we shall see below, this is described by the
suppression of the nonlinear kernels at high momenta,
generalizing the results for the linear kernel described in
detail in paper I [6]. This reduces the sensitivity of VPT to
UV modes when compared to SPT, helping with the
convergence of perturbative calculations. The decoupling
effect appears for largewave numbers k≳ kσ above the scale
set by the background dispersion

kσðηÞ≡ 1=
ffiffiffiffiffiffiffiffiffi
ϵðηÞ

p
: ð25Þ

As shown in paper I [6], the absence of exponential
instabilities of the linear system for k ≫ kσ yields a
restriction on the size of the fourth relative to the second
cumulant expectation value, particularly for the dimension-
less ratio

ω̄≡ ω

ϵ2
: ð26Þ

For our setup considered here, the stability condition is
given by
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−10 ≤ ω̄ ≤ 5; ð27Þ

provided that α≡ ∂η ln ϵ and ω̄ are constant or slowly
varying. This is the case in the limit of a scaling universe,
where Ωm ¼ 1 and the initial perturbations are scale-
free, P0ðkÞ ∝ kns .
All nonlinearities are captured by the vertices γabcðp; qÞ

in Eq. (23). Their explicit form is given in paper I [6],
satisfying

γabcðp; qÞ ¼ γacbðq; pÞ; ð28Þ

and we take all of them into account in our analysis.5 Note
that the equations of motion include at most quadratic terms
when including both δ and A in the set of perturbation
variables. They include the familiar SPT vertices γδθδ, γδδθ
and γθθθ, as well as a large set of extra vertices involving
second and third cumulant perturbations and A. It is crucial
to take the full set of vertices into account along with the
matrix Ωab to ensure that symmetry constraints on the
resulting perturbative solutions from Galilean symmetry as
well as mass and momentum conservation hold, as we
explain in detail in Sec. III.
A final comment regarding Eq. (23) is worth pointing

out. When deriving the equation for the perturbation part by
subtracting the full from the ensemble averaged equations
of motion, one obtains an equation that contains an addi-
tional contribution compared to Eq. (23). It is proportional
to a three-dimensional Dirac delta function supported at
k ¼ 0, and contributes only to the components that possess
also a background value, being δϵ and A in the setup
adopted here. We refer to Appendix A for a discussion
of these terms, that ensure the cancellation of so-called
“tadpole” diagrams in the perturbative solution. As shown
there, these terms can be traded for a modification of the
vertices, that consists in setting γabcðp; qÞ to zero for
p ¼ −q. We adopt this choice in the following, and use
Eq. (23) to generate perturbative solutions.

B. Nonlinear kernels

We consider perturbative solutions of the equation of
motion, Eq. (23), assuming that at some “initial” time ηini
long before the onset of nonlinearity, but long after
recombination, all perturbation modes are proportional to
the initial density field δk0. This is the case for adiabatic
initial conditions and when assuming an initially negli-
gibly small (but nonzero, see below) velocity dispersion,
as appropriate for cold dark matter. The vector ψ of

perturbations may then be formally Taylor expanded in
powers of δk0 as

ψk;aðηÞ ¼
X
n≥1

Z
ki

Fn;aðk1;…; kn; ηÞenηδk10 � � � δkn0; ð29Þ

where Fn;a is the nth order nonlinear kernel for component
a, and

R
ki
≡ R

d3k1 � � � d3knδð3Þðk −
P

i kiÞ, with the con-
straint on the sum over all wave vectors arising from spatial
translation symmetry of the equations of motion. Even if
initially all higher cumulant perturbations are taken to be
zero, they are generated by time-evolution in presence of a
background dispersion (and background values of higher
cumulants in general). As discussed in paper I [6], the
perturbations in turn source the background values, and we
come back to the possibility of determining self-consistent
solutions of this system in Sec. VA. For the moment, we
consider the background values ϵðηÞ and ωðηÞ entering via
Eq. (24) as given and discuss the implications for the
perturbations ψk;aðηÞ.
As usual, the Fn;a can be taken to be symmetric under

arbitrary exchanges of wave numbers in their arguments,
which we assume in the following. The normalization is
chosen such that, when ignoring second and higher
cumulants and using the EdS approximation, Fn;δ and
Fn;θ would become time-independent and coincide with
the conventional EdS-SPT kernels Fn and Gn, with
F1 ¼ G1 ¼ 1. When taking second and higher cumulants
into account, the kernels do depend on time, and even
the linear solutions described by F1;aðk; ηÞ become non-
trivial, featuring a powerlike suppression for k ≫ kσ, see
paper I [6].
The expansion in Eq. (29) can be used to perturbatively

compute the (cross-)power spectra

hψk;aðηÞψk0;bðηÞi ¼ δð3Þðkþ k0ÞPabðk; ηÞ; ð30Þ

where the subscript ab labels the various modes, with for
example a ¼ b ¼ δ corresponding to the density power
spectrum, and a ¼ δ, b ¼ θ the density/velocity divergence
cross spectrum. Following the standard scenario, the
initial density field δk0 can be taken to be drawn from a
Gaussian random field fully characterized by its initial
power spectrum hδk0δk00i ¼ δð3Þðkþ k0ÞP0ðkÞ. By inserting
Eq. (29) into Eq. (30) and using the Wick theorem, we
obtain a loop expansion in close analogy to SPT,

Pabðk; ηÞ ¼ Plin
abðk; ηÞ þ P1L

abðk; ηÞ þ P2L
abðk; ηÞ þ…; ð31Þ

but with modified nonlinear kernels. For example, the
linear and one-loop contributions are given by

5Up to the second cumulant, all vertices obtained from the
equations of motion are included. For vertices involving at least
one third cumulant perturbation π or χ, we only include
contributions where all three fields are scalar modes. We checked
that this is consistent with the symmetry constraints discussed in
Sec. III.
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Plin
abðk; ηÞ ¼ e2ηF1;aðk; ηÞF1;bðk; ηÞP0ðkÞ;

P1L
abðk; ηÞ ¼ e4η

Z
d3qf2F2;aðk − q; q; ηÞF2;bðk − q; q; ηÞ

× P0ðjk − qjÞP0ðqÞ
þ 3F1;aðk; ηÞF3;bðk; q;−q; ηÞP0ðkÞP0ðqÞ
þ 3F3;aðk; q;−q; ηÞF1;bðk; ηÞP0ðkÞP0ðqÞg:

ð32Þ

The expressions can be used to numerically compute loop
corrections, with P0ðkÞ being the usual linear matter power
spectrum obtained from Boltzmann solvers such as CLASS

[23] or CAMB [24]. As in SPT, the integration region with
jqj ≪ k≡ jkj yields large contributions to the individual
summands, that cancel in their sum (see Sec. III A). It is
therefore advantageous to ensure their cancellation at the
integrand level by multiplying the first summand in the
integrand of P1L

ab with 2Θðjk − qj − jqjÞ and then sym-
metrizing it with respect to the substitution q → −q [25].
Here ΘðxÞ is the Heaviside function. This operation leaves
the integral unchanged, but is preferable for numerical
Monte Carlo integration. The two-loop contribution to
the power spectrum can be computed analogously (see
Sec. VI D and [25–27]). Similarly, the bispectrum can be
computed using the modified nonlinear kernels and
employing the same algorithm as in SPT to ensure the
cancellation of large contributions for low loop wave
number at the integrand level (see Sec. VI C and [28]).
The difference in VPT compared to SPT enters via the

nonlinear kernels Fn;a. Equations of motion for the kernels
can be obtained by inserting Eq. (29) into Eq. (23) and
collecting all terms with a given power of initial density
fields. This yields a set of coupled, ordinary differential
equations given by

ð∂ηδab þ nδab þ Ωabðk; ηÞÞFn;bðk1;…; kn; ηÞ

¼
Xn−1
m¼1

fγabcðq1 þ � � � þ qm; qmþ1 þ � � � þ qnÞ

× Fm;bðq1;…; qm; ηÞFn−m;cðqmþ1;…; qn; ηÞgs; ð33Þ

where f� � �gs ¼ P
permf� � �g=jpermj denotes an average

over all jpermj ¼ n!=m!=ðn −mÞ! possibilities to choose
the subset of wave vectors fq1;…; qmg from fk1;…; kng,
and k≡ jPi kij. When neglecting second and higher
cumulants (i.e., restricting to a; b ¼ δ, θ) and in the EdS
approximation these equations have time-independent
solutions for Fn;δ and Fn;θ. Indeed, by combining the
equations for these two kernels in that limit and using time-
independence one recovers the well-known algebraic
recursion relations [22].
When taking second and higher cumulants into account,

one obtains a coupled system for all components of Fn;a,

with Ωabðk; ηÞ being scale- and time-dependent. In this
case, solutions can in general only be found numerically by
integrating the set of coupled equations, and for this
purpose we follow the strategy developed in [27,29].
Nevertheless, it is instructive to consider analytical results
in the limit when the impact of velocity dispersion and
higher cumulants is small (but nonzero), which we discuss
before presenting our numerical results. In the following we
set Ωm=f2 ↦ 1 for simplicity.

C. Analytical results in the limit ϵ → 0

For wave numbers that satisfy ϵk2i ≪ 1 it is possible to
find approximate analytical solutions by solving for the
nonlinear kernels perturbatively in powers of the back-
ground dispersion ϵ. Using the counting ω ∝ ϵ2 the kernels
Fn;a for a ¼ δ, θ, A start at order ϵ0, the kernels for
a ¼ wi; g; δϵ; νi; tij at order ϵ1, and for a ¼ π, χ at order ϵ2,
in accordance with the scaling derived in paper I [6]. The
kernels Fn;δjϵ0 ¼ Fn and Fn;θjϵ0 ¼ Gn coincide with the
EdS-SPT kernels at lowest order in ϵ, and for all n.

1. First order kernels

Let us first derive the expansion of the linear kernels
F1;a in ϵ, for which the right-hand side of Eq. (33) is
zero. At linear order one has F1;A¼F1;δ and F1;wi

¼
F1;νi ¼ F1;tij ¼ 0, see Sec. IV for more details on vorticity,
vector and tensor modes. At lowest order in the expansion
in ϵ one recovers the EdS-SPT result F1;δjϵ0 ¼ F1;θjϵ0 ¼ 1.
The evolution equation for g related to the second line of
Eq. (24) yields

ð∂η þ 2ÞF1;gðk; ηÞ ¼ 2ϵðηÞF1;θðk; ηÞ − F1;πðk; ηÞ

þ 3

5
F1;χðk; ηÞ: ð34Þ

Using that the third cumulant modes π, χ contribute only
starting at order ϵ2 and inserting the lowest order expression
for F1;θ yields

F1;gðk; ηÞ ¼ 2E2ðηÞ þOðϵ2Þ; ð35Þ

where we define the weighted time integral of ϵðηÞ,

EmðηÞ≡
Z

η
dη0 emðη0−ηÞϵðη0Þ; ð36Þ

which, e.g., for ϵ ¼ ϵ0eαη gives EmðηÞ ¼ ϵðηÞ=ðmþ αÞ.
Similarly one finds F1;δϵ ¼ Oðϵ2Þ, i.e., the linear kernel

for δϵ starts only at order ϵ2. Note that the ϵ2 contribution is
generated only by the third cumulant. Indeed, when
neglecting third and higher cumulants F1;δϵ would be zero
at all orders in ϵ, because the evolution equation for δϵ
becomes trivial in that limit and corresponds to a decaying
mode. However, below we shall see that starting from
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second order, the kernels for δϵ have contributions at order
ϵ1, as expected from the general scaling discussed above.
The evolution equations for δ and θ can be written as

ð∂η þ 1þ ΩSPTÞ
�
F1;δ

F1;θ

�
¼ −k2

�
0

F1;g þ F1;δϵ þ ϵF1;A

�
;

ð37Þ

where

ΩSPT ¼
�

0 −1
− 3

2
1
2

�
; ð38Þ

is the standard EdS-SPT evolution matrix, 1 denotes the
unit matrix, and the right-hand side contains the impact of
velocity dispersion. We can integrate out this equation to
write the formal solution as

�
F1;δ

F1;θ

�
¼

�
1

1

�
þ
Z

η
dη0 eη0−ηgSPTðη − η0Þ

�
0

Sðk; η0Þ

�
;

ð39Þ

where we used SPT initial conditions in the far past (which
specifies the lower limit of integration), and gSPTðη − η0Þ is
the standard EdS-SPT linear Green function [30] with
Sðk; ηÞ≡ −k2ðF1;g þ F1;δϵ þ ϵF1;AÞ. We obtain the OðϵÞ
corrections to F1;δ and F1;θ by inserting the lowest order
results for S, giving

F1;δðk; ηÞ ¼ 1 − k2IδðηÞ þOðϵ2Þ;
F1;θðk; ηÞ ¼ 1 − k2IθðηÞ þOðϵ2Þ; ð40Þ

where

IδðηÞ≡ 2

5

Z
η
dη0ð1 − e5ðη0−ηÞ=2Þ

×

�
ϵðη0Þ þ 2

Z
η0

dη00e2ðη00−η0Þϵðη00Þ
�
;

IθðηÞ≡ 2

5

Z
η
dη0

�
1þ 3

2
e5ðη0−ηÞ=2

�

×

�
ϵðη0Þ þ 2

Z
η0

dη00e2ðη00−η0Þϵðη00Þ
�
: ð41Þ

Since ϵ ≥ 0 and η0 ≤ η we observe that the correction term
has a negative sign irrespective of the precise time-
dependence of ϵðηÞ, such that velocity dispersion neces-
sarily leads to a suppression relative to SPT at first order
in ϵ. The integrals can be simplified using the relation

Z
η
dη0eaðη0−ηÞ

Z
η0

dη00 ebðη00−η0Þfðη00Þ

¼ −
1

a − b

Z
η
dη0ðeaðη0−ηÞ − ebðη0−ηÞÞfðη0Þ; ð42Þ

for a ≠ b. Using the definition of Eq. (36) of the time-
weighted background dispersion one finds,

IδðηÞ ¼
4

5
E0ðηÞ − 2E2ðηÞ þ

6

5
E5=2ðηÞ;

IθðηÞ ¼
4

5
E0ðηÞ þ 2E2ðηÞ −

9

5
E5=2ðηÞ: ð43Þ

Proceeding similarly for the third cumulant perturbations
gives

F1;π ¼ F1;χ þ 3k2
Z

η
dη0e5ðη0−ηÞ=2ϵðη0ÞF1;gðk; η0Þ;

F1;χ ¼ k2
Z

η
dη0e5ðη0−ηÞ=2ð5ϵðη0ÞF1;δϵðk; η0Þ

þ ωðη0ÞF1;Aðk; η0ÞÞ; ð44Þ

which readily yields the leading Oðϵ2Þ contribution
when inserting the lowest order expressions F1;Ajϵ0 ¼ 1,
F1;δϵjϵ1 ¼ 0 and F1;gjϵ1 from Eq. (35) on the right-hand side
and recalling the power counting ω ∝ ϵ2.

2. Second order kernels

At second order in perturbation theory we can proceed
analogously, taking the vertices on the right-hand side of
Eq. (33) into account. For example, the differential equa-
tion for the g mode reads

ð∂ηþ3ÞF2;gðp;q;ηÞ¼2ϵðηÞF2;θðp;q;ηÞ−F2;πðp;q;ηÞ

þ3

5
F2;χðp;q;ηÞ

þγgbcðp;qÞF1;bðp;ηÞF1;cðq;ηÞ; ð45Þ

where summation over all b, c is implied, with contribu-
tions coming in general from γgθg, γgθϵ, γgAπ , γgAχ , γgwig,
γgwiϵ, γgθνi , γgθtij , γgwiνj , γgwitjk , as well as corresponding
contributions with the second two entries in the subscript
flipped. All of these vertices are elementary functions of
their arguments and are given explicitly in paper I [6]. Note
that ϵ in the subscript stands for the mode δϵ. At second
order, none of the vertices involving vorticity, vector or
tensor modes contribute since F1;a ¼ 0 for them. In
addition, for the leading (linear) contribution in the expan-
sion in ϵ we can omit third cumulant contributions and also
those involving δϵ, since F1;δϵ starts at ϵ2. This means only
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γgθgðp;qÞ¼
1

2

p ·q
q2

�ðpþqÞ2
p2

þ1

2
−
3

2

ððpþqÞ ·pÞ2
ðpþqÞ2p2

�
; ð46Þ

and γggθðp; qÞ ¼ γgθgðq; pÞ need to be kept at OðϵÞ. Using
in addition that F2;θðp; q; ηÞjϵ0 ¼ G2ðp; qÞ is equal to the
usual EdS-SPT second order velocity kernel and F1;gjϵ1
from (35) yields

F2;gðp; q; ηÞ ¼ 2G2ðp; qÞE3ðηÞ þ 2ðγgθgðp; qÞ
þ γgθgðq; pÞÞðE2ðηÞ − E3ðηÞÞ
þOðϵ2Þ: ð47Þ

Analogously one finds

F2;δϵðp; q; ηÞ ¼ 2ðγϵθgðp; qÞ þ γϵθgðq; pÞÞðE2ðηÞ − E3ðηÞÞ
þOðϵ2Þ; ð48Þ

where [6]

γϵθgðp; qÞ ¼
1

2

p · q
2p2q2ðpþ qÞ2 ððp · qÞ

2 − p2q2Þ: ð49Þ

Note that, while F1;δϵ starts only at order ϵ2, the second-
order kernel F2;δϵ has a nonzero contribution already at
(leading) order ϵ1. The same is true for higher-order kernels
of δϵ.
For the density and velocity divergence kernels we use

ð∂ηþ2 ·1þΩSPTÞ
�
F2;δ

F2;θ

�
¼
�

γδbcF1;bF1;c

γθbcF1;bF1;cþS2

�
; ð50Þ

where we omit the arguments for brevity and set S2 ≡
−ðpþ qÞ2ðF2;g þ F2;δϵ þ ϵF2;AÞ. Possible vertices are
γδθδ; γδwiδ and γθθθ, γθAg, γθAϵ, γθwiθ, γθwiwi

, γθAνi , γθAtij
given in paper I [6] along with the flipped contributions. As
before, only scalar vertices contribute to F2;δ and F2;θ,
while contributions involving F1;δϵ matter only at order ϵ2.
Up to first order in ϵ the relevant vertices therefore amount
to the two SPT vertices γδθδðp; qÞ ¼ αðp; qÞ=2 ¼ ðpþ qÞ ·
p=ð2p2Þ and γθθθðp; qÞ ¼ βðp; qÞ ¼ ðpþ qÞ2p · q=ð2p2q2Þ
as well as

γθAg ¼ −ððpþ qÞ · qÞðp · qÞ=ð2q2Þ: ð51Þ

Writing the equation in integral form

�
F2;δ

F2;θ

�
¼

Z
η
dη0e2ðη0−ηÞgSPTðη − η0Þ

×

�
γδbcF1;bF1;c

γθbcF1;bF1;c þ S2

�����
η0
; ð52Þ

and expanding the right-hand side up to linear order in ϵ
yields

F2;δðp; q; ηÞ ¼ F2ðp; qÞ − ðpþ qÞ2
X7
j¼1

Γjðp; qÞJδjðηÞ

þOðϵ2Þ;

F2;θðp; q; ηÞ ¼ G2ðp; qÞ − ðpþ qÞ2
X7
j¼1

Γjðp; qÞJθjðηÞ

þOðϵ2Þ; ð53Þ

where the time-dependence at linear order in ϵ is given by the
integrals Jδ=θj ðηÞ, with explicit form given in Appendix B,
and the dependence onwave number arising from thevarious
nonlinear vertices can be written as

Γ1ðp; qÞ≡ G2ðp; qÞ;
Γ2ðp; qÞ≡ γgθgðp; qÞ þ γgθgðq; pÞ þ γϵθgðp; qÞ þ γϵθgðq; pÞ;
Γ3ðp; qÞ≡ F2;Aðp; q; ηÞjϵ0

¼ ½G2ðp; qÞ þ γAθAðp; qÞ þ γAθAðq; pÞ�=2;
Γ4ðp; qÞ≡ ðp2 þ q2Þγθθθðp; qÞ=ðpþ qÞ2;
Γ5ðp; qÞ≡ −ðγθAgðp; qÞ þ γθAgðq; pÞÞ=ðpþ qÞ2;
Γ6ðp; qÞ≡ ðp2γδθδðp; qÞ þ q2γδθδðq; pÞÞ=ðpþ qÞ2

¼ 1=2;

Γ7ðp; qÞ≡ ðq2γδθδðp; qÞ þ p2γδθδðq; pÞÞ=ðpþ qÞ2; ð54Þ

with γAθAðp; qÞ ¼ p · q=ð2q2Þ. Each of the Γj approaches a
constantwhen the sumofwave numbers goes to zero, leading
to a scaling of F2;δ in accordance with the requirement from
mass and momentum conservation (see Sec. III B).
Using the explicit expressions for the vertices, one can

check that each

Γj ¼ βj;aΔa þ βj;bΔb þ βj;cΔc þ βj;dΔd; ð55Þ

can be expressed in terms the four basis functions

Δaðp; qÞ≡ ðp2 þ q2ÞF2ðp; qÞ=ðpþ qÞ2;
Δbðp; qÞ≡ F2ðp; qÞ;
Δcðp; qÞ≡ ðp2 þ q2ÞKðp; qÞ=ðpþ qÞ2;
Δdðp; qÞ≡ Kðp; qÞ≡ ðp · qÞ2=ðp2q2Þ − 1; ð56Þ

with coefficients βj;k given in Table I. This basis has been
introduced in [31], and the present result proves equation
(109) therein. Here K is the kernel corresponding to the
second order Galileon operator G2 in [31], which physically
represents the tidal field.
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The decomposition in Eq. (55) implies that one can write
the first-order correction in ϵ to the second-order density
kernel F2;δ also as

F2;δðp; q; ηÞ ¼ F2ðp; qÞ − ðpþ qÞ2
X

k¼a;b;c;d

Δkðp; qÞβδkðηÞ

þOðϵ2Þ;
F2;θðp; q; ηÞ ¼ G2ðp; qÞ − ðpþ qÞ2

X
k¼a;b;c;d

Δkðp; qÞβθkðηÞ

þOðϵ2Þ; ð57Þ

with coefficients βδ=θk ðηÞ for k ¼ a, b, c, d given by linear

combinations of the Jδ=θj ðηÞ with coefficients βj;k from
Table I. Using the results from Appendix B we find

βδaðηÞ¼
2

5
ð2E0ðηÞ−6E1ðηÞþ5E2ðηÞþ3E5=2ðηÞ

−5E3ðηÞþE7=2ðηÞÞ;

βδbðηÞ¼
2

5
ð6E1ðηÞ−10E2ðηÞþ5E3ðηÞ−E7=2ðηÞÞ;

βδcðηÞ¼
1

35
ð3E1ðηÞ−20E2ðηÞþ30E5=2ðηÞ−15E3ðηÞ

þ2E7=2ðηÞÞ;

βδdðηÞ¼
3

35
ð3E1ðηÞ−10E2ðηÞþ15E3ðηÞ−8E7=2ðηÞÞ; ð58Þ

and

βθaðηÞ ¼
1

10
ð8E0ðηÞ − 24E1ðηÞ þ 40E2ðηÞ − 33E5=2ðηÞ

þ 20E3ðηÞ − 6E7=2ðηÞÞ;

βθbðηÞ ¼
1

10
ð24E1ðηÞ − 20E2ðηÞ þ 15E5=2ðηÞ − 20E3ðηÞ

þ 6E7=2ðηÞÞ;

βθcðηÞ ¼
1

70
ð16E0ðηÞ þ 6E1ðηÞ þ 60E2ðηÞ − 81E5=2ðηÞ

þ 30E3ðηÞ − 6E7=2ðηÞÞ;

βθdðηÞ ¼
1

35
ð9E1ðηÞ þ 20E2ðηÞ − 15E5=2ðηÞ − 45E3ðηÞ

þ 36E7=2ðηÞÞ: ð59Þ

The kernels for the third cumulant perturbations π and χ
start at order ϵ2, and can be obtained by inserting the results
up to first order from above in the right-hand side of their
equations of motion

�
∂ηþ

7

2

�
F2;π ¼ 3k2ϵF2;gþ5k2ϵF2;δϵþk2ωF2;A

þ γπbcF1;bF1;c;�
∂ηþ

7

2

�
F2;χ ¼ 5k2ϵF2;δϵþk2ωF2;Aþ γχbcF1;bF1;c; ð60Þ

and using the respective vertices.
In addition, at second order, also vorticity, vector and

tensor modes are generated. The corresponding kernels are
discussed in Sec. IV and Sec. IV D, respectively.
In principle, with the same strategy one can obtain the

correction terms to the third-order kernels F3;a at linear
order in ϵ. Similarly, it is possible to systematically expand
to higher powers in ϵ. Nevertheless, the expressions
become too lengthy to be shown, and we revert to a
numerical treatment, that does not require any expansion in
ϵ and therefore remains valid when ϵk2i is sizeable.

3. Wilson coefficients

Note that the four basis functions in Eq. (56) appearing in
the order ϵ correction to the density kernel F2;δðp; q; ηÞ,
Eq. (57), are equivalent to the shape functions introduced in
the context of the effective field theory (EFT) treatment of
the bispectrum [32,33].6 Indeed, within the effective field
theory language the coefficients βδa; βδb; β

δ
c; βδd are the set of

four counterterms (or rather Wilson coefficients) at second
order in perturbation theory and at leading order in the
derivative expansion. The result obtained here can be
viewed as a first-principle determination of those Wilson
coefficients by matching the EFT to the exact UV theory,
being the Vlasov equation (at least when considering cold
dark matter only). Nevertheless, this does not mean that
their values are identical to the corresponding counter-
terms obtained when complementing an SPT loop compu-
tation with correction terms of the form of Eq. (56) and
fitting them to simulation results, since these counter-terms
have to absorb also the unphysical contributions from the
UV region of the SPT loop integration (or alternatively
account for the missing modes when imposing a cutoff).
Instead, the Wilson coefficients βδa; βδb; β

δ
c; βδd obtained here

capture the actual impact of nonlinearly induced dark

TABLE I. Expansion coefficients in Eq. (55) of the functions
Γjðp; qÞ in terms of the four basis functions given by Eq. (56).

j 1 2 3 4 5 6 7

βj;a 0 −1 1
2

1 − 1
2

− 1
2

3
2

βj;b 1 2 1
2

0 1
2

1
2

− 1
2

βj;c 0 − 3
14

5
14

5
7

1
7

− 5
14

1
14

βj;d 2
7

13
14

1
7

0 − 1
7

− 1
7

1
7

6Using the basis functions E1;2;3 and Γ in the convention of
[34] one has E1 ¼ k2ð−Δa þ Δb − 5

7
Δc − 2

7
ΔdÞ, E2 ¼

k2ð− 2
3
Δa þ 2

3
Δb − 10

21
Δc þ 17

21
ΔdÞ, E3 ¼ k2ð− 1

3
Δa þ 1

3
Δb þ

11
42
Δc − 2

21
ΔdÞ, Γ ¼ k2ð 2

11
Δa þ 9

11
Δb − 1

7
Δc − 6

77
ΔdÞ, where

k2 ≡ ðpþ qÞ2.
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matter velocity dispersion on the second-order kernel.
Similarly, Iδ appearing in the ϵ correction to F1;δ, see
Eq. (40), may be viewed as the result of matching the EFT
correction at first order in perturbations and leading order in
gradients to the Vlasov theory.
Apart from that, we stress that we do not expand in

powers of ϵ in our numerical analysis (see below), and
therefore our results go beyond the four correction terms in
Eq. (56). For example, formally, the contributions to F2;δ at
order ϵ2 would correspond to additional higher-derivative
operators in the EFT with two additional spatial gradients
compared to those captured by Eq. (56). At order ϵ3, the
EFT matching would require to include operators with four
additional gradients, and so on. Furthermore, the correction
to the third-order kernel F3;δ would correspond to EFT
operators at third order in perturbation theory, etc. All of
these contributions are implicitly contained in the kernels
Fn;a considered here.

D. Numerical results

In our analysis we solve the system of coupled differ-
ential equations, Eq. (33), for the nonlinear kernels numeri-
cally using a recursive algorithm [27,29].
We consider the approximation schemes given in

Table II. The most inclusive scheme is (cum3þ =svt),
for which apart from δ and θ also all scalar, vector and
tensor perturbations of the dispersion tensor ϵij, its back-
ground expectation value ϵðηÞ, as well as the scalar modes π
and χ of the third cumulant are taken into account.
Furthermore, their evolution equations contain the expect-
ation value ωðηÞ of the fourth cumulant, that we also
include. For comparison, we consider approximations
(cum2) that omit the third cumulant perturbations. In that
case, ωðηÞ does not enter in the perturbation equations. In
addition, we consider various approximations related to
scalar, vector and tensor modes. For approximation
scheme (s), only scalar modes are included. For (sw) we
include in addition vorticity. Within the schemes (sv) and
(svt) also the vector and tensor modes of ϵij are added
successively.
Since the second and higher cumulants are expected to

play a role only at low redshift, we initialize the kernels at
some finite time ηini, using EdS-SPT kernels for the density
and velocity divergence, and setting all other kernels to zero
(except A, which is initialized as δ),

Fn;δðk1;…;kn;ηiniÞ≡Fnðk1;…;knÞ;
Fn;θðk1;…;kn;ηiniÞ≡Gnðk1;…;knÞ;
Fn;Aðk1;…;kn;ηiniÞ≡Fnðk1;…;knÞ;
Fn;aðk1;…;kn;ηiniÞ≡ 0; a¼wi;g;δϵ;νi; tij;π;χ: ð61Þ

The most important part of the initial condition are the first
two lines, and in particular for the linear kernels n ¼ 1.
These conditions must be supplemented by an initial
condition on the background dispersion ϵ of infinitesimal
value, which makes the Vlasov cumulant hierarchy evo-
lution consistent with the solution of the Vlasov equation,7

otherwise no dispersion and higher cumulants would be
generated by time evolution out of Eqs. (61). As long a ηini
is chosen early enough, the results at low redshift are
insensitive to the choice of the initial condition for the
higher kernels with n > 1, as well as for the perturbations
of A and the second and higher cumulants, since the
dominant contribution is generated by the time-evolution
at late times. In practice we use ηini ¼ −20, and checked
that our results are insensitive to the precise choice of the
initial time, as expected since transients will be down by at
least expð−20Þ. Our implementation for the vector and
tensor modes is described in Appendix D.
The numerical result for the kernels F2;aðk − q; q; ηÞ and

F3;aðk; q;−q; ηÞ, that enter in the one-loop density (a ¼ δ)
and velocity divergence (a ¼ θ) power spectra, Eq. (32),
are shown in Fig. 2 (see also Fig. 3). We show the
dependence on the magnitude of the loop wave number
q ¼ jqj for fixed k ¼ jkj and coskq ¼ μ ¼ k · q=ðkqÞ, as
well as assuming a power-law time-dependence ϵðηÞ ¼
ϵ0eαη and ωðηÞ ¼ ω̄ × ϵðηÞ2, with parameters as stated in
the figure. Note that the kernels are dimensionless, such
that the result is independent of ϵ0 ¼ 1=k2σ when plotted
against the ratio q=kσ. The numerical results for the density
kernels (in blue) approach the corresponding EdS-SPT
kernels (black dashed) in the limit when both q ≪ kσ and
k ≪ kσ. Due to our choice k=kσ ¼ 0.2, the blue and black
dashed curves therefore lie (almost) on top of each other for
q=kσ ≪ 1, as expected. Furthermore, we show the analyti-
cal result at order ϵ (Eq. (57) for F2;δ and F2;θ. It agrees
with the numerical result for q=kσ ≲ 1, and captures the
onset of the deviation of VPT from SPT.
In the limit of large loop wave number q we observe a

substantial suppression of the kernels relative to EdS-SPT.
This implies that, when integrating over the loop wave
number q, the one-loop correction to the density power
spectrum is less sensitive to the UV regime as compared to
SPT. This result is in line with theoretical expectations [9]
and in qualitative agreement with numerical findings on the
response of the nonlinear power spectrum to small-scale
initial fluctuations [12,13], which reflects the decoupling of

TABLE II. Background values and perturbation modes taken
into account in various approximation schemes of VPT.

s sw sv svt

cum2 ϵðηÞ δ; θ; g; δϵ; A þwi þνi þtij
cum3þ ϵðηÞ, ωðηÞ δ; θ; g; δϵ; A; π; χ þwi þνi þtij 7See Sec. III.B in [5] for more discussion on this.
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small-scale modes. The inclusion of velocity dispersion and
higher cumulants in VPT therefore addresses one of the
major shortcomings of SPT, namely the sensitivity to UV
modes, by taking the physically expected screening of those
perturbation modes into account.
The asymptotic slope of the nonlinear kernels

Fn;δðk1;…; kn; ηÞ in the limit k≡ jP kij ≪ kσ ≪ jkij
can be understood analytically. Within SPT momentum
conservation implies Fn ∝ k2=q2 in the corresponding limit
k ≪ jkij, where q≡maxijkij, and the same factor arises in
VPT. In addition, within VPT the dispersion scale kσ is
relevant. For all wave numbers with jkij ≫ kσ , the corre-
sponding modes contributing to the kernel have already
entered the “dispersion horizon”. The moment of entry
corresponds to time η ¼ ηki satisfying the condition
ϵðηkiÞk2i ¼ 1. For ϵðηÞ ¼ ϵ0eαη this corresponds to
eηki ¼ ðk2σ=k2i Þ1=α. Now, the most important effect is that
the linear modes effectively stop growing in the usual way

(i.e. ∝eη) once entering the dispersion horizon. This implies
that

Fn;δðk1;…; kn; ηÞ ∼
k2

q2
eηk1eηk2 � � � eηkn

for k ≪ kσ ≪ q; ð62Þ

within VPT. Using eηki ¼ ðk2σ=k2i Þ1=α this yields a power-
law screening of UV modes. Indeed, applying this argu-
ment to F2;aðk − q; q; ηÞ ∝ q−2−4=α and F3;aðk; q;−q; ηÞ ∝
q−2−4=α yields the slope by which these kernels decay at
very large q. Using that for a power-law universe α ¼
4=ðns þ 3Þ this furthermore explains the universal 1=q2

decay stated in Eq. (3) and shown in Fig. 1. Moreover,
the argument leading to this scaling is independent of
the precise way on how the linear growth stalls when
entering the dispersion horizon, and therefore shows that

FIG. 2. Nonlinear kernels F2;aðk − q; q; ηÞ (left column) and F3;aðk; q;−q; ηÞ (right column) versus q ¼ jqj in VPT (blue lines)
compared to SPT (black dashed) for the density contrast a ¼ δ (top row) and velocity divergence a ¼ θ (bottom row). For the
background dispersion we chose ϵðηÞ ¼ ϵ0eαη as well as ωðηÞ ¼ ω̄ × ϵðηÞ2, with parameters as indicated in the figures, and η ¼ 0. We
show the dependence on q relative to the dispersion scale kσ , such that the result applies to any value of ϵ0 ¼ 1=k2σ . The blue lines show
second and third cumulant approximations (see Table II), which are both suppressed compared to the EdS-SPT kernels for q≳ kσ
(shown in black dashed lines). The thin black solid line shows the analytical result of Eq. (57) at first order in ϵ.
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the asymptotic scaling of the VPT kernels is universal,
independent of the precise approximation scheme. We shall
also confirm this with our numerical solutions in the
following.
In Fig. 2 we compare the (cum2) and (cum3þ)

approximation schemes (see Table II). For F2;δðθÞ the
difference is very small (with both lines being almost on
top of each other), while for F3;δðθÞ a more noticeable
difference arises. But overall, the impact of third cumulant
perturbations is small within the regime q ∼OðkσÞ where
the suppression relative to SPT sets in.
In Fig. 3, we show the dependence of the kernel

F3;δðθÞðk; q;−q; ηÞ on the approximation scheme for vor-
ticity, vector and tensor modes (see Table II; note that only
scalar modes contribute to F2;δðθÞ). Within the regime
q≲ 2kσ, where the suppression relative to SPT becomes
important, the (sw), (sv), and (svt) schemes are all close to

each other for F3;δ, while the (s) approximation differs
significantly. This implies that the backreaction of vorticity
on the third-order density kernel is sizeable, and leads to a
substantial suppression of the F3;δ kernel. The difference
between (s) and (sw) captures the impact of vorticity, while
including the vector mode of the stress tensor in addition
within the (sv) scheme leads to further differences at large
q≳ 2kσ. On the other hand, we find that the impact of the
tensor perturbation of the stress tensor on both F3;δ and F3;θ

is very minor, as quantified by the difference between (sv)
and (svt). We find a qualitatively similar behavior, includ-
ing in particular the suppression at large q relative to SPT,
independently of the precise choice of the parameters k,
coskq, α and ω̄.
The kernels F3;aðk; q;−q; ηÞ of the two scalar perturba-

tion modes a ¼ g; δϵ of the velocity dispersion tensor are
shown in Fig. 4, as compared to those for a ¼ δ, θ. Note
that we show the dependence on k for fixed q here. For
a ¼ δ, θ the kernels scale as k2 for small k, as in SPT, and

FIG. 3. Nonlinear kernels F3;aðk; q;−q; ηÞ versus q ¼ jqj for
a ¼ δ, θ as in Fig. 2, but comparing the impact of various
approximations related to vorticity, as well as vector and tensor
modes of the velocity dispersion tensor (see Table II). Including
vorticity backreaction has a significant impact on F3;δ within the
most relevant regime kσ ≲ q≲ 2kσ where the suppression of VPT
relative to SPT sets in [(sw) vs (s) in upper panel].

FIG. 4. Nonlinear kernels F3;aðk; q;−q; ηÞ versus k ¼ jkj for
a ¼ δ, θ (top) and the scalar perturbations a ¼ g; δϵ of the stress
tensor (bottom). F3;δ ∝ k2 for k → 0 is ensured by mass and
momentum conservation, while for F3;θ it is a consequence of the
symmetry q → −q, see Sec. III B. In contrast, the kernels of the
velocity dispersion modes approach a constant at low k.
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guaranteed by mass and momentum conservation for the
density, as well as by symmetry k → −k for θ (see Sec. III).
For large k≳ kσ the kernels are suppressed compared to
their SPT values, similarly as for the dependence on q.
The behavior for the stress tensor perturbations a ¼ g; δϵ

is qualitatively different for small k, where their kernels
approach a constant value. This implies that their linear
theory values are modified also in the limit k → 0, as
quantified e.g., by a “bias” ba ≡ Paδ=Pδδjk→0. In the limit
k → 0, the bias is given by

ba ¼ F1;aðk ¼ 0; ηÞ þ 3

Z
d3qF3;aðk; q;−q; ηÞP0ðqÞ

���
k→0

þ…; ð63Þ

where the ellipsis stand for two and higher loop contribu-
tions. For a ¼ g the linear contribution is given by bling ¼
F1;gðk ¼ 0; ηÞ ¼ 2E2ðηÞ [see Eq. (35)], while for the case
a ¼ δϵ we have blinδϵ ¼ 0.8

Overall, we conclude that vorticity as well as scalar and
vector modes of the velocity dispersion tensor should be
taken into account when computing the one-loop correction
to the density power spectrum, while third cumulant
perturbations and especially the tensor mode are less
relevant. Taking vorticity into account is also important
to guarantee momentum conservation, as we shall see in the
next section.

III. SYMMETRY CONSTRAINTS
ON NONLINEAR KERNELS

The symmetries underlying the Vlasov-Poisson system
lead to constraints on the behavior of the nonlinear kernels
Fn;aðk1;…; kn; ηÞ in particular limiting cases. In the fol-
lowing we discuss the implications of

(i) Galilean invariance in the limit where one of the
arguments ki → 0, corresponding to the impact of a
very large scale mode on the propagation on smaller
scales, and

(ii) mass and momentum conservation in the limit when
the total wave number k≡P

i ki → 0, while the
individual ki remain finite, corresponding to the
impact of small-scale modes onto perturbation
modes on larger scales.

The corresponding constraints are well-known within EdS-
SPT [9,22,35], and here we discuss and show how they are
generalized when including velocity dispersion and higher
cumulants. Since these symmetry constraints guarantee
delicate cancellations among various terms at a given order
in perturbation theory, it is important to ensure their validity

for a given approximation scheme. For example, as we will
see, and unlike what happens in SPT, momentum con-
servation requires to take vorticity into account. Finally, the
symmetry constraints also provide a rather nontrivial check
of the formalism and implementation.

A. Galilean invariance

The Vlasov-Poisson system within the nonrelativistic
limit features a shift symmetry

x → x0 ¼ xþ nðτÞ; τ → τ0 ¼ τ; ð64Þ

with an arbitrary time-dependent shift function nðτÞ, as
pointed out in [36,37] generalizing the earlier work in [38].
More broadly, this symmetry is a remnant of those induced
by general relativistic coordinate invariance, being the only
one that has a nontrivial Newtonian limit [39,40], corre-
sponding to the equivalence principle. It can be viewed as a
generalized Galilean invariance (in the absence of gravity
and expansion of the universe, n becomes linear in time),
with gravitational potential transforming as Φðτ; xÞ →
Φðτ0; x0Þ ¼ Φ0ðτ; xÞ − ðd2n=dτ2 þHdn=dτÞ · x. While the
density contrast transforms like a scalar under this sym-
metry, δðτ; xÞ → δðτ0; x0Þ ¼ δ0ðτ; xÞ, the velocity field is
shifted by a time-dependent, but spatially constant vec-
tor, vðτ; xÞ → vðτ0; x0Þ ¼ v0ðτ; xÞ þ dn=dτ.
In order to determine the transformation properties

of higher cumulants, we use that the phase-space distri-
bution function itself is a scalar under Galilean trans-
formations, fðτ; x; pÞ → fðτ0; x0; p0Þ ¼ f0ðτ; x; pÞ, where
p0 ¼ pþ aðτÞdn=dτ. From this, one finds that the cumulant
generating function, Eq. (4), transforms as

Cðτ; x; lÞ → Cðτ0; x0; lÞ ¼ C0ðτ; x; lÞ þ l · dn=dτ; ð65Þ

which implies that all but the first cumulant, i.e., the
velocity, are scalars under Galilean transformations. In
particular,

σijðτ; xÞ → σijðτ0; x0Þ ¼ σ0ijðτ; xÞ;
Cijk���ðτ; xÞ → Cijk���ðτ0; x0Þ ¼ C0ijk���ðτ; xÞ; ð66Þ

for the velocity dispersion tensor, the third and all higher
cumulants. Note that also the divergence of the velocity θ as
well as the vorticity wi transform as scalars, or in general
any gradient ∇ivj of the velocity field, as well as second
gradients ∇i∇jΦ of the gravitational potential.
Galilean invariance of the equations of motion of the

density contrast, the velocity divergence and vorticity, as
well as the dispersion tensor and higher cumulants there-
fore implies that only covariant quantities may enter these
equations. This requires in particular that only gradients of
the velocity field, and second gradients of the gravitational
potential may appear, as can readily be checked to be the

8Note that the Oðϵ2Þ contributions to F1;aðk; ηÞ have to vanish
for a ¼ g; δϵ in the limit k → 0 for dimensional reasons, being
proportional to some time integral of either ϵðη0Þϵðη00Þk2 or
ωðη0Þk2.
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case for the continuity and Euler equations (6), and also for
the equations of motion (7) of the dispersion tensor and the
higher cumulants (note that the equations for θ and wi
contain an extra gradient compared to the Euler equation
for v). The only exception is the time-derivative. Galilean
invariance requires that it appears in the covariant combi-
nation ∂τ þ v · ∇. This is indeed the case in Eqs. (6) and (7).
In terms of the rescaled time variable η and velocity u, the
covariant derivative reads

Dη ≡ ∂η − u · ∇ ¼ ∂η −
�∇θ

∇2
−
∇ × w
∇2

�
·∇: ð67Þ

Galilean invariance therefore implies that the covariant time
derivative is the only place where the velocity field may
appear without a gradient acting on it, when considering
equations of motion for quantities that are scalars under
Galilean transformations. As shown above, this is the case
for all perturbation variables considered here. When trans-
forming the equations of motion into Fourier space as in
Eq. (23), this implies that the nonlinear vertices satisfy the
property

γabcðp;qÞ¼ δac

�
δbθ

q ·p
2p2

−δbwi

ðq×pÞi
2p2

�
þOðp0Þ; ð68Þ

in the limit p → 0, generalizing the result in [41] to include
vorticity. As shown in Appendix C, this implies the relation

Fnþ1;aðp; k1;…; kn; ηÞ ¼
1

nþ 1

k · p
p2

Fn;aðk1;…; kn; ηÞ

þOðp0Þ for p → 0; ð69Þ

for the squeezed limit of the kernels, where k ¼ P
i ki.

This property is well-known for the EdS-SPT kernels,
see e.g. [42]. Galilean invariance ensures its validity also
for the VPT nonlinear kernels, including those of higher
cumulants. The limit is approached when jpj ≪ jkij and
jpj ≪ kσ , i.e., the size ∼1=p of the large-scale mode has to
be larger than the dispersion length-scale

ffiffiffi
ϵ

p
. We checked

that the relation above is satisfied for the analytical results
of the second-order kernels at order ϵ. In addition we
checked its validity analytically for the third-order kernels
F3;a for a ¼ δ; θ; g; δϵ; A expanded to order ϵ.
Equation (69) ensures that, as in SPT [38,43], all

contributions to the equal-time power spectra and bispectra
for which the kernels become singular in the limit of small
loop wave number cancel. This cancellation occurs only
after adding all contributions at a given order in perturba-
tion theory, i.e., for example among the various lines in the
one-loop expression, Eq. (32). It is easy to see that Eq. (69)
also implies that the cancellation can be made manifest on
the level of the loop integrand by the same strategy as in
SPT, for the power spectrum [25,26] and bispectrum [28],

respectively. We already described its implementation at
one-loop above, and use it throughout this work.
For unequal times, one can check that Eq. (69) gives rise

to the standard (1=p) pole present in the so-called con-
sistency relations between the squeezed (N þ 1)-point
functions of density fluctuations and its regular N-point
function [36,37].

B. Mass and momentum conservation

Within SPT, it is well-known that Fnðk1;…; knÞ ∝ k2

and Gnðk1;…; knÞ ∝ k2 in the large-scale limit when the
sum k≡P

i ki of wave vectors goes to zero (with the
magnitude of at least two of the individual wave vectors
remaining constant). Here we show that, as expected from
mass and momentum conservation, this property is pre-
served for the kernels Fn;δ of the density contrast also in
VPT provided vorticity is taken into account, as hinted at
already above. However, as we show below, the scaling of
the velocity divergence kernels Fn;θ in VPT is in general
different compared to SPT, but still conforms with all
symmetry requirements.

1. Density contrast

Let us start with the kernels Fn;δ of the density contrast.
To study their asymptotic behavior it is convenient to write
the continuity equation in the form

∂τδþ∇iPi ¼ 0; ð70Þ

where

Piðτ; xÞ≡ ð1þ δÞvi; ð71Þ

is the momentum field. Using the Euler equation, its
equation of motion can be written as

∂τPi þHPi þ∇jTij ¼ 0; ð72Þ

which takes the form of a conservation equation for the
comoving momentum aPi, with

Tij≡ ð1þ δÞðσijþvivjÞþΦδij

þ 1

3H2Ωm
ð∇iΦ∇jΦ−Φ∇i∇jΦþΦδij∇2ΦÞ: ð73Þ

This is of the expected form coming from momentum
conservation for free particles described by a distribution
function in general relativity, where the stress-energy-
momentum tensor T μν ¼ R

dVpfðpÞpμpν, and dVp ≡
d3p=

ffiffiffiffiffiffi−gp
p0 is the invariant 3-volume in phase-space

and g the metric’s determinant [44]. Indeed, in the weak-
field limit for nonrelativistic velocities and scalar-only
metric perturbations described by Φ, the covariant deriva-
tive in momentum conservation induces the Φ-dependent
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terms inside the Newtonian limit Tij that satisfy
∇jTΦ

ij ¼ ð1þ δÞ∇iΦ, as required. Combining Eqs. (70)
and (72) gives

∂
2
τδþH∂τδ ¼ ∇i∇jTij; ð74Þ

which is valid nonlinearly and including the stress tensor
contribution Σij ≡ ð1þ δÞσij. Its form also does not change
when allowing for third or higher cumulants. Inserting the
perturbative expansion of the density contrast readily yields
the claimed scaling due to the two overall derivatives in
front of Tij,

Fn;δðk1;…; kn; ηÞ ∝ k2; k ¼
X
i

ki → 0: ð75Þ

This proves that the quadratic scaling of the kernels Fn;δ

due to mass and momentum conservation is a general
property, as expected.
Let us now discuss in how far this constraint is

compatible with the various approximation schemes con-
sidered in this work. One can check that Eq. (72) holds
independently of whether or not third and higher cumulants
are taken into account, i.e., in particular for both the
(cum2) and (cum3þ) approximations. Furthermore, it
also holds when including only a subset of the velocity
dispersion tensor perturbations, as is the case in the (sw) or
(sv) approximations. Therefore also the scaling property is
preserved for all of these approximation schemes.
However, we find that neglecting vorticity breaks

momentum conservation. The reason for this is that the
velocity dispersion tensor contribution to the Euler equa-
tion sources vorticity. Neglecting it discards part of the
velocity field, and therefore also some part of the momen-
tum, leading to artificial violation of momentum conser-
vation. Therefore, the (s) approximation scheme should not
be used in general, and we do indeed always include
vorticity in this work.
Nevertheless, it’s worth pointing out that when neglect-

ing vorticity, the spurious linear terms do not affect the one-
loop density power spectrum. Technically, this can be seen
by applying the scalar projector Ps

ij ¼ ∇i∇j=∇2 to the
Euler equation, and using this projected equation to derive
an equation for the momentum. This would lead to a
contribution to the momentum equation (72) of the form

ð1þ δÞ
�

1

1þ δ
∂j½ð1þ δÞϵij�

�
s
; ð76Þ

where the superscript s stands for applying the scalar
projector, ½Xi�s ≡ Ps

ikXk. This implies that the two factors
of 1þ δ in front do not cancel in that case, and therefore do
not yield an expression with an overall derivative in
front. This, in turn, would lead to a violation of the k2

scaling when neglecting vorticity. When taking vorticity

into account, one effectively adds the corresponding con-
tribution with a vector instead of scalar projection,
½Xi�v ≡ Pv

ikXk. Due to Pv
ij þ Ps

ij ¼ δij, the projectors drop
out and one obtains again Eq. (72), i.e., a k2 scaling of the
density kernels. However, when neglecting vorticity, one
obtains an extra term on the right-hand side of Eq. (74)
given by

∇i½δð½∇jσij�s −∇jσij þ ½σij∇jA�s − σij∇jAÞ�; ð77Þ

which only contains a single overall derivative and would
therefore potentially lead to terms linear in k in the large
scale limit of Fn;δ when neglecting vorticity. The first two
summands cancel for the scalar contributions to the stress
tensor, and are at least of second order for the vector and
tensor contributions. The last two summands are at least of
second order as well. Therefore, taking the additional factor
δ in front of the parenthesis into account, the spurious linear
scaling in k can only appear starting at third order in
perturbation theory, i.e., for F3;δ. Furthermore, due to the
property Fn;δðk1;…; kn; ηÞ ¼ Fn;δð−k1;…;−kn; ηÞ, the
kernel F3;δðk; q;−q; ηÞ that appears in the one-loop power
spectrum is odd under k → −k, and therefore any linear
term in k has to cancel.
Thus, the spurious linear scaling that occurs when

neglecting vorticity can only affect the power spectrum
starting at two-loop order, e.g., via the kernel
F3;δðk − p − q; p; q; ηÞ. For this reason we include the (s)
approximation scheme in our analysis below at one-loop
order for illustration and in order to compare to the
approximation schemes (sw), (sv) and (svt), that are all
compatible with momentum conservation. However, we do
not use the (s) scheme when going beyond one-loop.
For illustration, we show the kernel F3;δðk − p − q; p;

q; ηÞ in the upper panel of Fig. 5. For the (sw) and (sv)
approximations, that take vorticity into account, the kernel
scales as k2 for small k. However, in the (s) approximation
scheme, a spurious linear scaling with ∝ k appears. Note
that, similarly as before, the kernels are strongly suppressed
for large k as compared to SPT, and also differ for small k due
to the finite, fixed size of p and q. The behavior is
qualitatively similar for the (cum2) and (cum3þ) approx-
imations, respectively, andwe therefore only show the latter.
Finally, we comment on why neglecting vorticity within

the SPT approximation does not lead to spurious linear
terms. Within SPT, there is no vorticity source term in the
Euler equation. The remaining nonlinear term in the Euler
equation has the property ½vsj∂jvsi �s ¼ vsj∂jv

s
i, which implies

the well-known property that no vorticity is generated in the
perfect fluid approximation. This has the consequence that,
when neglecting the velocity dispersion tensor altogether,
the omission of vorticity does not spoil momentum con-
servation. Therefore, the k2 scaling of the density kernels
holds in SPT even in absence of vorticity. However, this is
not true any longer as soon as taking the velocity dispersion
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tensor into account, in which case it is mandatory to include
also vorticity in order to guarantee that momentum con-
servation holds.

2. Velocity divergence

In contrast to the density, the scaling of the velocity
divergence kernels is indeed modified when including the
velocity dispersion tensor and higher cumulants along with
vorticity,

Fn;θðk1;…; kn; ηÞ ∝ k; k ¼
X
i

ki → 0: ð78Þ

This scaling is in accordance with mass and momentum
conservation, i.e., allowed by the symmetries of the
system. However, we observe that for n ¼ 2 it does not
occur, i.e., F2;θ ∝ k2, independently of the approxima-
tion scheme. Furthermore, due to Fn;θðk1;…; kn; ηÞ ¼
Fn;θð−k1;…;−kn; ηÞ the linear term cancels in the one-
loop kernel F3;θðk; q;−q; ηÞ ∝ k2. Therefore, the linear
scaling does not affect the one-loop power spectrum of
the velocity divergence, or its cross spectrum with the
density contrast. The simplest kernel that displays linear
scaling is F3;θðk − p − q; p; q; ηÞ, for pþ q ≠ 0. This kernel
is shown in the lower panel of Fig. 5. In contrast to the
density kernel, we find linear scaling ∝ k in the limit k → 0
also when taking vorticity into account, i.e., for the (sw)
and (sv) approximation schemes. Furthermore, the linear
scaling occurs both in the (cum2) and (cum3þ) approxi-
mation schemes (only the latter is shown in Fig. 5).
Proceeding analogously as in Sec. II C we find the

following analytical result for the OðϵÞ contribution to
the third-order velocity divergence kernel, when keeping
the leading term in a Taylor expansion in k,

F3;θðk − p − q; p; q; ηÞ
¼ G3ðk − p − q; p; qÞ

−
�ðk · pÞðq · ðqþ 2pÞÞs2pq

ðpþ qÞ2 þ ðp ↔ qÞ
�

×

�
10

7
E2ðηÞ þ

2

21
E3ðηÞ − 2E5=2ðηÞ þ

10

21
E7=2ðηÞ

�
þOðϵ2; k2Þ; ð79Þ

where s2pq ≡ 1 − ðp · qÞ2=ðp2q2Þ. The second line scales
linearly with k, and we recall that En ¼ OðϵÞ. Furthermore,
one can check that the second line vanishes in the limit
pþ q → 0, giving a k2 scaling for the third-order kernel
entering the one-loop power spectrum, as stated above.
Note that, at first order in ϵ, third and higher cumulants

do not contribute, and therefore (79) is independent of the
truncation, such that it is identical for (cum2) and
(cum3þ), and would not change when going to higher
cumulant order. Furthermore, we find that tensor modes of
the stress tensor do not contribute to the linear term in k,
such that it holds for both the (sv) approximation as well as
the full (svt) case. (In (sw) approximation only the
prefactor would change). From this we conclude that the
linear scaling with k for the velocity divergence in the limit
k → 0 cannot be an artifact of the approximation scheme,
but is present in the full Vlasov theory.
As a further check, we demonstrate that the linear term

cancels when considering the momentum Pi. The diver-
gence of the momentum field can be written as

FIG. 5. Nonlinear kernels F3;aðk − p − q; p; q; ηÞ for a ¼ δ
(upper panel) and a ¼ θ (lower panel) versus k ¼ jkj, for fixed
p and q at η ¼ 0, and assuming ϵ ¼ ϵ0eαη with α ¼ 4=3. The blue
lines show the (s), (sw), and (sv) approximation schemes,
respectively, for (cum3þ) with ω̄ ¼ 1. The black dashed lines
show the EdS-SPT kernels F3 and G3 for comparison. For F3;δ, a
spurious linear scaling with k occurs in the limit k → 0 when
vorticity is neglected (s), while the k2 scaling ensured by mass
and momentum conservation is realized for all other approxi-
mation schemes that include vorticity. For F3;θ, the linear scaling
with k is a physical effect, and occurs independently of the
approximation scheme as long as pþ q ≠ 0. For the figure we
chose cosines ckp ¼ 0.3, ckq ¼ 0.5, cpq ¼ 0.875, p ¼ 0.5kσ , q ¼
0.5kσ where kσ ¼ 1=

ffiffiffiffiffi
ϵ0

p
.
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∇iPi ¼−Hf

�
θþ∇i

�
δ
∇iθ

∇2

�
−∇i

�
δ
εijk∇jwk

∇2

��
: ð80Þ

Due to the momentum conservation equation (72), we
know that the nonlinear kernels obtained when perturba-
tively expanding∇iPi have to scale as k2 in the limit where
the sum of all wave numbers goes to zero. In particular, at
third order this requires that in the combination of kernels

F3;θðk1; k2; k3; ηÞ þ
1

3

��
k · k3
k23

F2;δðk1; k2; ηÞF1;θðk3; ηÞ

−
ðk × ðk2 þ k3ÞÞi

ðk1 þ k3Þ2
F1;δðk1; ηÞF2;wi

ðk2; k3; ηÞ

þ k · ðk2 þ k3Þ
ðk2 þ k3Þ2

F1;δðk1; ηÞF2;θðk2; k3; ηÞ
�
þ 2 perm

�
;

ð81Þ

the linear term in k ¼ P
i ki for k → 0 cancels. Using the

analytical results for the density, velocity divergence and
vorticity kernels at OðϵÞ obtained in Secs. II C and IV B as
well as Eq. (79) this can indeed be shown to be the case.
This provides a nontrivial check of the linear scaling for the
velocity divergence kernels.
Since the leading contribution to the power spectrum

affected by the linear scaling in Eq. (79) is the two-loop
velocity divergence power spectrum, it is difficult to notice its
impact in practice. In particular, note that the propagatorlike
terms (obtained fromcorrelatingone linear and one nonlinear
field) contain kernels Fn;θðk; q1;−q1; q2;−q2;…; ηÞ where
the linear terms ink dropout for symmetry reasons, at all loop
orders. These propagatorlike contributions therefore yield a
contribution to the power spectrum Pθθðk; ηÞ that scales as
k2P0ðkÞ for k → 0, similarly as in SPT. However, the linear
scaling of F3;θðk − p − q; p; q; ηÞ produces an additional
contribution arising from mode-coupling terms starting at
two-loop order. It yields a contribution to Pθθðk; ηÞ that
scales as k2 and should therefore dominate over k2P0ðkÞ on
large enough scales. Nevertheless, within this regime,
Pθθðk; ηÞ is dominated by the linear contribution to the
power spectrum, and thus the anomalous behavior is hard to
verify in practice. However, as we will see below, a similar
effects occurs for the vorticity, where it is potentially
visible given that the vorticity power spectrum has no linear
contribution.

IV. GENERATION OF VORTICITY, VECTOR,
AND TENSOR MODES

It is well known that within the perfect, pressureless fluid
approximation vorticity decays as ð∇ × vÞ ∝ 1=a within
the linear regime [9], and is not generated by nonlinear
evolution due to the neglect of orbit crossing, in contra-
diction to the physical expectation. While the former
property essentially remains true when including velocity

dispersion and higher cumulants, the latter does not [5]. In
this section we discuss the generation of vorticity as well as
vector and tensor modes of the stress tensor via nonlinear
effects within the framework underlying the present work.
The generation of vorticity and vector modes is coupled to
each other, and we discuss them jointly in the following.
The tensor mode is discussed in Sec. IV D.
Let us first recall the evolution equation (23) for the

vorticity w, that is coupled to the vector mode ν of the
velocity dispersion tensor,

∂ηwk;i þ
�
3

2

Ωm

f2
− 1

�
wk;i þ k2νk;i ¼

Z
pq

γwibcψp;bψq;c;

∂ηνk;i þ 2

�
3

2

Ωm

f2
− 1

�
νk;i − ϵwk;i ¼

Z
pq

γνibcψp;bψq;c;

ð82Þ

with vertices listed below.

A. Linear approximation

Within the linear approximation, one obtains a coupled
set of ordinary differential equations for each component of
the vorticity and ν vector, respectively. In the limit ϵ → 0,
and setting Ωm=f2 ↦ 1 for simplicity, the second equation
has the approximate solution νk;iðηÞ ¼ νk;iðη0Þe−ðη−η0Þ,
being a purely decaying mode. Inserting it in the linearized
vorticity equation yields

wk;iðηÞ ¼ ðwk;iðη0Þ − 2k2νk;iðη0ÞÞe−1
2
ðη−η0Þ

þ 2k2νk;iðη0Þe−ðη−η0Þ; ð83Þ

being a superposition of two decaying modes, that corre-
sponds to a decay ∝ 1=a and ∝ a−3=2 for the unrescaled
vorticity −fHw. Therefore, the vector mode of the
dispersion tensor leads to an additional decaying mode
in the vorticity at linear level. By inserting the solution for
w from above into the linearized equation for the vector
mode ν, one can derive corrections at first order in ϵ, that
are relatively suppressed by factors of ϵk2 as long as this
quantity is small, i.e., at early times. In the opposite limit
the coupled set of linearized equations needs to be solved,
and the background dispersion leads to suppression as well.
For example, for a power-law time dependence ϵ ¼ ϵ0eαη, a
closed-form solution of the linear equations can be found in
terms of hypergeometric functions (assuming α > 1=2),
given by

wk;iðηÞ ¼ Ae−
1
2
η
0F1

�
1þ 1

2α
;−

ϵðηÞk2
α2

�

þ Be−η0F1

�
1 −

1

2α
;−

ϵðηÞk2
α2

�
; ð84Þ
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with coefficients A, B related to the initial vorticity and
vector mode. For ϵk2 ≪ 1 one recovers Eq. (83) since

0F1 → 1 in that limit. For ϵk2 ≫ 1 one finds oscillating
behavior with a damped envelope,

wk;iðηÞ → e−
3þα
4
η

�
A0 sin

�
2

ffiffiffi
ϵ

p
kþ α − 1

4α
π

�

þ B0 sin
�
2

ffiffiffi
ϵ

p
kþ αþ 1

4α
π

��
; ð85Þ

where

A0 ≡ A

�
ϵ0k2

α2

�−1
4
− 1
4α Γð1þ 1

2αÞffiffiffi
π

p ;

B0 ≡ B

�
ϵ0k2

α2

�−1
4
þ 1

4α Γð1 − 1
2αÞffiffiffi

π
p : ð86Þ

Since the linear solutions correspond to decaying modes,
initial vorticity or ν modes can be neglected. Indeed, as
stated already above, this means that the first-order kernels
vanish,

F1;wi
¼ F1;νi ¼ 0: ð87Þ

This implies in particular that the linear contribution to the
vorticity and vector power spectra is zero.

B. Vorticity generation at second order

When including velocity dispersion and higher cumu-
lants, vorticity is generated at the nonlinear level [5]. The
leading contribution arises at second order in perturbation
theory. Two scalar modes can generate vorticity as well as
vector perturbations of the stress tensor.
At second order, the evolution equations for the w and ν

kernels read�
∂η þ

5

2

�
F2;wi

ðp; q; ηÞ ¼ −ðpþ qÞ2F2;νiðp; q; ηÞ

þ γwibcðp; qÞF1;bðp; ηÞF1;cðq; ηÞ;
ð∂η þ 3ÞF2;νiðp; q; ηÞ ¼ ϵðηÞF2;wi

ðp; q; ηÞ
þ γνibcðp; qÞF1;bðp; ηÞF1;cðq; ηÞ:

ð88Þ
The list of potential vertices for vorticity is γwiAg, γwiAϵ,
γwiAνj , γwiAtjk , γwiθwj

, γwiwjwk
, and for the vector mode γνiθg,

γνiθϵ, γνiwjg, γνiwjϵ, γνiθνj , γνiθtjk , γνiwjνk , γνiwjtkl . Since only
scalar modes have nonzero F1;a, only the vertices γwiAg,
γwiAϵ and γνiθg, γνiθϵ contribute at second order, and describe
the generation of vorticity and vector modes from a pair
of scalar perturbations at nonlinear level. The leading
contribution to the vorticity power spectrum is therefore
given by

P1L
wiwi

ðk; ηÞ ¼ 2e4η
Z

d3qF2;wi
ðk − q; q; ηÞ

× F2;wi
ðk − q; q; ηÞP0ðjk − qjÞP0ðqÞ: ð89Þ

The power spectra of the vector mode and their cross
spectrum are given by analogous expressions. Below we
will see that it is actually necessary to include also the two-
loop contribution to capture the correct scaling for k → 0,
see Sec. IV C and Sec. VI D, but first discuss the one-
loop part.

1. Analytical results for ϵ → 0

Let us first discuss an approximate analytical solution for
the second-order kernels in the limit ϵ → 0, similar as
above for the scalar kernels. Both vorticity and the vector
mode are generated starting at first order in ϵ. Therefore, the
ϵF2;wi

term in the equation for the vector mode can be
neglected at lowest order in ϵ, and the equation for the
vector kernel can be solved independently at this order.
Using furthermore that F1;δϵ starts at order ϵ2, only the
vertex γνiθg is relevant, and we find

F2;νiðp; q; ηÞ ¼ 2ðγνiθgðp; qÞ þ γνiθgðq; pÞÞ

×
Z

η
dη0e3ðη0−ηÞ

Z
η0

dη00e2ðη00−η0Þϵðη00Þ

þOðϵ2Þ: ð90Þ

Inserting this result in the equation for vorticity, and using
that only γwiAg contributes at first order in ϵ, one finds

F2;wi
ðp; q; ηÞ ¼ −ðpþ qÞ2

Z
η
dη0e5

2
ðη0−ηÞF2;νiðp; q; η0Þ

þ 2ðγwiAgðp; qÞ þ γwiAgðq; pÞÞ

×
Z

η
dη0e5

2
ðη0−ηÞ

Z
η0

dη00e2ðη00−η0Þϵðη00Þ

þOðϵ2Þ: ð91Þ

Inserting the explicit form of the vertices [6], one finds

F2;wi
ðp; q; ηÞ ¼ ðp × qÞiðp · qÞ

�
1

p2
−

1

q2

�
JwðηÞ

þOðϵ2Þ; ð92Þ

with

JwðηÞ ¼
Z

η
dη0e5

2
ðη0−ηÞ

�Z
η0

dη00e2ðη00−η0Þϵðη00Þ

þ
Z

η0

dη00e3ðη00−η0Þ
Z

η00

dη000e2ðη000−η00Þϵðη000Þ
�

¼ 4E2ðηÞ − 6E5=2ðηÞ þ 2E3ðηÞ: ð93Þ
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Note that the contribution in the second line would be
missed when neglecting the impact of the vector mode of
the dispersion tensor. As expected, the vorticity and vector
mode are perpendicular to the plane spanned by the wave
vectors p and q. Furthermore, F2;wi

ðk − q; q; ηÞ scales
as k2 for k → 0, which can be readily checked for the
analytical result at order ϵ from above. Inserting this
first order result in ϵ into Eq. (89) yields a dependence
on wave vectors identical to the integrand of Eq. (70)
in [20]; in our numerical treatment (see below) we do not
expand in ϵ and also fully include the impact of the vector
mode on vorticity, while Eq. (92) captures only the lowest
order in ϵ.

2. Numerical results

As for the scalar kernels, we solve the differential
equation (88) for the vorticity and vector kernels numeri-
cally in our analysis, thereby resumming terms of all
powers in the background dispersion ϵ. The numerical
results for a particular configuration of F2;wi

and F2;νi are
shown in the upper left and right panels of Fig. 6,
respectively. The numerical and analytical results agree
well in the limit k ≪ kσ, as expected. Furthermore, the
scaling F2;wi

ðk − q; q; ηÞ ∝ k2 for k → 0 holds also for
the numerical result. For the vector mode, we show the
dimensionless quantity k2F2;ν, which also scales as k2,
meaning that F2;ν approaches a constant, analogously as for

FIG. 6. Nonlinear VPT kernels describing the generation of vorticity Fn;wi
(left column) and the vector mode of the stress tensor

k2Fn;νi (right column), from nonlinear coupling of two (n ¼ 2, upper row) or three (n ¼ 3, lower row) perturbation modes of the initial
linear density field. The kernels are shown for various approximation schemes as indicated in the legend (see Table II). For n ¼ 2 we
also show the analytical results at first order in ϵ (black solid line), as well as a line ∝ k2 (black dashed) for comparison. Note that F2;wi

points in the direction perpendicular to the plane spanned by k and q, and we show its projection on k × q=jk × qj. For n ¼ 3 we
show two components F3;wi

, i ¼ 1, 2, perpendicular to k (see Appendix D for details), finding F3;wi
∝ k for k → 0, similarly to θ (see

Sec. III B). The impact of the vector mode on vorticity [(sw) vs (svt) in the left panels] is noticeable at k ≳ kσ , while the impact of third
cumulant perturbations is relatively mild for vorticity as well as vector mode kernels ((cum2) vs (cum3þ) in the upper row). The
analytical results Eqs. (90), (92) at first order in ϵ are shown as thin black lines, and agree well for k ≪ kσ. In SPT all these kernels are
zero. For the figure we chose ϵ ¼ ϵ0eαη with α ¼ 4=3, and ckp ¼ 0.3, ckq ¼ 0.5, cpq ¼ 0.875, p ¼ kσ , q ¼ 0.5kσ , where kσ ¼ 1=

ffiffiffiffiffi
ϵ0

p
.
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the scalar modes of the dispersion tensor. The simplest
approximation capturing vorticity generation is (sw), for
which the vector mode ν is neglected. As can be seen in the
left upper panel of Fig. 6, this approximation leads to a
small shift of F2;wi

for k≲ kσ as compared to the case (svt)
with vector mode, and a more shallow decline for k ≫ kσ.
Note that at second order the tensor mode is irrelevant for
F2;wi

and F2;νi , such that there is no difference between (sv)
and (svt), and only the latter is shown. This is also the
reason why only the (svt) result is shown for F2;νi in the
right upper panel of Fig. 6, noting in addition that ν is not
taken into account within the (sw) scheme. Finally, the
upper panels show the difference between (cum2) and
(cum3þ), both evaluated for (svt). The impact of higher
cumulants is negligibly small for k≲ kσ, while it somewhat
impacts the asymptotic behavior for k ≫ kσ.

C. Vorticity generation at third order

Similarly as for the velocity divergence, we find that the
nonlinear kernels for the vorticity in general scale only with
the first power of the total wave number,

Fn;wi
ðk1;…; kn; ηÞ ∝ k; k ¼

X
i

ki → 0: ð94Þ

As for θ, this linear scaling appears first at third order, i.e.,
for n ≥ 3, while F2;wi

∝ k2 as discussed above.
In the lower left panel of Fig. 6 we show the kernel

F3;wi
ðk − p − q; p; q; ηÞ versus k in the (sw) and (sv)

approximations, and for two components of wi
perpendicular to k (see Appendix D for details on the
basis choice and projection). The linear scaling in k can
clearly be seen for all cases. As for θ, the scaling would be
∝ k2 for pþ q ¼ 0. This implies that the vorticity power
spectrum scales as

Pwiwi
ðk; ηÞ ∝ k2; ð95Þ

for k ≪ kσ. However, since F2;wi
∝ k2, this scaling can

only be observed starting at two-loop order, while
P1L
wiwi

ðk; ηÞ ∝ k4 at one-loop. We will confirm this behavior
against measurements of the vorticity power spectrum in
numerical simulations in Sec. VI.
In contrast to the vorticity, the kernels Fn;νi approach

constant values for k → 0, such that the dimensionless
combination k2Fn;νi scales as k2 also for n ¼ 3. This is
confirmed by our numerical results shown in the lower right
panel of Fig. 6.

D. Generation of tensor modes

As discussed above, tensor perturbations of the stress
tensor have only a very small impact on the nonlinear
kernels for the density contrast and velocity divergence (see
Fig. 3), as opposed to impact of vorticity and vector modes

on the density. Therefore, tensor modes could be neglected
in practice when being interested in density and velocity
power spectra (see Sec. VI). Nevertheless, as a conse-
quence of nonlinear mode coupling, a power spectrum of
tensor modes is generated, analogously to the case of
vorticity and vector modes discussed above. The leading
contribution arises from the second-order kernel,

ð∂η þ 3Þ F2;tijðp; q; ηÞ ¼ γtijbcðp; qÞF1;bðp; ηÞF1;cðq; ηÞ;
ð96Þ

giving rise to a tensor power spectrum at one-loop,

P1L
tijtijðk; ηÞ ¼ 2e4η

Z
d3qF2;tijðk − q; q; ηÞ

× F2;tijðk − q; q; ηÞP0ðjk − qjÞP0ðqÞ: ð97Þ
Vertices that could potentially contribute (disregarding
third and higher cumulant perturbations) are [6] γtijθg,
γtijθϵ, γtijwkg, γtijwkϵ, γtijθνk , γtijθtkl , γtijwkνl , γtijwktlm . Since
F1;b and F1;c are nonzero only for scalar modes, only the
vertices contributing to F2;tij are

γtijθgðp; qÞ ¼ −
1

2

ðp × qÞ2p · q
2ðpþ qÞ2p2q2

T ij;

γtijθϵðp; qÞ ¼
1

2

ðp × qÞ2
ðpþ qÞ2p2

T ij; ð98Þ

where we defined

T ij ≡ δij −
ðpþ qÞiðpþ qÞj

ðpþ qÞ2 − 2
ðp × qÞiðp × qÞj

ðp × qÞ2 : ð99Þ

Note that 0¼ T ii ¼ ðpþ qÞiT ij ¼ T ijðpþ qÞj, as required
for a tensor mode.
Let us first discuss the analytical result when expanding

at first order in ϵ. In this case, only the vertex γtijθg is
relevant since F1;δϵ ∝ ϵ2 (we remind the reader that the
index ϵ in γabc stands for the mode δϵ). Furthermore, at
OðϵÞ we use Eq. (35) for F1;g and can set F1;θ → 1, giving

F2;tijðp; q; ηÞ ¼ 2ðγtijθgðp; qÞ þ γtijθgðq; pÞÞ

×
Z

η
dη0e3ðη0−ηÞ

Z
η0

dη00e2ðη00−η0Þϵðη00Þ

þOðϵ2Þ: ð100Þ

This analytical result is compared to the full numerical
kernel in Fig. 7. Here we defined

F2;tijðp; q; ηÞ ¼ F2;teff ðp; q; ηÞT ij; ð101Þ

factoring out the dependence on the indices captured by T ij

(see Appendix D for details). The figure shows the
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dimensionless combination k2F2;teff ðk − q; qÞ, that scales as
k2 for k → 0, analogously to the vector perturbation of
the stress tensor. As for the latter, the same scaling is
expected at higher orders, and therefore no qualitative
change is expected when including contributions beyond
one-loop order. Thus, Ptijtijðk; ηÞ approaches a constant
for k → 0 at all loop orders. For the dimensionless
tensor power spectrum, this means that k4Ptijtijðk;ηÞ∝ k4

for k → 0.
The tensor modes of the stress tensor generated by

nonlinearities constitute a source for a stochastic gravita-
tional wave background. Since their frequency is related to
the wave number k, its maximal amplitude is expected to
occur for ultralow frequencies related to the dispersion
scale fgw∼ckσ=ð2πÞ≃1.5×10−15hHz× ðkσ=ð1h=MpcÞÞ.
In addition, due to the nonrelativistic velocities of order
H ×

ffiffiffi
ϵ

p
≃ 100 km=s ×

ffiffiffi
ϵ

p
=ðMpc=hÞ the amplitude of the

gravitational wave background is expected to be tiny,
although the small velocities can be somewhat compen-
sated by the large masses that are involved. For a more
detailed assessment, we refer to future work.

V. BACKGROUND DISPERSION FROM HALOS
AND PERTURBATION THEORY

In this section we discuss various estimates of the
background dispersion ϵðηÞ, that plays a central role in
VPT. We discuss two complementary approaches, one
based on a self-consistent solution of the equation of
motion for ϵðηÞ within perturbation theory [Eq. (13)],
and one based on accounting for the dispersion generated
in halos following paper I [6], and taking the halo profile as

well as the halo mass function measured in numerical
N-body simulations into account.
For simplicity, we focus on a scaling universe with linear

input power spectrum

P0ðkÞ ¼ Akns ≡ 1

4πk3

�
k
knl

�
nsþ3

; ð102Þ

with constant power law index ns and amplitude A related
to the nonlinear scale knl, for an EdS background cosmol-
ogy. Scaling symmetry ensures that the dimensionless ratio
of any dimensionfull quantity to an appropriate power of
the time-dependent nonlinear scale knlðηÞ ¼ knle−2η=ðnsþ3Þ
is constant in time. This implies [6]

ϵðηÞ ¼ ϵ0eαη; α ¼ 4

ns þ 3
: ð103Þ

For given ns, this leaves a single free parameter ϵ0 ≡ 1=k2σ
for the background dispersion, that we can conveniently
parametrize by the ratio

kσ=knl ≡ ðϵ0k2nlÞ−1=2: ð104Þ

We note that when defining a time-dependent dispersion
scale by ϵðηÞ≡ 1=k2σðηÞ, the time dependence given above
indeed implies that kσðηÞ=knlðηÞ ¼ kσ=knl is constant.
Similarly, scaling symmetry implies a constant dimension-
less ratio ω̄≡ ωðηÞ=ϵðηÞ2 of the fourth cumulant expect-
ation value to the dispersion squared.

A. Self-consistent solution in perturbation theory

The equation of motion (13) for the background
dispersion can for a scaling universe and EdS background
be turned into an algebraic equation for kσ=knl, that can be
written as (see paper I [6])

ϵ0ðηÞ
ϵðηÞ þ 1 ¼ 1

3
ðxIlinðnsÞ þ x2I1LðnsÞ þ…Þ; ð105Þ

where x≡ ðkσ=ð
ffiffiffi
3

p
knlÞÞnsþ3 and the ellipsis denote

two and higher loop contributions. Using Eq. (103), the
left-hand side evaluates to a constant, ϵ0=ϵþ 1 ¼
ðns þ 7Þ=ðns þ 3Þ. Furthermore, the coefficients IlinðnsÞ
and I1LðnsÞ are independent of x by virtue of the scaling
symmetry, and are given by integrals over the sum of the
(suitably rescaled) power spectra Pθg̃ ¼ Pθg − Pθδϵ, 2Pwiνi
and PAπ evaluated in linear and one-loop approximation,
respectively [6]. These power spectra arise from the source
term, Eq. (20), entering the equation of motion (13) for
ϵðηÞ. When including one-loop and linear terms on the
right-hand side of Eq. (105) one therefore obtains a
quadratic equation for x. Its solution(s) x� determine the
self-consistent value for

FIG. 7. Second order kernel of the tensor perturbation tij of the
velocity dispersion that describes the generation of tensor modes
from coupling two scalar modes, captured by VPT. We show the
dimensionless kernel k2F2;teff ðk − q; qÞ versus k in two approx-
imations (see legend), as well as the analytical result at first order
in ϵ (black solid line). The kernel scales as k2 for k → 0 (black
dashed line).
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kσ=knljself−consistent ¼
ffiffiffi
3

p
x1=ðnsþ3Þ
� ; ð106Þ

within perturbation theory up to one-loop order.
Correspondingly, dropping also the term x2I1LðnsÞ yields
self-consistent values in linear approximation. Note that
since IlinðnsÞ and I1LðnsÞ are independent of x, and therefore
of kσ, the power spectra entering these expressions can be
computed at an arbitrary referencevalue krefσ (seeAppendixE
for details). We evaluate them in various approximation
schemes (see Table II). At one-loop, we find that only one of
the roots x� of the quadratic equation (105) is positive, thus
leading only to a single physical solution for kσ=knl.
The results for the self-consistent value of kσ=knl are

shown in Table III. Including the one-loop correction leads
to an increase in the background dispersion ϵðηÞ relative to
the linear approximation, corresponding to a decrease in kσ
by about 20%–30%. While being significant, the shift is
consistent with the one-loop contribution being a pertur-
bative correction. In addition, we observe that the self-
consistent background dispersion is larger (i.e., kσ smaller)
when including third cumulant perturbations (cum3þ)
compared to the second cumulant approximation
(cum2). For the (cum3þ) case, we fix ω̄ to the value
obtained from self-consistently solving the equation of
motion of the fourth cumulant expectation value in linear
approximation [6] as fiducial value (see Table III), and
consider the alternative value ω̄ ¼ 1 to assess the depend-
ence on this quantity. A self-consistent determination of ω̄
at one-loop is beyond the scope of this work, but would be
an interesting extension. Nevertheless, the dependence of
kσ=knl on ω̄ is relatively mild, such that our fiducial choice
may be considered as a reasonable estimate. Note that
vorticity, vector and tensor modes do not enter in the linear
approximation. At one-loop, taking vorticity and vector
modes into account (sv) leads to a moderate increase in
ϵðηÞ compared to the case with scalar perturbations only
(s). On the contrary, adding also tensor modes (svt) has a
negligible impact. Finally, we note that we checked
the convergence of the integrals over the power spectra

entering I1LðnsÞ, with negligible differences when using
30kσ versus 40kσ as cutoff for ns ¼ 2, 1. For ns ¼ 0, the
difference is at the percent level.
Overall, we find that the self-consistent prediction for the

background dispersion ϵðηÞ has the tendency to increase
(such that kσ decreases) when enhancing the complexity of
the approximation scheme, i.e., when successively includ-
ing one-loop, vorticity/vector mode and higher cumulant
effects. The self-consistent determination of kσ at one-loop
therefore may be considered as indicative, with the actual
value likely being smaller. In order to bracket the uncer-
tainty on the background dispersion, we consider in
addition an orthogonal approach based on a halo model
in the following.

B. Dispersion from halos

Let us calculate the velocity dispersion contribution
expected from dark matter halos. If the dispersion is only
nonzero inside dark matter halos, we have

ϵðzÞ ¼ hϵiiðx; zÞ=3i ¼
Z

ϵPðϵÞdϵ ¼
Z

ϵPðϵ=hÞPðhÞdhdϵ

ð107Þ

where we used Bayes’ theorem to introduce the conditional
probability Pðϵ=hÞ, i.e., the probability for ϵiiðx; zÞ=3 given
that we are inside a dark matter halo. Since halos are
characterized by their mass we can write, more precisely

ϵðzÞ ¼
Z

∞

0

ϵ̄hðm; zÞfðmÞdm; ð108Þ

where fðmÞ is the fraction of mass in halos of mass m,
which plays the role of PðhÞ, and the conditional average

Z
ϵPðϵ=hÞdϵ ¼ ϵ̄hðm; zÞ≡

�
3

4πr3vir

�Z
d3xϵh;mðx; zÞ;

ð109Þ

TABLE III. Self-consistent solutions in linear and one-loop approximation for the velocity dispersion scale kσ ¼
ϵ−1=20 relative to the nonlinear scale, for scaling universes with spectral indices ns ¼ 2, 1, 0 and in various
approximation schemes (see Table II). Note that vorticityþ vector (sv) and tensor (svt) modes enter starting at one-
loop only. For (cum3þ), we show results for two choices ω̄ ¼ ω̄fid ¼ 0.579, 0.616, 0.668 for ns ¼ 2, 1, 0 and
ω̄ ¼ 1, respectively (see text for details).

kσ=knl (linear) kσ=knl (one-loop)

(cum2) (cum3þ) (cum2) (cum3þ)

� � � � � � � � � (s) (sv) (svt) (svt) (svt)
ns � � � ω̄fid ω̄ ¼ 1 � � � � � � � � � ω̄fid ω̄ ¼ 1

2 2.34 2.00 1.85 1.80 1.74 1.74 1.62 1.51
1 2.55 2.17 2.00 1.96 1.86 1.87 1.69 1.64
0 2.97 2.50 2.29 2.28 2.11 2.11 2.13 1.97
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where the integral on the right-hand side (rhs) is done over
the halo. The mass fraction fðmÞ is related to the mass
function dn=dm, i.e., the number density of halos of mass
m per unit mass, by dn=dm≡ ρ̄fðmÞ=m. A convenient
parametrization of the mass function is given by [45,46]

mfðmÞ ¼ A

�
1þ 1

ðaνÞp
� ffiffiffiffiffiffi

aν
2π

r
e−aν=2

d ln ν
d lnm

≡ νfðνÞ d ln ν
d lnm

; ð110Þ

where
ffiffiffi
ν

p ≡ δc=σðR; zÞ, with δc the critical density for
collapse at the corresponding time and σ2ðR; zÞ the variance
of linear-SPT fluctuations, with R the Lagrangian radius of
halos of mass m, i.e., m ¼ 4πρ̄R3=3 where ρ̄ is the total
homogeneous matter density. The constants a, p, A are fit
to N-body simulations. The condition ν ¼ 1 defines the
nonlinear scale R� and its associated nonlinear mass scale
m�, with R� being the Lagrangian size of halos of massm�.
This mass scale determines when the abundance of halos is
exponentially suppressed from Eq. (110), i.e., essentially
there is not enough time to build significant number of
halos more massive than m ¼ m�.
For the application we are interested in this paper, a scale-

free universewith−1 ≤ ns ≤ 2 andΩm ¼ 1, δcðzÞ ¼ 1.686.
However, the usual calculation of σ2ðR; zÞ becomes prob-
lematic for blue spectral indices as the standard choice of a
top-hat filter gives a divergent answer for σ2ðR; zÞ when
ns ≥ 1. Replacing the linear-SPT evolution by the linear
evolution with dispersion found in paper I [6] cures this UV
divergence, thus providing an interesting application of our
results. In this case, the variance is given by,

σ2 ¼
�
kσ
knl

�
nsþ3

Z
∞

0

dx
2
W2

THð
ffiffiffi
x

p
kσRÞx

nsþ1
2 F2

1;δðx; nsÞ;

ð111Þ

where x≡ k2ϵ ¼ ðk=kσÞ2, WTH is the top-hat window in
Fourier space, the linear kernel is given by

F1;δðx; nsÞ≡ 1F2

�
4þ α

3α
; 1þ 2

α
; 1þ 5

2α
;−

3x
α2

�
; ð112Þ

with 1F2 a hypergeometric function, αðnsÞ ¼ 4=ðns þ 3Þ as
usual, and kσ=knl is obtained from the self-consistent linear
solution with dispersion (see Fig. 9 and Table I in paper I
[6]). For example, setting σ ¼ δc gives knlR� ¼ 0.83, 0.98,
1.09, 1.15 for ns ¼ −1, 0, 1, 2 respectively. For reference,
using linear-SPT fluctuations gives knlR� ¼ 0.89, 1.18 for
ns ¼ −1, 0.
It is instructive to first consider the contribution to ϵ̄h in

Eq. (108) from an isothermal halo, before we address the
more realistic case of an NFW profile discussed in paper I
[6]. In this case, the contribution to 1D velocity dispersion

is simply Gm=ð2rvirÞ independent of location, which in the
normalization corresponding to ϵ̄h means an isothermal
halo of mass m contributes to ϵðzÞ as:

Gm
2rvirðHfÞ2 ¼

m̂2=3

4f2
Ω2=3

m;0Δ
1=3
vir

Ωm;0 þ ΩΛ;0a3
R2�; ð113Þ

where we have defined the dimensionless variable
m̂≡m=m�, and used that m ¼ ð4π=3Þρc;0Δvirr3vir=a

3, the
nonlinear mass m� ¼ ð4π=3Þρc;0Ωm;0R3� and assumed a flat
ΛCDM cosmology that goes to the self-similar case we are
mostly interested in here when ΩΛ;0 ¼ 1 − Ωm;0 → 0. Here
quantities with 0 subindices correspond to z ¼ 0, and note
that we assume halos are identified as having a mean
physical density of Δvir over the critical density ρc [46].
A simple estimate is ΔvirðzÞ ¼ 18π2 þ 82ðΩm − 1Þ−
39ðΩm − 1Þ2 [47]. Since we are interested in predicting
kσ=knl it is useful to consider

�
Gmk2nl

2rvirðHfÞ2
�

−1=2
¼ 2fm̂−1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0 þ ΩΛ;0a3

Ω2=3
m;0Δ

1=3
vir

s
1

knlR�
;

ð114Þ

which is the contribution from an isothermal halo of mass
m to kσ=knl. In the Ωm → 1 limit, this becomes,

�
Gmk2nl
2rvirH2

�
−1=2

¼ 2m̂−1=3

ð18π2Þ1=6
1

knlR�
≃ 0.84

m̂−1=3

knlR�
; ð115Þ

which given the values of knlR� quoted above says that
halos of order m ∼m� (m̂ ¼ 1) contribute kσ ∼ knl. More
precisely, if we integrate over the mass function we obtain
ðkσ=knlÞ ≃ 0.71, 0.81, 0.91, 1.04 for ns ¼ 2; 1; 0;−1
respectively, i.e., a dispersion scale larger than the non-
linear scale. This gives a useful order of magnitude, but
isothermal halos overestimate the velocity dispersion com-
pared to realistic halo profiles. Therefore, let us now
consider NFW halos.
From paper I [6], we have that the 1D velocity dispersion

m2ðrÞ as a function of radius r inside a halo with profile
ρðrÞ and velocity dispersion tensor anisotropy parameter β
(assumed to be constant) is given by

m2ðrÞ ¼
ð1 − 2β=3Þ

ρr2β

Z
∞

r

dΦ
dr

ρðrÞr2βdr; ð116Þ

where for the case of NFW halos the potential ΦðrÞ can be
written as

ΦðrÞ ¼ −
Gm
rvir

cgðcÞ
�
lnð1þ xÞ

x
−

1

1þ c

�
; ð117Þ
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where x≡ cr=rvir, c is the concentration parameter and
g−1ðcÞ≡ lnð1þ cÞ − c=ð1þ cÞ. According to simulations,
the concentration of a halo is a weak function of halo mass,
we take cðm̂Þ ¼ 9m̂−0.13 [48]. A more recent study that
includes scale-free simulations with red spectral indices
ns ≤ −1 builds a more accurate model with six free
parameters [49], but their own comparison (see their
Fig. 10) shows small differences at high-mass with [48]
that become smaller in the direction of increasing ns, which
is most relevant to our application. Given Eqs. (116)–(117),
we can write the contribution to ϵ in analogy to the results
above for an isothermal halo. We have,

ϵ̄hðm; zÞ ¼ m̂2=3

4f2
Ω2=3

m;0Δ
1=3
vir R

2�
Ωm;0 þ ΩΛ;0a3

Iðβ; cÞ; ð118Þ

where we have factorized the isothermal halo contribution
[see Eq. (113)] and the integral I is given by

Iðβ;cÞ≡ ð6−4βÞgðcÞ
c2

Z
c

0

dxx3−2βð1þxÞ2

×
Z

∞

x
dy

y2β−1

ð1þyÞ2
�
lnð1þyÞ

y2
−

1

yð1þyÞ
�
; ð119Þ

and is a function of m̂ through the concentration parameter.
It can be computed analytically, see Eqs. (G1)–(G2) in
Appendix G where we present results for the cases of
interest, namely β ¼ 0 (isotropic case) and β ¼ 1=2 (radi-
ally biased case, i.e., radial dispersion larger than tangential
dispersion). Simulations show β to be scale dependent, with
β ≈ 0 near halo centers and β approaching 1=2 at the halo
outskirts. Since the profile is volume weighted we consider
β ¼ 1=2 to be more realistic for our purposes.
For the case of a scale-free universe we have, integrating

over the mass function and using dlnν=dlnm¼ðnsþ3Þ=3,

ϵ ¼ ns þ 3

12
ð18π2Þ1=3R2�

Z
∞

0

dm̂

m̂1=3 ½νfðνÞ�m̂Iðβ; cÞ; ð120Þ

which gives us the desired knl=kσ as a function of spectral
index ns

kσ
knl

¼
�
96

π2

�
1=6 knlR�ffiffiðp

ns þ 3Þ R dm̂m̂−1=3½νfðνÞ�m̂Iðβ; cÞ
:

ð121Þ

The mass function is measured in our simulations for
different spectral indices as discussed in Appendix G,
where we check our mass function measurements obey
the expected self-similarity. As a summary of these
measurements, Fig. 8 presents the resulting fits for
½νfðνÞ� as a function of m̂. The parameters A, a, p [see
Eq. (110)] for each spectral index are presented in Table VI
in Appendix G. The behavior of the mass function at the

high-mass end agrees with standard expectations, i.e., red
spectra with more large-scale power have enhanced expo-
nential tails. At the small-mass limit, however, blue spectra
with more initial small-scale power show a suppressed halo
abundance, highlighting the effects of increased velocity
dispersion which is reflected already by linear evolution in
VPT (see paper I [6]) and confirmed by our nonlinear
analysis.
The results of Eq. (121) after integration over the mass

function are given in Table IV. Overall we see that the
dispersion values are smaller (higher kσ) than for the
corresponding isothermal halos quoted earlier, as expected.
We also see that the dispersion scale changes weakly (by
about 2%) when β is varied within reasonable limits. As
mentioned earlier [see Eq. (112)] our results (as well as the
mass function fits) are obtained using the self-consistent
linear solution with dispersion only. Including higher
cumulants in the linear self-consistent solution (for both
the computation of R� and the corresponding m� that
appears in the mass function fits) changes the values in
Table IV by at most 0.1%, which is reassuring.
It is worth noting comparing to Table III that these halo-

based calculations yield stronger velocity dispersion than
the self-consistent one-loop calculation done in the pre-
vious section, but by less than a factor of two. This is
remarkable, given the wide differences in the assumptions:
perturbative dynamics with nonzero dispersion everywhere

TABLE IV. Velocity dispersion scale (in terms of the nonlinear
scale) from NFW halos as a function of spectral index.

ns ðkσ=knlÞβ¼0 ðkσ=knlÞβ¼1=2

2 0.845 0.863
1 0.957 0.977
0 1.084 1.105
−1 1.219 1.241

FIG. 8. Mass function νfðνÞ fits to simulation measurements
(see Appendix G) as a function of m̂ ¼ m=m� for ns ¼ −1, 0, 1, 2
(top to bottom from the low-mass end).
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on the one hand, and dispersion only inside halos (modeled
as spherical NFW profiles) on the other. Interestingly, we
shall see that fitting for kσ from the density power spectrum
measured in N-body simulations yields values that are in
between the one-loop perturbative and halo calculations.
We discuss such determinations next.

VI. VPT PREDICTIONS VS SIMULATIONS

In this section we present results for density and velocity
power spectra as well as the bispectrum computed within
the framework of VPTand compare toN-body simulations.
We focus on a scaling universe with linear input power
spectrum P0 ∝ kns and consider the values ns ¼ 2; 1; 0;−1,
with the very blue cases included to expose the strong
screening of UV modes that occurs when taking velocity
dispersion and higher cumulants into account. Note that
within SPT the one-loop integrals become UV divergent for
ns ≥ −1, therefore there are no SPT predictions for these
spectra beyond tree-level. As we shall see, this shortcoming
is remedied in VPT.
Our perturbative results are based on the framework

described above. In particular, we use (cum3þ, svt) as our
baseline scheme, and compare the impact of various
approximation schemes (see Table II) against this fiducial
choice. It includes apart from δ and θ the vorticity wi, all
scalar (g; δϵ) vector (νi) and tensor (tij) modes of the second
cumulant as well as its background value ϵðηÞ, and higher
cumulants as detailed in Sec. II (scalar perturbations π, χ of
the third cumulant and background value ωðηÞ of the fourth
cumulant).

A. Density power spectrum

We start with a discussion of the perturbative prediction
of the density power spectrum within VPT, and then
compare to N-body results. We use Eq. (32) to compute
the linear and one-loop contribution, with kernels
F1;δðk; ηÞ, F2;δðk − q; q; ηÞ and F3;δðk; q;−q; ηÞ determined
numerically, as detailed in Sec. II D, for an input power
spectrum P0 ∝ kns . Scaling symmetry implies

ϵðηÞ ¼ ϵ0e4η=ðnsþ3Þ; ω̄ ¼ ωðηÞ=ϵðηÞ2 ¼ const: ð122Þ

Therefore, apart from ns, the result depends only on the two
parameters ϵ0 and ω̄. As we shall see, the latter has only a
minor impact, and (as already mentioned in Sec. VA) we
use the value obtained by self-consistently solving the
equation of motion for the fourth cumulant in linear
approximation [6] as fiducial value, given by

ω̄ ¼ 0.579; 0.616; 0.668; 0.752; ð123Þ

for ns ¼ 2; 1; 0;−1, respectively (we assess the dependence
on ω̄ below). This leaves ϵ0 ≡ 1=k2σ as the remaining
dimensionful parameter, which we quantify by the ratio

kσ=knl of the dispersion to the nonlinear scale. We
discussed estimates for this quantity via two different
approaches, perturbation theory and halo modeling, in
Sec. V, indicating a value for kσ=knl in the range ∼1–2.
We shall see that this is indeed consistent with direct
determinations from fitting the density power spectrum.
In Fig. 9we show the density power spectrum in linear and

one-loop approximation obtained in VPT based on the
(cum3þ, svt) scheme (see Table II), for three different
values of kσ=knl

9 and ns ¼ 0. The result is normalized to the
linear power spectrum inSPT, i.e., for theperfect pressureless
fluid approximation, given by P0ðk; ηÞ ¼ e2ηP0ðkÞ. By
showing the result for Pδδðk; ηÞ=P0ðk; ηÞ versus k=knlðηÞ,
the dependence on time η drops out, and we therefore omit
the time arguments for brevity.
From the dashed lines in Fig. 9 one can see that the linear

VPT result is suppressed compared to the linear SPT
spectrum, with the suppression being stronger for larger
background dispersion ϵ, i.e., smaller kσ, as expected.
Adding the one-loop correction (solid lines) leads to
additional suppression for k≲ knl, but enhances the power
spectrum relative to the linear VPT result for k≳ knl. Note
that the linear and one-loop results are close to each other
within the expected regime of perturbativity, i.e., for
k≲OðknlÞ. This is an important property, indicating

FIG. 9. Density power spectrum Pδδðk; ηÞ in one-loop (solid)
and linear (dashed) approximation for various values of the
background dispersion ϵ0 ¼ 1=k2σ for a power law input spectrum
P0 ∝ kns with ns ¼ 0 and ϵðηÞ ¼ ϵ0e4η=ðnsþ3Þ. The linear and
one-loop result contains the numerical kernels F1;δðk; ηÞ,
F2;δðk − q; q; ηÞ and F3;δðk; q;−q; ηÞ computed taking up to third
cumulant scalar perturbations as well as vorticity, vector and
tensor modes of the stress tensor into account (cum3þ, svt). We
set ω̄ ¼ 0.668 (see text and [6]) for the fourth cumulant expect-
ation value ωðηÞ ¼ ω̄ × ϵðηÞ2.

9Note that scaling symmetry can be used to rescale numerical
perturbative results for a given value of kσ=knl to any other value,
see Appendix E.
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perturbative stability. Note that within SPT the one-loop
integrals are UV divergent, and we therefore do not show
any one-loop SPT result. In contrast, we checked that the
VPT one-loop integrals are finite; this is a consequence of
the strong suppression of the nonlinear kernels for large
loop wave number as discussed in Sec. II D.
For comparison, we performed N-body simulations for

scaling universes with spectral indices ns ¼ 2; 1; 0;−1. Our
main suite of N-body simulations consists of two sets of
fixed amplitude initial conditions with opposite phases to
cancel Gaussian cosmic variance, each with 5123 particles.
See Appendix F for more details, including tests of self-
similarity, initial conditions, and computation of error bars.
Figure 10 shows the VPT power spectrum Pδδ in linear

(dashed) and one-loop (solid) approximation along with the
N-body measurements (red circles). Note that error bars are
too small to be noticed in Pδδ. In order to assess the level
of agreement, and in absence of a precise independent

determination of the background dispersion, we adjusted
the value of kσ=knl by fitting the perturbative to the N-body
result at low wave number, specifically for k≤kmax¼0.6knl.
Nevertheless,we stress that as amatter of principle this fitting
procedure is not necessary to obtain predictions within VPT.
It hinges on our ability to accurately determine the spatial
average of the stress tensor, being a well-defined quantity
with immediate physical meaning.
To further test the viability of this procedure, we use the

same value of kσ=knl as obtained from the density power
spectrum (for a given approximation scheme and ns) when
comparing the velocity power spectrum and bispectrum to
N-body results further below. In addition, we checked that
our results are stable under changing kmax as long as it is
below the nonlinear scale. Finally, we note that the best-fit
values for kσ=knl (as quoted in Fig. 10) lie within the
expected range as obtained in Sec. V, giving further
support. Notwithstanding, the fitting procedure likely

FIG. 10. Comparison of Pδδ in linear (dashed) and one-loop (solid) approximation in VPTwithin the (cum3þ, svt) scheme toN-body
results (red circles), for ns ¼ 2; 1; 0;−1, as noted. In absence of a precise knowledge of the background dispersion, we adjusted kσ=knl
by a one-parameter fit up to k ≤ kmax ¼ 0.6knl, with best-fit values given in the legend for each case. Notably, these values of kσ=knl are
consistent with our theoretical expectations given in Sec. V. We use the same fixed values of kσ=knl as given here when comparing VPT
andN-body results for velocity spectra and bispectra below (for each approximation and ns, respectively) such that for all these statistics
there is only a single free parameter that is adjusted once to a common value.
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slightly exaggerates the level of agreement, and we com-
ment on the impact ofmissing two-loop contributions below.
With these caveats in mind, we observe that the one-loop

VPT density power spectrum can reproduce the N-body
result up to k≲OðknlÞ. Furthermore, including the one-
loop correction significantly improves the agreement com-
pared to the linear result. To be conservative, we show the
result for the optimal value of kσ=knl for the linear
approximation as well as for the sum of the linear and
one-loop contributions, respectively. This shows the actual
improvement stemming from one-loop corrections while
“marginalizing” over kσ=knl. Importantly, and in line with
the previous observations, the difference between the two
values of kσ=knl (see legends in Fig. 10) as well as the
difference between linear and one-loop results for Pδδ

(dashed and solid lines in Fig. 10) up to wave numbers
k≲ knl are reasonably small, as required for a perturbative
expansion.

1. Impact of vorticity, vector and tensor modes

Let us now turn to discussing the impact of various
approximation schemes within VPT (see Table II) on the
density power spectrum. We start with backreaction of
vorticity, as well as vector and tensor modes of the velocity
dispersion tensor. They affect the kernel F3;δðk; q;−q; ηÞ
entering the one-loop density power spectrum. To assess
the size of this backreaction, we compare the density power
spectrum in (s), (sw), (sv), and (svt) approximation, all of
them within the (cum3þ) scheme. In the left panel of
Fig. 11 we show the comparison for a fixed common value
of kσ for all cases, and ns ¼ 0. The linear results are
identical.
We observe a significant impact of vorticity backreaction

on the third-order density contrast, i.e., a sizable shift
between the one-loop density spectrum in the (s) and (sw)

approximation. For example, at the nonlinear scale the
impact of vorticity backreaction is about 10% for ns ¼ 0
(Fig. 11). We find the size of this depends on ns. For blue
indices ns ¼ 1, 2 this grows to about 15%, while for ns ¼
−1 it drops to 3%. Including the vector mode of the
dispersion tensor leads to another small shift, when going
from (sw) to (sv). In contrast to that, the tensor mode has
practically no effect, with the (sv) and (svt) lines in Fig. 11
lying on top of each other.
As discussed in Sec. III B, including vorticity is neces-

sary to ensure momentum conservation. Even though the
scaling F3;δðk; q;−q; ηÞ ∝ k2 for k → 0 occurs in all
schemes (and even in the momentum violating (s) scheme
for the particular set of arguments entering in the one-loop
power spectrum), such that Pδδ=P0 → 1 for k → 0, we find
that vorticity backreaction has an important effect for
k≳ 0.3knl.
Note also that the impact of vorticity plus vector and

tensor modes on the density sets in when q≳ k or when
q≳ kσ (if kσ > k). This is the reason why in the left panel
of Fig. 11 for k≳ 3knl the relevance of them becomes
negligible. The contribution to the one-loop result from
loop wave numbers for which q≳ k decreases when k
increases due to the UV screening in VPT. Hence vorticity
backreaction eventually peters out for very high k for the
one-loop contribution. Note that this is also in line with
vorticity backreaction shown in Fig. 3 and Fig. 5.
Nevertheless, at these large wave numbers, two- and higher
loops have to become relevant (see below), which should
themselves be affected by vorticity backreaction as well.
Altogether, our results show that within the mildly non-
linear regime that is most relevant for perturbative
approaches, vorticity backreaction is significant.
The impact of vorticity backreaction can be seen even

more clearly in Fig. 12, by comparing the one-loop results

FIG. 11. Left panel: dependence of the density power spectrum Pδδðk; ηÞ in one-loop (solid) and linear (dashed) order on the
approximation schemes (s), (sw), (sv), (svt) quantifying the impact of successively including vorticity (sw), vector (sv) and tensor (svt)
modes. Note that (sv) and (svt) are essentially indistinguishable. Right panel: second versus third cumulant approximations (cum2) vs
(cum3þ), with three choices of ω̄ for the latter and a common value kσ ¼ 1.31knl (see Fig. 10) in all cases.
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in the (cum3þ, s) and (cum3þ, svt) scheme, respectively.
In this figure we adjusted kσ=knl to optimally match the
N-body result for k ≪ knl in each scheme. The best-fit
values as well as the power spectra differ significantly, and
the (cum3þ, s) scheme shows a markedly worse agree-
ment with N-body results compared to (cum3þ, svt)
(except for ns ¼ −1, for which the difference however
occurs at wave numbers where two-loop corrections are
expected to matter, see Sec. VI A 2).
Also note that in particular for ns ¼ 0, 1 the (cum3þ, s)

result presents a poor match to N-body data even at rather
small k. The reason is that when varying kσ the value of Pδδ

at a given fixed scale k features a maximum for some
particular kσ, i.e., Pδδ at one-loop is constrained to be below
a certain maximal possible value for any choice of kσ . Since
for (cum3þ, s) and ns ¼ 0, 1 this maximum is below the
N-body result, they cannot be brought into agreement even

at low kwhen varying kσ .
10 This feature emphasizes that the

agreement between VPT and N-body results when taking
vorticity backreaction into account (as opposed to when
not) is a nontrivial result.
We conclude that it is vital to take vorticity backreaction

into account, both for physical reasons (momentum

FIG. 12. One-loop density power spectrum Pδδðk; ηÞ compared to N-body results for ns ¼ 2; 1; 0;−1 and three approximation
schemes. Taking only scalar perturbation modes into account (cum3þ, s) leads to significant deviations from our fiducial
scheme (cum3þ, svt) with vorticity, vector and tensor modes. On the contrary, the second cumulant approximation (cum2, svt)
gives results close to (cum3þ, svt). This means the impact of the third cumulant is mild whereas neglecting the backreaction of
vorticity+vector(+tensor) modes would require a notably different kσ=knl which generally makes the agreement worse for k ≲ knl (gray
lines). It is therefore important to take this backreaction into account, i.e. use the (cum2=3þ, svt) (or (cum2=3þ, sv), see Fig. 11)
schemes.

10The reason for this maximum of Pδδ when varying kσ (for k
fixed) is that the linear VPT result decreases when decreasing kσ
(corresponding to higher background dispersion), while the one-
loop increases. The increase of the one-loop piece can be under-
stood from UV screening within VPT: the most important role is
played be the contribution to the one-loop from F3;δðk; q;−q; ηÞ
for k≲ q, which is negative in SPT. The screening built into VPT
makes it less negative or even positive (see Fig. 2). This explains
the opposite behavior of the linear and one-loop contributions
when changing kσ . Their interplay then creates the aforementioned
maximum in the sum of linear and one-loop pieces.
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conservation, see Sec. III B), and due to its quantitative
impact on the density contrast. In addition, vector modes of
the stress tensor have a certain effect on Pδδ, while the
backreaction of tensor modes is negligible at one-loop.

2. Impact of higher cumulants and loops

To assess the relevance of cumulants beyond second
order we compare the (cum2) and (cum3þ) approxima-
tion schemes, adopting (svt) in both cases. For the latter,
we also consider three choices for the fourth cumulant
expectation value, given by ω̄ ¼ �1 in addition to our
fiducial choice [see Eq. (123)]. A comparison for fixed kσ
and ns ¼ 0 is shown in the right panel of Fig. 11. The
differences between the linear results for Pδδ are hardly
visible (dashed lines). At one-loop, the second cumulant
approximation (cum2) leads to a slightly smaller result
compared to (cum3þ) with fiducial choice ω̄ ¼ 0.668,
while (cum3þ) with ω̄ ¼ 1 is slightly larger. The
(cum3þ) case with ω̄ ¼ −1, motivated by the values
found from halos in paper I [6], shows a smaller amplitude
of the one-loop correction, close to the second cumulant
approximation. However, the differences are very small for
the relevant range k≲ knl. In addition, and in stark contrast
to vorticity as discussed above, they can largely be
compensated by a small shift in kσ. This can be seen by
comparing the results for (cum2, svt) and (cum3þ, svt)
in Fig. 12, with both lines lying on top of each other
for k≲ knl.
We thus find no indication that higher cumulants beyond

the velocity dispersion tensor invalidate the VPT approach
for k≲OðknlÞ. On the contrary, the good agreement
between (cum2) and (cum3þ) as well as small sensitivity
on the fourth cumulant expectation value ω̄ can be taken as
an indication that the truncation of higher cumulants leads
to an acceptable uncertainty for the one-loop density power
spectrum within the mildly nonlinear regime and for the
considered values of ns. This finding is remarkable since,
e.g., for a single shell crossing, higher cumulants of all
orders are generated at once. Nevertheless, the gradual
build-up of an average velocity dispersion due to the
superposition of many shell crossings, as well as the
question of what impact do higher cumulants have on
the large-scale density contrast complicate this simple
argument, rendering the relevance of third and higher
cumulants unclear a priori. It is also worth pointing out
that the picture that emerges from this one-loop calculation
is consistent with that of the linear approximation detailed
in paper I [6], i.e., while higher cumulant perturbations are
important to capture the suppression of the linear kernel for
k ≫ kσ, they only mildly affect the transition region
between the low-k regime and the onset of suppression
describing the screening of UV modes (see Fig. 6 in [6]).
For a more detailed discussion of the convergence of the
cumulant expansion in the linear approximation we refer
the reader to paper I [6].

However, while the (cum2) scheme is apparently a
reasonable approximation for Pδδ at one-loop, higher
cumulants likely have a larger impact at higher order in
perturbation theory, where backreaction effects can be more
pronounced, and deserve further study in the future. Still, in
order to explore the perturbative stability we checked in an
explorative study that adding the two-loop correction for
(cum2, sv) leads to only minor changes in kσ=knl and an
agreement with N-body results that is comparable or
slightly improved compared to the one-loop (cum3þ,
svt) case. Interestingly, by fitting the two-loop (cum2,
sv) approximation to the N-body measurements we obtain
the values:

kσ=knl ¼ 1.32; 1.36; 1.39; 1.40; ð124Þ

for ns ¼ 2; 1; 0;−1, respectively. Note that here kσ=knl
increases when decreasing ns. This is the same trend
observed in Sec. V both for the self-consistent and the
halo determinations of kσ=knl. We therefore conclude that
the lack of a similar trend for the one-loop fits is most likely
a limitation of the one-loop approximation. In addition,
note that the values in Eq. (124) lie in between the
independent estimates from self-consistent perturbation
theory and halo calculations (compare to Tables III
and IV). Overall, this is compatible with the fact that
through our fitting procedure we are determining the spatial
average of the dispersion tensor, a well-defined quantity
with clear physical meaning.

B. Velocity divergence and cross power spectrum

Measuring the power spectrum of the velocity diver-
gence and its cross correlation with the density contrast
from N-body simulations requires a reconstruction of the
velocity field. We describe our procedure to accomplish
this in Appendix H.
Within VPT,Pθθ andPδθ can be computed analogously to

Pδδ, using Eq. (32) at one-loop with a ¼ b ¼ θ or a ¼ δ,
b ¼ θ, respectively. We use the same values of kσ=knl as
determined in Sec. VI A by matching VPT and N-body
results for Pδδ, for each approximation scheme and ns,
respectively. Therefore, there are no free parameters enter-
ing Pθθ and Pδθ, and they are predicted uniquely. The
corresponding linear and one-loop results are shown in
Fig. 13 for ns ¼ 2 as well as ns ¼ 0. We find that the one-
loop and N-body results are very close to each other for
k≲ knl, with the agreement being somewhat better for
ns ¼ 2. Taking the uncertainty in the velocity reconstruction
into account, the level of agreement shows that VPT yields
relevant results also for the velocity divergence. This is an
important consistency check of the formalism. We stress
again that no free parameters were adjusted to obtain the
velocity and cross power spectra, and the same is also
true for the next consistency check that we discuss, the
bispectrum.
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C. Bispectrum

To further test the viability of VPT, we compare
perturbative and N-body results for the bispectrum. The
tree-level and one-loop bispectrum can be computed using
the formal expressions as in SPT, but replacing the SPT

kernels Fn by the numerically computed kernels Fn;δ

within VPT. A subtlety is that also the first order kernel
F1;δ is nontrivial and therefore needs to be taken into
account, giving the expressions

Btreeðk1; k2; k3; ηÞ ¼ 2e4ηF2;δðk1;k2;ηÞF1;δðk1;ηÞF1;δðk2;ηÞP0ðk1ÞP0ðk2Þ þ 2perm;

B1Lðk1; k2; k3; ηÞ ¼ e6η
Z

d3qP0ðqÞf8F2;δðqþ k1;−q;ηÞF2;δðq− k2;−q− k1;ηÞF2;δðq;k2 − q; ηÞP0ðjqþ k1jÞP0ðjq− k2jÞ

þ 6½F1;δðk3;ηÞF3;δðq− k2;−q;−k3;ηÞF2;δðq;k2 − q;ηÞP0ðjq− k2jÞP0ðk3Þ
þF2;δðk2;k3;ηÞF1;δðk2;ηÞF3;δðk3;q;−q; ηÞP0ðk2ÞP0ðk3Þ þ 5perm�
þ 12½F1;δðk2; ηÞF1;δðk3;ηÞF4;δðk2;k3;q;−q; ηÞP0ðk2ÞP0ðk3Þ þ 2perm�g: ð125Þ

For the nonlinear kernels entering the one-loop bispectrum,
the inclusion of vorticity and the vector mode of the
dispersion tensor requires to use the advanced algorithm
described in Appendix D 2. We do not include the tensor

mode of the dispersion for the bispectrum for simplicity,
since its impact on the power spectrum was found to be
tiny. This corresponds to the (cum3þ, sv) scheme.
Furthermore, we use the algorithm described in Appendix B

FIG. 13. Velocity divergence and cross power spectra Pδθ (first row) and Pθθ (second row) for ns ¼ 2 (left column) and ns ¼ 0 (right
column). Red circles with error bars show the corresponding N-body results. The linear (one-loop) approximation within the (cum3þ,
svt) scheme of VPT is shown with dashed (solid) lines, with kσ=knl fixed to the same value as for Pδδ (see Fig. 10) for each case,
respectively. Therefore, these can be regarded as unique predictions of VPT as there is no free parameter being fit to the measurements.
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of [28] to rewrite the integrand such that contributions that
are enhanced for q → 0 cancel in the sum of all terms at the
integrand level.
We normalize our results to the tree-level SPT bispec-

trum Btree
SPTðk1; k2; k3; ηÞ ¼ 2e4ηF2ðk1; k2ÞP0ðk1ÞP0ðk2Þ þ

2 perm, with EdS-SPT kernel F2ðk1; k2Þ. In the equilateral
configuration k1 ¼ k2 ¼ k3, the relevant SPT kernels are
given by F2ðk1; k2Þ ¼ F2ðk1; k3Þ ¼ F2ðk2; k3Þ ¼ 2=7.
Note that for the considered initial power spectra with
ns ≥ −1 the SPT one-loop integrals would be UV diver-
gent, while the VPT result is finite, as for the power
spectrum.
In Fig. 14 we compare the tree-level and one-loop

equilateral bispectrum within VPT to N-body results. As
above, we use the same value for kσ=knl as in Sec. VI A for
each case, such that the bispectrum is predicted without any
additional free parameters. We find that even the tree-level
bispectrum within VPT (dashed lines) yields a rather
reasonable result, accounting for the suppression relative
to the SPT tree-level prediction (the latter corresponding to
the line at 1.0 in Fig. 14). Adding the VPT one-loop

contribution (solid lines) further improves the agreement
with the N-body results.
Importantly, we find that despite of the large values for

ns the one-loop correction remains small in the perturbative
regime, indicating perturbative stability of VPT also for the
bispectrum. Indeed, the one-loop correction is smaller for
larger ns. This can be explained by the stronger damping of
the nonlinear kernels for larger ns, which overcompensates
the larger weight of large wave numbers due to
P0ðqÞ ∝ qns . The same trend can also be observed regard-
ing the agreement between one-loop and N-body results,
which reaches out to rather large wave numbers for ns ¼ 2.
We checked that the results for the bispectrum are very
similar for the (cum2) scheme, with differences to
(cum3þ) comparable in size as for the power spectrum.
Thus, we find that the VPT formalism developed in

this work yields an accurate description not only of the
density and velocity divergence power spectra, but also of
the bispectrum. This adds another piece of evidence that
VPT is able to capture the relevant dynamics. It further
demonstrates its predictivity, since, as for the velocity

FIG. 14. Equilateral bispectrum at tree-level (dashed) and one-loop (solid) VPT compared to N-body results for ns ¼ 2; 1; 0;−1,
respectively. The bispectra are normalized to the SPT tree-level bispectrum. In each case kσ=knl is fixed to the same value as for Pδδ (see
Fig. 10). Therefore, these can be regarded as unique predictions of VPT as there is no free parameter being fit to the measurements.
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divergence spectra, no free parameters were adjusted for
obtaining the bispectrum.

D. Vorticity power spectrum

The vorticity power spectrum Pwiwi
ðk; ηÞ is a probe that is

particularly sensitive tovelocity dispersion, since novorticity
would be generated when neglecting second and higher
cumulants, as is the case in SPT. Within cumPT, the leading
contribution arises at one-loop, since vorticity vanishes at the
linear level. Apart from the overall size, the scalingwith k for
small wave number is also an interesting issue. As discussed
in Sec. IV C, we find a scaling

Pwiwi
ðk; ηÞ ∝ k2 for k → 0: ð126Þ

However, this scaling occurs only starting at two-loop order,
while the one-loop contribution scales as k4. Therefore, the
two-loop is expected to eventually dominate in the limit
k → 0, since the one-loop is “accidentally” suppressed there.
Note that, in contrast to the opposite regime, this behavior on

large scales is definitely not a sign that perturbation theory
breaks down. Itmerely arises due to the strong suppression of
the one-loop piece. Starting at two loops all higher loop
corrections generically scale as k2 for k → 0.
Nevertheless, we expect that the k2 scaling can only be

observed at small enough k, since also the one-loop piece
contributes on intermediate scales. To test this expectation,
we compute the vorticity power spectrum up to two loops.
Given the mild differences between (cum2) and (cum3þ)
as well as the tiny impact of tensor modes, we restrict
ourselves to the second cumulant approximation including
vorticity as well as scalar and vector modes of the
dispersion tensor for this analysis, i.e., the (cum2, sv)
scheme (see Table II). As for the one-loop bispectrum,
computing the two-loop vorticity power spectrum requires
the algorithm described in Appendix D 2, where both
modes of the vorticity in the plane perpendicular to the
corresponding Fourier wave vector are included explicitly,
and similarly for the vector mode.
In Fig. 15 we show the sum of the one- and two-loop

contributions to the vorticity power spectrum (solid lines),

FIG. 15. Vorticity power spectrum Pwiwi
within VPT in one-loop (dashed) and two-loop (solid) approximation, for ns ¼ 2; 1; 0;−1.

The scaling Pwiwi
∝ k2 occurs only starting at two-loop order, while the one-loop result scales as k4 for small k. The figure shows the

dependence of the one- and two-loop pieces on kσ=knl, see Eq. (127). The error bars correspond to the Monte Carlo integration error
(visible only at low k).
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compared to the one-loop result only (dashed lines), for
ns ¼ 2; 1; 0;−1. The different scaling of the one- (∝ k4)
and two-loop (∝ k2) results for k ≪ knl is clearly visible.
As expected, the power spectrum is dominated by the two-
loop piece at low wave number, specifically for k≲ 0.5knl.
The k2 scaling is approached only gradually, occurring for
k≲ 0.1–0.2knl. The panels of Fig. 15 show the dependence
on kσ=knl for each ns. The different scaling with kσ of the
one- and two-loop results can also be understood analyti-
cally. The dimensionless power spectrum k3Pwiwi

(as well
as Pww=P0 shown in Fig. 15) can only depend on
dimensionless ratios, that we can take as k=kσ and
kσ=knl. Furthermore, the power of knl is fixed at a given
order in perturbation theory, since the L-loop contribution
contains Lþ 1 factors of P0 ¼ Akns , and A ∝ 1=knsþ3

nl .
Using furthermore that P1L

wiwi
∝ k4 and P2L

wiwi
∝ k2 for small

k implies

k3P1L
wiwi

∝
�
k
kσ

�
4þ3

�
kσ
knl

�
2ðnsþ3Þ

∝ k2ns−1σ ;

k3P2L
wiwi

∝
�
k
kσ

�
2þ3

�
kσ
knl

�
3ðnsþ3Þ

∝ k3nsþ4
σ ;

for k ≪ knl; kσ: ð127Þ

For ns ¼ 2, 1 (ns ¼ 0;−1) this explains the increase
(decrease) of P1L

wiwi
when increasing kσ for some fixed

k=knl ≪ 1 (dashed lines in each panel of Fig. 15). In
addition, the second line in Eq. (127) explains the increase
of P2L

wiwi
for all ns ¼ 2; 1; 0;−1, which is least pronounced

for ns ¼ −1 (solid lines, note that the sum of one- and two-
loop is dominated by the latter for small k as discussed
above).
The impact of vector modes of the stress tensor is shown

in Fig. 16, where we compare the (sw) and (sv) schemes.
While both include vorticity, the vector mode is taken into
account only in the latter case. We find a very mild
difference within the perturbative regime k≲OðknlÞ.
Finally, a comparison to N-body results for the vorticity

power spectrum is presented in Fig. 17. The extraction of
vorticity from N-body data requires a careful treatment, see
discussion in Appendix H for details. In particular, as is
well-known [5,50,51], the overall amplitude of the vorticity
power spectrum is rather sensitive to the mass resolution in
the simulations, but its shape is rather robust. We verify this
as well for our scale-free simulations in Appendix H,
showing in particular that our ns ¼ 1, 2 simulations do not
have enough resolution to capture the amplitude reliably.
We therefore show results here only for ns ¼ 0;−1,
cautioning that in particular the former case may not be
fully converged yet (see discussion in Appendix H).
Similarly, our two-loop calculation of the vorticity power
spectrum has some uncertainty as well, as it only includes
the second cumulant. A full two-loop calculation would

include higher cumulants, including their vector modes as
well. This is well beyond the scope of the present paper. We
therefore primarily base our comparison on the k-depend-
ence of the vorticity power spectrum. To aid this compari-
son note that we have multiplied the N-body measurements
for ns ¼ −1 by a factor of four, while the ns ¼ 0 meas-
urement is unchanged.
Given these limitations, we find a good agreement of the

shape with our perturbative VPT result. The solid line in
Fig. 17 shows the sum of one- and two-loop contributions,
while the dashed and dot-dashed lines show both of them
individually. The dip of the two-loop correction at
k ∼ 1.5knl for ns ¼ 0 is due to an (almost) cancellation
among the contributions P2L

w1w1
and P2L

w2w2
of the two

vorticity degrees of freedom (see Appendix D 2) at this
point, while the sum is positive below and above, as is the
one-loop result. Note that in Fig. 17 we fixed kσ=knl to the
value obtained from Pδδ within the same approximation
scheme, and going up to two-loop order [see Eq. (124)], but
our conclusion is independent of the precise value. We
observe in particular that adding the two-loop contribution
significantly improves the agreement of the shape of Pwiwi

with N-body results at small wave numbers, where the
transition from k4 to k2 scaling occurs, as captured by the
two-loop part. It is remarkable that this transition is seen
both in two-loop VPT and N-body results.
Thus, even though the overall normalization of the

vorticity power spectrum is subject of further study, the
shape of the perturbative and N-body results agrees very
well in the weakly nonlinear regime. This constitutes yet
another nontrivial consistency check of our approach, and
demonstrates the versatility and predictivity of VPT.

FIG. 16. Vorticity power spectrum Pwiwi
within VPT in one-

loop (dashed) and two-loop (solid) approximation, for ns ¼ 0.
The generic scaling Pwiwi

∝ k2 for low k is obtained starting at
two-loop only, since the one-loop piece is suppressed as k4. The
figure shows the difference between the (cum2, sw) and (cum2,
sv) scheme (see Table II), i.e., the backreaction of the vector
modes of the velocity dispersion on vorticity.
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The low-k behavior of the vorticity power spectrum has
been the subject of some study in the literature. In the context
of ΛCDM simulations at z ¼ 0, [51] measure a low-k
asymptotic behavior Pww ∝ knw with nw ¼ 2.55� 0.02
(for k≲ 0.4h=Mpc) in agreement with [50] which quote
nw ≃ 5=2 for k ≃ 0.1h=Mpc.Note that theseworks use small
simulation boxes, 256 Mpc=h and 100–300 Mpc=h,
respectively, thus most likely they have not reached the
regime where VPT predicts a transition to k2 scaling, i.e.,
k ≃ ð0.1 − 0.2Þknl. On the other hand, from the perturbative
side, there have been two predictions based on EFT and
one based on Lagrangian perturbation theory (LPT).
From EFT, [52] predict a “leading order” contribution at
the one-loop level with nw ¼ 7þ 3ns, and a stochastic
component with nw ¼ 4. On the other hand, [53] predict

nw ¼ 7þ 2ns and nw ¼ 4. From LPT, [20] also predict
nw ¼ 4. For our simulations with ns ≥ −1, all these three
predictions would lead to a low-k slope of nw ¼ 4. As
discussed above, the collisionless Vlasov dynamics cap-
tured by VPTyields nw ¼ 2, in agreement with our N-body
results. This result is independent of the input power
spectrum, and thus also holds for ΛCDM power spectra.

VII. CONCLUSIONS

In this paper we presented nonlinear perturbative sol-
utions to the Vlasov hierarchy, a cumulant expansion of the
Vlasov-Poisson equations of motion describing collision-
less matter. This Vlasov perturbation theory (VPT) repre-
sents a systematic and predictive extension of the well-
known framework of standard perturbation theory (SPT).
Formally, this approach is similar to SPT, in that the

calculation of density and velocity divergence fields has the
same expressions but with different nonlinear kernels
Fn=Gn → Fn;a and an enlarged set of perturbation modes
a ¼ δ; θ; wi;…. One key modification is that the linear
kernel (n ¼ 1) is not unity, except in the k → 0 limit, with a
scale-dependence describing how linear growth is sup-
pressed at small scales once k crosses the (time-dependent)
dispersion scale kσ set by the expectation value of the
velocity dispersion tensor. In contrast with SPT, there are
additional degrees of freedom corresponding to vorticity wi,
the velocity dispersion tensor ϵij and higher cumulants
Cijk… of the distribution function (DF), which provide an
important new window to testing the theory against
simulations.
For the nonlinear kernels appearing in loop corrections,

the suppression compared to the equivalent SPT kernels is
present even when their total momentum k < kσ as long as
the loop momenta qi cross the dispersion scale. Indeed,
when such crossing takes place the linear modes cease to
grow (as described by the linear kernel) and therefore they
cease to source the nonlinear kernels. This reduces the UV
sensitivity of VPT loops compared to SPT, capturing the
expected decoupling of UV modes. This allows us to
compute nonlinear corrections to power spectra even for
cosmologies with very blue power-law input spectra, for
which SPT does not converge. Furthermore, it realizes the
screening of UV modes for any input spectrum, consid-
erably reducing the sensitivity of nonlinear corrections to
highly nonlinear scales.
Along the way, we obtained a number of noteworthy

results, namely:
(i) We provide analytical results when expanding in

powers of the average background value of the
velocity dispersion tensor (Sec. II C). These solu-
tions illustrate the type of corrections to SPT, but are
not sufficient to capture the UV screening.

(ii) We characterize the impact of higher cumulants of
the DF on the VPT nonlinear kernels, and in addition
we study the impact of scalar, vector and tensor

FIG. 17. Comparison of the vorticity power spectrum Pwiwi
in

VPT at two-loop order (solid line) to N-body results (red circles)
for ns ¼ 0 (top) and ns ¼ −1 (bottom). The cross-over from k4 to
k2 scaling for low k is clearly observed in both the N-body and
two-loop VPT results. Note that the absolute normalization of the
N-body vorticity power spectrum is sensitive to mass resolution
(see Appendix H). For ns ¼ −1 we rescaled the N-body result by
a factor 4 in order to ease comparison of the shape. The dashed
and dot-dashed lines show the one- and two-loop contributions,
respectively. The value of kσ=knl is fixed to the one obtained from
Pδδ in the same VPT approximation, two-loop (cum2, sv),
see Eq. (124).
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modes of the second cumulant, i.e., the velocity
dispersion tensor (Sec. II D).

(iii) We demonstrate screening of UV modes, finding a
universality that can be explained analytically. We
derive an asymptotic scaling relation Eq. (62) show-
ing how nonlinear VPT density kernels are sup-
pressed relative to their SPT counterparts in the limit
k ¼ jPi kij ≪ kσ ≪ jkij,

Fn;δðk1;…; kn; ηÞ ∼
k2

q2

�
kσ
k1

�
2=α

� � �
�
kσ
kn

�
2=α

:

ð128Þ

This makes the UV screening manifest for large
internal wave numbers ki, with an extra suppression
on top of the k2=q2 scaling imposed by momentum
conservation well-known from SPT kernels,
Fn ∼ k2=q2 (where q ∼maxi jkij). The exponent
is related to the growth rate of the background
dispersion α≡ ∂η ln ϵ, and given by 2=α ¼ ðns þ
3Þ=2 for a scaling universe with spectral index ns.
This result is universal (e.g., valid in all truncation
schemes we considered) and only hinges on the
stalling of usual linear growth once a perturbation
mode enters the “dispersion horizon”, i.e., for
ki > kσðηÞ ¼ 1=ϵðηÞ1=2. This scaling implies that
the one-loop integral Eq. (32) is UV finite for any
spectral index ns and explains Eq. (3).

(iv) We derive constraints on the VPT nonlinear kernels
from underlying symmetries, such as Galilean
invariance and momentum conservation (Sec. III).
These generalize well-known relations to the case
when including dispersion and higher cumulants,
and provide nontrivial checks and implications for
viable approximation schemes that truncate the
hierarchy. In particular, we show that neglecting
vorticity when including dispersion leads to a
violation of momentum conservation. However,
when including vorticity the truncations we explore
do respect momentum conservation and Galilean
invariance.

(v) We discuss the generation of vorticity aswell as vector
and tensor modes of the velocity dispersion at second
and higher order in perturbation theory (Sec. IV). We
find that the vorticity power spectrum generated
nonlinearly scales as k2 for low wave number in
general. However, the leading (one-loop) contribution
is accidentally suppressed as k4, such that the k2

scaling appears only starting at two-loop order.
(vi) We provide estimates of the dispersion scale within

two complementary frameworks. First, we use a
purely perturbative approach based on self-consistent
solutions of the coupled equations for the perturba-
tions and the average dispersion (Sec. VA). Second,

we use the halo mass function measured in simula-
tions together with the calculations of the velocity
dispersion profile in NFW halos to compute the
dispersion scale from virialized regions (Sec. V B).
Remarkably, both of these approaches yield estimates
that are close to each other, while not allowing for a
precise determination.

(vii) The VPT linear theory gives for the first time a way
to calculate the nonlinear halo mass for blue spectra
(Sec. V B), avoiding UV divergences that appear for
spectral indices ns ≥ 1. This is relevant as well for
CDM spectra when considering biased tracers, to
avoid UV divergences that appear when dealing with
derivatives of the smoothed density field in some
bias schemes, see, e.g., [54].

(viii) We compare predictions for the density and velocity
divergence power spectra as well as the bispectrum
at one-loop order to N-body results in a scaling
universe with spectral indices −1 ≤ ns ≤ þ2
(Sec. VI). We use the density power spectrum to
fix the precise value of the background dispersion,
which then completely determines all other power-
and bispectra. We find a good agreement up to the
nonlinear scale for all cases, with a reach that
increases with the spectral index ns. Even though,
naively (e.g., within SPT), the loop integration
would be UV dominated for large ns, we find that
this is in fact not the case when including higher
cumulants due to the screening of small-scale modes
that becomes more efficient with larger ns. As a
result of this, VPT reconciles perturbation theory
behavior with the observation that blue spectra in
simulations show most suppression of nonlinear
power, explaining the dependence of nonlinear
power on linear power with spectral index.

(ix) Interestingly, we find the values for the dispersion
scale fixed from the two-loop density power spec-
trum [Eq. (124)] is in between the perturbative
estimate and the halo estimate (compare to Tables III
and IV, respectively). Furthermore, the trend of these
values with spectral index is also consistent. This is
compatible with the fact that by matching the density
power spectrum we are determining the spatial
average of the dispersion tensor, a well-defined
quantity with clear physical meaning.

(x) We observe a significant impact of vorticity back-
reaction on the (third- and higher order) density
contrast. At the nonlinear scale the impact of
vorticity backreaction on the density power spec-
trum is ∼10% for ns ¼ 0 (Fig. 11). For blue indices
ns ¼ 1, 2 this grows to about 15%, while for
ns ¼ −1 it drops to 3%. The backreaction of the
vector mode of the dispersion tensor has a smaller
but noticeable impact, while its tensor modes yield a
negligible backreaction up to one-loop.
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(xi) A nontrivial prediction of VPT is the vorticity power
spectrum, which we compute up to two-loop order in
order to recover the correct large-scale limit. Com-
paring to our N-body measurements confirms the
cross-over from k4 to k2 scaling on large scales
(Sec. VI B).

Our results provide a proof-of-principle that perturbative
techniques for dark matter clustering can be systematically
improved based on the known underlying collisionless
dynamics. In particular, this deterministic approach fea-
tures a screening of UV modes and thereby abandons one
of the main shortcomings of the ubiquitous SPT approxi-
mation. This motivates to develop the framework further
and study also its application in the context of ΛCDM
cosmologies. Another obvious extension is to carry out a
systematic study of two-loop corrections, and check the
convergence of VPT, which given the UV screening may be
expected to hold best for blue spectra, the opposite of what
happens for SPT. Finally, along the same lines, we plan to
study power spectra response functions, i.e., the depend-
ence of the nonlinear power spectrum on the initial
spectrum. The suppression of this reponse seen in N-body
simulations [12,13] compared to SPT is another manifes-
tation of the screening of UV modes (see Fig. 1), and a
quantitative comparison of this provides yet another test
of VPT.
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APPENDIX A: TADPOLES

In this appendix we discuss subtleties related to the
splitting between background value and perturbation. For
example, for the velocity dispersion the equation of motion
for the perturbations δϵij ¼ ϵij − hϵiji are obtained by
subtracting the Eq. (13) for the average value hϵiji ¼
ϵðηÞδij from the evolution equation for ϵij ¼ σij=ðfHÞ2
obtained from the second moment of the Vlasov
equation Eq. (7). The same holds for the perturbation of
A ¼ lnð1þ δÞ around its average A ¼ hAi, that we denote
by δA≡ A − hAi in this section for clarity (in the rest of the
work we use the symbol A also for the perturbation part in a
slight abuse of notation). The equation of motion for its
background value reads A0 ¼ QAðηÞ with source term
QAðηÞ≡ −

R
d3kPθAðk; ηÞ [6].

The evolution equation for the vector Eq. (21) of
perturbation modes obtained in this way reads

ψ 0
k;aðηÞ þ Ωabðk; ηÞψk;bðηÞ ¼

Z
pq

γ̂abcðp; qÞψp;bðηÞψq;cðηÞ

−QaðηÞδð3ÞðkÞ; ðA1Þ

which differs from Eq. (23) given in the main text by the
last term, and contains vertices γ̂abcðp; qÞ, that, within this
section, denote the vertices as derived from the Vlasov
equation (we use the hatted notation to discriminate them
from modified vertices to be defined below). The last term
arises from subtracting the equations for the average values
from the original evolution equations for δϵ and δA,
respectively. We use a vector notation with Qa ≡Q [see
Eq. (20)] for a ¼ δϵ, Qa ≡QA for a ¼ δA, and Qa ¼ 0 for
all other perturbation modes considered here, that do not
possess average values. The last term in Eq. (A1) ensures
that hψk;aðηÞi ¼ 0, i.e., that δϵ and δA indeed correspond to
the perturbation around the average.
In this appendix we show that the term −QaðηÞδð3ÞðkÞ

can be skipped in the evolution equations provided one
replaces the vertices γ̂abcðp; qÞ as derived from the Vlasov
equation by vertices γabcðp; qÞ given by

γabcðp; qÞ≡
�
γ̂abcðp; qÞ pþ q ≠ 0;

0 pþ q ¼ 0:
ðA2Þ

Note that, apart from this section, we do not discriminate
between γabc and γ̂abc, but it is implicitly understood that
vertices are set to zero for pþ q ¼ 0.
The statement from above can be most easily understood

using a diagrammatic representation of the perturbative
expansion, see, e.g., [1]. We note that it can be extended in
a straightforward way to the generalized case of a vector of
perturbations considered here. Starting point is the integral
representation of the equation of motion

ψk;aðηÞ¼ψ lin
k;aðηÞþ

Z
η
dη0gaa0 ðη;η0;kÞ

×

�Z
pq
γ̂a0bcðp;qÞψp;bðη0Þψq;cðη0Þ−Qa0 ðηÞδð3ÞðkÞ

�
;

ðA3Þ

where gaa0 ðη; η0; kÞ is the retarded propagator, defined by
the solution of the linear equation ∂ηgaa0 ðη; η0; kÞ þ
Ωabðk; ηÞgba0 ðη; η0; kÞ ¼ 0 with boundary condition
gaa0 ðη0; η0; kÞ ¼ δaa0 for η ¼ η0, and gaa0 ðη; η0; kÞ ¼ 0 for
η < η0. The perturbative expansion Eq. (29) can be gen-
erated by iteratively inserting the linear solution ψ lin

k;aðηÞ ¼
eηF1;aðk; ηÞδk0 inside the nonlinear terms in Eq. (A3), and
using a lower integration boundary formally shifted to −∞.
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The propagator and vertices lead to a diagrammatic
expansion that is formally analogous to the SPT case [1],
except that the propagator depends on both time arguments
as well as on wave number, has more components, and
more vertices contribute. In addition, the source terms Qa
can formally be represented by insertions given by
−Qa0 ðηÞδð3ÞðkÞ from which a single propagator line with
wave number k ¼ 0 emerges. An example will be shown
below. As we will see, their role is to precisely cancel
“tadpoles diagrams.” Similar cancellations are well known
in the context of effective actions considered in quantum
field theory.
Tadpole diagrams contain some loops that are connected

only via a single line to the rest of the diagram. By
momentum conservation, this line is restricted to carry
vanishing wave number. Such diagrams can arise for
perturbations that also possess a homogeneous background
value, i.e., δA and δϵ in the present case.
An example for a tadpole contribution to the one-loop

power spectrum is shown in Fig. 18 (left). The tadpole loop
can be nonzero if the vertex γabcðp; qÞ belonging to the
loop has a nonvanishing limit for pþ q → 0. In the
following we restrict the discussion to scalar perturbations
up to the second cumulant for simplicity, but note that the
arguments below can be extended to the general case.
Within this restriction, the vertices with a nonzero limit for
pþ q → 0 are

γAθAðp; qÞ → −
1

2
; γgθgðp; qÞ →

1

4
ð3c2p − 1Þ;

γgθϵðp; qÞ →
1

2
ð3c2p − 1Þ; γϵθgðp; qÞ →

1

4
s2p;

γϵθϵðp; qÞ → −
1

2
c2p: ðA4Þ

Here cpðspÞ denotes the cosine (sine) of the angle between
between p and k≡ pþ q. The tadpole loop is given by

Taðk; ηÞ≡ δð3ÞðkÞ
Z

d3pγabcðp; qÞjpþq→0Pbcðp; ηÞ; ðA5Þ

where Pbcðp; ηÞ denotes the linear power spectrum at time
η (see below for a generalization to the nonlinear case).

Since Pbcðp; ηÞ does not depend on the direction of p, we
can consider the angle-averaged vertices

Z
dΩ
4π

γAθAðp; qÞ → −
1

2
;

Z
dΩ
4π

γgθgðp; qÞ → 0;Z
dΩ
4π

γgθϵðp; qÞ → 0;
Z

dΩ
4π

γϵθgðp; qÞ →
1

6
;Z

dΩ
4π

γϵθϵðp; qÞ → −
1

6
: ðA6Þ

The contribution from tadpoles containing γgθg and γgθϵ
averages to zero, consistent with the fact that g does not
have a homogeneous background value.
Let us consider as an example the tadpole Ta for a ¼ δϵ.

Using the angle-averaged vertices, the tadpole Eq. (A5) is
given by

Tδϵðk;ηÞ¼ δð3ÞðkÞ1
3

Z
d3pðPθgðp;ηÞ−Pθδϵðp;ηÞÞ: ðA7Þ

The tadpole is exactly canceled by the contribution
−QðηÞδð3ÞðkÞ from the source term to the perturbation
equation for δϵ Eq. (20) (considering the restriction to
scalar modes up to the second cumulant for the purpose of
this discussion), as expected. The corresponding contribu-
tion to the power spectrum is shown in the right part
of Fig. 18.
Note that this cancellation also works at higher loop

order. We can decompose any loop diagram in tadpole
contributions, that are attached to some internal or external
lines of the full diagram. The tadpole itself can also contain
loops, that precisely yield the full nonlinear power spec-
trum Pbcðp; ηÞ in the integrand in Eq. (A5). On the other
hand, the source term Q also contains the integral over the
corresponding full nonlinear power spectrum, such that
the cancellation occurs at any order in perturbation theory.
The same argument applies to the tadpole Eq. (A5) for
a ¼ δA. It can also be generalized to perturbations of
the fourth, sixth, eighth, or any even cumulant, that may
possess an average value (see paper I [6]), but are not
considered in this work.

FIG. 18. Tadpole diagram contributing to the one-loop power spectrum (left), and a corresponding diagram with an insertion of the
source term QðηÞδð3ÞðkÞ contributing to the equation of motion for the perturbations (right). Both diagrams cancel each other, to ensure
that the perturbation around the background maintains a vanishing mean value. It is equivalent to skip the right diagram, and use the
prescription to set the vertices to zero when the ingoing lines exactly add up to zero, thereby eliminating also the left diagram.
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One may wonder whether the vertex connecting the line
coming from the tadpole to the rest of the diagram can
potentially be singular for vanishing ingoing wave number.
One can check that either this singularity is removed by a
factor of k2 coming from the internal propagating line
connecting with the tadpole, or that the vertex is not singular.
Therefore, we conclude that with the prescription of

setting vertices to zero when the ingoing lines exactly add
up to zero effectively eliminates all tadpoles, such thatwe can
also ignore diagrams with insertions of the sourcesQ orQA.
This is equivalent to using the equation of motion Eq. (23)
instead of Eq. (A1), with vertices Eq. (A2), as claimed above.

APPENDIX B: TIME INTEGRALS

The integrals appearing in the analytic results Eq. (53)
for the nonlinear kernels F2;δ and F2;θ when expanding to
first order in the power of the background dispersion ϵðηÞ
are given by

Jδ1 ≡ 4

5

Z
η
dη0ðeη0−η − e7ðη0−ηÞ=2ÞE3ðη0Þ

¼ 2

5
ðE1ðηÞ − 5E3ðηÞ þ 4E7=2ðηÞÞ;

Jδ2 ≡ 4

5

Z
η
dη0ðeη0−η − e7ðη0−ηÞ=2ÞðE2ðη0Þ − E3ðη0ÞÞ

¼ 2

15
ð3E1ðηÞ − 10E2ðηÞ þ 15E3ðηÞ − 8E7=2ðηÞÞ;

Jδ3 ≡ 2

5

Z
η
dη0ðeη0−η − e7ðη0−ηÞ=2Þϵðη0Þ

¼ 2

5
ðE1ðηÞ − E7=2ðηÞÞ;

Jδ4 ≡ 2

5

Z
η
dη0ðeη0−η − e7ðη0−ηÞ=2ÞIθðη0Þ

¼ 2

105
ð12E0ðηÞ − 70E2ðηÞ þ 63E5=2ðηÞ − 5E7=2ðηÞÞ;

Jδ5 ≡ Jδ1 þ Jδ2 ¼
4

15
ð3E1ðηÞ − 5E2ðηÞ þ 2E7=2ðηÞÞ;

Jδ6 ≡ 2

5

Z
η
dη0

�
3

2
eη

0−η þ e7ðη0−ηÞ=2
�
Iθðη0Þ

¼ 2

21
ð6E0ðηÞ − 7E2ðηÞ þ E7=2ðηÞÞ;

Jδ7 ≡ 2

5

Z
η
dη0

�
3

2
eη

0−η þ e7ðη0−ηÞ=2
�
Iδðη0Þ

¼ 2

105
ð30E0ðηÞ − 63E1ðηÞ þ 35E2ðηÞ − 2E7=2ðηÞÞ;

ðB1Þ

and

Jθ1 ≡ 4

5

Z
η
dη0

�
eη

0−η þ 3

2
e7ðη0−ηÞ=2

�
E3ðη0Þ

¼ 2

5
ðE1ðηÞ þ 5E3ðηÞ − 6E7=2ðηÞÞ;

Jθ2 ≡ 4

5

Z
η
dη0

�
eη

0−η þ 3

2
e7ðη0−ηÞ=2

�
ðE2ðη0Þ − E3ðη0ÞÞ

¼ 2

5
ðE1ðηÞ − 5E3ðηÞ þ 4E7=2ðηÞÞ;

Jθ3 ≡ 2

5

Z
η
dη0

�
eη

0−η þ 3

2
e7ðη0−ηÞ=2

�
ϵðη0Þ

¼ 1

5
ð2E1ðηÞ þ 3E7=2ðηÞÞ;

Jθ4 ≡ 2

5

Z
η
dη0

�
eη

0−η þ 3

2
e7ðη0−ηÞ=2

�
Iθðη0Þ

¼ 1

35
ð16E0ðηÞ − 21E5=2ðηÞ þ 5E7=2ðηÞÞ;

Jθ5 ≡ Jθ1 þ Jθ2 ¼
4

5
ðE1ðηÞ − E7=2ðηÞÞ;

Jθ6 ≡ 2

5

Z
η
dη0

�
3

2
eη

0−η −
3

2
e7ðη0−ηÞ=2

�
Iθðη0Þ

¼ 1

35
ð12E0ðηÞ − 70E2ðηÞ þ 63E5=2ðηÞ − 5E7=2ðηÞÞ;

Jθ7 ≡ 2

5

Z
η
dη0

�
3

2
eη

0−η −
3

2
e7ðη0−ηÞ=2

�
Iδðη0Þ

¼ 2

35
ð6E0ðηÞ − 21E1ðηÞ þ 35E2ðηÞ

− 21E5=2ðηÞ þ E7=2ðηÞÞ: ðB2Þ

APPENDIX C: RECURSION RELATION
AND GALILEAN INVARIANCE

In this appendix we prove the relation Eq. (69), by
generalizing the proof within EdS-SPT presented in [42].
The crucial observation is that the nonlinear vertices
γabcðp; qÞ satisfy the property Eq. (68) in the limit
p → 0.
We proceed by induction and assume that Eq. (69) is

satisfied for allm ≤ n. For the moment we also assume that
it is satisfied for the starting point n ¼ 1, and show that this
is indeed the case further below. Now we want to prove
Eq. (69) for Fnþ1;a. The differential equation Eq. (33) for
the kernel can be written as
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ð∂ηδabþðnþ1ÞδabþΩabðjkþpj;ηÞÞFnþ1;bðp;k1;…;kn;ηÞ

¼
Xn−1
m¼1

mþ1

nþ1
fγabcðpþq1þ���þqm;qmþ1þ�� �þqnÞFmþ1;bðp;q1;…;qm;ηÞFn−m;cðqmþ1;…;qn;ηÞgs

þ
Xn−1
m¼1

n−mþ1

nþ1
fγabcðq1þ���þqm;pþqmþ1þ���þqnÞFm;bðp;q1;…;qm;ηÞFn−mþ1;cðp;qmþ1;…;qn;ηÞgs

þ 1

nþ1
γabcðp;k1þ�� �þknÞF1;bðp;ηÞFn;cðk1;…;kn;ηÞþ

1

nþ1
γabcðk1þ�� �þkn;pÞFn;bðk1;…;kn;ηÞFn;cðp;ηÞ; ðC1Þ

where f� � �gs ¼ P
permf� � �g=jpermj denotes an average over all jpermj ¼ n!=m!=ðn −mÞ! possibilities to choose the subset

of wave vectors fq1;…; qmg from fk1;…; kng. The symmetrization with respect to the vector p is not included in f� � �gs in
the equation above, but explicitly accounted for by the two sums over m in the second and third line and the two
contributions in the last line, respectively, as well as their prefactors.
In this form, the limit p → 0 can be performed, using Eq. (69) for the kernels Fmþ1;bðp; q1;…; qm; ηÞ and

Fn−mþ1;cðp; qmþ1;…; qn; ηÞ, respectively, as well as

γabcðpþ q1 þ � � � þ qm; qmþ1 þ � � � þ qnÞ → γabcðq1 þ � � � þ qm; qmþ1 þ � � � þ qnÞ;
γabcðq1 þ � � � þ qm; pþ qmþ1 þ � � � þ qnÞ → γabcðq1 þ � � � þ qm; qmþ1 þ � � � þ qnÞ: ðC2Þ

For the first term in the last line of Eq. (C1) we use the property Eq. (68) of the vertices, as well as F1;θðp; ηÞ → 1 for p → 0

and F1;wi
ðp; ηÞ ¼ 0. At this point we have to assume that jpj ≪ kσ in addition to jpj ≪ jkij. Using that the vertices are

symmetrized, see Eq. (28), the second term in the last line of Eq. (C1) is identical to the first one. Finally, we use that
Ωabðjkþ pj; ηÞÞ → Ωabðk; ηÞÞ. Altogether, we obtain

ð∂ηδab þ ðnþ 1Þδab þΩabðk; ηÞÞFnþ1;bðp; k1;…; kn; ηÞ

¼ 1

nþ 1

k · p
p2

Xn−1
m¼1

fγabcðq1 þ � � � þ qm; qmþ1 þ � � � þ qnÞFm;bðq1;…; qm; ηÞFn−m;cðqmþ1;…; qn; ηÞgs

þ 1

nþ 1

k · p
p2

Fn;aðk1;…; kn; ηÞ þOðp0Þ: ðC3Þ

The sum in the middle line is precisely the right-hand side of the differential equation Eq. (69) for the kernel
Fn;aðk1;…; kn; ηÞ. Therefore, taking also the last line into account, we can also write this equation as

ð∂ηδab þ ðnþ 1Þδab þ Ωabðk; ηÞÞ
�
Fnþ1;bðp; k1;…; kn; ηÞ −

1

nþ 1

k · p
p2

Fn;bðk1;…; kn; ηÞ
�
¼ Oðp0Þ: ðC4Þ

For a ¼ δ, θ, the kernels Fn;a approach the EdS-SPT
kernels at early times, which are known to satisfy
Eq. (69) [42]. For all other perturbation modes, the kernels
can be assumed to vanish at early times, and are generated
only by time evolution. Therefore, the square bracket can
be taken to be zero in the limit η → −∞ for all kernels, up
to corrections of order p0. Consequently, the unique
solution of the differential equation is that the square
bracket is zero (up to p0 terms) at all times. This completes
the proof for all n ≥ 2. What is still missing is to show
Eq. (69) for the starting point of the induction, n ¼ 1. This
can be achieved by realizing that when proceeding analo-
gously as above for the kernels F2;aðp; k; ηÞ, the second and
third line in Eq. (C1) is absent, and only the fourth line

contributes. Therefore, the desired relation Eq. (69) follows
directly from the vertex property Eq. (68) in that case, when
proceeding analogously as in the general case.

APPENDIX D: TREATMENT OF VORTICITY,
VECTOR, AND TENSOR MODES

In Fourier space, the vorticity wi satisfies the trans-
versality condition k · w ¼ 0, such that only two of its
three components are independent. The same holds for the
vector mode νi of the second cumulant, while its tensor
mode tij satisfies kitij ¼ 0; tij ¼ tji; tii ¼ 0, corresponding
to 3 × 3 − ð3þ 3þ 1Þ ¼ 2 independent degrees of free-
dom. In our implementation we use a scheme taking
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advantage of these constraints. For example, for the
vorticity perturbation wi at some wave number k, we
can choose the two independent degrees of freedom in
the plane perpendicular to k. There is a remaining freedom
to select a basis in this plane. It turns out that for the one-
loop power spectrum a suitable choice of this basis allows
us to track only a single perturbation mode for the vorticity.
The same applies to the vector and tensor mode, respec-
tively. For the two-loop power spectrum or one-loop
bispectrum, we need to include all independent degrees
of freedom. We describe both algorithms below, and
checked their exact equivalence whenever the simpler
one is applicable.
Before that, we discuss some general properties. In this

appendix we refer to scalar modes with the letter s (with
s ∈ fδ; θ; g; δϵ; A; π; χg up to (cum3þ)), vector modes
with vi (with vi ∈ fwi; νig encompassing both vorticity
and the vector mode of the velocity dispersion tensor), and
tensor modes with tij. Vector and tensor modes can appear
in two different roles:

(i) when computing power spectra of vector or tensor
modes themselves (involving nonlinear kernels Fn;vi
or Fn;tij),

(ii) as backreaction contributions to the power-
(and bi-)spectra of scalar modes via nonlinear
kernels Fn;s.

In a diagrammatic representation of the perturbative sol-
ution of the equations of motion (see, e.g., [1] and
Appendix A), vector and tensor modes appear as external,
outgoing lines in case (i) and as internal lines in both (i)
and (ii), while “ingoing” lines (that emerge from insertions
of the initial power spectrum P0 in loop diagrams) are
always (growing) scalar modes.
Furthermore, statistical isotropy implies rotational

invariance of power spectra involving vector and tensor
modes, which implies that all cross spectra Pvis ¼ Ptijs ¼
Pvitjk ¼ 0 vanish. In addition, rotational invariance requires

Pvivjðk; ηÞ ¼
1

2

�
δij −

kikj
k2

�X
n

Pvnvnðk; ηÞ;

Ptijtlsðk; ηÞ ¼
1

2
PT
ij;lsðkÞ

X
m;n

Ptnmtnmðk; ηÞ; ðD1Þ

where we explicitly indicated the summation over n,m here
for clarity (while being implicitly understood in the rest of
this work), and i, j, l, s are not summed over. The tensor
projector PT

ij;lsðkÞ can be found in [6]. These results can be
derived by making the ansatz that, e.g., Pvivjðk; ηÞ is a
general linear combination of all rotationally covariant
objects with two indices built from the vector k, being δij
and kikj, and using the transversality condition k · v ¼ 0.
An analogous derivation holds for the tensor mode and
the cross spectra. Note that the structure of Pvivj applies
correspondingly to the three cases Pwiwj

; Pwiνj ; Pνiνj .

Altogether, this implies that it is sufficient to compute
the vector and tensor power spectra on the right-hand sides
of Eq. (D1), where a summation over all indices is
performed. Our numerical implementations take advantage
of this observation.

1. Simplified algorithm for the one-loop
power spectrum

The algorithm described here can be used for all scalar,
vector, and tensor power spectra up to one-loop order,
including backreaction of vector and tensor modes for the
former. It exploits that, at one-loop, it is sufficient to track
only one of the two independent degrees of freedom for
each vector perturbation vi and tensor perturbation tij,
respectively. The general case is discussed in Sec. D 2.
When being interested in the one-loop power spectrum,

vector and tensor modes can appear only in two places:
(i) in the kernel F2;viðq; k − q; ηÞ or F2;tijðq; k − q; ηÞ for
the vector- or tensor power spectra Pvivi or Ptijtij, respec-
tively, and (ii) in the kernels F3;sðk; q;−q; ηÞ contributing
to power spectra of scalar modes. These two possibil-
ities are specific examples for the generic cases (i) and
(ii) from above.
In the following we discuss an algorithm that is sufficient

to compute these kernels. Let us start with the vector modes
vi ∈ fwi; νig. We generically refer to nonlinear vertices
γabcðk1; k2Þwith e.g., a representing a vector mode and b, c
any two scalar modes s, s0 as γviss0 ðk1; k2Þ, and analogously
for other cases. The only relevant vertex combinations
containing vector modes when computing one-loop power
spectra are

γviss0 ðq; k − qÞγv0is00s000 ðq; k − qÞ;
γss0viðq; k − qÞγv0is00s000 ð−q; kÞ; ðD2Þ

which contribute to case (i) and (ii), respectively (see
Fig. 19), and with summation over the spatial index i ¼ x,
y, z in both cases. Here k is the external wave number, and q
the loop integration variable. Note that there are only those
two independent directions. In addition, we observe that all
vertices of the form γviss0 ðk1; k2Þ as well as γsvis0 ðk1; k2Þ ¼
γss0viðk2; k1Þ are proportional to k1 × k2. Therefore, the
vorticity has to lie along the axis k × q. Thus, it is sufficient
to track a single degree of freedom for each vector mode. In
practice, we can replace the three Cartesian by a single
component, wi ↦ weff and νi ↦ νeff , and replace the
factor ðk1 × k2Þi contained in the relevant vertices by
σk1k2 jk1 × k2j. Here σk1k2 ∈ f�1; 0g keeps track of the
correct sign, and is chosen such that ðk1 × k2Þi ¼
σk1k2 jk1 × k2jðk × qÞi=jk × qj for all relevant vectors k1;2 ∈
f�q;�k;�ðk − qÞ;�ðkþ qÞg that occur when evaluating
the integrand of the one-loop power spectrum, including
the symmetrization q ↔ −q to ensure cancellation of
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infrared singularities at the integrand level. We use
σk1k2 ¼ sgnððk1 × k2Þ · ðk × qÞÞ.
Altogether, the effective single-component vorticity and

vector modes correctly take into account the backreaction
on the scalar kernels F3;sðk; q;−q; ηÞ, and allow for the
computation of the vector power spectra according to
Pwiwi

¼ Pweffweff
; Pwiνi ¼ Pweffνeff ; Pνiνi ¼ Pνeffνeff .

For the tensor mode, the relevant combinations of
vertices are analogous to Eq. (D2) with vi; v0i replaced
by tij; t0ij. We observe that for vertices of the form
γtijss0 ðk1; k2Þ the dependence on the indices i, j is univer-
sally given by the factor

fijðk1; k2Þ≡ δij − ðk1 þ k2Þiðk1 þ k2Þj=ðk1 þ k2Þ2
− 2ðk1 × k2Þiðk1 × k2Þj=ðk1 × k2Þ2; ðD3Þ

which satisfies the transversality and trace conditions
0 ¼ ðk1 þ k2Þifijðk1; k2Þ; 0 ¼ fii. Furthermore, for all
vertices of the form γstijs0 ðk1; k2Þ ¼ γss0tijðk2; k1Þ the
dependence on i, j is captured by gijðk1;k2Þ≡ðk2Þiðk2Þj.
We find that for the one-loop power spectrum we can
again represent the tensor mode by a single degree
of freedom, tij ↦ teff , with vertices related to the
full ones via γtijss0 ðk1; k2Þ ¼ fijðk1; k2Þγteffss0 ðk1; k2Þ and

k22sin
2ðk1;k2Þγstijs0 ðk1;k2Þ¼gijðk1;k2Þγsteffs0 ðk1;k2Þ, where

sin2ðk1; k2Þ ¼ ðk1 × k2Þ2=ðk21k22Þ. With these definitions
one has

γtijss0 ðq; k − qÞγt0ijs00s000 ðq; k − qÞ
¼ 2γteffss0 ðq; k − qÞγt0effs00s000 ðq; k − qÞ;

γss0tijðq; k − qÞγt0ijs00s000 ð−q; kÞ
¼ γss0teff ðq; k − qÞγt0effs00s000 ð−q; kÞ: ðD4Þ

The second line implies that the effective tensor mode
correctly takes into account the backreaction of tensor
perturbations on the scalar kernels F3;sðk; q;−q; ηÞ.
Using the first line we find that the tensor power spec-
trum at one-loop order can be computed according to
Ptijtijðk; ηÞ ¼ 2Pteff teff ðk; ηÞ.

2. General case

For situations where the simplified treatment described
above is not applicable, we also implemented a full
treatment of vorticity and vector mode perturbations taking
both of the two independent degrees of freedom for each of
them into account. This is relevant in particular for the two-
loop vorticity power spectrum (see Sec. VI D) and the one-
loop matter density bispectrum (see Sec. VI C). In practice,
to make use of the constraint p · v ¼ 0 for a vector mode
vi ∈ fwi; νig of wave number p, we project vi on a basis
that depends on p. In particular, we use the p-dependent
orthogonal basis vectors

bp1 ≡N p1ðp × QpÞ;
bp2 ≡N p2ðp × ðp × QpÞÞ ¼ N p2ðpðp · QpÞ − Qpp2Þ;
bp3 ≡N p3p; ðD5Þ

where Qp is an a priori arbitrary reference vector that can
be chosen by convenience for each p with the only
condition that p × Qp ≠ 0. Furthermore, N p1;2;3 are nor-
malization factors. A natural choice is such that the basis
vectors have norm equal to unity, but this is not required in
our implementation. We refer to this basis as the transverse
basis, and decompose the vorticity for wave vector p as

w ¼ wp1bp1 þ wp2bp2; ðD6Þ

where wp1;2 are the two transverse vorticity components,
and the projection along bp3 vanishes by construction. The
decomposition of the vector mode is analogous. In the list
of perturbation variables, we correspondingly include wpα

and νpα for α ¼ 1, 2. The linear part of their evolution is not
affected by the basis choice. For the nonlinear part, the
vertices in the transverse basis can be obtained from the
generic Cartesian ones via

γawpαcðp; qÞ ¼ γawicðp; qÞbpα;i;
γabwqα

ðp; qÞ ¼ γabwi
ðp; qÞbqα;i;

γwkαbcðp; qÞ ¼ bpþqα;i=jbpþqαj2γwibcðp; qÞ; ðD7Þ

FIG. 19. Generation of vorticity/vector perturbations at one-loop (left diagram) and backreaction on scalar power spectra (right
diagram). Here vi ∈ fwi; νig corresponds to dashed lines, and solid lines represent any scalar perturbations s ∈ fδ; θ; g; δϵ; A; π; χg
(possibly of different type for each line). The open square denotes the initial power spectrum, and the filled circles are nonlinear vertices.
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where summation over i ¼ x, y, z is implied. Note that the
appropriate transverse basis for each of the wave vectors p,
q or pþ q is used in the three cases. For vertices involving
the vector mode νi the projection is analogous, and for
vertices where more than one of the indices a, b, c
corresponds to a vorticity or vector mode, the projection
is applied for each of them correspondingly. For example,

γwpþqαwpβwqγ
ðp; qÞ ¼ bpþqα;i=jbpþqαj2γwiwjwk

ðp; qÞbpβ;jbqγ;k;
ðD8Þ

with summation over i; j; k ¼ x, y, z and for α, β, γ ¼ 1, 2.
Therefore the www vertex corresponds in the transverse
basis to 23 ¼ 8 distinct vertices, while in the Cartesian basis
it would have in general 33 ¼ 27 components. This
illustrates the advantage of using the transverse basis.
We note that in the transverse basis, and using well-

known relations from vector algebra, the projected vertices
can be reduced to expressions that depend solely on scalar
products p · q, p · Qr and q · Qr, as well as on

Drs ≡ detðs; r;QrÞ ¼ ðr × QrÞ · s; ðD9Þ

with r; s ∈ fp; q; pþ qg. This is advantageous when fol-
lowing the algorithm outlined in [26], and we precompute
these values for a given configuration of wave vectors
corresponding to a single evaluation of the integrand for the
loop evaluation. In particular, the relevant elementary wave
vectors that may appear are the external wave vector k for
the power spectrum (or k1, k2 for the bispectrum) as well as
loop wave numbers Q1;…;QL at L-loop order. The most
general set of vectors that may appear as arguments of
nonlinear kernels as well as of vertices has then the formP

L
n¼1 cnQn þ cLþ1k (or

P
L
n¼1 cnQn þ cLþ1k1 þ cLþ2k2

for the bispectrum), with some coefficients cn ¼ 0;�1.
For each of those vectors p, we define the associated vector
Qp entering the definition of the corresponding transverse
basis as the vector within the set B ¼ fk;Q1;…;QLg (or
B ¼ fk1; k2;Q1;…;QLg for the bispectrum) that has the
largest projection within the plane perpendicular to p, i.e.,

for which s2pQ ¼ 1 − ðp·QÞ2
p2Q2 is maximal out of allQ ∈ B. This

allows for an efficient implementation of vertices involving
vector modes within the algorithm used in this work, based
on [26–29].

APPENDIX E: RESCALING
FOR POWER LAW UNIVERSE

For a scaling universe with linear input power spec-
trum P0ðkÞ ¼ Akns and EdS background, the average
value of the velocity dispersion is given by ϵðηÞ ¼ ϵ0eαη

with α ¼ 4=ðns þ 3Þ, and the dimensionless ratio ω̄ ¼
ωðηÞ=ϵ2ðηÞ involving the fourth cumulant expectation
value is constant (as are dimensionless ratios of higher

order cumulants [6]). The only dimensionful scales are
therefore kσ ≡ 1=

ffiffiffiffiffi
ϵ0

p
and knl ≡ 1=ð4πAÞ1=ðnsþ3Þ. We indi-

cate the dependence of power spectra on ϵ0 in this appendix
using the notation Pabðk; η; ϵ0Þ, for any perturbation modes
a and b (e.g., a ¼ b ¼ δ for the density spectrum), and
taking A as given.
Scaling symmetry can be used to rescale power spectra

computed for a given reference value ϵref0 to any other value
ϵ0, while keeping all dimensionless ratios of higher cumu-
lants fixed, specifically ω̄ (the dependence on which we
suppress for brevity). To see this, we consider for a moment
power spectra Pā b̄ðk; η; ϵ0Þ ¼ Pabðk; η; ϵ0Þ=ϵdaþdbðηÞ of
dimensionless perturbation variables ā ¼ a=ϵdaðηÞ and
b̄ ¼ b=ϵdbðηÞ, with appropriate powers da, db. For example,
dδ ¼ dθ ¼ dA ¼ dwi

¼ 0, dg¼dδϵ¼dνi¼dtij¼dπ¼dχ¼1.

Then the dimensionless power spectrum 4πk3Pā b̄ can
depend only on dimensionless ratios of k, kσ and knl, which
can be taken to be k=kσ and kσ=knl. In addition, within
perturbation theory, theL-loop contribution involves exactly
Lþ 1 powers ofP0, i.e., is proportional toALþ1. This implies
that 4πk3PL−loop

āb̄
ðk;η;ϵ0Þ¼ðkσ=knlÞðnsþ3ÞðLþ1ÞΔ̄L

āb̄
ðk=kσ;ηÞ,

with some dimensionless function Δ̄L
ā b̄
ðk=kσ; ηÞ that

depends on k only via the ratio k=kσ. From this we obtain
the rescaling relation for the original power spectrum,

PL−loop
ab ðk;η;ϵ0Þ

¼
�
ϵref0
ϵ0

�ðnsþ3ÞðLþ1Þ
2

−3
2
−da−db

PL−loop
ab ðk× ðϵ0=ϵref0 Þ1=2;η;ϵref0 Þ:

ðE1Þ

Similarly, for the bispectrum we find

BL−loop
abc ðk1; k2; k3; η; ϵ0Þ

¼
�
ϵref0
ϵ0

�ðnsþ3ÞðLþ2Þ
2

−6
2
−da−db−dc

BL−loop
abc ðk01; k02; k03; η; ϵref0 Þ;

ðE2Þ

where k0i ¼ ki × ðϵ0=ϵref0 Þ1=2 for i ¼ 1, 2, 3.
In addition, the dependence on time (or equivalently η) is

also fixed by scaling symmetry. To see this it is useful to
introduce generalized time-dependent scales kσðηÞ≡
1=

ffiffiffiffiffiffiffiffiffi
ϵðηÞp

, knlðηÞ≡ 1=ð4πAe2ηÞ1=ðnsþ3Þ. The dimensionless
power spectrum 4πk3Pā b̄ðk; η; ϵ0Þ can depend on time only
via the ratios k=kσðηÞ and kσðηÞ=knlðηÞ. Observing that the
latter ratio is constant in time implies that Δ̄L

ā b̄
ðk=kσ; ηÞ ¼

Δ̄L
ā b̄
ðk=kσðηÞÞ is a function of a single variable. This

yields Pabðk; η; ϵ0Þ ¼ ðϵðη0Þ=ϵðηÞÞ−3=2−da−dbPabðk0; η0; ϵ0Þ
and Babcðk1; k2; k3; η; ϵ0Þ ¼ ðϵðη0Þ=ϵðηÞÞ−6=2−da−db−dc×
Babcðk01; k02; k03; η0; ϵ0Þ where now k0 ¼k×ðϵðηÞ=ϵðη0ÞÞ1=2¼
ke2ðη−η0Þ=ðnsþ3Þ and analogously for k0i.
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APPENDIX F: N-BODY SIMULATIONS

Our main suite of N-body simulations (see Table V)
consists of 4 realizations of 5123 particles for each power-
law spectral index ns ¼ −1, 0, 1, 2, run with Ωm ¼ 1 using
the GADGET code [56]. The four realizations in each case
correspond to two sets of fixed amplitude initial conditions
with opposite phases [57], to cancel Gaussian cosmic
variance. The initial conditions are set at scale factor aic ¼
0.001 and evolved until a ¼ 1 with outputs at a ¼ 10s with
s ¼ −2 to s ¼ 0 in steps of Δs ¼ 0.2. The setup of initial
conditions necessarily induces transients in subsequent
evolution, due to imperfect dynamics [58–63] (the use of
perturbation theory to compute initial displacements) and
special configurations of discrete particles [64–67]
(Cartesian grid out of which the initial displacements are
imposed) that are not exact solutions of the equations of
motion.
For our application of interest, namely testing 3D gravi-

tational clustering in the regimewhere orbit-crossing ismost
significant, we would like to focus on spectra with blue
spectral indices, hence our choice of pushing ns to be as
high as ns ¼ þ2, which as far as we know has never before
been considered in the literature of scale-free 3D cosmo-
logical simulations [4,68–73]. This gives rise to some
challenges from the numerical simulation point of view.
In particular, sincewe use perturbation theory to set up initial
conditions, we would like to have the maximum amplitude
of fluctuations to be initially less than unity, which for
such blue spectra makes the fluctuation amplitude at the
scale of the box very small. This in turn makes following the
evolution of fluctuations more difficult by the tree algorithm
due to accumulation of numerical errors (e.g., [62,74].
To strike a balance, the amplitude of initial fluctuations at
the Nyquist frequency of the particle grid is an increasing
function of ns, with ΔNyq ¼ ðkNyq=knlÞnsþ3 ¼ 0.01, 0.01,
0.05, 0.25 for ns ¼ −1, 0, 1, 2. This gives an initial
amplitude at the scale of the box of Δbox¼1.5×10−7;
6×10−10;1.2×10−11;2.3×10−13, respectively. Even then,
we see some numerical noise in the evolution of the large-
scale modes down to late times, particularly for the bispec-
trum when ns ¼ 2 (see Fig. 14).

This limitation imposes constraints on the order of
perturbation theory that can be safely used in setting up
initial conditions. Indeed, at the ΔNyq values mentioned
above, our linear solutions to the equations of motion with
dispersion and higher cumulants tell us that already the
corrections over the unperturbed initial spectrum P0 ∝ kns
are about 0; 3; 15; 30% at the Nyquist frequency for
ns ¼ −1, 0, 1, 2 respectively at the initial conditions
(see Fig. 10). This means that for blue spectral indices
ns ¼ 1, 2, Lagrangian perturbation theory convergence
is doubtful, as one would have to take into account
dispersion and higher cumulants. For this reason in
such cases we set initial conditions using the Zel’dovich
approximation (ZA), rather than second-order Lagrangian
perturbation theory (2LPT).
The use of ZA initial conditions introduces violations of

self-similarity at early times due to transients, which we
correct using tree-level standard perturbation theory (SPT),
tested against ns ¼ −1, 0 2LPT initial conditions simu-
lations for which we have also run their ZA counterparts.
For the bispectrum for equilateral triangles, tree-level SPT
gives [58]

Beqðk;aÞ ¼
�
12

7
−
27

20

�
aic
a

�
þ 27

70

�
aic
a

�
7=2

	
½PSPT

lin ðk;aÞ�2;

ðF1Þ

which at the initial conditions (a ¼ aic) gives the ZA tree-
level bispectrum, and for a ≫ aic gives the tree-level
equilateral bispectrum of the exact dynamics in the absence
of dispersion (which is correctly predicted by 2LPT). In
between, transients (spurious a=aic dependence in Eq. (F1)
induce violations to self-similar evolution. At early times,
when our simulations are weakly nonlinear, we find that
Eq. (F1) matches the differences between the ZA and 2LPT
initial conditions simulations very well, as expected, and in
agreement with previous tests of higher-order statistics in
the literature [58,60]. In fact, we have checked this for all
triangle shapes, not just equilateral. The use of Eq. (F1) at
late times to compute the relative corrections due to
transients is also justified in practice because, although
tree-level SPT is not valid, the size of the transient
corrections is rather small, so a larger error in estimating
it is acceptable compared to the statistical errors. More
specifically, we find that the maximum deviation between
ZA initial conditions simulations corrected for transients by
SPT compared to the 2LPT initial conditions simulations
for all triangle shapes and simulation outputs is about 1.5%
for ns ¼ −1 and 0.5% for ns ¼ 0, suggesting our applica-
tion to ns ¼ 1, 2 should yield subpercent systematic errors.
The situation for power spectrum measurements is less

challenging, since ZA initial conditions reproduce the
correct linear spectrum in the absence of dispersion, with
transients entering only trough loop corrections in the
context of SPT [60]. By comparing our ZA initial

TABLE V. N-body simulations as a function of spectral index.

ns Nparticles Nrealizations

Initial
Conditions

2 2563; 5123 6 (3 paired fixed-amplitude) ZA
1 2563; 5123 4 (2 paired fixed-amplitude) ZA
0 2563; 5123 4 (2 paired fixed-amplitude) ZA
0 3843; 7683 1 fixed amplitude ZA
0 5123 4 (2 paired fixed-amplitude) 2LPT
−1 5123 4 (2 paired fixed-amplitude) ZA
−1 5123 4 (2 paired fixed-amplitude) 2LPT
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conditions simulations to those run with 2LPT for the cases
ns ¼ −1, 0, we see that correcting power spectrum mea-
surements for transients is in practice not necessary, as
deviations are at most 0.5% for ns ¼ −1 and 0.3% for
ns ¼ 0 once the power spectra from different outputs are
binned into functions of k=knl.
Apart from transients, there are other spurious effects

that break self-similarity [4]. N-body simulations cannot
follow modes with wavelength larger than the size of the
box, and at small scales the gravitational force is softened.
The former means in particular that at late times, when the
nonlinear scale becomes comparable to the box size (e.g.,
knlL≲ 0.1), the simulation cannot follow the true dynamics
as mode-coupling to relevant modes is missing. In addition,
particles in simulations can be thought of as having an
effective size equal to the softening length, and to be in the
fluid limit (avoid spurious discreteness) requires that the
nonlinear scale be larger than the mean interparticle
separation, or equivalently that the amplitude of fluctua-
tions at the Nyquist frequency of the particles be larger than
unity. This is of course the opposite of the requirement that
perturbation theory be valid (as required for initial con-
ditions). In practice this means that between the initial
conditions and the first output that can be analyzed one
must leave sufficient time for both conditions to be met.
This also minimizes transients induced by simplified
dynamics in initial conditions generation and associated
initial grid effects. Therefore, to obtain measurements as a
function of k=knl with a broad range of values, we use
measurements starting at a scale factor 25 times larger than
at the initial conditions.
Finally, another issue that can potentially impact our

simulations is the use of fixed-amplitude initial conditions
to reduce cosmic variance [57]. Because the amplitude of
the Fourier modes are fixed, these initial conditions are
actually non-Gaussian. That’s precisely the point when it
comes to the initial four-point function, as its modification
leads to Gaussian cosmic variance cancellation. However
this also affects the bispectrum. At tree-level in SPT, the
bispectrum gets modified by order unity only for triangles
of the form Bðk; k;−2kÞ, which involves the initial four-
point function of pairs of opposite modes (same that enters
into the power spectrum cosmic variance). Since we present
measurements of the bispectrum for equilateral triangles in
this paper, this is of no concern, except for the fact that we
use a wide bin in k with Δk ¼ 6kF, with kF the funda-
mental model of the simulation box, and the first bin at
k ¼ 6� Δk=2 does have contributions from such funda-
mental triangles. Therefore, to avoid this issue we do not
use the first two equilateral triangle bins in any of our
bispectrum results.
At one-loop order, however, it is easy to see that these

fixed-amplitude initial conditions induce bispectrum
modifications to triangles of all shapes (as well as to the
power spectrum). This is so because given any choice of

external momenta (triangle shape) one can alwaysmatch the
configuration of initial four-point functions affected in the
expectation values over linear fields for a suitable choice of
the loop momentum that is being integrated over. However,
since only a special configuration is involved, the loop
integral collapses to a particular case of discrete modes. By
dimensional analysis the loop then gives a contribution
proportional to k3FPlinðkÞ ∝ ðk=knlÞnsðkF=knlÞ3, which
means that fixed-amplitude initial conditions induce
violations of self-similarity through loop corrections.
Following [55], we computed these for the power spectrum
and bispectrum, but found that these violations are too
small (subpercent even for the latest outputs used) to affect
our measurements.
To calculate error bars for our power spectrum and

bispectrum measurements, we first build an independent
realization from the two fixed-amplitude initial conditions
simulations with opposite phases, and do the same for the
second random seed for each spectral index. These two
independent realizations contain several outputs (different
scale factors), whose measurements (power spectrum and
bispectrum) are then binned into functions of k=knl by self-
similarity. The error bars are then computed from the scatter
of these measurements at fixed k=knl. Thus our error bars
contain scatter from two independent random seeds, as well
as scatter from several different outputs that land at the
same k=knl. To illustrate the extent to which self-similarity
is satisfied for the density power spectrum, we show in
Fig. 20 the density power spectrum in units of the initial
spectrum for the four spectral indices (ns ¼ −1 to ns ¼ 2)
in terms of the self-similar variable k=knl. Different outputs
(each corresponding to a different color) lie on top of each
other, as expected from self-similar scaling. In this plot,
each output corresponds to the average of one fixed-
amplitude realization over the two opposite phases, and
we have removed the high-k portion of the spectrum when

FIG. 20. Self-similarity of the density power spectrum for
different spectral indices (ns ¼ −1 to ns ¼ 2 from top to bottom
at high-k). For each spectral index, different colors denote
different outputs.
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violation of self-similarity occurs (e.g., due to the softening
length of the simulations) for clarity.

APPENDIX G: THE HALO MASS FUNCTION

1. Measuring the mass function

To measure the mass function in our simulations, we run
the Rockstar halo finder [75]. We use the virial mass
definition, and consider only halos with more than 50
particles. The halos are then binned in 200 logarithmically
spaced bins, and the fixed-amplitude realizations of oppo-
site phases are averaged together. This gives us 2 paired
fixed-amplitude realizations for each output which are then
combined using self-similarity.
The scatter among these is used to compute the error bars,

and a fit of the form given by Eq. (110) is used to find the best
fit parameters for A, a and p which are given in Table VI.
Figure 8 shows the resulting fits as a function of the ratio of
mass to the nonlinear mass. We have verified comparing the
halomass functionwith 2LPT initial conditions to thosewith
ZA initial conditions for ns ¼ −1, 0 (see Table V) that
transients from ZA initial conditions do not affect our mass
function fits. Figure 21 shows howwell our simulations obey
self-similarity for the mass function. For each spectral index,

different colors denote different outputs. For this figure, we
have binned halos into 50 logarithmically spaced bins and
suppressed error bars for clarity. Each line shows the average
over two paired fixed-amplitude realizations.

2. From isothermal to NFW halos

The contribution to the expectation value of the stress
tensor ϵ of an NFW halo can be written in terms of its
isothermal halo counterpart as Eq. (118), where Iðβ; cÞ is a
2D integral given by Eq. (121) that represents the correc-
tion over the isothermal value. Here we present the analytic
result for this integral in the two cases of interest, β ¼ 0
(isotropic) and β ¼ 1=2 (radially biased dispersion). We
have, as a function of halo concentration c,

Iðβ¼ 0; cÞ ¼ gðcÞ
20c2

½cf6− c½6þ cð25þ 2cð59þ 35cÞÞ�þ c3½15þ 2cð12þ 5cÞ�π2g− c4½15þ 2cð12þ 5cÞ� lnð1þ cÞ
þ ð1þ cÞf−6þ cð1þ cÞ½12þ cð3þ 2cð−28þ 5cÞÞ�g lnð1þ cÞþ 3f−1þ c4½15þ 2cð12þ 5cÞ�g½lnð1þ cÞ�2
þ 6c4½15þ 2cð12þ 5cÞ�Li2ð−cÞ� ðG1Þ

and

Iðβ ¼ 1=2; cÞ ¼ 2gðcÞ
45c2

½c2f−3þ 9c½7þ 4c� − c½10þ 3cð5þ 2cÞ�π2g þ 6cð1þ cÞ½1þ 6cð1þ cÞ� lnð1þ cÞ
− 3ð1þ cÞ3ð1 − 3cþ 6c2Þ½lnð1þ cÞ�2 − 6c3½10þ 3cð5þ 2cÞ�Li2ð−cÞ� ðG2Þ

respectively. In these expressions Li2 represents the dilo-
garithm function.

APPENDIX H: MEASURING VELOCITY
DIVERGENCE AND VORTICITY

Measuring the velocity field divergence and vorticity is
somewhat challenging in N-body simulations, as the

velocity field is sampled by particles (which are themselves
a sampling of the phase-space distribution function f). This
means that in low-density regions the sampling is sparser
than in high-density regions. In particular, in voids there is
little velocity information at scales smaller than the void
size. One would like to construct a grid where the velocity
field is defined, then Fourier transformed, and divergence/
vorticity and their spectra computed. But this can only be

TABLE VI. Mass function best fit parameters [see Eq. (110)] as
a function of spectral index.

ns A a p

2 0.419 0.344 0.199
1 0.415 0.538 0.251
0 0.443 0.732 0.154
−1 0.387 0.731 0.317

FIG. 21. Self-similarity of the halo mass function for different
spectral indices (ns ¼ −1 to ns ¼ 2 from top to bottom at low
m̂ ¼ m=m�). For each spectral index, different colors denote
different outputs.
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done at all grid points if there is always a contribution from
nearby particles. In practical terms, the issue manifests
itself when defining the peculiar velocity field,

vðxÞ ¼ 1

1þ δ

Z
d3p

p
a
fðx; pÞ: ðH1Þ

because at points x where f vanishes (and δ ¼ −1), i.e.,
voids, this leads to a 0=0 indeterminacy. A number of
strategies have been developed in the literature to overcome
this limitation, among them Voronoi and Delaunay tessel-
lations [5,76,77], phase-space constructions [50,78] and
rescaling earlier time velocities [51]. In this work, we have
developed an alternative approach based on a multigrid
method.
To avoid the indeterminacy problem, we start by inter-

polating the particle velocities to a coarse grid (e.g., 643),
where all grid points receive velocity information. To do
this, we use the piecewise cubic spline (PCS) algorithm
discussed in [79] which employs fourth-order interpolation
in interlaced grids to reduce aliasing. Fourth-order inter-
polation has a broad kernel and thus helps in giving
velocity information to all grid points. Then, we recursively
make the grid finer by factors of two in each dimension
(1283; 2563, etc). As the grid becomes finer, eventually
there will be grid points (particularly at late times) for
which the indeterminacy happens somewhere inside a void,
even with the PCS algorithm. In that case, we look up the
information from the coarser grid, and perform an inter-
polation from the nearby points in the coarser grid one level
above (which has no indeterminacy problem) to the finer
grid. In this way we recursively make the grid finer and
finer to the desired level, i.e., enough to resolve the vorticity
power spectrum peak at small scales (see below), ending up
at a 10243 grid which is then Fourier transformed. The
divergence and vorticity are then calculated in Fourier
space, and their power spectrum computed as usual. Note
that as we make the grid finer, if no grid points have
indeterminacy the coarser level grid information is never
used, and gets discarded. At each stage in the algorithm
there are thus only two concurrent grids, and the finer grid
becomes the coarser grid in the next iteration of the
recursive algorithm.
A second issue is that the velocity field, as seen from

Eq. (H1), is the ratio of two interpolated quantities
(momentum over density). Normally, it is easy to correct
for the interpolation scheme used by dividing by the
corresponding Fourier transform of the interpolation win-
dow in Fourier space. This corrects frequencies close to the
Nyquist frequency of the grid, which get damped the most.
However, since the velocity is a ratio of interpolated
quantities it is difficult to reliably correct for the inter-
polation kernel (i.e., correction of the interpolated density is
sensitive to noise), although being a ratio means that the
damping caused by the interpolation window is not as

severe. In practice we minimize this issue by using
frequencies up to one tenth of the Nyquist frequency,
comparison between results for different grid sizes show
that this leads to no noticeable window interpolation
effects.
The most challenging of our measurements correspond

to the vorticity power spectrum, which shows significant
deviations of self-similarity except at late times, as we
detail below. For the velocity divergence power spectrum,
Fig. 22 shows a test of self-similarity by plotting each
output for a given spectral index in a different color. We see
comparing to Fig. 20 that deviations from self-similarity are
more significant than for the density power spectrum case,
as expected given the challenges discussed above.
However, in comparison to the vorticity power spectrum
(see Fig. 23), self-similarity of the velocity divergence
power spectrum is fairly well satisfied.
As has been known from CDM simulations, the vorticity

power spectrum is sensitive to mass resolution, and poor
mass resolution results in an artificial amplification of the
vorticity power [5,50,51]. For CDM initial conditions, the
vorticity power spectrum typically has a peak at kpeak ∼
1h=Mpc at z ¼ 0, and at higher redshifts this peak shifts to
higher kpeak as expected. A reasonable criterion for con-
vergence is to characterize the mass resolution (in terms of
the mean interparticle separation λ≡ Lbox=Npar) needed to
“resolve” this peak, i.e., the characteristic scale where most
vorticity is produced, extracted from the convergence
studies mentioned above. We obtain

λkpeak ≲ 0.25; 0.27; 0.19; ðH2Þ

respectively from the z ¼ 0 vorticity power spectra con-
vergence studies from Fig. 3 in [5], Fig. 13 in [50] and
Fig. 6 in [51] and the mass resolutions of their simulations.
For scale-free simulations, we have a similar situation to

CDM, in that the vorticity power spectrum has a peak at

FIG. 22. Self-similarity of the velocity divergence power
spectrum for different spectral indices (ns ¼ −1 to ns ¼ 2 from
top to bottom at high-k). For each spectral index, different colors
denote different outputs.
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small scales. It peaks at kpeak=knl ≃ 5, 4, 3.5, 2.75 for
ns ¼ −1, 0, 1, 2 respectively. Table VII shows the resulting
values of λkpeak for the last four outputs of our 5123

simulations. We see comparing these values to the simple
convergence criterion in Eq. (H2) that we would expect
convergence to be achieved only in the case of ns ¼ −1
simulations for the last two or perhaps three outputs. The
next best situation is for ns ¼ 0 last output.
Figure 23 shows that these estimates are quite reason-

able, perhaps on the conservative side. The left panel shows
the vorticity power spectrum for ns ¼ −1 for different
outputs. Each line shows a single output (averaged over two
pair-fixed realizations), starting from early outputs (highest
amplitude at low-k) down to the last output. We see that the
last three to four outputs show a reasonably converged
answer to a self-similar result. As expected from CDM
simulations, and results in Table VII, earlier outputs
increasingly overestimate the vorticity power spectrum
amplitude, although its shape is fairly robust. The right
panel shows the same convergence study for ns ¼ 0. As
expected, the convergence is less solid, although the last
two outputs are fairly close. The situation is less convincing
for ns ¼ 1, 2 (not shown), as expected from the values
quoted in Table VII, thus we will not present any vorticity
results for these spectra in this work.
As a result of this analysis, we proceed as follows to

build the vorticity power spectrum that are compared to our

predictions in the main text. For ns ¼ −1, we compute the
mean and scatter over the last four outputs (8 pair-fixed
measurements). For ns ¼ 0, we do the same for the last two
outputs, with the caveat that the result may be not be fully
converged. Still, since the shape of the power spectra are
robust to resolution, it provides useful information in
comparison to our theoretical predictions.
For the velocity divergence power spectra the situation is

less delicate. The large-scale part of the spectrum, which is
what tests our perturbative predictions is rather insensitive
to mass resolution; there is more sensitivity to mass
resolution at small scales (k≳ knl) in agreement with
previous results in the literature [5,50,51]. Therefore, in
this case we combine all outputs into a self-similar spec-
trum, with error bars describing the scatter between two
pair-fixed realizations, and deviations from self-similarity.

FIG. 23. Convergence study of the vorticity power spectrum measurements for ns ¼ −1 (left) and ns ¼ 0 (right). Each line shows a
single output (averaged over two pair-fixed realizations), starting from early outputs (highest amplitude at low-k) down to the last output.
The dashed line denotes Pww ∝ k2 expected as k → 0. Convergence is achieved for the last 3–4 outputs for n ¼ −1, which agree with
each other at the 10% level. For ns ¼ 0 the situation is less clear, as expected from the higher values of λkpeak for this spectral index, but
the last two outputs are fairly consistent with each other.

TABLE VII. Values for λkpeak for the vorticity power spectrum
for the last four outputs of our simulations as a function of
spectral index.

ns a ¼ 0.25 a ¼ 0.40 a ¼ 0.63 a ¼ 1

2 1.25 1.04 0.86 0.72
1 1.47 1.16 0.92 0.73
0 1.46 1.08 0.79 0.58
−1 0.62 0.39 0.24 0.15
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