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The standard perturbation theory (SPT) approach to gravitational clustering is based on a fluid
approximation of the underlying Vlasov-Poisson dynamics, taking only the zeroth and first cumulant of
the phase-space distribution function into account (density and velocity fields). This assumption breaks down
when dark matter particle orbits cross and leads to well-known problems, e.g., an anomalously large
backreaction of small-scale modes onto larger scales that compromises predictivity. We extend SPT by
incorporating second and higher cumulants generated by orbit crossing. For collisionless matter, their
equations of motion are completely fixed by the Vlasov-Poisson system, and thus we refer to this approach as
Viasov Perturbation Theory (VPT). Even cumulants develop a background value, and they enter the
hierarchy of coupled equations for the fluctuations. The background values are in turn sourced by power
spectra of the fluctuations. The latter can be brought into a form that is formally analogous to SPT, but with an
extended set of variables and linear as well as nonlinear terms, that we derive explicitly. In this paper, we
focus on linear solutions, which are far richer than in SPT, showing that modes that cross the dispersion scale
set by the second cumulant are highly suppressed. We derive stability conditions on the background values of
even cumulants from the requirement that exponential instabilities be absent. We also compute the expected
magnitude of averaged higher cumulants for various halo models and show that they satisfy the stability
conditions. Finally, we derive self-consistent solutions of perturbations and background values for a scaling
universe and study the convergence of the cumulant expansion. The VPT framework provides a conceptually
straightforward and deterministic extension of SPT that accounts for the decoupling of small-scale modes.

DOI: 10.1103/PhysRevD.107.063539

I. INTRODUCTION

Some aspects of gravitational clustering in cosmology
are still poorly understood, despite decades of work and
progress. Two shortcomings of standard perturbation
theory (hereafter SPT, see [1] for a review) in particular,
motivate the present work.

Simulations have established over two decades ago
that for initial conditions with blue spectra nonlinear
growth is suppressed compared to linear [2]. This is in
contrast with red or cold dark matter (CDM)-like initial
spectra which show the familiar enhancement at small
scales. Unfortunately, SPT quickly breaks down before it
can actually provide any useful understanding of this
remarkable property of gravitational clustering, giving UV
divergences for spectral indices n, > —1 [3,4]. In addition,
the bluer the spectra the worse these UV divergences
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become, when in fact small-scale clustering is actually
most suppressed compared to linear expectations.

A better understanding of the nonlinear regime must also
address how nonlinear modes decouple from large-scale
quasilinear modes. A quick look at simulations makes clear
that small-scale regions form fairly stable objects that
decouple from the expansion of the universe: dark matter
halos. What is the backreaction of these halos on large-
scale structure? In SPT there is none, as the theory is
expanded about free linear modes that know nothing about
halo formation, even for the shortest wavelengths. In halo
models of gravitational clustering [5] prescriptions are built
to marry SPT at large scales with halos at small scales, but
these provide little insight into the physics by which such
decoupling takes place. Measurements of the response
function in simulations [6,7] also highlight that the non-
linear power depends on linear modes weaker than SPT
dictates, presumably related to decoupling.

Recent work on large-scale structure has focussed on
effective field theory (EFT) [8,9], which adds to SPT
counterterms consistent with the symmetries whose
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amplitudes are determined from fitting simulation mea-
surements of clustering statistics. These counterterms are
derived from a derivative expansion of the stress tensor,
valid at large scales. When allowing for the most general
form compatible with symmetries, the counterterms
parameterize the way how small-scale physics can modify
SPT predictions in the large-scale limit, while deliberately
being ignorant about the origin of these modifications. By
construction, an EFT approach therefore can neither
explain nor take advantage of the decoupling mentioned
above. Since the counterterms also correct the leading
sensitivities to the highly nonlinear regime that SPT has as
a result of loop integrations over free linear modes, there is
little physical insight to be extracted from their amplitude,
and they need to be treated as free parameters in practice.
While this approach is certainly possible and useful in
particular applications, it is nevertheless tempting to try to
take advantage of the decoupling of UV modes in order to
obtain a predictive framework of perturbation theory that
systematically improves over SPT without the need to
introduce a large set of free parameters.

The shortcomings of SPT can be traced back to the key
assumption that the equations of motion for CDM corre-
spond to a pressureless perfect fluid at all times. This
ignores the physics of orbit crossing (or shell crossing in the
spherical dynamics language), which generates at once all
higher cumulants of the phase-space distribution function
(DF) beyond the density and velocity fields, giving rise to
the Vlasov hierarchy [10]. As we shall discuss in this paper,
when this physics is incorporated one can expand the
equations of motion about a new linear theory that knows
about small-scale orbit crossing through the expectation
values of the cumulants of the DF. This simultaneously
incorporates the decoupling of large from small-scale modes
and explains the trends of clustering in the nonlinear regime
with spectral index [11], showing that the motivations cited
above are two sides of the same coin.

The purpose of the present paper is to introduce the main
ideas behind our approach based on the Vlasov hierarchy,
and in particular explore in detail its linearized solutions
which are far richer than that in SPT. We also highlight the
connections between certain physical quantities (expect-
ation values of cumulants of the DF) that can be estimated
from dark matter halos and use these results to gain some
intuition about the size of the effects beyond SPT and the
stability of the linear solutions. Furthermore, we develop the
formalism for a systematic perturbative expansion when
taking second and higher cumulants into account, and
provide explicit results for the nonlinear terms in the
corresponding extended set of equations of motion. We
will commonly refer to the perturbative expansion incor-
porating second or higher cumulants as Viasov Perturbation
Theory (VPT). Solutions taking nonlinear corrections into
account are studied in detail in a companion work [11]
(hereafter paper II).

Our main aim in these papers is to investigate to what
extent perturbative techniques for gravitational clustering
can be improved by taking advantage of the underlying
collisionless dynamics. This builds on previous results
in the literature that explored some aspects of the Vlasov
hierarchy truncated at the second cumulant, in particular
corrections to large-scale modes using a low-k expansion
[12] and the more systematic approach in [13,14]. An
active field of related research has been to study the
growth of velocity dispersion and other shell-crossing
aspects from the point of view of Lagrangian perturbation
theory [15-27]. Along similar lines, [28-32] investigate
how to match Lagrangian perturbation theory to dark
matter halos at small scales to incorporate some aspects of
shell-crossing. Complementary insights to Vlasov colli-
sionless dynamics have resulted from the development of
numerical codes to follow the phase-space distribution
function [33-41], as well as using the Schrodinger
equation to model collisionless dynamics [42-51].

II. ROADMAP FOR READING THIS PAPER

Let us now briefly discuss how our work is organized,
giving the reader a roadmap to approach this paper, and to
what extent different sections depend on each other.

In Sec. III we present a computation of average values of
cumulants of the DF for two familiar static halo models, in
order to gain some intuition on the expected magnitude of
the cumulant expectation values. This section is fairly
independent of the VPT framework which is developed
in the following sections. The main purpose of Sec. Il is to
compute the non-Gaussianity of the distribution function
(through the values of the normalized cumulants expect-
ation values) that are used later in Sec. VIII D to derive the
conditions under which the linear solutions are well
behaved. In addition, we compute the value of the
dispersion scale expected from halos, this is used to
compare with the self-consistent dispersion within VPT
in paper II [11]. Further details are provided in Appendix A.

After this prelude, we start to develop the extended
framework of cosmological perturbation theory for large-
scale structure in Sec. IV, where we review the cumulant
generating function and the underlying Vlasov dynamics.
Next, in Sec. V, we derive the extension of SPT taking the
second cumulant into account, i.e., the velocity dispersion
tensor. We discuss the decomposition into expectation
value and perturbations and derive their general nonlinear
equations of motion. Appendices B and C complete the
equations of motion at the second-cumulant level and give
explicit results for the vertices, respectively.

The extension of the VPT framework to higher cumu-
lants is discussed in Sec. VI. The corresponding ingredients
in their equations of motion are given in Appendix D.
The nonlinear contributions in Secs. V and VI can be
ignored in a first read if desired, as they are only used later
in paper II [11] to compute loop corrections.
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TABLE L

A brief summary of the most important variables of the VPT framework. First (from left) we provide the corresponding

symbol with a short description of it, while the third and fourth columns refer to the equations where they are defined and their evolution
written down, respectively. Whenever we omit the argument for brevity, each quantity has time and wave number dependence. In
addition, the symbols in the first block also depend on the external parameter L. The Taylor expansion in L then yields the expressions
of the symbols in the next block. Note that each cumulant order n has been rescaled by the time-dependent factor of (—Hf)" (see

Eq. (42).

Variable Description Definition Equation of motion

C Cumulant generating function Egs. (37) and (83), see also Eq. (90) Eq. (87)

En, L?) Ensemble average of C Eq. (88), see also Eq. (91) Eq. (89)

Qs(n. L?) Source term for £ Eqgs. (89) and (137)

5C Perturbation of C Eq. (97) Eq. (98)

Cy Multipole decomposition of sC Egs. (131) and (133) Eq. (135) (linear)
Civ.ooi nth cumulant Eqgs. (84) and (85)

Ex(n) Background value of 2nth (even) cumulant Egs. (13) and (92), see also Eq. (21) Egs. (G4) and (G7) (linear)
Qc,. (1) Source term for &,, Eq. (G5)

Cron Transfer functions up to cumulant order £ + 2n Egs. (139) and (145) Egs. (G1) and (G6) (linear)
In(1+6) Oth cumulant (density contrast) Eq. (32) Egs. (43) and (69)

u; Ist cumulant (peculiar velocity) Eq. (34) Eq. (44)

0 Velocity divergence (scalar mode of u;) Eq. (56) Egs. (50) and (71)

w; Vorticity (vector mode of u;) Eq. (53) Egs. (54) and (B1)

€jj 2nd cumulant (velocity dispersion) Eq. (35) Eq. (45)

e(n) Background value of ¢;; Eq. (46) Eq. (47)

0(n) Source term for €(n) Egs. (48) and (100)

o€, g Scalar modes of ¢;; Eq. (58) Egs. (64), (B2), and (B3)
v Vector modes of ¢;; Eq. (59) Egs. (67) and (B4)

tij Tensor modes of ¢;; Eq. (60) Egs. (67) and (B5)
Tijk 3rd cumulant Eq. (84) Eq. (87) and Eq. (7) in [11]
7,y Scalar modes of 7; i Eq. (99) Eq. (101) (linear)
Ajju 4th cumulant Eq. (84) Eq. (87)

o(n) Background value of A;jy Eq. (86) Eq. (100)

0,n) Source term for w(7) Egs. (96) and (100)

K, &y Scalar modes of A; Eq. (99) Eq. (101) (linear)

In the remaining part of this work, we focus on the
linear approximation. We start in Sec. VII, discussing
analytical solutions in the second cumulant approxima-
tion, and changes when taking the third and fourth
cumulant into account. We highlight how the VPT
solutions differ from a collisional fluid with viscosity,
in particular in connection to the evolution of cosmic
energy, which is discussed in detail in Appendix E. In
addition, Appendix F presents the linear kernels in VPT
for the second cumulant approximation.

We then proceed to derive coupled equations up to
arbitrary cumulant order in the linear approximation in
Sec. VIII. They involve expectation values for all even
cumulants. We analytically derive conditions on their size
from the requirement of stability, and compare them to the
values for halos derived in Sec. IIl. Appendix G present
results for the linear kernels of the full cuamulant hierarchy.

Finally, we apply the formalism to a scaling universe in
Sec. IX, where certain simplifications occur. This allows us
to derive self-consistent solutions for the cumulant expect-
ation values (up to the eighth cumulant), and discuss the
convergence with respect to the truncation order of the
cumulant expansion. The conclusions are then presented
in Sec. X.

For convenience, here we collect the most important
variables of VPT. They are given in Table I below, where
we also give a short description and refer to their corre-
sponding equations. This table can be useful to keep track
of different quantities when going through the text.

ITII. HALO MODEL FOR DISPERSION
AND HIGHER CUMULANTS

We are interested in understanding what one can expect
about the order of magnitude of the cumulants of the

063539-3



GARNY, LAXHUBER, and SCOCCIMARRO

PHYS. REV. D 107, 063539 (2023)

phase-space distribution function f(r, p,t). For collision-
less, noninteracting dark matter particles, the phase-space
density is conserved along the particle trajectories,
0 = df/dr, which yields the Vlasov (or collisionless
Boltzmann) equation. As mentioned above, while SPT
neglects dispersion (second cumulant) and higher cumulants
of f, these are all generated at once by orbit crossing [10] at
small scales and therefore are nontrivial in dark matter
halos. To gain some insight into the properties expected
from cumulants in halos we consider two models, with
different (approximately orthogonal) approximations. Both
of these models are solutions to the Vlasov equation

T S A ST TSP
ot or ap or ap

in the steady-state limit f(r, p,t) = f(r,p). This is so
because the distribution function is a function of phase-
space coordinates only through integrals of motion, such as
energy and angular momentum. The gravitational potential
obeys the Poisson equation,

V2P = 47Gp = 4nG / f(r.p)&p, (2)

with p the density profile of the halo. Note in this section
we consider isolated halos, so it is most convenient to
work with the full density field and physical coordinates
and momenta. In the next section, where we discuss the
perturbative approach to the time-dependent Vlasov equa-
tion in structure formation we switch to comoving
coordinates and momenta, and work with dimensionless
density perturbations.

The first halo model we consider is an axisymmetric halo
which can be nonspherical, with a flat rotation curve. It has
a simple analytic form for the distribution function [52,53]
that depends on energy and the z-component of the angular
momentum and in which the expectation value for the
cumulants can be calculated analytically as a function of
halo shape. It has been used to model the dark matter halo
of the Milky Way to infer deviations from spherical
symmetry from microlensing observations [54-56].
Apart from its analytic interest, this model gives us some
insight about the dependence of cumulants on deviations of
spherical symmetry.

The second halo model is the Navarro-Frenk-White
(NFW) profile [57], which is a reasonable fit to well-
relaxed spherically averaged CDM halos in cosmological
N-body simulations. Under the assumption of spherical
symmetry, the distribution function depends on phase-
space coordinates through energy and the square of the
angular momentum; in particular we consider the case of
constant anisotropy where the angular momentum depend-
ence is a power-law. While we lose the halo-shape
information, this approach has the advantage that one
can integrate over the halo mass function calibrated from

simulations to obtain realistic estimates for the expectation
values of cumulants in a given cosmology.

A. Evans halos

Let us start from the phase-space density f for an
axisymmetric halo, due to Evans [52], which is a function
of phase-space coordinates through the energy E = p?/2 +
® and angular momentum L, = p,, where @ is assumed to
be logarithmic (see Eq. (9) below) and use units where the
particle mass is unity. It reads,

f(r,p) = (AL? + B) exp(=2E/c?) + Cexp(—E/c?), (3)

where ¢ is a characteristic (constant) velocity dispersion
scale, and A, B, C are constants specified below in a
different parametrization. For the most part, we are inter-
ested in normalized cumulants, so the overall value of ¢
will drop out from the quantities we are interesting in. We
can rewrite Eq. (3) in a more convenient form for our
purposes as follows,

£=o| (w25 ) 18P )+ s )]

where p is the density profile, fgl ) denotes a Gaussian
probability distribution with variance ns” in each dimen-
sion. Note that each of the three momentum-dependent
terms in Eq. (4) integrates to unity over all phase-space.
The weights w; are functions of the location inside the halo
(characterized by cylindrical coordinates R, ¢, z) and add
up to unity, i.e., w, +w;, +w,. = 1. They are given by

__a __ b5
Wa_a—l—b—i—c’ Wb_a—l—b—&—c’
c
= 5
‘T a+b+tc (5)
with
2(1 — ¢*)R? 2R? 2¢% -1
a= ( 4q) , b:—4£, CE(qz )’ (6)
¢ ¢ ¢
and
E=R+R+2/, (7)

where R, is a core radius and ¢ is a shape parameter that
describes oblate (¢ < 1), spherical (¢ = 1) and prolate
(g > 1) halos. High-resolution simulations show that dark
matter halos are generically triaxial, but on average closer
to prolate, although backreaction from baryons makes them
more spherical overall and closer to oblate [58,59].
Imposing positivity of the density everywhere and of the

distribution function itself, leads to the constraint 1/ \/E <
g <1.08 [52].
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The density profile is given by p = A(a + b + ¢), with
A =06?/(22Gg?), and thus,

2+ (242 -1/ 4
& ’

b R*+ (2¢*+ )R

(8)

which satisfies the Poisson equation for the logarithmic
Newtonian potential

® = 6% In(£?) + const. 9)

From Egs. (8) and (9) we see that the Evans density profile
has an oblateness/prolateness that depends on location in
the halo, it is rather the equipotentials that are oblate/prolate
independent of location inside the halo.

Note that f given by Eq. (3) is evenin L_, one can always
add to this f a contribution odd in L, (which will
correspond to adding net rotation to the halo). This will
not change the density profile, but will induce odd
moments of f, which for Eq. (3) are all zero. To compute
the cumulants, it is convenient to calculate directly the
cumulant generating function (CGF)

C(r.l)=In [/ d3p€l"’f(",P)]

Lil; l l; lk
where in the second expression we introduced the Taylor
expansion that identifies the cumulant themselves, i.e.,
Ci..j(r) =V,...V,C|;_. Given the expression of f(r, p)
in terms of Gaussian distributions, Eq. (4), the CGF can be
obtained right away,

Cr.1) = ln{ |:Wa <1 +(IT¢)2> + wb} el wcelz/z}

+Inp, (11)

=Inp+Cil; +C; <, (10)

where g} is the unit vector in the ¢ direction and we have
scaled out the o dependence, i.e., lo — [; this corresponds
to calculating dimensionless cumulants normalized by the
corresponding power of the constant ¢ in this model. Since
the CGF is quadratic in its argument, only even cumulants
are nontrivial in this model. For example the normalized
velocity dispersion tensor &;; = 6;;/0” = C;; gives,

6jj = <% w, + %Wh + Wc)5§ + Wa$if27_/‘a (12)
where 55 is the unit matrix. This in turn yields a trace of
6;i = 5w,/2 + 3wy,/2 + 3w,.. As mentioned earlier, we are
mostly interested here in the expectation values of the
cumulants, which should be dominated by halo contribu-
tions where shell crossing is most severe, and where
perturbation theory is least reliable. By symmetry only

even cumulants have nonzero expectation values, and they
are spatially homogeneous. In halo models they correspond
to averaging over the halo. We introduce the expectation
values of even cumulants &,,,

(Ciiy.iviy)
2n+1

Eon (13)

Indeed, this definition gives for the expectation value of
Eq. (10) the usual definition of cumulants from the Taylor
series of the CGF

©_ pn
= (Inp) +Z 52,,, (14)

n:1

where #? =1 -1. The lowest cumulant expectation value
corresponds to the average velocity dispersion,

3
36, ==(w >+§

t\.)IUI

(Wp) +3(we), (15)

where () denotes averaging the weights over the halo. The
case of the fourth cumulant is instructive in two respects. It
reads,

/3515 47,015
554<4wa+4wb+15wc>—{4<wa>+4<wb>

25
+ 15(W2) + = (wowp,) + 15(wpw,) + 15<wcwa>}

2
(16)

The first thing to note is that terms being subtracted in
square brackets correspond to the usual subtraction in going
from the fourth moment (first three terms in Eq. (16) to the
fourth cumulant. But since momentum is a vector field, this
does not correspond to the usual kurtosis of a scalar, instead
we have C;;; = M;j; — 2M;;M;; — M;;M;;, where the
M. ;j=V,..Vy M|_, are the moments with M =
exp(C) the moment generating function. The second obser-
vation is that the subtraction requires to average over the
halo quadratic combinations of the weights w;. Let us
briefly discuss this average. We can perform an average of
the weights over a sphere of radius r as,

=3 [

which can be done analytically. We also need, for the
cumulants, averages of nonlinear combinations of weights.
These however do not appear to have analytic expressions,
except in the case of an infinite halo, which is what we shall
consider from now on. In this case, it is easy to check from
simple scaling that this corresponds to setting w;, = 0, i.e.,
the core radius R, (fixed as r — oo0) drops out, and the

J(R.2)RAR,  (17)
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halo-shape parameter g remains the only quantity in the
problem. Since the weights add up to unity, for infinite halos
everything can be written in terms of w,, which simplifies
the expressions. Equations (15) and (16) become then
1 1 7

Er=l-zlw).  Es=—glw) =52 (19)
whereas the full expressions for the sixth and eighth
cumulants, presented in Appendix A, become

15 27

5= wa) + 2 w3 =21 (w2) (19)
Sy = = ) = 8 () + (w2} =1 ). (20)

The halo averages (w!) are functions of the halo-shape
parameter g, resulting in reasonably simple expressions for
E,,(q) as given in Appendix A. We can introduce the
standard normalized cumulant expectation values (n > 1)

(21)

which correspond to the (dimensionless) kurtosis (n = 2),
etc, and characterize how non-Gaussian the distribution
function is. Figure 1 shows these as a function of ¢ for the
whole range allowed by positivity constraints. We see that
from the point of view of the kurtosis, non-Gaussianity is
always weak (|/&,| < 1) independent of halo shape but the
same is not true for higher cumulants in the case of oblate
halos. Spherical halos are Gaussian as the distribution
function becomes Maxwellian in this case (w, = 0). We
discuss the implication of these results for the stability of the
linear perturbative solutions in Sec. VIIID.

102

FIG. 1. Normalized cumulants &,, &, & (bottom to top) for
Evans infinite halos as a function of halo-shape parameter g.
Dashed lines denote negative values. When halos are spherical
(g = 1), the distribution function becomes Gaussian and the
density profile isothermal.

B. NFW halos

We now assume halos with a spherical density profile,
the distribution function therefore depends on energy and
the square the angular momentum, f = f(E,L?), or
f(r,p)=f(r,p,p-r). We are particularly interested in
the simple case of constant anisotropy, where the distri-
bution function takes a simple form

F(E.L?) = L™ f(E). (22)

where —oo < # <1 is a constant that characterizes devia-
tions from isotropy (# = 0). In particular, f measures the
anisotropy of the velocity dispersion tensor,

ﬁ:1_699+5¢¢:1_%’ (23)
20,, Oyr

where the last equality uses spherical symmetry. Models
with > 0 are said to be radially biased, while those with
p < 0 are tangentially biased [60]. If all orbits are circular,
then 0, =0 and ff = —o0. If all orbits are radial 6,y =
6¢¢:Oandﬁ:1

Our results in this section hold for general f = const and
any spherical density profile. However, when computing the
expectation value of cumulants, we will take for simplicity
the case of f# =0, 1/2 (as this brackets the radial depend-
ence of f in cosmological simulations [61-63]) and an
NFW density profile. More sophisticated models of the
distribution function with radial dependent f have been
developed (e.g., [62,64,65]); in our case, however, we are
interested in expectation values of cumulants which are
dominated by the outer parts of the halo where f ~ 1/2. The
NFW density profile for a halo with mass m is given by [57],

_Afle) m
T 4nr x(1+x)?

vir

p(r) = mu(r) (24)

where x=cr/ry, and f~'(c)=In(1+4c)—c/(1+¢)
guarantees that [ @ru(r) = 1, where the integral is over
the volume enclosed by virial radius of the halo r,;. The
parameter ¢ denotes the concentration of the halo, which
determines the scale radius a, = ry;,/c where the slope of
the density profile is —2. For an infinite halo, the corre-
sponding potential that obeys the Poisson equation is,

_Gm cf(c)M. (25)

I'vir X

®(r) =

The steady Vlasov equation, Eq. (1), for a distribution
function of the form given by Eq. (22) can be written in the
simple form:

of 2p _d‘D of
p2|:5+7f:|—5|:m+2ﬁf:|. (26)
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&4, C6, &8

100

L = R B T B

100H

&4, 86, S8

10" -

FIG.2. Normalized cumulants &4, &, E (bottom to top) for NFW halos as a function of halo concentration parameter c. Dashed lines
denote negative values. For each case we show results for two values of the anisotropy parameter, = 0 (lower value) and = 1/2
(higher value). The left panel corresponds to integrating out to the virial radius, whereas the right panel corresponds to when we

associate with the halo a region of 1.5 times the virial radius.

Multiplying by p>"~) and integrating over all momenta,
we obtain after some algebra a simple recursion relation for
the even moments m,, we are interested in,

2p dod
n+1 - 1> EprzﬂmZ(n—l)v (27)

S = =)

where, in correspondence to Eq. (13), we defined

Milil i,i
= UL 28
myy, 2n+1 ( )

for n > 1, with my = 1. Equation (27) can be integrated to
give

my, =

2n—1 2 o dd

where we imposed the boundary condition that m,, — 0 at
infinity. As it turns out, it may be more realistic to do this
rather than truncating the halo at the virial radius, as
simulations show that nontruncated halo predictions for
the velocity dispersion are more accurate than truncated
ones [66,67].

Using Eq. (29) we can construct all moments of the
distribution function starting from any density-potential
pair and any value of . Integrating over the halo, one can
then obtain their expectation values and thus the expect-
ation values of the cumulants &,,. For n = 1, this gives us
the velocity dispersion, which we shall use in paper II to
compute the dispersion scale from halos by integrating this
result over the halo mass function (see Sec. VB in [11]). In
this paper, we are mostly interested in the (ensemble
averaged) non-Gaussianity of f, which plays an important
role in determining the stability of the linear solutions we
shall discuss below. For this reason, we concentrate on the
normalized cumulants.

Figure 2 shows the results of such calculation for the
normalized cumulants &,, as a function of the halo
concentration ¢ for a broad range of values expected from
low to high-mass halos in cosmological simulations
(c = 3-50). The left panel shows &,, for the case where
the average is done up to the virial radius, with the upper
(lower) limit for each cumulant corresponding to f = 1/2
(# = 0). We see that, similarly to Evans halos, the kurtosis
is weak (/€| < 1) but that higher normalized cumulants
can be larger than unity in absolute value. Indeed, Eq. (22)
suggests and Appendix A shows explicitly that the shape of
the distribution function significantly differs from a
Maxwellian and thus in general there is no parameter that
controls non-Gaussianity, unlike the case of Evans halos
where the shape parameter ¢ plays that role.

On the other hand, it is worth exploring to what extent
this result is robust to reasonable changes. One obvious
issue is that velocity dispersion and higher cumulants do
not sharply become zero outside halos, therefore there are
more regions that contribute to cumulants than those
captured by our calculation so far. This motivates extending
the region of integration beyond the virial radius when
calculating expectation values. In addition, it has been long
known from simulations that at least for the second
cumulant, predictions from NFW halos remain reasonable
far outside the virial radius [66]. Thus, the right panel in
Fig. 2 shows the normalized cumulants in the case we
associate with a given halo a region of 1.5 times the virial
radius. Compared to the left panel, we see a suppression of
the &,,, which remain below unity in absolute value for all
concentrations. This suppression is due to the increase in
contributions to each cumulant (roughly proportional to the
volume), which means that normalized cumulants will get
suppressed increasingly with n due to normalization by
increasing powers of £,. Note that we still normalize the
volume average by the halo volume (up to the virial radius)
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as we are associating to the halo a larger region where
dispersion and higher cumulants are nonzero rather simply
redefining the halo size. We shall see in Sec. VIII D that in
the space of the &,,’s such modifications for NFW halos
give rise to a sequence that mimics varying concentration as
normalized cumulants are driven to zero (see Fig. 7 below).

IV. PERTURBATION THEORY WITH HIGHER
CUMULANTS

We now proceed with a systematic development of the
perturbative approach to the Vlasov equation. In contrast to
the previous section we switch to an expanding Friedmann-
Lemaitre-Robertson-Walker background and comoving
coordinates from now on. For scales smaller than the
Hubble radius, relevant for nonlinear large-scale structure
formation, the nonrelativistic limit suffices, which reads

_9f
o

pi of
T o, a(V;®)

of
op;’

1

0 (30)

with conformal time z, scale-factor a, comoving momen-
tum p (per unit particle mass), comoving coordinates x, and
gravitational potential fluctuation @ obeying the Poisson
equation

V2 = %Hmma, (31)

where H is the conformal Hubble rate, €, the time-
dependent matter density parameter, and & the density
contrast given by the zeroth moment of the distribution
function,

1+5:/d3pf(r,x,p). (32)

Taking the zeroth and first moment of the Vlasov equation
yields the coupled continuity and Euler equations

0.6+ Vi[(1 4 8)v;] = 0.
0,1},- + H/U,' + Ujvj'vi + Vl(l) = —V/c)',j — U,"V'ln(l + 5),

JVi
(33)
for the density contrast and peculiar velocity field
vi=ips [ @r ) (34)
"1 +6 a’ T

The widely used framework of standard perturbation theory
(SPT) is based on a perturbative solution of these equations
obtained when neglecting the right-hand side of the Euler
equation, that contains the velocity dispersion tensor

1

oij:1+5 d3p%%f(r,x,p)—vivj. (35)
However, even for initially (almost) vanishing velocity
dispersion, as appropriate for cold dark matter, it is well
known that velocity dispersion is generated in the process
of nonlinear structure formation via orbit crossing [10].

In this work, we develop the extension of SPT that
includes velocity dispersion and higher cumulants of the
distribution function. The equation of motion for o;; can be
obtained by taking the second moment of the Vlasov
equation, and reads

6,6,-1- + ZHO-U + Ukvkﬁij + ijvk/l)[ + O-ikvkvj
= —chijk - C[jkvk ln(l + 5) (36)

It depends on the third cumulant C;j;, that in turn depends
on the fourth cumulant, and so on, leading to an infinite set
of coupled equations, reminiscent of the Bogoliubov—
Born—Green—Kirkwood-Yvon (BBGKY) hierarchy in
kinetic theory. A solution can only be obtained by a
suitable truncation, and we explore the impact of higher
cumulants in our approach.

The density, velocity, dispersion and all higher cumu-
lants can be obtained from the generating function for
cumulants of the distribution function,

oClexl) — /d3pe"1’/“f(f,x,17)- (37)

This is the analog of Eq. (10) for the more appropriate
choice of coordinates to discuss time-dependent structure
formation. As discussed earlier in the halo case, the
cumulants of the distribution function are obtained by
taking derivatives with respect to the auxiliary vector [,

Cijk-~-(7:7 x) = vl,vljvzk -+ Cli—o» (38)
in particular

C|l:0 = ln(l + 5), C,’ = v;, Clj = Gij' (39)
The Vlasov equation yields an equation for the generating

function given by [10]

90,C+H(I-V,)C + (VC) - (V,C) + (V- V,)C = -1 - Vb,
(40)

from which the hierarchy of equations for the cumulants
can be obtained by taking derivatives with respect to / and
setting [ = 0, yielding the continuity and Euler equations
Eq. (33) as well as Eq. (36) for the zeroth, first and second
derivative, respectively.

The pressureless perfect fluid approximation, on which
SPT is based, corresponds to an ansatz for C containing
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only constant and linear terms in / in the Taylor expansion
of the cumulant generating function, see Eq. (10),

Cspr =In(1 +6) +1-v. (41)

Remarkably, this ansatz is preserved under time-evolution
by Eq. (40), which does not generate higher powers of /, i.e.,
velocity dispersion and all higher cumulants remain exactly
zero at all times for which the solution exists. However, a
careful analysis of the Vlasov equation solution shows that
this ansatz breaks down once orbit crossing occurs, and this
solution formally ceases to exist due to a singularity in the
density contrast. In reality, this singularity is regulated by an
arbitrarily small initial velocity dispersion, which then from
Eq. (40) generates all cumulants [10]. After orbit crossing,
the superposition of orbits at any point leads to the
generation of a sizable velocity dispersion, as well as higher
cumulants which in turn generates vorticity, the curl of the
peculiar velocity field. This is one key observable that gives
us a unique window into orbit crossing [68].

In the next section we focus on the inclusion of velocity
dispersion, and then extend the formalism to include also
higher cumulants in Secs. VI and VIIIL

V. SECOND CUMULANT

A. Background value and perturbations of the velocity
dispersion tensor

It is convenient to work with the normalized quantities

u; = Vi
[ —H )
o O
NG
Cijk
ﬂl’jk = _(’]—Zf):" s (42)

in terms of which the equations for the zeroth, first, and
second cumulants read

5l =0 + V,-[5ui}, (43)
3Q, =
I/tg + <2f2 - 1>”i = qu) + qujul
+ vjeij + el-jVj ln(l + 5), (44)
30,
6‘;] +2 EF— 1 €ij = Mlvlé‘ij +€jlvlu,~ +€ilvlblj

+V17tlﬂ+ﬂ,ﬂvlln(l +5), (45)

where ' =d/dnp, n=InD, f =dInD/dIna, D is the

usual linear growth factor and ® = ®/(Hf)? the rescaled

gravitational potential satisfying V2® = %% .

Mass conservation as well as statistical isotropy guar-
antee that the average values of the density contrast and
peculiar velocity fields are exactly zero. However, in
general, higher cumulants are expected to possess a non-
zero average value, that can depend only on time (not
space) due to statistical homogeneity, in analogy to, e.g.,
the square of the density contrast or the density of a
population of biased tracers. Furthermore, the expectation
value has to be compatible with isotropy, corresponding to
rotationally invariant objects. The first example occurs at
the level of the second cumulant,

<€ij(’7’x>> = 5(’7)557 (46)

with time-dependent, homogeneous expectation value €(7)
proportional to the 3 x 3 unit matrix 55 which corre-
sponds to the background value of the velocity dispersion.
The equation of motion for ¢(5) can be obtained by taking
the trace as well as the statistical ensemble average of
Eq. (45), giving

a+2@9ﬂ—Qe=Qw% (47)

using (7;;) = O due to isotropy (see also [12-14] for the
case without third cumulant). Therefore, velocity dispersion
is sourced by the cross power spectrum of peculiar velocity
and the perturbations of ¢;;, as well as a cross spectrum
between the third cumulant and the logarithm of the
density field perturbations. It is important to note that
what enters into Q are these various spectra integrated over
all momenta (see Eq. (63) below). This means that there is
no sense in which e can be taken as a small quantity in
general, on equal footing with density or velocity fluctua-
tions. This should also be clear from the halo discussion in
the previous section.

Our strategy for solving this system perturbatively is
then as follows: we first split all quantities in a background
value and perturbations, in particular

€;i(n,x) = €(’I)5§ + 8e;;(n. x), (49)

for the velocity dispersion tensor. Then we define a zeroth
order (linear) solution to these equations by keeping all
terms linear in perturbations, while formally treating the
background quantities [viz. ¢(57)] as quantities similar to the
Hubble rate or Q,,(n7). That is, we are explicitly agnostic
about the size of velocity dispersion effects in our treatment.
This allows us, as we shall see, to obtain the expected
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decoupling of UV modes due to halo formation at small
scales discussed in the introduction.

Expanding around these solutions and including non-
linear terms in the perturbation variables, one obtains a
perturbative solution to the coupled equations of motion for
the fluctuations of the cumulants. Finally, these solutions
may be used to evaluate the source term [viz. Q(7)]. A self-
consistent solution within perturbation theory then requires
that e(#) is chosen such that it satisfies Eq. (47). We come
back to this final step in Sec. IX. Alternatively, e(r) may
also be given as an external input, for example from
simulation measurements or theoretical input, such as
the halo model discussed in Sec. III (see also paper IT [11]).

B. SVT decomposition and equations of motion

We now proceed to derive equations for de;; as well as &
and u;, while treating () as given. We start with the
velocity divergence 6 = V,u;. Taking the divergence of
Eq. (44), and inserting the decomposition (49) in the
second line yields

30, 3Q,
o + <2f2_ 1)9 5?6 = vi(u]'v]‘ui) + g0 (50)

with an extra term compared to SPT given by

qp = e(n)V*A + V,V;8¢;; + V,(6¢;;V,;A),  (51)
where we introduced a short-hand notation for the log-
density field,

=In(1 +6). (52)

For given (1), the first two terms on the right-hand side of
Eq. (51) can be viewed as contributing to the zeroth order
(“linear”) solution in presence of velocity dispersion, while
the last term yields an additional nonlinear term. Further
nonlinearities are generated when Taylor expanding A, and
we systematically take those terms into account by a
method discussed below.

Due to the presence of velocity dispersion terms in
Eq. (44), also a nonzero rotational component of the
peculiar velocity field, i.e., vorticity

wi = e Vi = (V xu);, (53)

is generated [10], unlike the case of SPT where the Euler
version of Eq. (44) preserves vanishing vorticity. Indeed,
taking the curl of Eq. (44) yields an evolution equation for
the vorticity,

3Q
wﬁ-—l—<§f—'2"—1) = (Vx

with

(;Vju)); + (qu)i (54)

(qw); = €k V;(Videy + deyV,A), (55)

where ¢, is the Levi-Civita symbol. We can formally write
the decomposition of the peculiar velocity into scalar
(divergence) and vector (vorticity) contributions as
(denoted as usual by S and V)

\Y/ eV
ﬁg - jvg ! Wi,

up=ui +ul = (56)
where V,w; = 0. Note that operationally the inverse
Laplacian is easily written in Fourier space as —1/k” acting
on fields at wave number k. Analogously, we decompose
the perturbations of the velocity dispersion tensor into
scalar, vector and tensor modes (denoted as S, V and T),

be;; = Bej; + bey; + b€, (57)
with
5eS. = oKse + VVZ g (58)
el = ’”‘vvzv vi— gflkvv;vi v (59)
dej; = t;; = P} €, (60)

with V,-I/,» - 0, tii - O, vltu - Vjtu - 0, and the tensor
projection operator

Pt];ls: <
1 V,V, V.V,
AR
1 VAV vV,
e %) o

with 3 x 3 unit matrix 5{5 The perturbations of the velocity
dispersion tensor are therefore fully characterized by

5€,g,l/i,tl‘j. (62)

They describe two scalar modes encoded by de¢ and
g (2 d.o.f.), a divergence-free vector v; (2 d.o.f.), and a
traceless-transverse tensor 7;; (2 d.o.f.), comprising all six
degrees of freedom of the symmetric velocity dispersion
tensor. We choose the notation de to discriminate the scalar
perturbation mode of the velocity dispersion tensor that is
proportional to the unit matrix §;; from the homogeneous
background value ¢(#7). Since the expectation value of ¢;; is
proportional to the unit matrix, the other contributions, and
in particular g, are guaranteed to vanish in the ensemble
average.
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For the remainder of this section, we neglect r;;; and
higher cumulants, coming back to them in Secs. VI and
VIII. Inserting the decomposition of Eq. (57) into the
source term Eq. (48) for ¢(n) then yields (see also [13])

00 = [ PHPa(ten) + 2P, (ko). (63)

where j=g—de, and P, (k,n) is the cross power
spectrum of vorticity and the vector perturbation, summed
over i = 1, 2, 3. To obtain equations of motion for g and Je
we subtract Eq. (47) (multiplied by the unit matrix) from
Eq. (45) and contract it with 6K or V,;V;/V?, respectively.
Taking suitable linear combmatlons of the resulting two
equations yields

3Q,
o' +2({=——1
251

3Q,
g-|—2<2f2 —1)g—2€9=qg, (64)
where
1V, V.
qde = —Mlvl(35€ + g) + O¢; lvlu, 2# (u,V,éeU)
V \Z
(56 /vluj) Q(n),

vz
q, = —Eu,V,(Bée +g) — de;;V,u; +§v—2](ulv15€ij>

V.V,

+3#(5€,~1V,uj). (65)
The term 2¢6 in the equation for g implies that this mode is
generated in presence of a background dispersion e(n),
even when neglecting nonlinear terms in perturbations, as
opposed to e that is a decaying mode in linear theory
(when g, = 0 and assuming Q,,/f> > 2/3). In turn, the g
mode leads to a nonzero source term (1) through
Eq. (63), indicating that a self-consistent solution can exist
even within the linear approximation. Beyond the linear
level, the terms in g, and g, give further contributions, as
well as the vorticity and vector modes. Note that the source
term Q(n) contributes to g,. It arises from subtracting the
background to obtain an equation for the perturbations
de;j = €;j — e(n)é{j. Therefore, this term ensures that e
maintains a vanishing average value (enforcing (g.) = 0),
as appropriate for a perturbation variable. Technically, it
removes so-called tadpole contributions, see Appendix A in
paper 1I [11] for more details on this.

To obtain an equation for the vector mode v;, we use

YA

Vi = Eijk g o€, (66)

and contract Eq. (45) with ¢;;V;V,/V? (after renaming
ij — kl in Eq. (45)). Contracting instead with Eq. (61) in

addition yields an equation for the tensor mode ¢;,

3Q,, Vv,
v;+2 2f2 F— 1y —ew; = g —2a— vz ke
3Q,,
t +2<2f2_1>tij:Pl1},qukl’ (67)

where nonlinear terms in perturbations are contained in
qr = unvnéekl + 5€lnvnuk + 5€knvnul' (68)

Note that the term ew; involving the vorticity field leads to a
mixing of the vector and vorticity modes when solving the
equations of motion.

In total, up to the second cumulant, we therefore obtain
the following perturbation modes:

60d¢,g scalar 4 x 1d.of.,
w; v vector 2 x 2 d.o.f.,
tij tensor 1 x2 d.o.f.

For practical reasons, as discussed in Sec. V C below, we
also include an extra scalar representing the log-density
field, but of course this is not an independent degree of
freedom. In Fourier space the equations of motion can be
written in a way that resembles SPT. In particular, inserting
the velocity decomposition in Eq. (56) into the continuity
equation Eq. (43) yields

(pxq)-w
&—&:/{%ﬁ@+——y—l%,(@)
rq

where a,, = (p +q) - p/ p? is the standard expression for
the only nonlinearity in the continuity equation in SPT. The
second term on the right-hand side of Eq. (69) describes the
backreaction of vorticity on the density contrast, i.e., at the
nonlinear level the scalar ¢ is coupled to the vector mode of
the velocity. In Eq. (69) subscripts of the perturbation
variables denote the corresponding Fourier wave vector,
and we use the shorthand notation

/ _ / & pd®q5 (k- p - q). (70)

The equation of motion Eq. (50) for the velocity
divergence can be rewritten analogously, using Eq. (56)
as well as the decomposition Eq. (57) of the velocity
dispersion tensor J¢;;,
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30, 30,
6;( + (57— 1>9k —575]{ + k2(5€k +gk + €Ak)

2p-q\ (pxq)-w
:/ {ﬂpq9p94+<l+ 2 ) 2 peq
rq q p

(pxq)-w,(pxq) w,
p? 7

q-p
—(p+4) pA,0e,— (P +4q) ~q7A,,gq

2p-q
+(1+ p )Ap(pxq)‘Vq_Appipjtqsij}’ (71)

where §,, = (p +¢)*p - ¢/(2p*¢?*) is the standard expres-
sion for the only nonlinearity in the Euler equation in SPT.
Note that already at the linear level, the terms proportional
to k* in the first line describe a “Jeans-like” suppression
arising from a nonzero velocity dispersion at the perturba-
tion (oe; + gr) as well as background (eA;) level. In
particular, the last term is formally analogous to a pressure
or sound speed contribution, which can be seen if one would
expand A; = [In(1 + §)], linearly. Nevertheless, the inter-
pretation in terms of sound speed would be conceptually
misleading, since we do not consider any microscopic
interactions apart from gravity. The Jeans suppression in
a fluid arises because pressure due to collisions resists
gravitational collapse at small scales; in our case we have
instead a collisionless system. The suppression is the
damping of small-scale fluctuations because particles can
cross each other without interacting (i.e., “shell-cross”), thus
the physical situation is in sharp contrast with that of a fluid
despite the net effect being similar.

Another noteworthy feature of this damping is that it
depends on the perturbation modes of the velocity
dispersion tensor, and cannot be associated with the
isotropic part of the dispersion tensor alone as the aniso-
tropic part g, contributes as well at the same order in
perturbation theory. That background and perturbation
modes of the dispersion tensor contribute to the same order
arises because the stress tensor contribution (whose diver-
gence enters in momentum conservation) is given by
(14 6)e;;. An additional point of contact with fluids that
is worth mentioning here is that the term from the
anisotropic part g, looks superficially similar to viscosity
in the Navier-Stokes equation, given that in linear theory
g~ €0 (see Eq. (64) and in particular Sec. VII for a more
detailed discussion). Again, this identification is misleading
as there is no dissipation in the Vlasov equation. This is also
made explicit by the form of the energy conservation
equation, which contains no viscosity type contributions
(see Sec. VII).

Given all these subtleties it is worth asking whether
damping at small scales is always guaranteed. This is
important because this damping will describe precisely
what we termed earlier as the “decoupling” of high-k

modes induced by small-scale orbit crossing, and has a
direct impact on the convergence of VPT when considering
loop corrections (see paper I [11]). In fact, the details of the
high-k linear response depend on the expectation value of
the full distribution function and as we shall see when going
beyond the second cumulant, it is in principle possible to
have instabilities, i.e., small-scale enhancement rather than
suppression, which stands in sharp contrast with the
response in normal fluids that are always stable at scales
below the Jeans length. See Sec. VIII D for the discussion
of stability conditions along these lines.

Finally, we note that the velocity divergence evolution
in Eq. (71) is affected by additional nonlinear terms as
compared to the SPT contribution f3,,,. In particular, the
second and third line describe vorticity backreaction on
the divergence field, while the fourth and fifth line contain
the nonlinear terms involving the scalar as well as vector
and tensor perturbations of de;;, respectively. This makes
clear that, as expected, at the nonlinear level the scalar,
vector and tensor modes are coupled to each other.

The equations of motion for the remaining fields
oe,g,w;,v; and t;; can be written in a similar way in
Fourier space. Since they become rather lengthy they are
presented in Appendix B.

C. Treatment of A =1n(1+9)

The equation of motion for the velocity divergence and
the vorticity involves the log-density field A = In(1 + §).
In a perturbative solution, expanding the logarithm would
generate an infinite series of nonlinear terms, that are
inconvenient to treat. Another strategy could be to use A
instead of § as a perturbation variable [69]. However, in that
case one would have to express the density contrast as
6 = e* — 1 within the Poisson term on the left-hand side of
Eq. (71), which again entails an infinite tower of nonlinear
terms when solving perturbatively in powers of A. In
addition, this choice would be inconvenient for computing
the matter density power spectrum Pgs, although dealing
with A as an observable rather than ¢ has some interesting
statistical advantages (e.g., see [70-73]).

Therefore, we follow a different approach here. We keep
0 as independent variable, such that the Poisson term in
Eq. (71) can be easily evaluated, and allowing us to compute
Pss straightforwardly. In addition, we complement the set of
variables by A, and solve the equation of motion for A along
with all other modes. It can be obtained by dividing Eq. (43)
by 1+ 6, and is similar in form to Eq. (69), except for the
coefficient of the first nonlinear term,

q-p (pxq)-w

In a perturbative solution this generates all contributions to
A evaluated at a given order in perturbation theory. The
latter can in turn be used to compute the contributions on

063539-12



PERTURBATION THEORY WITH DISPERSION AND HIGHER ...

PHYS. REV. D 107, 063539 (2023)

the right-hand side of Eq. (71) that involve A. In practice,
this means we have to solve for five instead of four scalar
modes, being 8, 0, d¢, g, A, each of them with an equation
of motion that involves at most quadratic terms in the full
set of perturbation variables.

In contrast to 5, A possesses a nonzero average value,

A= (A). (73)

Its equation can be derived by taking the ensemble average
of Eq. (43) divided by 1 + 6,

A= 0u(n). Oaln)=— / PPos (k). (74)

Since only spatial derivatives of A enter in Eq. (71) [this can
also be seen from Eq. (44)], the homogeneous part A drops
out in the Euler equation, and is not needed. In practice, this
means we can use Eq. (72) and ignore the difference
between 6A = A — A and A as long as we use the log-
density field only as an input for solving the equations of
motion of the other perturbation variables. For a more
detailed argument, we refer to Appendix A in paper I [11].

D. Equations of motion in matrix form

It is convenient to write the equations of motion in the
familiar matrix form, by defining a vector of perturbation
variables

w=(6,0,g.0e,A,w;,v;.1;;). (75)

The equations of motion can then be brought into the
standard form [74]

Wia (1) + Qup(komyri () = / Yabe(P- @)W p s (MW 4. (1),

(76)

where the subscript labels the wave vector as well as the
component of y. Here the index a is understood to run over
all types of perturbations as well as their components, in
case of vector and tensor modes. Summation over repeated
indices is implied. Nonlinear terms are described by the
coupling functions y,.(p, q), that we refer to as vertices.

The linear evolution in presence of a background
dispersion €(n) is governed by the scale- and time-dependent
matrix Q,,(k, 7). It has a block-diagonal form when group-
ing the perturbation vector y = (w5, ", w) into subsets of
scalar, vector and tensor modes, respectively,

QS
Q= Qv , (77)
QT

with vanishing off-diagonal entries implied by rotational
symmetry. Using the approximation Q,,/f> — 1 (see paper
II [11] for the general form), the scalar part is given by

-1
—3/2 1/2 K K k%
QS = ¢ 1 , (78)
1
-1

for y5 = (8,0, g, 5¢, A). The upper left two-by-two subma-
trix corresponds to the familiar SPT case in the limit of
vanishing background dispersion €(#). The second row
corresponds to the Euler equation. Its third and fourth
column capture the impact of scalar perturbation modes g
and de of the velocity dispersion at linear level. Their
equation of motion is contained in the third and fourth
row. The fifth column contains the suppression term related
to background dispersion as discussed above. The linear part
of the equations for & (first row) and A (last row) are
identical, with a difference arising only at nonlinear level due
to differences in their vertices. For the vector and tensor
parts, one obtains

mz<”2H) or =1, (79)

- 1

where the 2 x 2 vector matrix describes a mixing of vorticity
w; and the vector mode v; of the velocity dispersion tensor.
They are understood to apply separately to each i = x, y, z
component of the doublet (w;,v;), and for each ij compo-
nent of #;;, respectively. Therefore, components with differ-
ent spatial indices evolve separately from each other at the
linear level.

The nonlinear vertices y,,. couple scalar, vector and
tensor modes among themselves but also to each other,
respecting rotational symmetry at the nonlinear level. From
Eq. (69) one obtains for example

1 1(pxq)
) =3 ) W ) == 77[1 80
Ys0s(P>q) zapq Vs ,5(1’ q) 2 2 (80)

with the first one being the usual SPT expression, and the
second a vorticity backreaction contribution to the density
contrast. Another example derived from the equation of
motion for vorticity, Eq. (B1) is

lp-q
YwiA(se) = (pxq); YwiAg = —57@ xq);. (81)

N[ =

These vertices capture the generation of vorticity from two
scalar perturbations, related to the log-density as well as
velocity dispersion perturbations. For a discussion of the
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generation of vorticity within this framework we refer to
paper II [11].

All other nonzero ;. can be read off from the Fourier
space equations of motion given above and in Appendix B
in a similar way. We are free to assume that they are
symmetrized,

Yabe (P’ q) = }/acb(qv p)v (82)

leading to factors of 1/2 for b # c. Note that this property
holds for all perturbation types, including vorticity, when
interchanging both the wave number as well as the last two
indices. The full set of vertices is collected in Appendix C.
The structure of the equation of motion Eq. (76) suggests
that a perturbative solution analogous to SPT is possible.
Such a solution can indeed be obtained following a
strategy that is a generalization of the well-known recursion
relations for nonlinear kernels known from SPT [1,75].
However, apart from the fact that a separate kernel for each
perturbation mode is required, and a large number of
vertices contributes, the recursion relations take the form
of differential instead of algebraic equations due to the
n-dependence of Q,,(k,n). An algorithm to deal with a
time- and scale-dependent Q,,(k,n) matrix has been
developed in [76,77], and we present nonlinear solutions
using an extension of this algorithm in paper II [11]. We
emphasize again that our hybrid treatment of including both
0 and A as variables allows us to capture all nonlinear
terms by contributions that are quadratic in . This is an
important requirement for an efficient algorithm to deter-
mine solutions at higher order in perturbation theory.

VI. HIGHER CUMULANTS

In this section we discuss how to incorporate cumulants
of the distribution function above the velocity dispersion
tensor. While these are generically suppressed in a hydro-
dynamic context, where the distribution function is close to
local thermal equilibrium, nonlinear processes related to
shell-crossing generate a highly nontrivial distribution
function, at least at small scales. One example of this
situation was highlighted by halo models in Sec. III (see
also Appendix A). Nevertheless, within the domain of
validity of perturbative methods, i.e., on sufficiently large
scales, the total impact of higher cumulants on observables
is expected to become more and more suppressed.
Therefore, it is important to quantify the impact of higher
cumulants on the framework presented so far.

A. Split of cumulant generating function into
background values and perturbation modes

For the discussion of higher cumulants it is convenient to
use the generating functional, Eq. (37). Here we define a
rescaled version,

~ L
C(n,x,L)=C(z,x,1), 1= ) (83)
where 7 = In(D). Setting
éi, ..... i = VL,1 "'vLiné’L:Ov (84)

we directly obtain the rescaled peculiar velocity, velocity
dispersion and higher cumulants,

ui=C;, eij:Cij’ ”ijk:Cijk’ Aijkl:Cijkl’ (85)

in agreement with Eq. (42). In addition, we introduced also
the fourth cumulant A; ;. Assuming statistical isotropy the
third cumulant has vanishing ensemble average, while the
fourth cumulant can have an expectation value w(7),

(mijx) =0,

on
(Njja) = (8565 + 2 eye) g ), (86)

with the normalization chosen such that (A; ;) = @(17)8F,
where 55 is the unit matrix. The equation for the expect-
ation value w(n) as well as the perturbations including
higher cumulants can be derived conveniently from the
equation of motion Eq. (40) of the generating function.

Taking the time-dependent rescaling into account, it reads

0,C + G% -~ 1) (L-V,)C

—(VC)-(V,0)=(V-V,)C=L-Vd. (87)
It is convenient to consider the ensemble average of the
generating function itself. Assuming statistical homo-

geneity and isotropy it is independent of x and can depend
only on L? = L?,

En.L?) = (C(n.x. L)). (88)

Taking the ensemble average of Eq. (87) and averaging
over the direction of L yields its equation of motion

3Q, 0 a0 . _ [dQ o5 o A
e (71 g 0= [ e w0,
(89)

The equations for the expectation values of the individual
cumulants can be obtained by Taylor expanding in L, using

~ 1 1
C=A+ Lil/t,‘ + ELlLJeU + ELijLk”ijk

1
+og LiliLiLifija + -+ (90)
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with the ellipsis standing for fifth and higher cumulants.
Taking the ensemble average and using the definitions of
the expectations values in Egs. (46), (73), and (86) of the
zeroth, second and fourth cumulant, respectively, yields

1 1 30(y)

- L2
L™+ 5475

€= Aln)+5

LY+ 0(L%).  (91)

In Sec. VIII we discuss an extension of this expansion to
higher cumulant orders, given by a Taylor expansion in
even powers of L,

L2n
= — 2
€=2 &l (92)
where'
50 - A,
82 =€,
3
54 = -, (93)
5
and &, ... denote background values of the sixth and

higher cumulants. For the moment we restrict ourselves to
the first three terms. Inserting Eq. (91) into Eq. (89) yields

0y A = 0p = Q¢lpo,

3Q,
[a +2<2 o 1)]e: 0 =20,

3Q,, 5
{6 +4<2?— 1)}60: 0., 524§Q£|L4v (94)

where the right-hand side denotes the source term Qg
evaluated at a given order in powers of L2. The latter can be
obtained by inserting Eq. (90) into Eq. (87), evaluating the
V, derivative, and performing the angular average using

aQ, 1
——LLj == L*5K,
/ 4r T3l

dQ
/ —LLLLL =

1
s <= LA(688% 4+ 2cyc).  (95)

15

After this integration Q¢ depends only on even powers of
L. For A and e we recover from Eq. (94) the equations of
motion Eqgs. (48) and (74) derived previously. Going to
order L* we find for the source term of the expectation
value w of the fourth cumulant,

'Note that while Eq. (92) is identical to Eq. (14) given Eq. (83),
the &,,’s have different normalization than in Sec. III by powers
of (fH)?". But the normalized cumulants &,, [see Eq. (21)] are of
course the same.

1{<(vi1‘\)éijjkk> +4((Viu;)Ajjir)

3
+2((Viejj)mink) + 4(Vieji)miji)
+4((Vizjw)eij) + (Vil\jjr)ui) }- (96)

Qp =

To obtain an equation for the perturbations around the
expectation value we define

6C(n.x, L) =C(n.x, L) — E(n, L?), (97)

and using Egs. (87) and (89) we find the equation of motion

3Q, o€ ~

= (V&C) - (V,.6C) + L -V — Q. (98)

The term involving 0E/0L* = €/2 + L*w/20 + O(L*)
generates terms that can be viewed as a generalization of
the “Jeans-like” term discussed above. The equation can be
Taylor expanded in L; to obtain equations of motion for the
perturbation modes of the cumulants. When taking up to
the second cumulant into account, we find results consis-
tent with those from Sec. V.

B. Third and fourth cumulant

In the following we work out the equations of motion
when neglecting fifth and higher cumulants, and taking the
complete set of scalar perturbations of the third and fourth
cumulant into account. We refer to Sec. VIII for fifth and
higher cumulants. We use the decomposition

v, 4 VYV
ﬂfj <6f§v2+2cyc>5 Vi‘ k(zr—;(),

s K sK v x ViVi K—=&—2y
SNy = (87;0; +2cyc)5 <5U v —l—SCyc)#

VAAAY
+7

v (Ty +5& —4x), (99)

with scalar modes 7z, y, k, & w defined such that
T = —V[n'ijj, K = A”H and é = vivj'/vaijkk. Here
O\ = Nijr — (Aijiy) and the superscript indicates that
we take the scalar contribution into account. Inserting this
decomposition in Eq. (96) and using Eq. (94) yields
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Rt

_ %{(A;;) +(0(g — d¢)) + 2(wv) },

e )

— ;{<9(45 — k) + 2((g + 38¢)x) — 2 <g)(>}, (100)

where, e.g., = [ d®kP4,(k.n). The only change in the
equation for € compared to Eq. (63) is the additional (Ax)
term. We note that, for e, this is the complete source term,
with no further terms arising even when relaxing the
restriction to third and fourth cumulant scalar modes.
The equation for @ contains cross power spectra of the
first and fourth as well as second and third cumulant
perturbations, respectively. In the present approximation
contributions to the source term for @ from vector and
tensor modes as well as cross spectra of the zeroth and fifth
cumulant are neglected.

For the complete set of scalar perturbations, we find the
following equations in Fourier space in the linear approxi-
mation when considering € as well as @ as given,

Oékzek,
o (5ot
3
[0 +2(2f2 1>:| 2691{ ﬂ'k‘l-g){k,
o251 ) oo =g
[0,74—3(5?—1)]7[k:a)k2Ak+€k2(3gk—|—55€k)—I—kzljk,

{a +3<2f2 )]){k:a)szk+€k2(56ek)

3Q,,
045

3Q, 16 4
[0 +4<2 7 1)] & :?a)Qk—467rk +§€)(k,

44 (22 1) o

as well as 9,A; = 6, such that A, =
approximation.

The full nonlinear set of equations takes the form of
Eq. (76), with an extended perturbation vector y. In the
approximation adopted here only its scalar part changes,

1
+§k2<5’<k —5&—8yy),

1)] Ky =400, —4eny,

(101)

Oy in the linear

WS =(8,0,9,0¢,A,m, .k, E ). (102)
The extended scalar evolution matrix is given in
Appendix D. In addition, the set of vertices increases.
All additional vertices involving at least one of the third
cumulant perturbations and only scalar modes are collected
in Appendix D. For vertices involving z or  and vorticity
or vector modes, we refer to future work.

After discussing the linear approximation in the next
section, we extend the cumulant expansion to beyond the
fourth order in Sec. VIIL

VII. LINEAR APPROXIMATION

As an illustrative example, we study the linear solution
of the perturbation equations when taking the expectation
values €(r) and () of the second and fourth cumulant
(and eventually also higher cumulants) as given, and
neglecting nonlinear couplings between perturbation
modes. We refer to paper II [11] for the nonlinear case.
Following the previous discussion, we expect a suppres-
sion of the density contrast for wave numbers k > e~'/2 or
k> w~'/* even at linear level, arising both from the direct
impact of the background dispersion €(7) in the Euler
equation, as well as the indirect impact via the perturba-
tions g and de of the velocity dispersion that are in turn
generated in presence of a nonzero ¢(#), and coupled to the
higher cumulant modes.

A. Second cumulant approximation

Let us start by analyzing the approximation where the
third and higher cumulants are neglected, see Sec. V. In this
case only the background dispersion () is relevant. In
linear approximation, scalar, vector and tensor modes
evolve independently. We therefore focus on the scalar
perturbations, that possess growing modes. Inspecting their
linear evolution equations described by Eq. (78), one finds
that the perturbation mode de of the velocity dispersion
tensor can be solved independently when disregarding
nonlinear terms and higher cumulants, and decays as
e™ = 1/D. It can therefore be neglected in this particular
approximation. Furthermore, there is no difference between
A and § at linear order. The system of equations therefore
reduces to the three variables 6, 6, g and takes the form

5;( == ek,

13
0, = —=0 +=5;

2 20k~ K> g — ek*5y,

G = =gk + 2€0;. (103)
The third equation has the formal solution
n /
al = ["arerneioo. (104
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Inserting this solution into the Euler equation in Eq. (103)
yields a correction term relative to SPT that is proportional
to k> and nonlocal in time. These features provide a
particular example for a modification that is consistent with
the most general structure allowed by symmetries [78].
Therefore, as expected, adding second and also higher
cumulants to the perturbative expansion and using the
underlying Vlasov-Poisson dynamics yields a consistent,
and a priori deterministic “UV completion” of SPT.

Note that naively replacing the nonlocal relation between
gr and 6, by a local ansatz of the form g; > ¢2 ) would
yield a dissipative viscosity term in the Euler equation.
However, we stress that the actual nonlocal relation
Eq. (104) is derived from the collisionless dynamics of
the Vlasov equation, being nondissipative. Indeed, it is
possible to check that when using the nonlocal relation
Eq. (104) (or equivalently the underlying equations
Eq. (103) the dynamics does indeed obey the energy
evolution equation for the sum of kinetic and potential
energy, known as the cosmic energy equation [79], at linear
order in perturbation theory (see Appendix E). In contrast, a
naive local replacement of the form mentioned above
would lead to a violation of the cosmic energy equation.
Therefore, the nonlocal relation Eq. (104) cannot be naively
interpreted in terms of a fluidlike dissipative viscosity.
Indeed, when extending the analysis to higher cumulants
(see Sec. VI), additional terms in the last line of Eq. (103)
appear, that would modify Eq. (104), but are still consistent
with nondissipative energy evolution (see Appendix E).
This indicates that the collisionless dynamics is signifi-
cantly more complex than fluidlike dissipative behavior,
and this is indeed what we find further below.

Nevertheless, we observe that in the limit k%¢ < 1 and at
linear level we can approximate 0, (1) — &;(i') e such
that gi(n) — 28;(n) ["dn/e*"e(n'), which yields an
effective Jeans-like suppression scale

1

— (105)
k%—like

=e(n)+2 /'7 dn' e (y').

Importantly, the second and higher cumulants affect also
the nonlinear evolution and go far beyond adding a Jeans-
like term even at linear level, as stressed also above. In
particular, we are interested in the solution over the entire
range of wave numbers, including also the regime where
k?e is not small and the simplification leading to Eq. (105)
cannot be used.

It is therefore most effective to directly solve the coupled
system Eq. (103) including the g;,-mode explicitly. The full
linear solution of these equations studied here provides the
starting point for a perturbative solution of the nonlinear
equations (see paper II [11]). Solving Eq. (103) in general
requires some knowledge of the background dispersion.
For illustration we assume a power-law dependence

e(r) = epe, (106)
with some power-law index a and value ¢, today. Apart
from simplicity, this choice is relevant for the limit of a
scaling universe described by a power-law input spectrum
Py (k) ~ k"s, with exponent being given by a = 4/(n,; + 3)
in that case (see Sec. IX). Furthermore, it can be viewed as
an approximate description also within ACDM cosmology
for a limited redshift interval.
It is convenient to use the rescaled variable

9c(n) = ge(n)/e(n).

Setting 7 = (8¢, 0, G ) Eq. (103) can be written in the
form

(107)

@'+ (Qo + ek*Q) )y =0, (108)
where
0O -1 0 000
Q) = _% % 0 . Q=110 1] (109
0 -2 1+4+a 000

In the limit k¢ < 1 the growing mode solution reads

7 =0 =(1,1,2/(2 4 a))e'dy. (110)

in accordance with the previous discussion and Eq. (104).
Here 6y stands for the conventional linear density field. We
can obtain a general solution by an iteration in powers of

Q, writing = >_; /), with

1/_/(j> (17) _ /’I dn’go(ﬂ _ 11/)(—k2€(’1/)91)1/_/<j_1>(’7/)- (1 1 1)

Here g, is the Green function in the limit ; — 0, and
contains the conventional SPT linear propagator in the
upper left 2 x 2 block,

gon—n'") =<

+
N | =
7~ ~N D
! |
oo N
wl
[\®]
oS O

e3n—1)/2
% 21 O
0 0 0
n 0 0 0 |eramn,
6 —4(14+a) 1
(2a-1)(a+2) (2a-1)(a+2)

(112)
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Furthermore, compared to SPT, an additional decaying
mode appears. Using the growing mode initial condition
Eq. (110), one finds

g (n) = (e(,?)k2)je'75k0(c§j>, C(ej) Céj)% (113)

with numerical coefficients that can be found recursively
using Eq. (111),

G) 2(4 + 3aj — 2a) =)

C = - C
aj(5 +2aj)(2 + aj) °

, (114)

O _ 20 0 O (1 4 )

solution can be found in explicit form,

and c¢ . The recursive

<j>_< 3>flr(j+4ﬁ> r(%+1)

S =\7772) 7
a’) J! r(‘gﬂ) F(j+2ia+1)
F(§+1)
) ) (115)
r(j+2+1)

The sum can be expressed in terms of a generalized
hypergeometric function |F,. This gives a closed-form
result for the evolution of the density contrast,

Se(n) = Fy 5(k.n)edy, (116)

with linear kernel

44+a 2 5 —3k%e(n
Flﬁ(k’n)_IFQ(W;I—F;’I—’_Z;T())' (117)

The solutions for 8, and g; can be written in a similar form,

= Fyg(k,n)e"dy,
Fy 5(k,n)e"y,

Q>
~ =
= =
= =
= ==

(118)

with linear kernels given in Appendix F. They are shown
for @ = 2 in Fig. 3. The time-dependence can be scaled out
by normalizing the wave number to the scale

k, = ! ,
e(n)

(119)

that characterizes the wave-number above which velocity
dispersion becomes important.

SPT(F1’5=F1’9=1)-

1.00

0.75

0.50

F1,a(k,m)

0.25

0.00

-0.25 ;
a:2 . ,'

-0.50 :
10" 10° 10" 102

kik,

.
vl Ll L

FIG. 3. Linear kernels F; ,(k,n) that describe the suppression
relative to SPT for a = §, # when taking the second cumulant into
account. In addition, the rescaled scalar perturbation mode
Jr = gi/€ of the dispersion tensor possesses a growing mode,
shown for a = g, with F; ; = 2/(2 + a) for k = 0. Here a = 2

and k, = 1/+/€(n) such that the time-dependence is scaled out.

In the limit k%¢ — 0 one has

Fis 1 1
2(4 + a)k*e(n)
F 1 -
19 | = X l+a a2+ a)(5 + 2a)
F _ &
1,9 24+a

+ O(k*e?), (120)

recovering the growing-mode SPT solution for ¢ and € in
the limit € — 0, as well as a negative first-order correction
in € that describes the onset of “Jeans-like” suppression
(assuming a > 0). Equation (120) agrees with the low-k
approach presented in [12]. Note that the suppression given
by the linear kernel is larger for the velocity divergence than
for the density, in agreement with previous results in the
literature [10,12]. In the opposite limit k%¢ > 1, we find
that the linear kernels decay with a power-law behavior. As
we shall see in Sec. VIII, when including higher cumulants
also an enhancement instead of a suppression can occur in
general, a feature expected for a collisionless system [60],
and in contrast to fluids. Nevertheless, within the second
cumulant approximation discussed here this behavior does
not occur. The asymptotic expansion for large k*¢ > 1 has
the form

_ _ 2s
Fio(k,) = Dysi™ + E,s7° cos (7" + (pa>, (121)

where s = 3k%e(n). All coefficients, phases and exponents
are given in Table III in Appendix F. One can rewrite it in
the form
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Fl o 1 L 2s)
' D Esel(Ttes)
Fl,9 d — —1J3ra 7(; + 2Re isk (ST
s k
Fig -1 /)" 2

(122)

At large k o s, the nonoscillating parts dominate for F; 5
and F; ; since

B 16 4+ 4a

19 + 7a
ds = —
o 6a

< es = 6 y

(123)

for all @ > 0. For F| 4 this is only the case for 0 < a < 1,
while the oscillating term dominates for a > 1 due to the
additional factor isy.

It is also possible to find the most general solution
of Eq. (103), including all eigenmodes. We find (see
Appendix F for details)

d4a . 2 5 —3k%(n
5k:Ae”1F2<3a;”a’1+za;az()>
3 —7+2a 1 5 =3k%(n)
+Be 2"1F2<6a; T2 T2 &
-2 2 1 =32
+Ce"7lF2< R Z;a—f(”)), (124)

where A, B, C are free coefficients. For ek? < 1, all
generalized hypergeometric functions approach unity,
and one recovers the usual growing and decaying modes,
plus an extra decaying mode arising from the g, perturba-
tion of the velocity dispersion tensor. The solution given in
Eq. (116) corresponds to B = C = 0. Assuming € grows
with time, it is justified to assume these generalized
growing-mode initial conditions, which we shall do from
now on. Nevertheless, the general solution can be used to
obtain an analytic expression for the linear propagator that
generalizes the well-known linear propagator from SPT to
include dispersion (see Appendix F).

B. Impact of third and fourth cumulant

We consider the evolution of perturbations when taking
also the third and fourth cumulant into account (see
Sec. VI). The set of differential equations in linear
approximation is given in Eq. (101). We also take the
expectation value w(n) of the fourth cumulant into account,
in addition to e(n). For illustration, we assume a constant
dimensionless ratio

(1)
e(n)*

This choice is also motivated by the scaling solutions
considered in Sec. [X.

0]

(125)

It is convenient to use the dimensionless variables

__ g __ Oe _. = X
gE_v 565_, n=—, ),/E_’
€ € € €
__ kK - ¢ oy
=—, ==, =, 126
k=5 £=5 V= (126)

in terms of which the linear evolution equations for the
Fourier mode k read (approximating Q,,/ > — 1 and using
A = Oy at linear level)

0,75,{:9,{,
0, 3. .
ar[+§ ‘9k:§5k—€k (O + i+ 0€),

3
[9,+1 +a}§/k=29k—ﬁk+§ﬂ?k’
1
[6'7+ 1 +a]5€k = _gﬂ_{kv
3 -
|:ar] +2+O!:| ) :6/(2(&)5]( +3gk+56€‘k +§k)’

3 1 B
[0,7 +_+a}-{k = k> (d)ék + 558, +§(51‘<k =56k 81/7k)> ;

2
[0,7—|—2—|—2a}l_<k :4-(2)0]< —47_7,'](,
- 16 4
[0,1—|—2—|—2a}§k :?(I)gk—zl'ﬁ'k +§)_(k,

10, +2 +2a]7; = 0. (127)

We initialize the perturbations in the growing mode of
the linear set of equations Eq. (127) in the limit k¢ — 0,
given by

W = (84O G 681 Ty, J 1o K £, W)

2 4 160
d 1’11—a0’010a—,—,0 5 . 128
—e ( 2+a 3+2a'5(3+2a) > - (128)

Note that also the d€;, 7; and jy;, modes are generated in the
time-evolution due to the terms proportional to k*e in the
evolution equations Eq. (127). We define linear kernels F; ,
for all perturbation variables by

Wo=Fy4(k.n)edy. (129)
Let us now compare three approximations for the
perturbation modes:
cum?2 second cumulant approximation (o, 6y, Gi, O€;
and background dispersion ¢(7)),
cum3+ third cumulant approximation for perturbation
modes (+7, 7;), and fourth cumulant approximation
for expectation values (+(7)), and
cum4 fourth cumulant approximation (4%, &, ),
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where in parenthesis we indicated the modes taken into
account. Here (cum2) corresponds to the analytical result
from Sec. VIL A, and (cum3+) to neglecting &, &, in
Eq. (127), but keeping the expectation value @ of the fourth
cumulant. Finally, (cum4) comprises the complete set
Eq. (127). In practice one can disregard y; for (cum4)
in linear approximation, since its evolution equation is
decoupled and this mode decays at all times. The same is
true for d€;, for (cum?2) as discussed in Sec. VII A. Note that
0€, has to be included even at linear level for (cum3+-) and
(cum4) since this mode of the dispersion tensor is sourced
by the j, perturbation of the third cumulant, see Eq. (127).

As opposed to the second cumulant approximation
(cum2), we solve the equations numerically when taking
higher cumulants into account. We compare the three linear
approximations for the linear kernels F; 5 and F'; 4 in Fig. 4,
for two values of @ = %1. The suppression on scales k <
3k, is only weakly dependent on the higher cumulant
perturbations, especially for negative @, with somewhat
larger differences occurring in the damping tail. The
numerical finding is also supported by an approximate

1.00 :_ e e SP ....... _:

C — Fis5 == Fyo cum2 3

0.75F =

. — Fis === Fi1o cum3+ J

= 0.50 3 5 Fis Fie cum4
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FIG. 4. Linear VPT kernels F ,(k,7) when taking the second,
third and fourth cumulant into account, respectively. The upper
panel shows the case @ = 1, and the lower @ = —1, for § and 6.

Furthermore, @ = 2 and k, = 1/+/¢(1).

osl — ]
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FIG. 5. Linear VPT kernel F, ;(k,n) when taking the second,
third and fourth cumulant into account, respectively, for @ = 1
and a = 2.

analytical solution for small k%¢. We find that up to linear
order in k%e the linear kernel is not affected by higher
cumulant perturbations, i.e., identical to Eq. (120) for
(cum?2), (cum3+), and (cum4) for both Fy 5 and F 4.

For F, ; (Fig. 5) we find a mild shift when including the
third cumulant, and a smaller difference between (cum3+)
and (cum4). Analytically, we find for small k%e (setting
a = 2 for illustration)

% cum?2,
1 _
Fi;— 3= ke x { 1 /s cum3+, (130)
1y ”42@6/15 + £ cumd,

with no further changes when including even higher (i.e.,
fifth or more) cumulants.

Altogether, even though the hierarchy of perturbation
equations is coupled, we observe that for 6 and € the
transition region between the ideal fluid behavior for
k < k, and the strongly damped regime for k > k, is only
mildly dependent on contributions from the third and
fourth cumulant.

VIII. FULL HIERARCHY OF CUMULANTS

The formulation of perturbation theory up to the fourth
cumulant presented in Secs. V and VI is suitable for a
nonlinear perturbative analysis. Here we introduce an
alternative formulation that will allow us to include an
in principle arbitrary number of higher cumulants beyond
fourth order, but is restricted to the linear approximation.
We use this approach in the following to study the
convergence of the cumulant expansion at linear level.

For that purpose it is convenient to consider the
Fourier decomposition of the cumulant generating function
Eq. (97),
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5C(n.x, L) — / Pre®sC(n k,L).  (131)

In the following we assume adiabatic cold dark matter initial
conditions, being growing mode initial conditions for the
density contrast and velocity divergence, and vorticity and
higher cumulants that vanish relative to the density contrast
at early times. Then, in linear approximation, all perturba-
tion modes are proportional to the initial, linear density field
840- In turn, this implies 6C(, k, L) « & for the generating
function. The proportionality factor is described by a
deterministic linear kernel that is given by the linearized
equation of motion Eq. (98), while the dependence on the
stochastic initial density field factors out. Due to rotational
invariance, the linear kernel depends on the wave vector k
and the auxiliary vector L only via their magnitudes k and L
as well as the scalar projection 4 = k - L /kL. We introduce
the multipole decomposition

C(n.de. L) = i (26 + 1)Co(n.k. L) P, ()"0, (132)
3

where P,(u) are Legendre polynomials and

Cnk ) =i [ Bk Lp /(o). (133)

Note that C, characterizes the evolution of perturbations,
but we prefer to denote it by C, instead of 6C, for brevity
and since they are more closely related to “transfer
functions,” with the initial density field 5, being already
factored out. One can express the first four multipoles in
terms of the linear kernels of the scalar modes for the first
four cumulants introduced above, see Eq. (129),

L2 2L4
CO:F],A+%(F1,Q+3F1,5E) 51 ——F 1 +0O(LY),
L Fl@ €L2 4
e=3 (- Sg et o).
eL? 2€2L4 .
L [eL?
=—|—(F-—F,; L4
C3 k <105( 1.z 1,;() +O( )),
e2L* )
Ci=5 753" t5F z+TF ;) + OL%). (134)

Each multipole contains a tower of higher cumulants
multiplied by powers of L?, with the lowest power being
C, « L’ . Note that the decomposition is limited to the linear
approximation, for which only scalar modes contribute.
Furthermore, we can replace the linear kernel of the log-
density field via F;, — F,s in C), as appropriate at
linear order.

From the equation of motion Eq. (98) of the cumulant
generating function we obtain in the linear approximation
(i.e., neglecting the quadratic term in 6C)

{aﬂ+1+ (2?;’-1)@@)}@

k o€
=371 [ZaLzL + 01& (€ +1)Cppy = €Cpy)
k
+ 7L ((f+ (€ 42)Cpiy + (€ =1)Cpy)
k
3 LF1 4051 (135)
where 8%, is the Kronecker symbol, and
3 3 Qm Fl.& 3 Qm CO
Fip=®/(e6y) = 577 = 2R,y (136)

The background values of all cumulants enter via the

function £(i7, L?) = (C). The source term Q¢ that enters its
equation of motion Eq. (89) can also be expressed in terms
of the multipole moments,

Qg = 471'/ dkk3 2”P0 k)z f‘i‘ (C[+10LCf
0

(f+)

- CfaLCf—H

2 0e, ) (137)

where Py (k) is the conventional linear input power spec-
trum, and the impact of the Vlasov dynamics is encapsu-
lated in the cumulants contained in the C,. By inserting the
decomposition Eq. (134) into Eq. (135) and Taylor expand-
ing up to the fourth order in L we recover the evolution
equations Eq. (101) for the scalar perturbation modes of up
to the fourth cumulant [when written in terms of the linear
kernels from Eq. (129)]. Similarly, one recovers the
equations Eq. (100) for the background dispersion e and
the fourth cumulant background value @ by expanding
Eq. (137) in L and using Egs. (89), (91), (134), and (180).

A. Linear kernels beyond fourth cumulant order

The above formulation allows us to include also higher
cumulants beyond the fourth order. It is convenient to scale
out the leading L’ dependence of C,, and a factor 1/k for
odd 7,

£ even,

Cf(n’k’L) =

L’ x {é’“”("’ kL) (138)

Co(n.k,L)/k ¢ odd.

To extract evolution equations up to a given order in the
cumulant expansion, we expand
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2n

. L
Coln kL) =) mcmn (. k),

(139)
where we used that due to the symmetry of the
Legendre decomposition only even powers of L appear.
The relation to the previous notation can be obtained using
Eq. (134), e.g.,

Coo = Fis Cio=F10/3. (140)
Similarly, as introduced already above in Eq. (92), we
Taylor expand the ensemble-averaged values of the
cumulants,

5(’7’ Lz) = Z én’;'ghl(n)’

(141)

such that the previously introduced background values of
the Oth, 2nd, and 4th cumulant are given by

52:6‘, 54:?, (142)

respectively. In general &,,(n) denotes the ensemble
expectation value of the 2nth cumulant. Note that due
to statistical isotropy, only even cumulants can possess a
nonzero expectation value.

Inserting these expansions into the equation of motion
Eq. (135) one obtains a system of coupled, ordinary
differential equations for the C,,,, that is given explicitly
in Appendix G.

In the following we consider truncations that include
perturbation modes up to a certain maximal cumulant order
Cmax» that is we include all C,,, with

£ +2n < Crpaxs (143)

and set those with higher values £ 4+ 2n > ¢, to zero. For
truncations with ¢, < 4, this corresponds to the approxi-
mation schemes considered in Sec. VII B as follows:

(cum2)  cpax = 2,
(cum3+)
(cum4)

Cmax = 3,

Cmax = 4-

Note that the evolution equations depend on the back-
ground values &,, with 2n < ¢, + 1 for odd ¢, and
2n < cpax for even c,,,,. For example, as noted previously,
for ¢« = 3 the expectation value of the 4th cumulant
enters the evolution equations of the 3rd cumulant pertur-
bation modes. Here we see that this pattern extends to
higher cumulant orders correspondingly.

Evolution equations for the &,, can be obtained by
Taylor expanding the source term given in Eq. (137) in
powers of L. They are also given in Appendix G.

As an illustrative example, we consider the solutions for
the perturbation modes obtained when assuming that the
expectation values &,, are taken as external input, while
postponing self-consistent solutions of perturbations and
background values to Sec. IX. Specifically, for concrete-
ness we show in Fig. 6 the linear kernel F; = Cy for
various ¢, When assuming £, = e = ¢ye®! as previously,
and in addition vanishing values for all £, with 2n > 4. We
checked that the solutions agree with (cum?2), (cum3+),
and (cum4) obtained in Sec. VII for ¢, =2, 3, 4,
respectively.

We observe that for any given wave number k, the linear
VPT kernel for the density contrast converges to a common
limit when increasing c,,,,. However, for higher wave
numbers a larger value of ¢, is required. The second
cumulant approximation ¢, =2 (denoted by (cum?2)
previously) is sufficient for k < 7k,, at which point the
linear kernel is already suppressed by about a factor 10
relative to its SPT value (being equal to unity). For higher
wave numbers, the linear kernel quickly drops. The 4th order
(cum4) approximation is close to the limiting value for
k < 9k, with a suppression of already around two orders of
magnitude relative to SPT. For the highest order we consider,
Cmax = 20, the linear kernel is converged for k < 18k,,
corresponding to a suppression of 10~7. Therefore, while
higher cumulant perturbations are important to capture
the behavior for very large k, they only mildly affect the
transition region between the ideal fluid regime and the onset
of suppression within the linear approximation.

10" T

T T T
100é_ TP PP PRSPPI
107
102
10’3g
10"; E — Cmax=2 — Cmax=12
105
= 10_65 — Cmax=4 Cmax=14
< 07y
w 10’8:[ — Cmax=6 Cmax=16
10°F
10710 — Cmax=8 Cmax=18
107"k
10—125: — Cmax=10 Cmax=20
1079
10,145 a=2, §,=0 for n24
10—15 1 | 1 | L N N B
107" 10° 10’ 102
kik,

FIG. 6. Linear VPT kernel F;s(k,n) =Cyo when taking
perturbation modes Cy,,, of cumulants up to £ + 2n < ¢,y into
account. For this figure we set a = 2 and &,, = 0 with 2n > 4.
As before, the time-dependence of the linear kernel is scaled out
by normalizing the wavenumber to k, = 1//e. Note how the
inclusion of higher cumulants only enhances the suppression of
UV modes.
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B. Rescaling to dimensionless variables

When including background values &,, of higher cumu-
lants, it is convenient to consider again the dimensionless
quantities

an = 52n/€n = an/ggv (144)
and define dimensionless linear kernels
Tyon = Cran/e"14/2, (145)

where [£/2] = £/2 for even £, and (¢ —1)/2 for odd Z.
The evolution equations for these rescaled variables are
given in Appendix G.

Collecting all perturbation variables T,,, with ¢+
2n < cnax 1Nto a single vector ¥, the evolution equations
may be brought into the form

P+ (Q + ekQ))ir =0, (146)
that is formally analogous to Eq. (108). The number of
rows and columns of the matrices €, and €, equals the
number of all scalar perturbation modes for a given ¢y,
being given by 4, 6, 9, 12, 16 for ¢ =2, 3, 4, 5, 6,
respectively. We emphasize that c,, denotes the trunca-
tion order for the cumulant expansion of perturbation
modes collected in . The background values of higher
cumulants &,, with 2n > 4 enter the matrices Q; and Q,.
As mentioned above, for even c,,,,, the background values
& .. .Ecmax contribute, while for odd c,,,, the equations
for the perturbation modes depend on &,, &, ...Ecm i1

Let us assume again that the background dispersion has a
power-law dependence on the linear growth factor, with
constant @ = d, Ine, and set €,/ f% — 1. Furthermore, we
assume for definiteness that the ratios £, are constant in
time. As will be seen in Sec. IX, this assumption is
consistent for a scaling universe, and may serve as a basis
for a more general treatment in the future. In that case all
entries of Q; and Q; are constant in time, and the time-
dependence is entirely given by the factor ek>.

C. Scaling in the limit ¢ — 0

Since we assume initial conditions for the perturbation
modes with vanishing second and higher cumulants, all
higher cumulant modes can only be generated due to the
presence of the background dispersion €, as well as the
background values of higher cumulants. Therefore, one
expects the higher cuamulant perturbations to vanish with a
certain power of € in the limit ¢ — 0, and when assuming
the dimensionless ratios &,, to remain finite. Indeed, it
turns out that as expected higher cumulants are more
strongly suppressed for small e. In order to see this, we
consider the solutions of Eq. (146) in the limit ek’ < 1.
They are determined by the eigenmodes of €. For any

Cmax > | the eigenmodes comprise the usual growing and
decaying mode familiar from SPT, as well as further
decaying modes for cp,, > 2. Inspecting the evolution
equation Eq. (G6) one finds that all 7, ,, with even ¢
have a Taylor expansion in powers of ek? that starts with a
constant term, while those with odd # involve at least one
factor of ek?. The only exceptionis £ = 1, n = 0, related to
the velocity divergence Tjo = Fyg/3 =1/3+ O(ck?).
The reason is the extra term in its evolution equation
corresponding to the gravitational force in the Euler
equation. Together with Eq. (145) this implies the counting

M2 + O(ek?) +...] Ceven,

€[l + O(ek?) + ... £=1,n=0,

e=1I2MR2(O0(ek?) 4 ...]  fodd, £ +2n >3,
(147)

Ct’,Zn X

which shows that higher cumulants of order ¢ = # + 2n are
suppressed by higher powers of the background dispersion
¢ in the limit € — 0. The counting assumes that the &£,,, are
parametrically of order unity in this limit, which implies
&y, o €" for the background values of cumulant order 2n.
This is consistent with the scaling of the perturbation
modes Cy,, of the same cumulant order. By inspecting the
evolution equation Eq. (98) of the cumulant generating
function, we find that this result can be generalized to the
following scaling of the leading contribution in the limit
€—0:

, (148)

and so on for cumulants of order 0, 1,2,3,4,5,6, .... Here
the only exception is € that is contributing already at zeroth
order in ¢ as discussed above, while being of cumulant
order one. Note that the remaining part of the first
cumulant, i.e., the vorticity, has the “generic” scaling since
the gravitational force does not contribute to the vorticity
equation.

Since the equations of motion couple the various
cumulants, the self-consistency of this hierarchy is not
obvious, but, as can be checked using Eq. (98), indeed
holds in general. In particular, it remains valid beyond the
linear approximation, and holds also for the fully nonlinear
system, i.e., the complete Vlasov hierarchy.
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D. Stability conditions

Within collisional fluid dynamics, fluid perturbations are
damped due to microscopic pressure and viscosity. In
contrast, for the collisionless Vlasov system underlying
the cumulant evolution equations derived above this is in
general not guaranteed. As we shall show below, the
linearized system of coupled cumulants indeed may develop
instabilities. In the following we show under which circum-
stances this occurs, and derive stability conditions.

When including background values &,, of higher cumu-
lants, the linear kernels remain qualitatively similar to those
shown in Fig. 6 provided the dimensionless quantities &,
[see Eq. (144)] are not too large in magnitude. However, for
sizeable values of the &,,, the linear kernels develop an
exponential instability for large ek’. Even though this
behavior may in principle be cured when including non-
linearities, the resulting dynamics would be outside the
realm of perturbation theory. We therefore require that no
such exponential growth occurs. This imposes restrictions
on the magnitude of the higher cumulant expectation values.

To make this statement quantitative, we investigate the
solutions of Eq. (146) in the limit ek?> > 1. The asymptotic
behavior can be obtained by taking a further n derivative
and using that Q, is a nilpotent matrix, with Q; - Q; = 0 in
the matrix sense, giving " — [Qq - Qq + ek?(Qq - Q,+
Q- Qy—aQ,)|w = 0. Furthermore we switch variables
from 7 to

sp = 1/3e(n)k?, (149)
using @ = d, Ine = const, giving
a
6,7 zz(d,,lne)skask zzskdsk. (150)

Altogether, Eq. (146) can be rewritten as

a2 a
|:Z s%@?k — QO . QO — EQO
2

—53—" (QO-Ql 10,9 —ng)]l;_/ —=0. (151)

For s, > 1, the solution is given by a linear combination of
eigenmodes with time-dependence given by

Tyop o 2V for 5,5 1, (152)
where A are the eigenvalues of the matrix
1 a
Mcmang Q()Ql +Ql QO—EQI . (153)

The solutions therefore possess an exponential instability if
/2 has a nonzero real part for any of the eigenvalues. The

absence of this instability requires that all eigenvalues are
real and smaller or equal to zero,
Re(1) <0. (154)
This statement is equivalent to the condition that all roots of
the characteristic polynomial

P, (A) =det(A1 -=M, ), (155)

are zero or lie on the negative real axis. For the truncations
up to the fourth cumulant we find

pi=(1/3+2)

p2 =2 (1420,
1 o \2
py=(1/3 +/1)2<12 +2+503 —54)> ,

3 2 2 10 5 IS :

(156)
Remarkably, the characteristic polynomials are indepen-
dent of @ = 9, Ine. We find that this property extends also
to higher ¢, This implies that any constraints from
stability are insensitive to the time-dependence of the
background dispersion. In addition, there is no restriction
from stability on the size of the background dispersion ¢ =
&, itself. Thus, only fourth and higher cumulant expect-
ation values are subject to stability conditions.

For ¢« = 1, 2 the stability condition is always satisfied.
We note that for ¢, = 2 [equivalent to (cum?2)] the two
solutions 4 = 0, —1 precisely correspond to the exponential
factors in the time-dependence found in the asymptotic
limit given in Eq. (122) of the analytical solution of the
linear kernel. In addition there is a power-law dependence
on s, that is not captured by the leading asymptotic solution
considered above. Note that for ¢,,, = 1 a Jeans-like term
proportional to e is contained in the perturbation equations,
leading to a nontrivial linear kernel even in that case. The
negative root A = —1/3 implies that the linear kernels
exhibit oscillations in the limit ek? > 1 for this most
restrictive truncation.

For ¢y = 3, 4 (equivalent to (cum3+) and (cum4),
respectively), the expectation value £, = 3@/5 of the 4th
cumulant enters the equations of motion. The condition that
all roots are real and negative or zero imposes a restriction
on the size of 5’4,

Cmax:?’: -6<

Cmax =40 —2 (157)
When including even higher cumulant perturbations, we
find that the characteristic polynomials possess a recursive
structure,
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APe,.—2(A)qe, (A)* Cmaxeven,
pcmﬂx (ﬂ/) = {

pCmax—Q (ﬂ“) QCmax (’1)2 Cmax odd.

This implies that the roots of p. _ are also roots of p.
for any ¢, > 2. In addition, for even c,,,, the solution
A = 0 corresponds to a root with higher multiplicity. The
new roots that appear when increasing c¢,,,x by two units are
described by an additional factor, that can be written as the
square of a polynomial g, (4) given in Table IV in
Appendix G up to ¢y = 12. They are of order N, =
2,2,3,3,4,4,... for ¢ =3,4,5,6,7,8, ...

The recursive structure implies for the set of eigenvalues
that appear at a given truncation order

{/1}0“,3,(—2 - {A}cmax Cc {/I}cmaerZ e

This means that the stability conditions of the linear
solution obtained for given even (odd) ¢, continue to
hold at all higher even (odd) values of c ., with additional
conditions arising from the additional eigenvalues given by
the roots of g, (4).

A necessary condition for stability is that no real and
positive roots exist. This is ensured if all coefficients of
q.,, (4) have the same sign, according to the Descartes sign
rule (which can easily be proven by contradiction in that
case). Inspecting Table 1V, this leads to the conditions

(159)

£, <3,

Ee>15(E4—1),

Es <105-210&, 4 35E% + 288,

E10 > 4585 +2108,4(15+E4) — 945 — 1575E% — 630&,

E1» 10395+ 5197583 — 57753 + 13860E + 4622
—495£,(105 428 — &) — 1485E5 +66E 1,  (160)

for all values of ¢, for which the corresponding expect-
ation values enter, being ¢« = 3, 5, 7, 9, 11 for the five
inequalities, respectively. The first condition is consistent
with Eq. (157). These conditions are however not sufficient.
A sufficient set of stability conditions can be obtained by
applying an algorithm known as Sturm chain. To that end
we define a set of polynomials P, (1), starting from
Po() = o (). Py(3) =dg,, /A1 (161)
Then, we recursively compute the polynomial quotient
0, () from polynomial division of P, by P, , and define
Poio=0,Py1 — Py, (162)
being the rest term up to an overall sign. The order of the
polynomials decreases with increasing n, and at some point
one obtains a constant, where the chain is terminated. For

all ¢, We considered, this is the case for n being equal to
the order of the polynomial g, (1), being

Ne,, = [(cmax +1)/2]. (163)
Here the square bracket denotes the integer part. The
number of roots of g, (4) in the intervall a < A < b for
some real values a < b is then given by o(a) — o(b),
where o(4) is the number of sign changes in the series
Py(4), P(4), ..., Py, (A).

Stability requires that all N, roots of g.. () lie in the
intervall —co < A < 0. We therefore consider the choice
a — —co and b = 0, and require 6(a) — 6(b) = N, . The
only way how this condition can be satisfied is if o(a) =
N, and 6(b) =0. For 1 — —co the coefficient of the
highest monomial in each P, determines its sign, and
for 2 = 0 the constant term. We write the polynomials in
the form

P,(1) = CpANewn™ + .- + D,,, (164)
where the ellipsis denotes summands with powers A”* with
0<m<N. —n, that are irrelevant here. Due to the
alternating sign of AVews™ forn =0,...,N. and 1 <0,
all coefficients C, are required to have the same sign in
order to satisfy 6(—c0) = N, . Furthermore, by definition
of the characteristic polynomial, we have C, = +1. This
implies the conditions that C,, > 0 foralln =0,...,N,_ .
Similarly, the constraint 6(0) = 0 implies that all D, have
to have the same sign. In principle they could all be positive
or all be negative. However, the latter can be excluded by
the following argument: For the constant polynomial with
n=N, ., the term with highest and lowest power of 4 are
trivially identical, i.e., CNc,mx =Dy, . Since we already
obtained the condition that all C,, need to be non-negative,
this implies that also all D, have to be non-negative for
stability to hold,

C, 20, D, >0, 0<n<N. . (165)
As mentioned above, the condition is trivially satisfied for
Co = 1 and degenerate for C,, = D, for n = N,_ . There
are therefore in general 2N distinct conditions. However,
some of them are either trivially satisfied or equivalent.
For example, for ¢y, = 4 one has N, =2 and we find
C;=2,C,=D,=3(2+&,) and Dy =3(3-&,).D; =2
The stability conditions Eq. (165) therefore precisely yield
the constraint Eq. (157) obtained previously for ¢, = 4.
The same can be checked for ¢, = 3.

In addition, the Sturm chain algorithm allows us to
obtain stability conditions for arbitrary truncation order
Cmax- We observe a number of general patterns: We find that
Cy =N, such that the condition C; >0 is trivially
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satisfied. From the condition C, > 0 we obtain a lower
bound on &, for all ¢, > 3,

—__6

e Cmax—2
>

bz { __6

Cmax_l

This is a generalization of the lower bound obtained
in Eq. (157).2

Furthermore, the condition obtained from Dy > 0 is
equivalent to the first line in Eq. (160) for ¢, = 3, 4,
to the second line for c.,, =5, 6, the third line for
Cmax = 7, 8, and so on. Similarly, D; > 0 yields the first
line in Eq. (160) for ¢y, =5, 6, the second line for
Cmax = 7, 8, etc.

The complete set of stability conditions obtained from
the Sturm chain algorithm for ¢, = 5 reads

-2<&, <3,
15(,— 1) <& < 10(6 = &),
0 < 10024 + 12&, — 6E2 + 5&3)

Cmax 0dd,
(166)

Crnax EVEN.

—40E¢(2 4+ 3&,) — E2. (167)
For ¢« = 6 we obtain
6 -
—3<& <3,
15(E,— 1) <& < 10(2+ &,/3).
0 <20(216 + 324&, + 90E% + 175&3)
— 108&4(4 + 10&,) — 27&2. (168)

The conditions for ¢, = 7, 8 are given in Appendix G.
We checked that vanishing expectation values &,, = 0 for
2n >4 do satisfy the stability conditions in all cases.
Therefore, in general, stability sets an upper limit on the
magnitude of the £,,, i.e., how strongly non-Gaussian the
distribution function can be (on average).

Let us now discuss the impact of stability constraints. For
Cmax = 1, 2 the stability conditions are trivially satisfied,
and for ¢, = 3, 4 they amount to the constraint on the size
of £, given in Eq. (157). For ¢, = 5, 6 the perturbation
equations depend on £, and &, and the stability constraints
given in Eqgs. (167) and (168) are satisfied within a finite
region in the two-dimensional (€,,E&,) parameter space,
shown in Fig. 7 (top panel). We see that the point £, =
Es = 0 lies within the stable region, as claimed above.

The same condition can alternatively be derived from the
Laguerre-Samuelson rule, being that the generalized discriminant
2) (0) 2Ney 1) \2 _
Gomn i 7,225 < (a0 L=
>ou qf.:’")axﬂmeax . However, the Laguerre-Samuelson rule is
necessary but not sufficient for stability, while the full set of
conditions derived from the Sturm chain are sufficient. We
checked Eq. (166) up to ¢ = 12.

is  positive, where ¢,

c max

Furthermore, the allowed region is more restricted for
Cmax = 6 compared to ¢, = 5.

For ¢ =7, 8, also & enters in the perturbation
equations. Stability yields an allowed region in the
three-dimensional parameter space (&,,&q.&y), that con-
tains the origin. In Fig. 7 we show the projection of this
region on the (&4, &) as well as (€4, ) plane in the top
and bottom panel, respectively. As expected, the allowed
regions for higher ¢, are contained in those for lower
values of ¢,,,. Generically, one may expect the normalized
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FIG. 7. Constraints on the non-Gaussianity of the distribution
function from requiring stability of the linear solutions. The top
panel shows the parameter region allowed by stability within the
plane spanned by the dimensionless 4th and 6th cumulant
expectation values (£,,&), while the bottom panel shows
constraints on the 4th and 8th cumulant expectation values
(£4.&g). In each case, these are obtained from the evolution
equations for perturbations modes of cumulants up to ¢, as
given in the legend. Note that & is relevant for ¢, > 5, and &g
for ¢pax = 7. The gray dashed and black lines show the expect-
ation from the Evans and NFW halo models, see Sec. III. The
fact that the backreaction on linear modes from dispersion and
higher cumulants expected from halos is broadly stable is
reassuring, making linearized VPT a good starting point for a
perturbative expansion.
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quantities £,,, to be broadly of order unity, which is allowed
by stability. Nevertheless, the stability conditions impose
relevant constraints, in particular for 5’4, as well as
correlations among the relative size of the &,,,.

It is instructive to compare the stability regions of the
cumulant expectation values with those obtained within the
Evans and NFW halo models discussed in Sec. III, that are
shown as gray dashed and black lines in Fig. 7, respec-
tively. Since the stability conditions for the linearized
Vlasov hierarchy and the averaged cumulants obtained
from virialized halos are based on quite distinct physical
situations, it is remarkable that the latter are largely
contained within the stable regions for a wide range of
halo concentrations (NFW halos) and different halo shapes
(Evans halos). Note the Evans halos hit the stability
boundary when the shape parameter ¢ approaches the

unphysical limit of extreme oblateness ¢ = 1/+/2, where
the density ceases to be positive definite. For NFW halos,
the stability boundary is hit for high mass halos, corre-
sponding to high concentrations which are the most non-
Gaussian (See Fig. 2). But this is unrealistic since in
practice we have a spectrum of halos, and the abundance of
high-mass halos is exponentially suppressed, therefore one
must integrate over the mass function to compare properly.
The advantage of using the results of individual halos in
Fig. 7 is that we are insensitive to the initial power spectrum
shape, therefore these results apply broadly to scale-free
power spectra as well as CDM spectra. The dependence on
the initial spectrum enters only through the weight given to
different halo masses (or concentrations) by the mass
function. That the constraints on non-Gaussianity of the
distribution function are satisfied by halo estimates implies
that the linear solutions within VPT can be considered as a
good starting point for a perturbative analysis for realistic
values of the higher cumulant expectation values.

IX. DISPERSION IN A SCALING UNIVERSE

So far, we treated the background dispersion €() = &,
as well as the expectation value w(n) = 5&,/3 of the fourth
cumulant, and those of yet higher cumulants (&,,), as
external inputs for solving the equations for perturbation
modes up to a certain cumulant order. In this section we
return to the Egs. (47), (89), (94), and (137) for the
background quantities themselves, that are in turn sourced
by the fluctuations of the perturbation modes, and present
self-consistent solutions of the perturbation and back-
ground equations in various approximations. For illustra-
tion, we restrict ourselves to a scaling universe in this work,
for which the differential equations for the background
values turn into algebraic equations, as we shall see. This
makes the problem tractable and allows us to study the
dependence on the truncation of the cumulant expansion.

A scaling universe is characterized by a power-law initial
spectrum,

Py(k) = Ak™, (169)

with spectral index n;, and an EdS background (€2,, = 1).
The linear power spectrum in the SPT approximation is
given by

Pgr(k.n) = e*'Py(k), (170)

where e’ = D? is the square of the conventional linear
growth factor, which in turn equals the scale-factor within
EdS. For the dimensionless power spectrum A = 47k>P

this means
k ng+3
. (17
knl(”))

where we introduced the usual nonlinear scale

Al (k,n) = 4ne®A kT3 = (

knl(rl) = knle_zn/<’15+3)7 (172)
with k,; = (4zA)~"/(+3) being the nonlinear scale today
(n = 0). The power spectrum obeys a scaling symmetry
(for any r > 0)

k — rk,

erl —_ r_(ns+3>/2e’7’

(173)

that suggests that the nonlinear power spectrum (of any
dimensionless variable) is a function of the ratio
Ak, n) = A(k/ky (). (174)

The background value e() of the velocity dispersion
defines the scale

(175)

The scaling symmetry suggests that k,(1)/k,;(n) is con-
stant, implying that

€ = ege™, (176)
follows a power-law with exponent
a=4/(n;+3). (177)
We denote the value today by
k, =1/ /e, (178)

without time-argument. In addition, when taking higher
cumulants into account, the dimensionless ratio £, = 3@/5
as well as in general all £,, are constant in time. As
anticipated, the scaling universe therefore provides an
example for which the assumptions on the time-dependence
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of e(n) and higher cumulant expectation values taken in
Secs. VII and VIII are satisfied exactly, and the correspond-
ing linear kernels for the perturbation variables can be used.
The linear matter power spectrum within VPT is
given by
P (k.n) = Fy 5(k,n)*e*Po(k), (179)
where F| 5 is the linear kernel obtained from a solution of
the appropriate linearized perturbation equations. The
(cross-)power spectra for any pair a,b = 6,0, g, 0¢, ... of
dimensionless perturbation modes in VPT is analogously
given by
Pub(k,n) = Fya(k,n)Fyp(k,n)e*Po(k).  (180)
As shown in Secs. VII and VIII, for any truncation order of
the cumulant expansion the linear kernels F, ,(k,n) =
Fi .(s) depend on time and scale only via the dimension-
less variable

s = s¢(n) = ¢/3e(n)k>. (181)

Therefore we may write the dimensionless power spectrum
lin __ 3 plin
A)) = 4rk’P; as

Al (ko) = x x Ali(s). (182)
where
ky \mt3 1 \%
= g = — , 183
) -Ge)
is time-independent, and we defined
ASb(s) = Fyo(s)Fy p(s)s™ . (184)

A similar relation holds for the full nonlinear power
spectrum, computed within VPT. As in SPT, one can
use the perturbative solutions to obtain a loop expansion,

ZAL loop

L>0

A (k,m) (185)

with L = 0 being the linear solution. For ab = 85, 60, 60,
the loop corrections formally take a similar form as in SPT,
but with nonlinear kernels computed based on the pertur-
bation modes and their nonlinear vertices presented here.
For a detailed discussion of loop corrections within VPT we
refer to paper II [11]. Here we restrict ourselves to the
general structure of loop corrections. Since the L-loop
contribution encompasses L + 1 factors of Py x A « x,
one has

Agy ") =2 A1), (186)
with the second factor involving loop integrals for L > 1.

Let us now discuss how to obtain a self-consistent
solution for the background dispersion e(n). Its equation
of motion is given in Eq. (47), with source term from
Eq. (100). It can be written in terms of dimensionless

quantities as

€' (n) B dk
=3 e

Agse + 24,5+ Ayz),  (187)

where g = g/e, 6€ = be¢/e and U; = v;/e are the dimen-
sionless scalar and vector perturbation modes of the
velocity dispersion tensor, 7 = z/e is a scalar mode of
the third cumulant, and we have set Q,,/f> > 1.

For the time-dependence Eq. (176) expected from
scaling symmetry, the left-hand side of this equation
is constant, and equal to a+ 1= (n,+7)/(n,+ 3).
Therefore, the ansatz Eq. (176) is consistent if also the
right-hand side is time-independent. Using Eq. (184) in
linear approximation and Eq. (186) in general, we see that
this is indeed the case, since the variable x is time-
independent and the power spectrum integrated over
s « k as well. Therefore, Eq. (187) turns into an algebraic
equation for x given by

ng+7

L+11L loop (188)
na+3 ;
where
o ds A A
() = [T Bls) - Bas(s)

+24,,5,(s) + Aaz(s))-7oor. (189)

In particular, the linear contribution (L = 0) reads

P(n,) = [ ds st 2 F ) (Figls) = Frels)
+ Fi5(5)F12(5)), (190)

where we used that vorticity and vector modes contribute
only starting at one-loop, and that A+ § in linear
approximation. When including terms up to a given loop
order L, Eq. (188) is a polynomial equation for x of degree
L + 1, the solution(s) x, of which determine the ratio
of scales

G/knl_ fxl/n+3 B (191)
setting the overall magnitude of the background dispersion
€y = 1/k2. In linear approximation, the solution is given by
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A0 = 3(n, +7)/((n, +3)0(n,)). (192)
While significant changes from nonlinear corrections can be
expected, we discuss self-consistent solutions in linear
approximation as a proof-of-principle in this work. Non-
linear corrections are presented in paper II [11]. In particu-
lar, we are interested in the sensitivity to the truncation of
the cumulant expansion, and start with the case of including
velocity dispersion only.

A. Self-consistent solution in second cumulant
approximation

When neglecting third and higher cumulants, we can
obtain the self-consistent solution for the background
dispersion by computing the integral Eq. (190) using the
analytical linear kernels for F, and F;; given in
Appendix F, while F,; = F 5 = 0. The latter follows
since the scalar mode de¢ has no growing mode in linear
approximation, and at second cumulant order, and the
former since the third cumulant perturbation 7z is neglected
presently (see below for the generalization to higher
cumulants).

The self-consistent solution exists provided that the
integral I'""(n,) converges. In the infrared limit,
kos—0, one has Fip—1 and Fy;—2/(2+ a).
Therefore the integral is infrared-finite provided that
ng > —3. In the ultraviolet limit k « s > 1, the linear
kernels have asymptotic form given in Eq. (121). The
integral is absolutely convergent if

d(ny) =3+ n, —min(dy + dy,dg+ ey eqg+dy ep+ e,)
(193)

is less than zero. Using results from Appendix F one finds

d(”s) =

—(11n, +53)/24 for n, < 1,
{ (11n, )/ or n, (194)

—(ny+7)/3 for ny > 1,
which is less than zero for n; > —53/11 ~ —4.8. Note that
even for a very blue initial spectrum (large ny), the
damping due to velocity dispersion is strong enough to
compensate the growth of power at large k and make the
integral converge. On the contrary, the sensitivity to short
modes grows when decreasing ng, e.g., d(—1)~—1.8,
d(-2) ~ —1.3, d(-3) ~ —0.8. Overall, the whole integral
is convergent for all n; > —3. Note that the solution is not
valid for n, < —3, because then one would have a < 0, i.e.,
a velocity dispersion that was larger in the past and decays
with time, rather than being generated, leading to a
qualitatively different behavior. For the relevant case
where n;, — —3 from above, one has a — o, i.e., velocity
dispersion grows very quickly.

In Fig. 8, the ratio of k, = ¢, ' and k,,;, as determined
by the linear approximation, is shown by the black line. The

1/2
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FIG. 8. Velocity dispersion scale k, = ¢~'/? relative to the
nonlinear scale k,; for power-law initial spectrum Py o ks,
obtained when using the linear approximation for the source
term for ¢, and neglecting third and higher cumulants.

ratio is always larger than one, and becomes very large for
ny, — —3. This implies that nonlinear corrections are
expected to be more relevant the smaller 7.

B. Self-consistent solution in third and fourth
cumulant approximation

When including perturbation modes of the third and
fourth cumulant, the background value w(#) of the fourth
cumulant has to be taken into account. Its equation of
motion when neglecting fifth cumulant perturbations is
given in Eq. (100), and can (for Q,,/ > = 1) be rewritten as

o +20 1 [dk

F605s =3 8y5), (195)
where 7,7 and & & are the dimensionless perturbation
modes of the third and fourth cumulant, respectively. Let us
show that for a scaling universe, solutions with time-
dependence (1)  €(57)? are consistent with this equation
of motion. For constant @ = w/ €%, the left-hand side of
Eq. (195) is equal to 2(a + 1)@ = 2(ny + 7)@/(n, + 3),
and is itself time-independent. The dimensionless power
spectra on the right-hand side can be decomposed in a sum
over loop contributions. Each of them satisfies a relation
analogous to Eq. (186), except that the A" can depend
on @ in addition to s. Therefore, also the right-hand side of
Eq. (195) is constant after integration over k « s, if @ is
constant. Thus, both the left- and right-hand side of
Eq. (195) are time-independent for constant @, implying
that w(n7)  €(57)? is a consistent ansatz. What remains to be
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done is to find a solution for the constant values of k,/k,;
and @, or equivalently x and @. For that purpose we rewrite
Egs. (188) and (195) in the form

ng+7 1 (Lt
JL- loop(n a))
ng+3 ;
2 +7 L+1 -
JL loop , 196
2 ), (1%

yielding a coupled set of equations for the unknowns x and
@, with a polynomial dependence on x for any given loop
order, and an implicit dependence on @ that can in general
only be determined numerically. Here we defined

(197)

The integrals I°71°°P are given by the same expression as in
Eq. (189), but with power spectra computed based on
kernels and nonlinear vertices including third and fourth
cumulants. In turn, this leads to an implicit dependence on
the background value of the fourth cumulant @, as indicated
in the arguments of I-71°%P and JL~loop,

In linear approximation, we can eliminate x by taking the
ratio of both equations in Eq. (196), giving an implicit
equation for the fourth cumulant expectation value @,

175 (n,, @)

. 198
21 (ng, @) (198)

(7):

The solution @™ of this equation can be determined
numerically using Eq. (190) for /'™ as well as an analogous
expression for Ji" = j971°°P and Eq. (197). The power
spectra entering both integrals can be expressed in terms of
the linear kernels F; , for the dimensionless perturbation
variables via Eq. (184). The F; , are obtained by numeri-
cally solving the linear evolutions equations Eq. (127) and
using Eq. (129). Finally, the background dispersion scale
k,/k,; can be obtained using Eq. (191) with the linear
solution for x given by Eq. (192) with ['" = ['i"(n, @'i")
evaluated on the solution @ = @'

When truncating the perturbation modes at third cumu-
lant order, corresponding to (cum3+) or equivalently
Cmax = 3, we find that Eq. (198) indeed has a solution
in linear approximation. The corresponding values of @ as
well as k,/k,; are given in Table II for various spectral
indices n,. We observe that the dimensionless fourth
cumulant expectation value is of order unity, indicating
that higher cumulants are relevant quantitatively, but of the
same order as the background dispersion. In addition, the
shift in the value of k,/k, compared to the second
cumulant approximation is sizeable, while the overall

magnitude is comparable. This indicates that higher cumu-
lants are important quantitatively, but do not invalidate the
qualitative behavior of the second cumulant approximation.
We find that no self-consistent solutions exist when
including fourth cumulant perturbations, which may be
attributed to the shortcomings of the linear approximation.
We investigate the impact of cumulants beyond the fourth
order in the next section.

C. Self-consistent solutions for the full
cumulant hierarchy

The self-consistent solutions of background values for a
scaling universe can be extended to truncations including
cumulants beyond the fourth order following Sec. VIIIL. In
linear approximation, the expectation values &,, of the 2nth
cumulant satisfy equations of motion given in Eq. (G4). For
2n = 2 and 2n = 4 they agree with those discussed above
for e =&, and w = 5&,/3, respectively. For a scaling
universe these equations allow for constant values of the
dimensionless ratios &,, = &,,/€", determined by the set
of implicit equations (in linear approximation)

n
n—l—

52,1 XXIE,? (ns,(§4,(§6,...), (199)

with

o n -
[gzn _/) dss”\\*zz(f_k Z my+my.n—¢

(2n)'(2(my —m; =€) = )
(2my)!(2my)!

Tri1om, (s )Tf,2m2 (s),

(200)

where 5K is the Kronecker symbol, and T,,,(s) are the
d1mens1onless linear kernels for perturbation modes of
cumulant order £ + 2m defined in Eq. (145). The linear
kernels are given by numerical solutions of the equations of
motion Eq. (G6). They depend on time and scale via the

single variable s = /3¢e(n)k?, which can be seen using
Eq. (150) and that a =9, Ine is constant for a scaling
universe. In addition, the linear kernels depend parametri-
cally on the spectral index n, due to a =4/(3 + ny), as
well as the backgound values 84, 56, .... Therefore,
Eq. (199) is a highly implicit and coupled set of equations
for the self-consistent values of &,, with 2n > 4 as well as
the overall magnitude of the background dispersion para-
metrized by the variable x defined in Eq. (183). By taking
the ratio of Eq. (199) for 2n > 4 and Eq. (199) for 2n = 2,
and using that £, = 1 by definition, we obtain a coupled set
of equations for the cumulant expectation values of order
2n > 4 that is independent of x,
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FIG. 9. Velocity dispersion scale k, = e~!/? relative to the
nonlinear scale k,; for power-law initial spectrum P, ks,
obtained from a self-consistent solution when including cumulant
perturbations up to order ¢, and for n,=-1, 0, 1, 2,
respectively. The corresponding self-consistent solutions for
the fourth, sixth, and eighth cumulant expectation values are
shown in Table II.

1 Ig,r;” (ns, 54’86’ )

Epp = ——2———— :
=, [15“21(;1“,,54,56, ..)

(201)

These implicit equations can be viewed as a generalization
of Eq. (198) to beyond the fourth cumulant order. Once a
solution to these equations is found, it can be inserted in
Eq. (199) for n = 1, yielding the solution for x and thereby
for the background dispersion scale

ng+7

) 1/(n+3) (202)
(5 1 2)7ln :
(ns + 3)15'2

k

RACApE \/§<
knl

For a given truncation of cumulant perturbations at order
Cmaxs Al Ty 0, (8) With & 4 2m > ¢, are neglected. In this
case the equations for the linear kernels and therefore also
Ig:‘” depend only on the background values &y, ..., & 11

for odd ¢y, and &, ..., E‘Cmax for even c¢p,«. For ¢ =2
only the background dispersion enters and it is sufficient
to solve Eq. (202), with results identical to those from
Sec. IX A. For ¢« = 3, 4, Eq. (201) reduces to a single

equation and yields values for £, = 3@/5 consistent with
those obtained in Sec. IXB. For ¢, =5, 6, Eq. (201)
yields a coupled set of equations for £, £. For ¢y = 7, 8,
one obtains three coupled equations for &, &, E. Up to
eighth order, we find that within the linear approximation
considered here a joint self-consistent solution exists only
for cpax = 2, 3, 6, 7, confirming the previous findings for
Cmax = 2, 3. The corresponding values are shown in
Table II for various values of n,. We observe that the size
of 54 is comparable for ¢, = 3, 6, 7, and the one of 56 for
Cmax = 0, 7, indicating that increasing the truncation order
does not lead to dramatic changes.

The dependence of the dispersion scale k, on the
truncation order c,,,, is shown in Fig. 9. The largest shift
occurs when going from cp,,x = 2 t0 e = 3, While even
higher cumulants have only a minor impact. This indicates
that the relevant contributions to the source terms Eq. (200)
arise from scales where the dependence of the linear kernels
on ¢y, 18 already converged. In addition, we find that the
impact of higher cumulants is smaller for larger n,. While
spectra with large values of n; do have a lot of power on
small scales initially, it is more efficiently erased by the
suppression due to the buildup of velocity dispersion,
making the linear kernels drop faster, and hence the source
terms less sensitive to the contribution from large wave
numbers.

X. CONCLUSIONS

In this work we discuss the extension of standard
perturbation theory (SPT) to include higher cumulants of
the phase-space distribution function, based on the under-
lying Vlasov-Poisson dynamics for collisionless matter,
dubbed Vlasov Perturbation Theory (VPT). This takes into
account that even for an initially perfectly cold dark matter
distribution, orbit crossing generates velocity dispersion
and higher cumulants. We provide the explicit form of
nonlinear evolution equations when taking up to the fourth
cumulant into account, and derive evolution equations
linear in perturbations up to arbitrary order in the cumulant
expansion.

VPT splits cumulants into their average values and
fluctuations around them. The evolution equations for

TABLE II. ~ Self-consistent solutions within linear approximation for the velocity dispersion scale k, = ¢7/2 = & /2 relative to the
nonlinear scale, as well as the normalized expectation values &,, = &,,/€¢” of higher cumulants. We show results for scaling universes
with spectral indices n; = —1, 0, 1, 2, and for various truncations of the cumulant expansion, with perturbation modes up to order ¢ -
The cases ¢ = 2, 3 are equivalent to (cum2) and (cum3+), respectively, with £, = 3@/5.

ny, = —1 ng =0 ng =1 ng =72
Cmax ko/ku &4 E & kiky & &s ko/kn &4 E & kyky & & &
2 4.1 3.0 2.6 2.3
3 3.4 0.45 2.5 0.40 2.2 0.37 2.0 0.35
6 3.8 0.37 0.86 2.7 0.34 092 2.3 0.31 093 2.1 0.29 092
7 3.8 036 0.78 3.5 2.7 036 0.94 2.3 0.35 1.03 5.1 2.1 034 108 53
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the perturbations depend on the average values, and vice
versa. Since in general the average values are sourced by
fluctuations integrated over all scales, we argue that the
background values of even cumulants should be treated as
“O(1)” quantities. This leads to a consistent, systematic
perturbative expansion scheme for the fluctuations, and
allows us to describe the screening of UV modes crucial for
improving the convergence of SPT, as we discuss in paper
I [11]. The resulting VPT equations can be cast into a form
that is formally analogous to SPT (see Sec. V D), but with
an extended set of perturbation variables and nonlinear
interactions among them, in presence of a background
given by the average values of the even cumulants.

Our main findings are

(i) Linear VPT is far richer than SPT. Even in the
simplest approximation, where linear theory is trun-
cated at the second cumulant, the effective descrip-
tion in terms of density and velocity divergence is
nonlocal in time (see Sec. VII A), which is key to
satisfy the cosmic energy equation (see Eq. (ES) in
Appendix E). Indeed, given that at the fundamental
level we deal with collisionless particles interacting
only by gravity, local in time contributions from the
velocity divergence are forbidden in the Euler
equation, as this corresponds to dissipation and thus
violate the cosmic energy equation.

(i) When a given mode k crosses the dispersion scale
k,, its growth is suppressed (see Sec. VII A). This
back reaction on modes from small-scale dispersion
is completely absent in SPT. The suppression is only
affected by higher cumulants when k& > k_, and they
make the screening mechanism even more efficient
(see Sec. VIII A, in particular Fig. 6). For any given
wave number the cumulant expansion converges.
This motivates a further study of perturbation theory
with a truncated cumulant expansion beyond the
linear approximation. This is what we carry out in
paper II [11].

(iii) The UV screening mechanism is in principle not
guaranteed, i.e., the complexity of the linear theory
of collisionless dynamics allows exponential insta-
bilities. Requiring that these be absent leads to
stability conditions that we derive analytically up
to cumulant of order eight (see Sec. VIIID). Re-
markably, these stability conditions are independent
of the value of the velocity dispersion and spectral
index and only constrain the non-Gaussianity of the
distribution function. The Gaussian case (vanishing
average values of fourth and higher cumulants) is
always within the stable domain.

(iv) We therefore consider higher cumulants averaged
over stationary dark matter haloes, finding that they
are generically of order unity when compared to an
appropriate power of the second cumulant (see
Figs. 1 and 2). While the halo analysis is not

required for the development of the VPT frame-
work, it serves as a useful benchmark and to gain
some insight into the distribution function non-
Gaussianity. Interestingly, we find that the cumulant
expectation values obtained from the halo analysis
satisfy the stability conditions (see Fig. 7 in
Sec. VIII D). Altogether, this implies that the linear
approximation within VPT is a good starting point
for a perturbative analysis with realistic values of
the cumulant expectation values.

(v) Finally, we determine self-consistent solutions of the
coupled set of perturbation and background equa-
tions. We consider a scaling universe for this
analysis, allowing us to transform the set of equa-
tions for the average values into coupled algebraic
equations, that we solve up to cumulant of order
eight (see Sec. IX). We find that the decoupling of
UV modes is more pronounced for larger spectral
index n,. This is because very blue initial spectra
lead to pronounced orbit crossing on small scales
and therefore quickly generate a large dispersion.
Remarkably, this causes the integral over the power
spectra of cumulant perturbations that source the
average values to converge even for arbitrarily large
n,. The resulting background values for the cumu-
lants in this self-consistent approach also satisfy the
stability conditions.

In summary, the VPT framework of perturbation theory
for dark matter clustering laid out in this work is directly
derived from the underlying fundamental collisionless
Vlasov-Poisson equations. It can, from the conceptual
point of view, be regarded as a straightforward extension
of SPT by taking second and higher cumulants of the
distribution function into account. Our results show that
VPT captures physical effects that are neglected in SPT, in
particular shell crossing and the screening of UV modes.
It therefore abandons a major shortcoming of SPT.
Furthermore, the framework does by construction neither
contain any ad hoc assumptions nor undetermined free
fitting parameters, and therefore preserves the predictivity
of the underlying Vlasov-Poisson equations. Nevertheless,
it allows for systematic and tractable extensions of SPT. In
an accompanying work, we show that the extended
framework can be used beyond the linear approximation
as well, and present detailed comparisons with N-body
simulation results (see paper II [11]).
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APPENDIX A: FURTHER DETAILS ON HALO CALCULATIONS

In this appendix we provide some extensions of the calculations presented in Sec. III for the camulants of the phase-space
distribution function and an alternative approach in the NFW case that gives the shape of the distribution function itself.

1. Evans halos

We first we provide some more details on the halo calculations presented in Sec. III A. For the distribution function given
by Eq. (4), the expectation values of the sixth and eighth cumulants are, respectively

_ 315 105 687, 5. 1449 , 315 97, , 315, ,
756 - 8 <Wa> + 8 <Wb> + 105<Wc> + 4 <Wa> - 8 <Wa> - 2 <WaWb> + 4 <Wawb> - 8 <Wb>
525 105 1785 987 945 315
+— <WIZW%J> +— <Wz> - <Wawc> +— <W%Wc> - <wac> + 525 <Wawbwc> + <W%ch>
4 4 4 2 4 2
—315(w?) + 525(w,w?) + 315(w,w?) + 210(w3), (A1)
3465 945 42399 28215 42003 15435 34965
- i 4 _ 2 3y _ A 2
958 16 <Wa> + 16 <Wb> + 9 5<WC> 16 <Wa> + 4 <Wa> 8 <Wa> 8 <WaWb> + 4 <WaWb>
1854 6615 16065 2664 2835 4725 2835
- TQ (wawp) = 16 (wy) + 4 (wawp) — T9 (wawp) +T (wp) = N (wwp) = 3 (w})

—7875(w,w.) + 21924(w2w.) — 18549(wiw,) — 3780(w,w.) + 20790(w, wyw,) — 26649 (w2w,w,)
+ 5670(wiw,) — 14175(w,wiw,.) — 2835(wiw.) — 6615(w?) 4+ 25515(w, w2) — 26649 (w2w2) + 14175(w,w?)
—28350(w, wyw2) — 8505 (wiw?) + 11340(w?) — 18900(w,w3) — 11340(w,w3) — 5670(w?). (A2)
As mentioned in Sec. III, for infinite halos w;, drops from these expressions and everything can be written down in terms
of w, due to the w, + w;, + w. = 1 identity. The integrals over the halo of w/ can be done analytically, resulting in simple

analytic expressions for the expectation value of the cumulants. Defining a real-valued function f(g) for both prolate
(¢ > 1) and oblate (¢ < 1) halos,

flg>1)= 1), flg<1)=

1
#arc C0t<2L
Vg —1 q -

we have for the expectation value of the cumulants

arc coth (L) : (A3)

1

1 1
&=1-3¢ +§(2q2 -Df(@). & =z(1-14¢%) +g(2q2 —1)(74* +6)f(q), (A4)
3¢ 2 4 139 0 4 2
Ee = _X(l —234q* + 1444%) —l—g(Zq —1)(108¢* — 2344~ + 1)f(q), (AS)
2
Es = %4 (3183 — 1230842 + 5292* — 136964°) + % (247 = 1)(2568¢° + 9244 + 940> + 1411)f(q). (A6)

These are the expressions used to compute the normalized cumulants &,, = &,,,/ &5 shown in Fig. 1.

2. NFW halos

In Sec. III B we calculated the cumulants of the phase-space distribution function for a distribution function with constant
anisotropy, Eq. (22), by integrating the steady Vlasov equation directly, leading to a recursion relation for the moments in
terms of the density profile and potential, Eq. (29). Here we take an alternative approach, which is to compute directly the
shape of the distribution function. The function f; in Eq. (22) can be computed by a generalization of the so-called
Eddington inversion method [60,80] originally developed for the isotropic case (f = 0),
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FIG. 10. The distribution function monopole for NFW halos with = 1/2 (solid) compared to a Gaussian distribution with the same
second cumulant (dashed), at the scale radius of the halo x = c¢r/ry;, = 1. The left panel shows f(© (p) as a function of momentum p in

units of py =

(© = z 4 _dv
Jele) = (27)3°1(1 = )C(1 - B) dsA (e —y)tdy™’

(A7)

where e = —E =y — p?/2 > 0 is the binding energy per
unit mass, w = —-®, 1 =3/2—p—n, n=[3/2—f] and
h = r?/p is the radially weighted density profile expressed
as a function of y rather than ». When f is half-integer
($=1/2,-1/2,...) this reduces to only derivatives, giving
a simple expression for the distribution function [81],

1 L% @ Fh

2y - - -
JELY) = 272 (=2P)! dy /> =

(A8)

In particular, we are interested in = 1/2 in which case
this expression reduces to a first derivative. Using these
results, one could compute the cumulants by integration
over momentum rather than using the recursion relation

Gmf(c)c/ry, while the right panel shows 4zp2f(p).

Eq. (29), but in practice the latter is actually easier.
However, this approach also gives us explicitly the dis-
tribution function. For f = 1/2 we have,

1 1 dh

fp.x) =5 —F——s— ;
272 pry/1 = (p - %) W |y 2
1 dh
fOpor)=—-—= : (A9)
prdl// y—y—p*/2

where r = |x|. Taking the monopole of this distribution by
integrating over the direction of momentum gives f©.
Figure 10 shows the result of this calculation for f = 1/2
(solid lines), comparing it to a Gaussian distribution of the
same width (dashed). As expected from the form of the
distribution function, and the normalized cumulants shown
in the left panel of Fig. 2, the distribution is fairly different
from a Maxwellian.

APPENDIX B: EQUATIONS OF MOTION UP TO THE SECOND CUMULANT

In this appendix we give the equations of motion up to the second cumulant when neglecting third and higher order
cumulants in nonlinear terms (see Appendix D for those). The equations for the density contrast J, the velocity divergence 6
and the log-density field A are given in the main text in Eqgs. (69), (71), and (72), respectively. We use nonbold symbols to

denote wave vectors here and below.

1. Equation of motion for the vorticity

3

Q,, 1 1
Wi+ <§_f2 - 1>Wk.i + Ky = / {——29p(k X (pxwy)); +— (kx ((pxw,) xw,)),
Pq p p

A

- (p X Q)l(p X Q)j]Apyq,j - gijnkjpmAptq,nm}'

1
7 (P xq)iApgq + (P % q);A,0¢, — 7 [(p-q)(k- g8 = k;q;)

(B1)
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2. Equations of motion for scalar, vector, and tensor perturbations of ¢;;

(k- p)? p-q (k% 1 3(k-p)> k.
:/pq (3 K*p? )00t e +§_§ 122 0p94 +3 2k2(PXfI)'wp5€q

) ) 1 1
2 2g 2 - 7 —2>(PX61)'ngq—kzpzqz(p~qk2+3k-pk~q)9p(pxq)‘yq

6k-q—k2+3p-q
S 5 \P q51] qp]) piVqj — k2p2q2 (p Xg) 'Wp(pXQ) Uy

2k*=3p-q—6k-p 2k2(p><wp),»+9(p><q)~wpl’i
- 222 piPOptqij + 227 Pijlq.ij

3Q,, k-pk-gq pq k-
ol +2<2f2_1>5€k:/m{ k* p* ‘9P5€q+2p2q2k2((k.p)2_kaZ)gpgq_|_ 2k2(pXCI) w,0€,

kK*q* — (k-q)*+2p-qk-p 1 (k- p)?
+ (pxq)-wyg +_<1_7
2p2q2k2 pPJq q2 k2p2

Jonto xa)-s,

pP-q 2k-q—k2—|—p-q
—(P'q5, —q;p;)w +
pzqz J iPj)Wp.ilq.j kzpzqz

L2ka=p-q 2k3(p x wy,); +3(p x q) - w,p;

+ (Pxq) -wy(pxq)- v,

(B2)

2027 pipOplyij = 2027 s lpJ ql/} 059 (k), (B3)

3Q, k-p(pxq); p-qk-p(pxq);
l/;c.i + 2(57 — 1)1/](’1‘ — €Wk‘l- = /pq{—27k2p2 9p5€q + k2p2q2 epgq

k-plk-pék —pik.)—(pxq)ipxq)
N pk- pdf—p ,2) : (pxq)i(p*xq); w, e
k p ’

q

k-qp-q(k- pdf — pik;) + (p x q);(p x q);(K* = p*)
+ 2 Wp.j9q

+k2P'Q(k'q5{'§_Qikj)_(pXQ) (pxq);(p*—4%)

o,v
12p2g?

r”aq.j

2 2
e ¢ (p ) 0) - = (9 5 0) gl (a3 ,)))

_,px q) (K* = @*)€inmkn — (P X q);p

0,1

peye s (pxq)-wy(pxq) v, + 2 = POplam;

+ pit

2(p X Q) : Wpeinmkn - (k X (p X Wp))ipm
k2p2 Jjtq.mj
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3Q,,
- (5

1
k— { 2k -k qi Pméff + Pf ) + (Clzkj - szj)(meS{'(f + pf(sgn)

ik,
g( 658K, + 5K 5% — Lclm <5’< f))

(pxq)(pxq) (pxq)295 lp-a, e(pXQ)-vq
202 6_5 5 0p9q T 0, 2
(pxq)? p q q

k ) kZ

PePm klk
-2 22 (kipf+kfpi_kikj+61255_ ' kzjﬂgptq’fm

+k%p2[(zaxwp>i<kj<k-p>—k2p,~>+<pxw ), (kilk - p) — Kp)

x  Kik;
+(qu)'W], kp 5zj+ K2 _kipj_kjpi 5€q

+ﬁ [(p xwp)i(p-q)(k-q%—qj> +(pxwy);(p-q) <k'Q%_Qi>

kikj\ k-q(k-q+2p-q)
+ (p X Q) 'WP{ <5ZI§ + k2J> ( 2k2 +Qiq/

+§(k2—P2)(5{§— &2 +2 2 Yq

2 2
p ki —k"p;
T g (Pxa)-vy(pxwy); = (pxg)-wylg xv,)]

2 2
pkj—kp;
g (X a) v xwy)i = (pxq) - wy(axv,)]

L,, )i X 1)+ (X)X vg); = (p X wy) - (g% 1) (55 - kfﬁj)]

q) - w,(pxq) -y, [(51( %) 3p-q+2¢° 2";'61,; +kiqi <5K. B kikz‘)]
p2q2 k2 k2 k2

P
e
_(px

+

1 kik;
+ 2—p2 |:2 (5115 2 >[(p xXw )mpn + (p X wp)npm]
2 51( 5[{ 2pmp"kj 2 6 5K mepnkl
_ (pXWp),‘ Pn jm+pm in 2 — (prp) PnOim + Pm 2
PmPn klk pnk'
+(pxq)-w, (6 2 (5{; kz’) + 85, (55; -4 sz)

pmkl pmk' pnkl
+5§;<5{; 4 2 )+6’<(5§§n —4=5 ’) + 5K, <5’< 4 2 ))]t%mn}. (B5)

APPENDIX C: VERTICES UP TO THE SECOND CUMULANT

In this appendix we collect all vertices y .. ( p, ¢) for perturbation modes up to the second cumulant. We write € instead of
o€ in the index for simplicity. Furthermore k = p + ¢ in the vectorial sense.
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1. Vertices involving only scalar perturbations

1 (p+q)p
Ys0s(P-q) = b Apq T
(P+49)P°p-q
},96'9(175 q) :ﬁpq = 2]726]2 s
Yao0a(P-q) lg
b 2 p2 9
1 q-p
Yoag(P:q) = —E(P +q9) 49—,
1
Yoae(p.q) = =5 (P +4) - p. (C1)
_lp-gq K 1 3(k-p)?
7gGg(p’Q)_2 2 <p2+2 2 k2p2 ’
1/, (k-p)?
ygﬂe(p’Q):§<3 k2p2 =1,
1 p-q 2 212
) ,q) =— . k
yeﬁy(p Q) 22p2q2k2 (( P) )
1k-pk-q
N = - C2
}/eﬂe(p q) 2 k2p2 ( )

2. Vertices involving at most one vorticity, vector,
or tensor perturbation

1 p X ‘1 i
Yows(P+ @) = Yawa(p-q) = ( )
q
}’ewa(l? q) < + 2 )
1 2p-q
Yoar,(P-q) = §<1+ ) P X q),
7>

1
Yor, (P q) = =5 Pipjs (C3)

k-gp-g p-q 1
—7—* (pxq);,

11 (3(k-g)?
ygw,q(p ‘I) 2 2<2 k2q2 +3 k2q2 2

1_k-p
ygwie(p’q)=53ﬁ(pqu,

11
Yoou, (Pq) = —Em(p'qkz +3k-pk-q)(pxq);.

12k>=3p-qg—6k-p

7 g0, (P,C]) = _2 2k2p2 <C4)

PiPj>

1k2q* — (k- q)*+2p-gk-p

J/e‘w,-g(p’ Q) = 5 2p2q2k2 (p 2 Q)i’
k-q
yew,-e(pa q) = EW(p X (’I>i’
11 (k-p)?
‘ =——(1- A
Yeou, (p’ Q) 2q2 ( k2p2 (p X q)z’
12k-g—p-q
}’eez,,-(l?, q) = ETnginv (C5)
lp-q
Vwiag(P-4) = 5— (P xq);
1
Vwae(P ) =5 (P % q);.
v o) _1p-qk-p(pxq)
v0g\F> 2 kzpzqz ’
L k-p(pxq),
Vy,ee(P’ q) = ) T’ (Co)
1(pxq)Pp-q kik;
V1,000 @) = SR TErra 5K — k2j
_, (P x4)ilp % q),,}
(p x q)* ’
1(px ‘])2 kik;
Vi, 95(1’ Q) ) kz 2 55 - kzj
X . X .
_,(Pxq)ilp 61),}. (©7)
(P xq)
3. Vertices involving two vorticity, vector,
or tensor perturbations
(P xq)i(pxq);
Yoww; (p’ q) =T 23
pPq
v (poq) = l(p q-p>+4)(pxq)(pxq),
EW;V; p2q2k2 ’
1K2(p - Q)(5,,P q-p;4;)
2 2q%k? '
_1(p* =54~ 7p q)(p < q)i(p x q);
ygwiuj(p’ q) - E 2 2k2 ’
1K(p- q)(5l,p q-r;q:)
2 2q°k? ’
1 9(]9 X Q) p] + 2k 51]lpl
Y gwit (P> q) = e P
13(p x q);pj + 2K*¢;;p,
) = —— o C8
Yewt;,, (p.q) 2 2k2p2 P (C8)
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165p-k—=pip
}/w,-ﬂwj(p’ q) ZTJ’
1(pxq)(pxq);+(p-q)(pjq;—55(k-q))
yw~Av~(p’ CI) — A 5
Ay 2 2
q
YwiAt,y, (pv (’I> = _Egijnkjpm7
1(85p k= p; qj)(q K(p-q) 1(pxq)i(pxq)(k—-p?
(p.q) = +5
Yoiwig\P-4) =5 Oy 24242 )
1(85p k= p; q,)(p k)= (pxq)i(p*q),
4 (pv Q> A ’
viw;e 2 p2k2
_1(85q -k =p;q;)(p- 61)k2 +(pxq)i(pxq);(¢®-p?)
7ui01/j (pv q) - 5 2k2 ’
1 (k2 B qz)ginmkn - (p X q)ipm
Yvot,,; (P, CI) = 5 k2p2 DPj, (C9)
1 1 k
Vigwe(P-q) = oy EinePn(P-4)| k473 k2 =4 | +ejnern(P-a){ k-a75— 4
kik\Nk-q(k-q+2p-q 1 kikj _kiqi+k;q;
+8fnmpnqm{ <55+ k2J> ( 2 )+q,qj+§(k2 ) 6K 2 +2]k72j s

1 pn klk
1 g kik/ xq),(pxq);
1

1
Yijor,,(P-4) = e [(qzki —124;) (PO + prdh,) + (6°k; = k2 q;) (POl + POF,)

2
(7

kik

#))-

kik

PePm J
k2

K?

PePm

+ 6K 6%, —
k2

im" j¢

R

+p.q(5{;5;<m (k,pj—i-kjp, Kk + g5~k p

4. Vertices involving three vorticity, vector, or tensor perturbations

Yo (P ) = EimjPePm ;' (zl@(}? X q); | Einedjdn 525(17 % q)f,
: . -
T o) = %ﬁ {6iva -k = prail(p x @) (K = p*) = [55p -k = pig;](p x ¢) (K = p?)
—2(pxq)i(pxa);(p x ).},
Voo, (P @) = %2(” X )Einmnkr ;zllzrzn(l)iqf — k- pok) i o
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2 2 2 2
Viiwey (p’ Q) = lw [8mns€'n’pr - Efnsg‘rmqr]anY =+ lw [gmnsgirfpr - gfnsgierr]ans
Ilp-q kik;
+ EW Pndr |:£inf£jrm + gjnfgirm — Esnt€srm <51]§ - #
lgfnsgmkrpnpquQr 51( kikj 3P q + 2612 2 kin + kj‘]i 5K kikj
) P2g it K2 k2 - k2 S\ 2 ’
11 kik;
Vt,-,w,»tm,, (P, Q) = zz—pz [2 (55 - ];—2]> [Emrfpn + gnrt’pm]pr

jn
PmPn kik; Pnk;
+ 475D 14 (6 2 (55 + k2]> + oK, (55(,1 -4 k2]>

mki mk' nki
+5§<5{;—4p ) +5{§<5§m—4pk2 f) +5§m<5§1—4pk2 >)] (C12)

k; k.
B zgirfpr <p”5]Km + pm6K - 2pm]fzn j> - 28jyfpr (pnéllgn + pmﬁiKn - zpmlfzn l)

k2

APPENDIX D: THIRD AND FOURTH CUMULANT

1. Evolution matrix for scalar perturbations

The scalar part of the block-diagonal evolution matrix Q,;,(k,#) for the perturbation modes up to the fourth cumulant

w' = (6,0,9,6¢,A, w1, 5,E ), (D1)
in the approximation Q,,/f> — 1 is given by
-1
-3/2  1/2 k> k> ke
—2e¢ 1 1 -3/5
1 1/5
QS = -1 (D2)
-3k’¢ -5k’¢ —k*w 3/2 —k?
—5k’¢ —k*w 3/2  =5/2Kk* 5/2k* 4Kk*
—4w 4e 2
—16/5w 4e —4/5¢ 2
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2. Vertices involving scalar modes 7 and y
of the third cumulant

1p-qg 3(k-9)’p-q

J/gA)((p q) = _37€A;(<p C])
1(k-9)°p-q
76A7r(p (’I) 4 + kzq )
L 2k-pk-q_(k-9)p-q
}/SA)( P, q < 5 k2 2 k2q4 ’ (D3)

K(p-q? 1 (k~q k~p>
Yagg(Prq) =—55—+5DP"q +— .
99 p2q2 q p2

1 5p-q
}/ﬂeg(p7Q):§kq<3+ 5 )a

5
(p.q) ==k,
Vree(P ) 3

1Kp-q k-q(p-q)*

7n0n(177 q) =

2 p2 2 p2q4 ?
lkq 2kppq kqpq)2
J’na;((l’ CI) ( ’ (D4)
5¢ 5 P p*q*
~ 15k-gk-pp-q 5
Vy9e(P>q) = F—— +2Vﬂgg(p’q),
15 (k-qp-q (k-q)°
7;{59(171 q) = _4< C]2 + k2 > +27’755(;(17 CI)
15 5
Vyee(P @) = —zkz + 5 Vree(P- )5
5(k-q)p-q(k* +2k-p) 5
V40:(P> ) =-7 P +§mﬂ(p,q),
(p.q) = 3k2p 4 _3(k- p)zk q
},;(6;( p.q 4 p 2 k2
5(k‘q)p-q(k2+2k~p) 5
+ Z k2p2q4 + EYHH){(p7 Q>
(Ds)

APPENDIX E: THE LOCAL COSMIC ENERGY
EQUATION

In this section we review the evolution equation for the
total energy (see, e.g., [60]), given by the sum of kinetic and
potential energy,

1 2 1
Eyin = —/d3Pp—2f(T,X,P) =5 (1 +6)(0; + vivy),
2 a 2
1
Epoy = 505, (E1)

Using the evolution equation for o;
and Poisson equations one obtains

ij» the continuity, Euler

0,Eyin + 2HE i, + V,J5" = —®0,5,
0:Epot + qHEpy + ViJ7™ = +®9,5, (E2)

where

J]idn = Egv; + (14 9) (a,]v] +0,® + = Ct]])

1
J?Ot W ((Da,V,CD - (vzq))a‘rq))’ (E3)

with third cumulant C;j;;, and

dIn(a®p
— _ n(a /00)_)]’ (E4)
dlna
for the usual scaling p, o a=> of the matter rest energy
density, that we assume throughout. The evolution of the
total energy is therefore given by

o.E+ H(ZEkin + Epot) + vi‘]i =0, (ES)

with J; = JK" 1 J°*'and recovering the energy conserva-
tion law on a static background. Equation (ES) is the local
version of the cosmic energy equation [79]. Rescaling to
n =1n(D) and X = X/(fH)? for X = ®, E, sy, Epoy and
X, = X:/(=fH)? for X = J, Jkin Jrot gives

3Q .
aEkm+2< — - 1>Ekm V. JEn = —d9,6.
2f
3Q, 1
0B, +2(> 21

~ ypot F

where

- . 1
I = Eyau; + (14 0) <€llu1 +u® 43 ﬂ’”)

2
s £\ &

TP = 0 (®9,V:® — (V,®)0,D), (E7)

with ﬂijk = Cijk/(—f"'f)3 and
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“ 1
Eyin = 5(1 +6) (e + uiu;),
N 1.
By =5 6. (E8)
so that
o 3Q ~ N 1.
o E+2(=="2— E-V.J —E ., E9
n + (2 f2 ) ivi f pot ( )

where J; = Jkin 4 P,

Let us check that the local cosmic energy equation is
indeed satisfied at lowest order in perturbation theory, when
including second and higher cumulant contributions as
done in this work. We insert the expansion ¢;; = e(n)5f; +
oe;; as well as the decomposition of de;; and 7;j from
Eqgs. (57) and (99). Keeping terms up to linear order in
perturbations (except for contributions involving Je, see
below) yields

while Epot = 0 at this order. In the following we use the
EdS approximation Q,, = f = 1. One can check that, as
expected, Eq. (E9) is indeed satisfied up to terms of higher
order in perturbation theory when using the linear equa-
tions of motion (see Sec. VI)

90 =0, (9, +1)de =—x/5-0,

(0, + 1)g =20e(n) — = —3y/5, (E11)
as well as the background dispersion evolution equation
(0, + 1)e(nn) = Q. Note that here it is important to retain
the contribution from Q in the equation for de, which has to
cancel with corresponding contributions from the equation
for e(n). Alternatively, this cancellation can be seen directly
by realizing that they appear in the combination € + d¢, and
that Q drops out when adding the corresponding equations
of motion.

APPENDIX F: KERNELS IN LINEAR
APPROXIMATION

The linear solution for the velocity divergence 0, and

Ey, = i(l + 5)(5(,]) + 8¢) + l g scalar perturbation mode g, = g,/e of the velocity
2 2 dispersion tensor in the second-cumulant approximation
) 5 1 d for a power-law dependence ¢ = ¢pe™ is given b
V), ==€V,; v, 0——m, E10) B p p 0 g y
i =3 Vi + 3 Vimj; =2 em)0 =37 (EI0) Eq. (118), with linear kernels
|
2(4 + a)k’e 4+ da 2 5 -3k%
F k, =F k, - F 5 ;2 - 7 2 P B
1,9( l’]) 1,5( ’7) (2+a>(5+2a> 2 3 + +2a a2
2 4+a 2 —3k2
Fi;(k,n) =——|F ;2
1g(k.m) 2—|—a{] 2( 3a + )
(4 + a)k*e 4+4a 2 5 —3k2
-———F ;3 ,2 Fl1
I+a)5+2a)" 2 Tt (F1)

The coefficients for the expansion Eq. (121) for large k*e
are given in Table III

The full linear solution of the coupled system Eq. (103)
for oy, 6y, gx, that includes all eigenmodes, can be found by
making the ansatz

e = €My c,(e(n)k?)" O = > d,(e(n)k?)"

n>0 n>0

g = MY en(en)k)", (F2)

n>0

with some exponent 4 and coefficients c,, d,, e,. Inserting
this ansatz into Eq. (103) and assuming ¢ « ¢ yields the
recursions

1 3
cp,(A+an)=d,, dn</1+0m+§> =560~ Cn1 = s

e,(A+an+1)=2d,_, (F3)
for n > 1. They can be combined into

3(A+an)+1-2a

——c,_ . (F4
“n c”1(ﬂ—&—an—l)(ﬂ—i—an—l—l)(l—&—an—i—%) (F4)
with explicit expression given by
¢ = (‘—3)”%”" +p1) Tla) T(g2) T(gs)
T\ L(p1) T(n+q)T(n+q:)T(n+qs)
(F5)

where
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TABLE III.  Coefficients in the expansion Eq. (121) of the linear kernels F, ,(k,n) for large k2e.
a da €q Da Ea Pa
(4 +a) Bl Sa TR _sdm TR M
e Val(5)
0 Z(4+a) 19a _sa% (@ )FArE) _sdmTErE) Ua=19 7
D) VAT (5E
g Z(4+a) LBiTa s TR 106 TR uln
) VA5
_3+tl+a 1 A=1 Nontrivial solutions exist for A= 41 (with ¢y = d,
=3, 4= a eo=0), A==3/2 (with ¢y =—2dy,eo=0) and 4=
A+1 A +% —1 (with ¢y = —dy = ¢;). Each possibility yields one of
@=1+ a g3 =1+ : (F6)  the three linearly independent solutions. Inserting the

The sum over all n yields a solution in terms of generalized
hypergeometric functions. To find the allowed values for A
it is sufficient to consider Eq. (103) in the limit € — O,
which yields a linear set of three algebraic equations for

(o dy. €),

A -1 0 Co
-3 2+1 1 dy | =0 (F7)
0 0 l —|— 1 60
1
My (n) = 0,

(=02 =30, +3—€k?)/K*

with x = 260 and p,, g, evaluated for 2 = 1,-3/2, 1

for the three terms, respectively. This result can be used to
give an analytic expression for the linear propagator

Gi(n.n') = M) My ()]~ (F10)

A full treatment of the scalar modes in second cumulant
approximation requires to include also the mode d¢;, as well
as Ay. Including Je;, leads to an additional decaying mode
solution g, = —d¢, = De™ and o, = 0, = A, =0, with
free coefficient D. This solution remains valid also for
€k? > 1, and can easily be included in the linear propagator
by extending Eq. (F8) by a fourth row. The solutions given
previously remain valid when including Je;.

Finally, taking the A; mode into account formally yields
an additional eigenvalue 4 = 0, related to the freedom to
choose different initial conditions for 6, and A;. This is
irrelevant for the linear evolution, but the additional linearly
independent solution enters in the linear propagator. The
corresponding additional solution is given by

values for A in the recursion relation, and building a generic
linear combination of the three solutions, yields the general
solution Eq. (124). The solution for all three perturbation
modes can be written as

5 A
O | =Mi(n)| B |, (F8)
Ik C

with free coefficients A, B, C and 3 x 3 matrix given by the
tensor product

® <en1Fz(P1§6]2’fI3§x)7e_%"1F2(P1QQ1,Q2§X)»e_'71F2(P1291,Q3§x)>’ (F9)

5k:E[2F3(17P1;61176127%;x)—1]v (F11)

with free coefficient £ and p;, ¢; evaluated for 1 = 0, and

Ay =E+6,0, = 0,6, K'gp = (—02—1%0,+3—ek?)s,,
and oe;, = 0. The most general solution for all five scalar

modes is therefore given by

5 A
0, B
a | =MTm| c | (F12)
o€y D
Ay E

with M,(CSXS) (n) given by the 5 x 5 matrix
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0 2F3(1,p13q1,92-g35%) = 1
M (n) 0 an[st(lvpl;CIvaZvQB;x)_1}
—e™ D,[,F5(1,p1:q1.92.93:x) = 1] |, (F13)
0 0 0 e 0
¢ Fy(p1iga.q3:x) € Fy(p1iqi.q2ix) e\ Fy(piiqi.qsix) 0 2F53(1,p1341. 92, q35X)

where D, = (=02 =19, + 3 — €k?)/k*. The corresponding linear propagator reads
5x5 5x5 5x5 _
G ) = M) IME ) (F14)

APPENDIX G: EVOLUTION EQUATIONS FOR THE FULL HIERARCHY OF CUMULANTS

The linear evolution equation obtained from expanding Eq. (135) in powers of L is given by

3Q,, {1,k*} 1 Q,,
|:0,7 + 1 + <§F - 1> (f + 271):| Cf,Zn = ZK—HRLﬂln + 555155076()‘0, (Gl)

where {A, B} = A for even #, and B for odd ¢, 6% is the Kronecker symbol, and

: (2n)!
Reon = r; @m+ 1)1 (2n = Zm)!gzmu((f +1)(2n = 2m)(2n = 2m — 1)Cri1 2(n-m—1) = €Co1 2(n-m))
4
+ (€ +1)(26 +3 +2n)Cpyi o0 — 2n—+lcf—1.2(n+l)' (G2)
We solve this system of equations with growing mode initial conditions
C0.0 d 1,
1
C =
L0 ™ 3
sz’,Zn i 0, 4 + 2n Z 2, (G3)

for - —oo, as appropriate for cold dark matter and adiabatic initial conditions.

TABLE IV. Factor g, (A) contributing to the characteristic polynomial related to the asymptotic behavior of the linear kernels
for large ek* when taking scalar perturbation modes of cumulants up to order ¢y, into account. Stability requires that all roots of
g, (A) lie on the negative real axis or are zero. We set X;y =945+ 1575E% 4 630E — 210E,4(15 + &) — 4585 + &1y and
X1, = 10395 + 51975E3 — 57755 + 13860&, + 46282 — 4958, (105 + 28E — E3) — 1485E5 + 66E 1) — &15.

Crmax de,.. (A)

3 P +224+53-8y)

4 P+R1+303-&)

5 B +512 4343 -E) + 5% (15158, + &)
6 PBATI2+BA3-Ey) + 5 (15158, + &)
7
8
9

PHHBEB+R23- 5_4) +82(15- 155_4 + é_(,) + 4 (105 - 210§4 + 35?3 + 2&?6 - <f:8)
1223 +1422(3 = &) + BA(15 — 158, + &) + 5 (105 — 210&, + 3587 + 2884 — &)
P15 +LBB &) + L2215 = 1584 + E6) + 3 (105 — 210E, + 3585 + 2884 — &) + 355 X10

10 P33+ 1;—6,13_(3 = &) + 132 (15 = 1584 + &) + 35 4(105 = 2108, + 3587 + 2885 — &) + 555 X10
11 2842205 +5524(3 = &4) + 3B (15 — 158, 4 E6) + 3 42(105 — 210E, + 355 + 2886 — Es) + 374X 10 + 735 X 12
12 20 +4260° + 13243 = &) + 32 13(15 — 158, + &) + 12 22(105 — 210&, + 355 + 28Es — &) + 3B82X0 + 45 X1,
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The evolution equation for the expectation values of even cumulants obtained from Eq. (89) and Taylor expanding
Eq. (137) in L is given by

3Q,,
{aﬁ (2 7 >2n} Ean = Qe , (G4)
with
0) :47z/°odkk262’7P( y (Z+1) Z sk &(m —2m, —2¢ -3)C C (G5)
R P TS e am) )T

The evolution equations for the rescaled variables T ,, = Cs5,/ et/ and &,, = &,,/€" read

3Q, 1, ek? 1 Q,,
|:() + 1 + <2?— 1) (f + 2”) + (l’l + {f/Z, (Lﬂ— 1)/2})(6” 1H€):| Tzf’,2n = {2fj— 1 Rf2n 5551550 f2 TOOv (G6)
3Q - _
[0 + (2 f;” - 1>2n + n(0,1n e)] Eyy = Og,, (G7)

where Ry, = Reonlemr e and Qs, = O, |c_r-
The stability conditions for ¢, = 7 are given by those for ¢, = 5, and in addition

0 <6+ 5E,,

0 < 105 — 210&, + 3583 + 28&4 — &,

0 < 630 — 525, — 3587 4 21& + &,

0 < 70(216 + 108E, — 37852 + 215&3) — 14(—=108 + 180, + 95E3)E¢ + 63E2 + (66 + 95, + 3E4)Es,

0 < 70(72 + 1328, + 2&3 + 85E3) — 1680E,E — 6382 + (6 + 5&4)Es,

0 < 34300(5184 + 5184&, — 8208E3 + 700853 — 9204E5 + 16340E3 + 144589)
— 54880(432 + 1296E, — 2016&5 + 4100E3 + 1805E3)Eq + 1372(—4104 + 13500&, + 1539083 + 2275E3)E2
— 5927043 — 64827E¢ 4 [—7840(—108 — 324E, — 44183 — 290E3 + 170E}) + 4704(=72 — 150E, + 95E2)E¢
+ 882(=54 + 358,)E%Eg — 7(396 + 1140E, + 3353 + 72E4)E% — &3. (G8)

The stability conditions for c,,,, = 8 are given by those for ¢, = 6, and in addition

0<6+7E,,

0 < 105 — 210, + 353 + 28& — &s,

0 <210 — 105, — 3583 — 7&, + &,

0 <210(24 + 36&, — 3483 +49E3) — 14(=12 + 252E, + 91E3)E — 49E% + (78 + 1478, + TE6)Es,

0 < 14(72 +204&, + 90E3 + 203E3) — T84E,E¢ — 49E2 + (6 + TE4)Es,

0 < 980(1728 + 5184&, + 3024&5 + T776E3 + 2628E4 + 229323 + 5887£%)
— 4704(144 + 720E, + 384E% + 2436E7 + 1183E3)Eq + 588(—120 + 1932&, + 12743 + 1473 E2
+ 2195283 — 7203E¢ + [-672(—36 — 180&, — 4113 — 294E3 + 203E%) + 672(=24 — 42E, + 91E%)E;
+2058(=2 + 3E4)E2)Eg — 3(156 + 588E, + 259E% + 56E¢)E% — 3. (G9)
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