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The standard perturbation theory (SPT) approach to gravitational clustering is based on a fluid
approximation of the underlying Vlasov-Poisson dynamics, taking only the zeroth and first cumulant of
the phase-space distribution function into account (density and velocity fields). This assumption breaks down
when dark matter particle orbits cross and leads to well-known problems, e.g., an anomalously large
backreaction of small-scale modes onto larger scales that compromises predictivity. We extend SPT by
incorporating second and higher cumulants generated by orbit crossing. For collisionless matter, their
equations of motion are completely fixed by the Vlasov-Poisson system, and thus we refer to this approach as
Vlasov Perturbation Theory (VPT). Even cumulants develop a background value, and they enter the
hierarchy of coupled equations for the fluctuations. The background values are in turn sourced by power
spectra of the fluctuations. The latter can be brought into a form that is formally analogous to SPT, but with an
extended set of variables and linear as well as nonlinear terms, that we derive explicitly. In this paper, we
focus on linear solutions, which are far richer than in SPT, showing that modes that cross the dispersion scale
set by the second cumulant are highly suppressed. We derive stability conditions on the background values of
even cumulants from the requirement that exponential instabilities be absent. We also compute the expected
magnitude of averaged higher cumulants for various halo models and show that they satisfy the stability
conditions. Finally, we derive self-consistent solutions of perturbations and background values for a scaling
universe and study the convergence of the cumulant expansion. The VPT framework provides a conceptually
straightforward and deterministic extension of SPT that accounts for the decoupling of small-scale modes.

DOI: 10.1103/PhysRevD.107.063539

I. INTRODUCTION

Some aspects of gravitational clustering in cosmology
are still poorly understood, despite decades of work and
progress. Two shortcomings of standard perturbation
theory (hereafter SPT, see [1] for a review) in particular,
motivate the present work.
Simulations have established over two decades ago

that for initial conditions with blue spectra nonlinear
growth is suppressed compared to linear [2]. This is in
contrast with red or cold dark matter (CDM)-like initial
spectra which show the familiar enhancement at small
scales. Unfortunately, SPT quickly breaks down before it
can actually provide any useful understanding of this
remarkable property of gravitational clustering, giving UV
divergences for spectral indices ns ≥ −1 [3,4]. In addition,
the bluer the spectra the worse these UV divergences

become, when in fact small-scale clustering is actually
most suppressed compared to linear expectations.
A better understanding of the nonlinear regime must also

address how nonlinear modes decouple from large-scale
quasilinear modes. A quick look at simulations makes clear
that small-scale regions form fairly stable objects that
decouple from the expansion of the universe: dark matter
halos. What is the backreaction of these halos on large-
scale structure? In SPT there is none, as the theory is
expanded about free linear modes that know nothing about
halo formation, even for the shortest wavelengths. In halo
models of gravitational clustering [5] prescriptions are built
to marry SPT at large scales with halos at small scales, but
these provide little insight into the physics by which such
decoupling takes place. Measurements of the response
function in simulations [6,7] also highlight that the non-
linear power depends on linear modes weaker than SPT
dictates, presumably related to decoupling.
Recent work on large-scale structure has focussed on

effective field theory (EFT) [8,9], which adds to SPT
counterterms consistent with the symmetries whose
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amplitudes are determined from fitting simulation mea-
surements of clustering statistics. These counterterms are
derived from a derivative expansion of the stress tensor,
valid at large scales. When allowing for the most general
form compatible with symmetries, the counterterms
parameterize the way how small-scale physics can modify
SPT predictions in the large-scale limit, while deliberately
being ignorant about the origin of these modifications. By
construction, an EFT approach therefore can neither
explain nor take advantage of the decoupling mentioned
above. Since the counterterms also correct the leading
sensitivities to the highly nonlinear regime that SPT has as
a result of loop integrations over free linear modes, there is
little physical insight to be extracted from their amplitude,
and they need to be treated as free parameters in practice.
While this approach is certainly possible and useful in
particular applications, it is nevertheless tempting to try to
take advantage of the decoupling of UV modes in order to
obtain a predictive framework of perturbation theory that
systematically improves over SPT without the need to
introduce a large set of free parameters.
The shortcomings of SPT can be traced back to the key

assumption that the equations of motion for CDM corre-
spond to a pressureless perfect fluid at all times. This
ignores the physics of orbit crossing (or shell crossing in the
spherical dynamics language), which generates at once all
higher cumulants of the phase-space distribution function
(DF) beyond the density and velocity fields, giving rise to
the Vlasov hierarchy [10]. As we shall discuss in this paper,
when this physics is incorporated one can expand the
equations of motion about a new linear theory that knows
about small-scale orbit crossing through the expectation
values of the cumulants of the DF. This simultaneously
incorporates the decoupling of large from small-scale modes
and explains the trends of clustering in the nonlinear regime
with spectral index [11], showing that the motivations cited
above are two sides of the same coin.
The purpose of the present paper is to introduce the main

ideas behind our approach based on the Vlasov hierarchy,
and in particular explore in detail its linearized solutions
which are far richer than that in SPT. We also highlight the
connections between certain physical quantities (expect-
ation values of cumulants of the DF) that can be estimated
from dark matter halos and use these results to gain some
intuition about the size of the effects beyond SPT and the
stability of the linear solutions. Furthermore, we develop the
formalism for a systematic perturbative expansion when
taking second and higher cumulants into account, and
provide explicit results for the nonlinear terms in the
corresponding extended set of equations of motion. We
will commonly refer to the perturbative expansion incor-
porating second or higher cumulants as Vlasov Perturbation
Theory (VPT). Solutions taking nonlinear corrections into
account are studied in detail in a companion work [11]
(hereafter paper II).

Our main aim in these papers is to investigate to what
extent perturbative techniques for gravitational clustering
can be improved by taking advantage of the underlying
collisionless dynamics. This builds on previous results
in the literature that explored some aspects of the Vlasov
hierarchy truncated at the second cumulant, in particular
corrections to large-scale modes using a low-k expansion
[12] and the more systematic approach in [13,14]. An
active field of related research has been to study the
growth of velocity dispersion and other shell-crossing
aspects from the point of view of Lagrangian perturbation
theory [15–27]. Along similar lines, [28–32] investigate
how to match Lagrangian perturbation theory to dark
matter halos at small scales to incorporate some aspects of
shell-crossing. Complementary insights to Vlasov colli-
sionless dynamics have resulted from the development of
numerical codes to follow the phase-space distribution
function [33–41], as well as using the Schrödinger
equation to model collisionless dynamics [42–51].

II. ROADMAP FOR READING THIS PAPER

Let us now briefly discuss how our work is organized,
giving the reader a roadmap to approach this paper, and to
what extent different sections depend on each other.
In Sec. III we present a computation of average values of

cumulants of the DF for two familiar static halo models, in
order to gain some intuition on the expected magnitude of
the cumulant expectation values. This section is fairly
independent of the VPT framework which is developed
in the following sections. The main purpose of Sec. III is to
compute the non-Gaussianity of the distribution function
(through the values of the normalized cumulants expect-
ation values) that are used later in Sec. VIII D to derive the
conditions under which the linear solutions are well
behaved. In addition, we compute the value of the
dispersion scale expected from halos, this is used to
compare with the self-consistent dispersion within VPT
in paper II [11]. Further details are provided in Appendix A.
After this prelude, we start to develop the extended

framework of cosmological perturbation theory for large-
scale structure in Sec. IV, where we review the cumulant
generating function and the underlying Vlasov dynamics.
Next, in Sec. V, we derive the extension of SPT taking the
second cumulant into account, i.e., the velocity dispersion
tensor. We discuss the decomposition into expectation
value and perturbations and derive their general nonlinear
equations of motion. Appendices B and C complete the
equations of motion at the second-cumulant level and give
explicit results for the vertices, respectively.
The extension of the VPT framework to higher cumu-

lants is discussed in Sec. VI. The corresponding ingredients
in their equations of motion are given in Appendix D.
The nonlinear contributions in Secs. V and VI can be
ignored in a first read if desired, as they are only used later
in paper II [11] to compute loop corrections.

GARNY, LAXHUBER, and SCOCCIMARRO PHYS. REV. D 107, 063539 (2023)

063539-2



In the remaining part of this work, we focus on the
linear approximation. We start in Sec. VII, discussing
analytical solutions in the second cumulant approxima-
tion, and changes when taking the third and fourth
cumulant into account. We highlight how the VPT
solutions differ from a collisional fluid with viscosity,
in particular in connection to the evolution of cosmic
energy, which is discussed in detail in Appendix E. In
addition, Appendix F presents the linear kernels in VPT
for the second cumulant approximation.
We then proceed to derive coupled equations up to

arbitrary cumulant order in the linear approximation in
Sec. VIII. They involve expectation values for all even
cumulants. We analytically derive conditions on their size
from the requirement of stability, and compare them to the
values for halos derived in Sec. III. Appendix G present
results for the linear kernels of the full cumulant hierarchy.

Finally, we apply the formalism to a scaling universe in
Sec. IX, where certain simplifications occur. This allows us
to derive self-consistent solutions for the cumulant expect-
ation values (up to the eighth cumulant), and discuss the
convergence with respect to the truncation order of the
cumulant expansion. The conclusions are then presented
in Sec. X.
For convenience, here we collect the most important

variables of VPT. They are given in Table I below, where
we also give a short description and refer to their corre-
sponding equations. This table can be useful to keep track
of different quantities when going through the text.

III. HALO MODEL FOR DISPERSION
AND HIGHER CUMULANTS

We are interested in understanding what one can expect
about the order of magnitude of the cumulants of the

TABLE I. A brief summary of the most important variables of the VPT framework. First (from left) we provide the corresponding
symbol with a short description of it, while the third and fourth columns refer to the equations where they are defined and their evolution
written down, respectively. Whenever we omit the argument for brevity, each quantity has time and wave number dependence. In
addition, the symbols in the first block also depend on the external parameter L. The Taylor expansion in L then yields the expressions
of the symbols in the next block. Note that each cumulant order n has been rescaled by the time-dependent factor of ð−HfÞn (see
Eq. (42).

Variable Description Definition Equation of motion

C̃ Cumulant generating function Eqs. (37) and (83), see also Eq. (90) Eq. (87)
Eðη; L2Þ Ensemble average of C̃ Eq. (88), see also Eq. (91) Eq. (89)
QEðη; L2Þ Source term for E Eqs. (89) and (137)
δC̃ Perturbation of C̃ Eq. (97) Eq. (98)
Cl Multipole decomposition of δC̃ Eqs. (131) and (133) Eq. (135) (linear)

C̃i1;…;in
nth cumulant Eqs. (84) and (85)

E2nðηÞ Background value of 2nth (even) cumulant Eqs. (13) and (92), see also Eq. (21) Eqs. (G4) and (G7) (linear)
QE2nðηÞ Source term for E2n Eq. (G5)
Cl;2n Transfer functions up to cumulant order lþ 2n Eqs. (139) and (145) Eqs. (G1) and (G6) (linear)

ln ð1þ δÞ 0th cumulant (density contrast) Eq. (32) Eqs. (43) and (69)

ui 1st cumulant (peculiar velocity) Eq. (34) Eq. (44)
θ Velocity divergence (scalar mode of ui) Eq. (56) Eqs. (50) and (71)
wi Vorticity (vector mode of ui) Eq. (53) Eqs. (54) and (B1)

ϵij 2nd cumulant (velocity dispersion) Eq. (35) Eq. (45)
ϵðηÞ Background value of ϵij Eq. (46) Eq. (47)
QðηÞ Source term for ϵðηÞ Eqs. (48) and (100)
δϵ; g Scalar modes of ϵij Eq. (58) Eqs. (64), (B2), and (B3)
νi Vector modes of ϵij Eq. (59) Eqs. (67) and (B4)
tij Tensor modes of ϵij Eq. (60) Eqs. (67) and (B5)

πijk 3rd cumulant Eq. (84) Eq. (87) and Eq. (7) in [11]
π, χ Scalar modes of πijk Eq. (99) Eq. (101) (linear)

Λijkl 4th cumulant Eq. (84) Eq. (87)
ωðηÞ Background value of Λijkl Eq. (86) Eq. (100)
QωðηÞ Source term for ωðηÞ Eqs. (96) and (100)
κ, ξ, ψ Scalar modes of Λijkl Eq. (99) Eq. (101) (linear)
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phase-space distribution function fðr;p; tÞ. For collision-
less, noninteracting dark matter particles, the phase-space
density is conserved along the particle trajectories,
0 ¼ df=dτ, which yields the Vlasov (or collisionless
Boltzmann) equation. As mentioned above, while SPT
neglects dispersion (second cumulant) and higher cumulants
of f, these are all generated at once by orbit crossing [10] at
small scales and therefore are nontrivial in dark matter
halos. To gain some insight into the properties expected
from cumulants in halos we consider two models, with
different (approximately orthogonal) approximations. Both
of these models are solutions to the Vlasov equation

∂f
∂t

þ p ·
∂f
∂r

−∇Φ ·
∂f
∂p

¼ p ·
∂f
∂r

−∇Φ ·
∂f
∂p

¼ 0; ð1Þ

in the steady-state limit fðr;p; tÞ ¼ fðr;pÞ. This is so
because the distribution function is a function of phase-
space coordinates only through integrals of motion, such as
energy and angular momentum. The gravitational potential
obeys the Poisson equation,

∇2Φ ¼ 4πGρ ¼ 4πG
Z

fðr;pÞd3p; ð2Þ

with ρ the density profile of the halo. Note in this section
we consider isolated halos, so it is most convenient to
work with the full density field and physical coordinates
and momenta. In the next section, where we discuss the
perturbative approach to the time-dependent Vlasov equa-
tion in structure formation we switch to comoving
coordinates and momenta, and work with dimensionless
density perturbations.
The first halo model we consider is an axisymmetric halo

which can be nonspherical, with a flat rotation curve. It has
a simple analytic form for the distribution function [52,53]
that depends on energy and the z-component of the angular
momentum and in which the expectation value for the
cumulants can be calculated analytically as a function of
halo shape. It has been used to model the dark matter halo
of the Milky Way to infer deviations from spherical
symmetry from microlensing observations [54–56].
Apart from its analytic interest, this model gives us some
insight about the dependence of cumulants on deviations of
spherical symmetry.
The second halo model is the Navarro-Frenk-White

(NFW) profile [57], which is a reasonable fit to well-
relaxed spherically averaged CDM halos in cosmological
N-body simulations. Under the assumption of spherical
symmetry, the distribution function depends on phase-
space coordinates through energy and the square of the
angular momentum; in particular we consider the case of
constant anisotropy where the angular momentum depend-
ence is a power-law. While we lose the halo-shape
information, this approach has the advantage that one
can integrate over the halo mass function calibrated from

simulations to obtain realistic estimates for the expectation
values of cumulants in a given cosmology.

A. Evans halos

Let us start from the phase-space density f for an
axisymmetric halo, due to Evans [52], which is a function
of phase-space coordinates through the energy E ¼ p2=2þ
Φ and angular momentum Lz ¼ pϕ, whereΦ is assumed to
be logarithmic (see Eq. (9) below) and use units where the
particle mass is unity. It reads,

fðr;pÞ ¼ ðAL2
z þ BÞ expð−2E=σ2Þ þ C expð−E=σ2Þ; ð3Þ

where σ is a characteristic (constant) velocity dispersion
scale, and A, B, C are constants specified below in a
different parametrization. For the most part, we are inter-
ested in normalized cumulants, so the overall value of σ
will drop out from the quantities we are interesting in. We
can rewrite Eq. (3) in a more convenient form for our
purposes as follows,

f ¼ ρ

��
wa

p2
ϕ

σ2=2
þ wb

�
fð1=2ÞG ðpÞ þ wcf

ð1Þ
G ðpÞ

�
; ð4Þ

where ρ is the density profile, fðnÞG denotes a Gaussian
probability distribution with variance nσ2 in each dimen-
sion. Note that each of the three momentum-dependent
terms in Eq. (4) integrates to unity over all phase-space.
The weights wi are functions of the location inside the halo
(characterized by cylindrical coordinates R;ϕ; z) and add
up to unity, i.e., wa þ wb þ wc ¼ 1. They are given by

wa ≡ a
aþ bþ c

; wb ≡ b
aþ bþ c

;

wc ≡ c
aþ bþ c

; ð5Þ

with

a≡ 2ð1 − q2ÞR2

ξ4
; b≡ 2R2

c

ξ4
; c≡ ð2q2 − 1Þ

ξ2
; ð6Þ

and

ξ2 ≡ R2 þ R2
c þ z2=q2; ð7Þ

where Rc is a core radius and q is a shape parameter that
describes oblate (q < 1), spherical (q ¼ 1) and prolate
(q > 1) halos. High-resolution simulations show that dark
matter halos are generically triaxial, but on average closer
to prolate, although backreaction from baryons makes them
more spherical overall and closer to oblate [58,59].
Imposing positivity of the density everywhere and of the
distribution function itself, leads to the constraint 1=

ffiffiffi
2

p
≤

q ≤ 1.08 [52].
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The density profile is given by ρ ¼ Aðaþ bþ cÞ, with
A≡ σ2=ð2πGq2Þ, and thus,

ρ ¼ A

�
R2 þ ð2q2 þ 1ÞR2

c þ ð2q2 − 1Þz2=q2
ξ4

�
; ð8Þ

which satisfies the Poisson equation for the logarithmic
Newtonian potential

Φ ¼ σ2 lnðξ2Þ þ const: ð9Þ

From Eqs. (8) and (9) we see that the Evans density profile
has an oblateness/prolateness that depends on location in
the halo, it is rather the equipotentials that are oblate/prolate
independent of location inside the halo.
Note that f given by Eq. (3) is even in Lz, one can always

add to this f a contribution odd in Lz (which will
correspond to adding net rotation to the halo). This will
not change the density profile, but will induce odd
moments of f, which for Eq. (3) are all zero. To compute
the cumulants, it is convenient to calculate directly the
cumulant generating function (CGF)

Cðr; lÞ≡ ln

�Z
d3pel·pfðr;pÞ

�

¼ ln ρþ Cili þ Cij
lilj
2!

þ Cijk
liljlk
3!

þ � � � ; ð10Þ

where in the second expression we introduced the Taylor
expansion that identifies the cumulant themselves, i.e.,
Ci…jðrÞ≡∇li…∇ljCjl¼0. Given the expression of fðr;pÞ
in terms of Gaussian distributions, Eq. (4), the CGF can be
obtained right away,

Cðr; lÞ ¼ ln

��
wa

�
1þ ðl · ϕ̂Þ2

2

�
þ wb

�
el

2=4 þ wcel
2=2

�
þ ln ρ; ð11Þ

where ϕ̂ is the unit vector in the ϕ direction and we have
scaled out the σ dependence, i.e., lσ → l; this corresponds
to calculating dimensionless cumulants normalized by the
corresponding power of the constant σ in this model. Since
the CGF is quadratic in its argument, only even cumulants
are nontrivial in this model. For example, the normalized
velocity dispersion tensor σ̂ij ≡ σij=σ2 ¼ Cij gives,

σ̂ij ¼
�
1

2
wa þ

1

2
wb þ wc

�
δKij þ waϕ̂iϕ̂j; ð12Þ

where δKij is the unit matrix. This in turn yields a trace of
σ̂ii ¼ 5wa=2þ 3wb=2þ 3wc. As mentioned earlier, we are
mostly interested here in the expectation values of the
cumulants, which should be dominated by halo contribu-
tions where shell crossing is most severe, and where
perturbation theory is least reliable. By symmetry only

even cumulants have nonzero expectation values, and they
are spatially homogeneous. In halo models they correspond
to averaging over the halo. We introduce the expectation
values of even cumulants E2n,

E2n ≡ hCi1i1…inini
2nþ 1

: ð13Þ

Indeed, this definition gives for the expectation value of
Eq. (10) the usual definition of cumulants from the Taylor
series of the CGF

hCi ¼ hln ρi þ
X∞
n¼1

l2n

ð2nÞ! E2n; ð14Þ

where l2 ¼ l · l. The lowest cumulant expectation value
corresponds to the average velocity dispersion,

3E2 ¼
5

2
hwai þ

3

2
hwbi þ 3hwci; ð15Þ

where hi denotes averaging the weights over the halo. The
case of the fourth cumulant is instructive in two respects. It
reads,

5E4 ¼
	
35

4
wa þ

15

4
wb þ 15wc



−
�
47

4
hw2

ai þ
15

4
hw2

bi

þ 15hw2
ci þ

25

2
hwawbi þ 15hwbwci þ 15hwcwai

�
:

ð16Þ

The first thing to note is that terms being subtracted in
square brackets correspond to the usual subtraction in going
from the fourth moment (first three terms in Eq. (16) to the
fourth cumulant. But since momentum is a vector field, this
does not correspond to the usual kurtosis of a scalar, instead
we have Ciijj ¼ Miijj − 2MijMij −MiiMjj, where the
Mi…j ¼ ∇li…∇ljMjl¼0 are the moments with M ¼
expðCÞ the moment generating function. The second obser-
vation is that the subtraction requires to average over the
halo quadratic combinations of the weights wi. Let us
briefly discuss this average. We can perform an average of
the weights over a sphere of radius r as,

w̄iðrÞ≡ 3

r3

Z
r

0

dz
Z ffiffiffiffiffiffiffiffiffi

r2−z2
p

0

wiðR; zÞRdR; ð17Þ

which can be done analytically. We also need, for the
cumulants, averages of nonlinear combinations of weights.
These however do not appear to have analytic expressions,
except in the case of an infinite halo, which is what we shall
consider from now on. In this case, it is easy to check from
simple scaling that this corresponds to setting wb ¼ 0, i.e.,
the core radius Rc (fixed as r → ∞) drops out, and the
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halo-shape parameter q remains the only quantity in the
problem. Since the weights add up to unity, for infinite halos
everything can be written in terms of wa, which simplifies
the expressions. Equations (15) and (16) become then

E2 ¼ 1 −
1

6
hwai; E4 ¼ −

1

4
hwai −

7

20
hw2

ai; ð18Þ

whereas the full expressions for the sixth and eighth
cumulants, presented in Appendix A, become

E6 ¼
15

8
hwai þ

27

8
hw2

ai −
27

28
hw3

ai ð19Þ

E8 ¼ −
175

16
hwai −

791

16
hw2

ai þ
15

4
hw3

ai −
107

8
hw4

ai: ð20Þ

The halo averages hwn
ai are functions of the halo-shape

parameter q, resulting in reasonably simple expressions for
E2nðqÞ as given in Appendix A. We can introduce the
standard normalized cumulant expectation values (n > 1)

Ē2n ≡ E2n

En
2

; ð21Þ

which correspond to the (dimensionless) kurtosis (n ¼ 2),
etc, and characterize how non-Gaussian the distribution
function is. Figure 1 shows these as a function of q for the
whole range allowed by positivity constraints. We see that
from the point of view of the kurtosis, non-Gaussianity is
always weak (jĒ4j < 1) independent of halo shape but the
same is not true for higher cumulants in the case of oblate
halos. Spherical halos are Gaussian as the distribution
function becomes Maxwellian in this case (wa ¼ 0). We
discuss the implication of these results for the stability of the
linear perturbative solutions in Sec. VIII D.

B. NFW halos

We now assume halos with a spherical density profile,
the distribution function therefore depends on energy and
the square the angular momentum, f ¼ fðE;L2Þ, or
fðr;pÞ ¼ fðr; p;p · rÞ. We are particularly interested in
the simple case of constant anisotropy, where the distri-
bution function takes a simple form

fðE;L2Þ ¼ L−2βfEðEÞ; ð22Þ

where −∞ ≤ β ≤ 1 is a constant that characterizes devia-
tions from isotropy (β ¼ 0). In particular, β measures the
anisotropy of the velocity dispersion tensor,

β ¼ 1 −
σθθ þ σϕϕ

2σrr
¼ 1 −

σθθ
σrr

; ð23Þ

where the last equality uses spherical symmetry. Models
with β > 0 are said to be radially biased, while those with
β < 0 are tangentially biased [60]. If all orbits are circular,
then σrr ¼ 0 and β ¼ −∞. If all orbits are radial σθθ ¼
σϕϕ ¼ 0 and β ¼ 1.
Our results in this section hold for general β ¼ const and

any spherical density profile. However, when computing the
expectation value of cumulants, we will take for simplicity
the case of β ¼ 0; 1=2 (as this brackets the radial depend-
ence of β in cosmological simulations [61–63]) and an
NFW density profile. More sophisticated models of the
distribution function with radial dependent β have been
developed (e.g., [62,64,65]); in our case, however, we are
interested in expectation values of cumulants which are
dominated by the outer parts of the halo where β ≈ 1=2. The
NFW density profile for a halowith massm is given by [57],

ρðrÞ ¼ muðrÞ ¼ c3fðcÞ
4πr3vir

m
xð1þ xÞ2 ; ð24Þ

where x≡ cr=rvir, and f−1ðcÞ≡ lnð1þ cÞ − c=ð1þ cÞ
guarantees that

R
d3ruðrÞ ¼ 1, where the integral is over

the volume enclosed by virial radius of the halo rvir. The
parameter c denotes the concentration of the halo, which
determines the scale radius as ≡ rvir=c where the slope of
the density profile is −2. For an infinite halo, the corre-
sponding potential that obeys the Poisson equation is,

ΦðrÞ ¼ −
Gm
rvir

cfðcÞ lnð1þ xÞ
x

: ð25Þ

The steady Vlasov equation, Eq. (1), for a distribution
function of the form given by Eq. (22) can be written in the
simple form:

p2

�
∂f
∂r

þ 2β

r
f

�
¼ dΦ

dr

�
∂f

∂ lnp
þ 2βf

�
: ð26Þ

FIG. 1. Normalized cumulants Ē4; Ē6; Ē8 (bottom to top) for
Evans infinite halos as a function of halo-shape parameter q.
Dashed lines denote negative values. When halos are spherical
(q ¼ 1), the distribution function becomes Gaussian and the
density profile isothermal.
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Multiplying by p2ðn−1Þ and integrating over all momenta,
we obtain after some algebra a simple recursion relation for
the even moments m2n we are interested in,

d
dr

½ρr2βm2n�¼ ð2n−1Þ
�

2β

2nþ1
−1

�
dΦ
dr

ρr2βm2ðn−1Þ; ð27Þ

where, in correspondence to Eq. (13), we defined

m2n ≡Mi1i1…inin

2nþ 1
; ð28Þ

for n ≥ 1, with m0 ≡ 1. Equation (27) can be integrated to
give

m2n ¼
ð2n−1Þ
ρr2β

�
1−

2β

2nþ1

�Z
∞

r

dΦ
dr

ρr2βm2ðn−1Þdr; ð29Þ

where we imposed the boundary condition that m2n → 0 at
infinity. As it turns out, it may be more realistic to do this
rather than truncating the halo at the virial radius, as
simulations show that nontruncated halo predictions for
the velocity dispersion are more accurate than truncated
ones [66,67].
Using Eq. (29) we can construct all moments of the

distribution function starting from any density-potential
pair and any value of β. Integrating over the halo, one can
then obtain their expectation values and thus the expect-
ation values of the cumulants E2n. For n ¼ 1, this gives us
the velocity dispersion, which we shall use in paper II to
compute the dispersion scale from halos by integrating this
result over the halo mass function (see Sec. V B in [11]). In
this paper, we are mostly interested in the (ensemble
averaged) non-Gaussianity of f, which plays an important
role in determining the stability of the linear solutions we
shall discuss below. For this reason, we concentrate on the
normalized cumulants.

Figure 2 shows the results of such calculation for the
normalized cumulants Ē2n as a function of the halo
concentration c for a broad range of values expected from
low to high-mass halos in cosmological simulations
(c ¼ 3–50). The left panel shows Ē2n for the case where
the average is done up to the virial radius, with the upper
(lower) limit for each cumulant corresponding to β ¼ 1=2
(β ¼ 0). We see that, similarly to Evans halos, the kurtosis
is weak (jĒ4j < 1) but that higher normalized cumulants
can be larger than unity in absolute value. Indeed, Eq. (22)
suggests and Appendix A shows explicitly that the shape of
the distribution function significantly differs from a
Maxwellian and thus in general there is no parameter that
controls non-Gaussianity, unlike the case of Evans halos
where the shape parameter q plays that role.
On the other hand, it is worth exploring to what extent

this result is robust to reasonable changes. One obvious
issue is that velocity dispersion and higher cumulants do
not sharply become zero outside halos, therefore there are
more regions that contribute to cumulants than those
captured by our calculation so far. This motivates extending
the region of integration beyond the virial radius when
calculating expectation values. In addition, it has been long
known from simulations that at least for the second
cumulant, predictions from NFW halos remain reasonable
far outside the virial radius [66]. Thus, the right panel in
Fig. 2 shows the normalized cumulants in the case we
associate with a given halo a region of 1.5 times the virial
radius. Compared to the left panel, we see a suppression of
the Ē2n, which remain below unity in absolute value for all
concentrations. This suppression is due to the increase in
contributions to each cumulant (roughly proportional to the
volume), which means that normalized cumulants will get
suppressed increasingly with n due to normalization by
increasing powers of E2. Note that we still normalize the
volume average by the halo volume (up to the virial radius)

FIG. 2. Normalized cumulants Ē4; Ē6; Ē8 (bottom to top) for NFW halos as a function of halo concentration parameter c. Dashed lines
denote negative values. For each case we show results for two values of the anisotropy parameter, β ¼ 0 (lower value) and β ¼ 1=2
(higher value). The left panel corresponds to integrating out to the virial radius, whereas the right panel corresponds to when we
associate with the halo a region of 1.5 times the virial radius.
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as we are associating to the halo a larger region where
dispersion and higher cumulants are nonzero rather simply
redefining the halo size. We shall see in Sec. VIII D that in
the space of the Ē2n’s such modifications for NFW halos
give rise to a sequence that mimics varying concentration as
normalized cumulants are driven to zero (see Fig. 7 below).

IV. PERTURBATION THEORY WITH HIGHER
CUMULANTS

We now proceed with a systematic development of the
perturbative approach to the Vlasov equation. In contrast to
the previous section we switch to an expanding Friedmann-
Lemaître-Robertson-Walker background and comoving
coordinates from now on. For scales smaller than the
Hubble radius, relevant for nonlinear large-scale structure
formation, the nonrelativistic limit suffices, which reads

0 ¼ ∂f
∂τ

þ pi

a
∂f
∂xi

− að∇iΦÞ ∂f
∂pi

; ð30Þ

with conformal time τ, scale-factor a, comoving momen-
tum p (per unit particle mass), comoving coordinates x, and
gravitational potential fluctuation Φ obeying the Poisson
equation

∇2Φ ¼ 3

2
H2Ωmδ; ð31Þ

where H is the conformal Hubble rate, Ωm the time-
dependent matter density parameter, and δ the density
contrast given by the zeroth moment of the distribution
function,

1þ δ ¼
Z

d3pfðτ; x;pÞ: ð32Þ

Taking the zeroth and first moment of the Vlasov equation
yields the coupled continuity and Euler equations

∂τδþ∇i½ð1þ δÞvi� ¼ 0;

∂τvi þHvi þ vj∇jvi þ∇iΦ ¼ −∇jσij − σij∇j lnð1þ δÞ;
ð33Þ

for the density contrast and peculiar velocity field

vi ¼
1

1þ δ

Z
d3p

pi

a
fðτ; x;pÞ: ð34Þ

The widely used framework of standard perturbation theory
(SPT) is based on a perturbative solution of these equations
obtained when neglecting the right-hand side of the Euler
equation, that contains the velocity dispersion tensor

σij ¼
1

1þ δ

Z
d3p

pi

a

pj

a
fðτ; x;pÞ − vivj: ð35Þ

However, even for initially (almost) vanishing velocity
dispersion, as appropriate for cold dark matter, it is well
known that velocity dispersion is generated in the process
of nonlinear structure formation via orbit crossing [10].
In this work, we develop the extension of SPT that

includes velocity dispersion and higher cumulants of the
distribution function. The equation of motion for σij can be
obtained by taking the second moment of the Vlasov
equation, and reads

∂τσij þ 2Hσij þ vk∇kσij þ σjk∇kvi þ σik∇kvj

¼ −∇kCijk − Cijk∇k lnð1þ δÞ: ð36Þ
It depends on the third cumulant Cijl, that in turn depends
on the fourth cumulant, and so on, leading to an infinite set
of coupled equations, reminiscent of the Bogoliubov–
Born–Green–Kirkwood–Yvon (BBGKY) hierarchy in
kinetic theory. A solution can only be obtained by a
suitable truncation, and we explore the impact of higher
cumulants in our approach.
The density, velocity, dispersion and all higher cumu-

lants can be obtained from the generating function for
cumulants of the distribution function,

eCðτ;x;lÞ ¼
Z

d3pel·p=afðτ; x;pÞ: ð37Þ

This is the analog of Eq. (10) for the more appropriate
choice of coordinates to discuss time-dependent structure
formation. As discussed earlier in the halo case, the
cumulants of the distribution function are obtained by
taking derivatives with respect to the auxiliary vector l,

Cijk���ðτ; xÞ ¼ ∇li∇lj∇lk � � � Cjl¼0; ð38Þ

in particular

Cjl¼0 ¼ lnð1þ δÞ; Ci ¼ vi; Cij ¼ σij: ð39Þ

The Vlasov equation yields an equation for the generating
function given by [10]

∂τC þHðl ·∇lÞC þ ð∇CÞ · ð∇lCÞ þ ð∇ ·∇lÞC ¼ −l · ∇Φ;

ð40Þ

from which the hierarchy of equations for the cumulants
can be obtained by taking derivatives with respect to l and
setting l ¼ 0, yielding the continuity and Euler equations
Eq. (33) as well as Eq. (36) for the zeroth, first and second
derivative, respectively.
The pressureless perfect fluid approximation, on which

SPT is based, corresponds to an ansatz for C containing
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only constant and linear terms in l in the Taylor expansion
of the cumulant generating function, see Eq. (10),

CSPT ¼ lnð1þ δÞ þ l · v: ð41Þ

Remarkably, this ansatz is preserved under time-evolution
by Eq. (40), which does not generate higher powers of l, i.e.,
velocity dispersion and all higher cumulants remain exactly
zero at all times for which the solution exists. However, a
careful analysis of the Vlasov equation solution shows that
this ansatz breaks down once orbit crossing occurs, and this
solution formally ceases to exist due to a singularity in the
density contrast. In reality, this singularity is regulated by an
arbitrarily small initial velocity dispersion, which then from
Eq. (40) generates all cumulants [10]. After orbit crossing,
the superposition of orbits at any point leads to the
generation of a sizable velocity dispersion, as well as higher
cumulants which in turn generates vorticity, the curl of the
peculiar velocity field. This is one key observable that gives
us a unique window into orbit crossing [68].
In the next section we focus on the inclusion of velocity

dispersion, and then extend the formalism to include also
higher cumulants in Secs. VI and VIII.

V. SECOND CUMULANT

A. Background value and perturbations of the velocity
dispersion tensor

It is convenient to work with the normalized quantities

ui ¼
vi

−Hf
;

ϵij ¼
σij

ðHfÞ2 ;

πijk ¼
Cijk

−ðHfÞ3 ; ð42Þ

in terms of which the equations for the zeroth, first, and
second cumulants read

δ0 ¼ θ þ∇i½δui�; ð43Þ

u0i þ
�
3

2

Ωm

f2
− 1

�
ui ¼ ∇iΦ̃þ uj∇jui

þ∇jϵij þ ϵij∇j lnð1þ δÞ; ð44Þ

ϵ0ij þ 2

�
3

2

Ωm

f2
− 1

�
ϵij ¼ ul∇lϵij þ ϵjl∇lui þ ϵil∇luj

þ∇lπijl þ πijl∇l lnð1þ δÞ; ð45Þ

where 0 ¼ d=dη, η ¼ lnD, f ¼ d lnD=d ln a, D is the
usual linear growth factor and Φ̃ ¼ Φ=ðHfÞ2 the rescaled
gravitational potential satisfying ∇2Φ̃ ¼ 3

2
Ωm
f2 δ.

Mass conservation as well as statistical isotropy guar-
antee that the average values of the density contrast and
peculiar velocity fields are exactly zero. However, in
general, higher cumulants are expected to possess a non-
zero average value, that can depend only on time (not
space) due to statistical homogeneity, in analogy to, e.g.,
the square of the density contrast or the density of a
population of biased tracers. Furthermore, the expectation
value has to be compatible with isotropy, corresponding to
rotationally invariant objects. The first example occurs at
the level of the second cumulant,

hϵijðη; xÞi ¼ ϵðηÞδKij; ð46Þ

with time-dependent, homogeneous expectation value ϵðηÞ
proportional to the 3 × 3 unit matrix δKij, which corre-
sponds to the background value of the velocity dispersion.
The equation of motion for ϵðηÞ can be obtained by taking
the trace as well as the statistical ensemble average of
Eq. (45), giving

ϵ0 þ 2

�
3

2

Ωm

f2
− 1

�
ϵ ¼ QðηÞ; ð47Þ

with source term

QðηÞ≡1

3
hul∇lϵiiiþ

2

3
hϵil∇luiiþ

1

3
hπiil∇l lnð1þδÞi; ð48Þ

using hπijki ¼ 0 due to isotropy (see also [12–14] for the
case without third cumulant). Therefore, velocity dispersion
is sourced by the cross power spectrum of peculiar velocity
and the perturbations of ϵij, as well as a cross spectrum
between the third cumulant and the logarithm of the
density field perturbations. It is important to note that
what enters intoQ are these various spectra integrated over
all momenta (see Eq. (63) below). This means that there is
no sense in which ϵ can be taken as a small quantity in
general, on equal footing with density or velocity fluctua-
tions. This should also be clear from the halo discussion in
the previous section.
Our strategy for solving this system perturbatively is

then as follows: we first split all quantities in a background
value and perturbations, in particular

ϵijðη; xÞ ¼ ϵðηÞδKij þ δϵijðη; xÞ; ð49Þ

for the velocity dispersion tensor. Then we define a zeroth
order (linear) solution to these equations by keeping all
terms linear in perturbations, while formally treating the
background quantities [viz. ϵðηÞ] as quantities similar to the
Hubble rate or ΩmðηÞ. That is, we are explicitly agnostic
about the size of velocity dispersion effects in our treatment.
This allows us, as we shall see, to obtain the expected
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decoupling of UV modes due to halo formation at small
scales discussed in the introduction.
Expanding around these solutions and including non-

linear terms in the perturbation variables, one obtains a
perturbative solution to the coupled equations of motion for
the fluctuations of the cumulants. Finally, these solutions
may be used to evaluate the source term [viz.QðηÞ]. A self-
consistent solution within perturbation theory then requires
that ϵðηÞ is chosen such that it satisfies Eq. (47). We come
back to this final step in Sec. IX. Alternatively, ϵðηÞ may
also be given as an external input, for example from
simulation measurements or theoretical input, such as
the halo model discussed in Sec. III (see also paper II [11]).

B. SVT decomposition and equations of motion

We now proceed to derive equations for δϵij as well as δ
and ui, while treating ϵðηÞ as given. We start with the
velocity divergence θ ¼ ∇iui. Taking the divergence of
Eq. (44), and inserting the decomposition (49) in the
second line yields

θ0 þ
�
3

2

Ωm

f2
− 1

�
θ −

3

2

Ωm

f2
δ ¼ ∇iðuj∇juiÞ þ qθ; ð50Þ

with an extra term compared to SPT given by

qθ ¼ ϵðηÞ∇2Aþ∇i∇jδϵij þ∇iðδϵij∇jAÞ; ð51Þ

where we introduced a short-hand notation for the log-
density field,

A≡ lnð1þ δÞ: ð52Þ

For given ϵðηÞ, the first two terms on the right-hand side of
Eq. (51) can be viewed as contributing to the zeroth order
(“linear”) solution in presence of velocity dispersion, while
the last term yields an additional nonlinear term. Further
nonlinearities are generated when Taylor expanding A, and
we systematically take those terms into account by a
method discussed below.
Due to the presence of velocity dispersion terms in

Eq. (44), also a nonzero rotational component of the
peculiar velocity field, i.e., vorticity

wi ¼ εijk∇juk ¼ ð∇ × uÞi; ð53Þ

is generated [10], unlike the case of SPT where the Euler
version of Eq. (44) preserves vanishing vorticity. Indeed,
taking the curl of Eq. (44) yields an evolution equation for
the vorticity,

w0
i þ

�
3

2

Ωm

f2
− 1

�
wi ¼ ð∇ × ðuj∇juÞÞi þ ðqwÞi; ð54Þ

with

ðqwÞi ¼ εijk∇jð∇lδϵkl þ δϵkl∇lAÞ; ð55Þ

where εijk is the Levi-Civita symbol. We can formally write
the decomposition of the peculiar velocity into scalar
(divergence) and vector (vorticity) contributions as
(denoted as usual by S and V)

ui ¼ uSi þ uVi ¼ ∇i

∇2
θ −

εijk∇j

∇2
wk; ð56Þ

where ∇iwi ¼ 0. Note that operationally the inverse
Laplacian is easily written in Fourier space as −1=k2 acting
on fields at wave number k. Analogously, we decompose
the perturbations of the velocity dispersion tensor into
scalar, vector and tensor modes (denoted as S, V and T),

δϵij ¼ δϵSij þ δϵVij þ δϵTij; ð57Þ

with

δϵSij ¼ δKijδϵþ
∇i∇j

∇2
g; ð58Þ

δϵVij ¼ −
εilk∇l∇j

∇2
νk −

εjlk∇l∇i

∇2
νk; ð59Þ

δϵTij ¼ tij ≡ PT
ij;lsδϵls; ð60Þ

with ∇iνi ¼ 0, tii ¼ 0, ∇itij ¼ ∇jtij ¼ 0, and the tensor
projection operator

PT
ij;ls ¼

1

2

�
δKis −

∇i∇s

∇2

��
δKjl −

∇j∇l

∇2

�

þ 1

2

�
δKjs −

∇j∇s

∇2

��
δKil −

∇i∇l

∇2

�

−
1

2

�
δKij −

∇i∇j

∇2

��
δKls −

∇l∇s

∇2

�
; ð61Þ

with 3 × 3 unit matrix δKij. The perturbations of the velocity
dispersion tensor are therefore fully characterized by

δϵ; g; νi; tij: ð62Þ

They describe two scalar modes encoded by δϵ and
g (2 d.o.f.), a divergence-free vector νi (2 d.o.f.), and a
traceless-transverse tensor tij (2 d.o.f.), comprising all six
degrees of freedom of the symmetric velocity dispersion
tensor. We choose the notation δϵ to discriminate the scalar
perturbation mode of the velocity dispersion tensor that is
proportional to the unit matrix δij from the homogeneous
background value ϵðηÞ. Since the expectation value of ϵij is
proportional to the unit matrix, the other contributions, and
in particular g, are guaranteed to vanish in the ensemble
average.
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For the remainder of this section, we neglect πijk and
higher cumulants, coming back to them in Secs. VI and
VIII. Inserting the decomposition of Eq. (57) into the
source term Eq. (48) for ϵðηÞ then yields (see also [13])

QðηÞ ¼ 1

3

Z
d3kðPθg̃ðk; ηÞ þ 2Pwiνiðk; ηÞÞ; ð63Þ

where g̃≡ g − δϵ, and Pwiνiðk; ηÞ is the cross power
spectrum of vorticity and the vector perturbation, summed
over i ¼ 1, 2, 3. To obtain equations of motion for g and δϵ
we subtract Eq. (47) (multiplied by the unit matrix) from
Eq. (45) and contract it with δKij or ∇i∇j=∇2, respectively.
Taking suitable linear combinations of the resulting two
equations yields

δϵ0 þ 2

�
3

2

Ωm

f2
− 1

�
δϵ ¼ qϵ;

g0 þ 2

�
3

2

Ωm

f2
− 1

�
g − 2ϵθ ¼ qg; ð64Þ

where

qϵ ¼
1

2
ul∇lð3δϵþ gÞ þ δϵil∇lui −

1

2

∇i∇j

∇2
ðul∇lδϵijÞ

−
∇i∇j

∇2
ðδϵil∇lujÞ −QðηÞ;

qg ¼ −
1

2
ul∇lð3δϵþ gÞ − δϵil∇lui þ

3

2

∇i∇j

∇2
ðul∇lδϵijÞ

þ 3
∇i∇j

∇2
ðδϵil∇lujÞ: ð65Þ

The term 2ϵθ in the equation for g implies that this mode is
generated in presence of a background dispersion ϵðηÞ,
even when neglecting nonlinear terms in perturbations, as
opposed to δϵ that is a decaying mode in linear theory
(when qϵ ¼ 0 and assuming Ωm=f2 > 2=3). In turn, the g
mode leads to a nonzero source term QðηÞ through
Eq. (63), indicating that a self-consistent solution can exist
even within the linear approximation. Beyond the linear
level, the terms in qϵ and qg give further contributions, as
well as the vorticity and vector modes. Note that the source
term QðηÞ contributes to qϵ. It arises from subtracting the
background to obtain an equation for the perturbations
δϵij ¼ ϵij − ϵðηÞδKij. Therefore, this term ensures that δϵ
maintains a vanishing average value (enforcing hqϵi ¼ 0),
as appropriate for a perturbation variable. Technically, it
removes so-called tadpole contributions, see Appendix A in
paper II [11] for more details on this.
To obtain an equation for the vector mode νi, we use

νi ¼ εijk
∇j∇l

∇2
δϵkl; ð66Þ

and contract Eq. (45) with εijk∇j∇l=∇2 (after renaming
ij → kl in Eq. (45)). Contracting instead with Eq. (61) in
addition yields an equation for the tensor mode tij,

ν0i þ 2

�
3

2

Ωm

f2
− 1

�
νi − ϵwi ¼ εijk

∇j∇l

∇2
qkl;

t0ij þ 2

�
3

2

Ωm

f2
− 1

�
tij ¼ PT

ij;kl qkl; ð67Þ

where nonlinear terms in perturbations are contained in

qkl ≡ un∇nδϵkl þ δϵln∇nuk þ δϵkn∇nul: ð68Þ

Note that the term ϵwi involving the vorticity field leads to a
mixing of the vector and vorticity modes when solving the
equations of motion.
In total, up to the second cumulant, we therefore obtain

the following perturbation modes:

δ θ δϵ; g scalar 4 × 1 d.o.f.;

wi νi vector 2 × 2 d.o.f.;

tij tensor 1 × 2 d.o.f.

For practical reasons, as discussed in Sec. V C below, we
also include an extra scalar representing the log-density
field, but of course this is not an independent degree of
freedom. In Fourier space the equations of motion can be
written in a way that resembles SPT. In particular, inserting
the velocity decomposition in Eq. (56) into the continuity
equation Eq. (43) yields

δ0k − θk ¼
Z
pq

�
αpqθpδq þ

ðp × qÞ · wp

p2
δq

�
; ð69Þ

where αpq ¼ ðpþ qÞ · p=p2 is the standard expression for
the only nonlinearity in the continuity equation in SPT. The
second term on the right-hand side of Eq. (69) describes the
backreaction of vorticity on the density contrast, i.e., at the
nonlinear level the scalar δ is coupled to the vector mode of
the velocity. In Eq. (69) subscripts of the perturbation
variables denote the corresponding Fourier wave vector,
and we use the shorthand notation

Z
pq

¼
Z

d3pd3qδð3Þðk − p − qÞ: ð70Þ

The equation of motion Eq. (50) for the velocity
divergence can be rewritten analogously, using Eq. (56)
as well as the decomposition Eq. (57) of the velocity
dispersion tensor δϵij,
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θ0k þ
�
3

2

Ωm

f2
− 1

�
θk −

3

2

Ωm

f2
δk þ k2ðδϵk þ gk þ ϵAkÞ

¼
Z
pq

�
βpqθpθq þ

�
1þ 2p · q

q2

� ðp × qÞ · wp

p2
θq

−
ðp × qÞ · wp

p2

ðp × qÞ · wq

q2

− ðpþ qÞ · pApδϵq − ðpþ qÞ · q q · p
q2

Apgq

þ
�
1þ 2p · q

q2

�
Apðp × qÞ · νq − Appipjtq;ij

�
; ð71Þ

where βpq ¼ ðpþ qÞ2p · q=ð2p2q2Þ is the standard expres-
sion for the only nonlinearity in the Euler equation in SPT.
Note that already at the linear level, the terms proportional
to k2 in the first line describe a “Jeans-like” suppression
arising from a nonzero velocity dispersion at the perturba-
tion (δϵk þ gk) as well as background (ϵAk) level. In
particular, the last term is formally analogous to a pressure
or sound speed contribution, which can be seen if one would
expand Ak ¼ ½lnð1þ δÞ�k linearly. Nevertheless, the inter-
pretation in terms of sound speed would be conceptually
misleading, since we do not consider any microscopic
interactions apart from gravity. The Jeans suppression in
a fluid arises because pressure due to collisions resists
gravitational collapse at small scales; in our case we have
instead a collisionless system. The suppression is the
damping of small-scale fluctuations because particles can
cross each other without interacting (i.e., “shell-cross”), thus
the physical situation is in sharp contrast with that of a fluid
despite the net effect being similar.
Another noteworthy feature of this damping is that it

depends on the perturbation modes of the velocity
dispersion tensor, and cannot be associated with the
isotropic part of the dispersion tensor alone as the aniso-
tropic part gk contributes as well at the same order in
perturbation theory. That background and perturbation
modes of the dispersion tensor contribute to the same order
arises because the stress tensor contribution (whose diver-
gence enters in momentum conservation) is given by
ð1þ δÞϵij. An additional point of contact with fluids that
is worth mentioning here is that the term from the
anisotropic part gk looks superficially similar to viscosity
in the Navier-Stokes equation, given that in linear theory
g ∼ ϵθ (see Eq. (64) and in particular Sec. VII for a more
detailed discussion). Again, this identification is misleading
as there is no dissipation in the Vlasov equation. This is also
made explicit by the form of the energy conservation
equation, which contains no viscosity type contributions
(see Sec. VII).
Given all these subtleties it is worth asking whether

damping at small scales is always guaranteed. This is
important because this damping will describe precisely
what we termed earlier as the “decoupling” of high-k

modes induced by small-scale orbit crossing, and has a
direct impact on the convergence of VPTwhen considering
loop corrections (see paper II [11]). In fact, the details of the
high-k linear response depend on the expectation value of
the full distribution function and as we shall see when going
beyond the second cumulant, it is in principle possible to
have instabilities, i.e., small-scale enhancement rather than
suppression, which stands in sharp contrast with the
response in normal fluids that are always stable at scales
below the Jeans length. See Sec. VIII D for the discussion
of stability conditions along these lines.
Finally, we note that the velocity divergence evolution

in Eq. (71) is affected by additional nonlinear terms as
compared to the SPT contribution βpq. In particular, the
second and third line describe vorticity backreaction on
the divergence field, while the fourth and fifth line contain
the nonlinear terms involving the scalar as well as vector
and tensor perturbations of δϵij, respectively. This makes
clear that, as expected, at the nonlinear level the scalar,
vector and tensor modes are coupled to each other.
The equations of motion for the remaining fields

δϵ; g; wi; νi and tij can be written in a similar way in
Fourier space. Since they become rather lengthy they are
presented in Appendix B.

C. Treatment of A= lnð1 + δÞ
The equation of motion for the velocity divergence and

the vorticity involves the log-density field A ¼ lnð1þ δÞ.
In a perturbative solution, expanding the logarithm would
generate an infinite series of nonlinear terms, that are
inconvenient to treat. Another strategy could be to use A
instead of δ as a perturbation variable [69]. However, in that
case one would have to express the density contrast as
δ ¼ eA − 1 within the Poisson term on the left-hand side of
Eq. (71), which again entails an infinite tower of nonlinear
terms when solving perturbatively in powers of A. In
addition, this choice would be inconvenient for computing
the matter density power spectrum Pδδ, although dealing
with A as an observable rather than δ has some interesting
statistical advantages (e.g., see [70–73]).
Therefore, we follow a different approach here. We keep

δ as independent variable, such that the Poisson term in
Eq. (71) can be easily evaluated, and allowing us to compute
Pδδ straightforwardly. In addition, we complement the set of
variables by A, and solve the equation of motion for A along
with all other modes. It can be obtained by dividing Eq. (43)
by 1þ δ, and is similar in form to Eq. (69), except for the
coefficient of the first nonlinear term,

A0
k − θk ¼

Z
pq

�
q · p
p2

θpAq þ
ðp × qÞ · wp

p2
Aq

�
: ð72Þ

In a perturbative solution this generates all contributions to
A evaluated at a given order in perturbation theory. The
latter can in turn be used to compute the contributions on
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the right-hand side of Eq. (71) that involve A. In practice,
this means we have to solve for five instead of four scalar
modes, being δ; θ; δϵ; g; A, each of them with an equation
of motion that involves at most quadratic terms in the full
set of perturbation variables.
In contrast to δ, A possesses a nonzero average value,

A≡ hAi: ð73Þ

Its equation can be derived by taking the ensemble average
of Eq. (43) divided by 1þ δ,

A0 ¼ QAðηÞ; QAðηÞ≡ −
Z

d3kPθAðk; ηÞ: ð74Þ

Since only spatial derivatives of A enter in Eq. (71) [this can
also be seen from Eq. (44)], the homogeneous partA drops
out in the Euler equation, and is not needed. In practice, this
means we can use Eq. (72) and ignore the difference
between δA ¼ A −A and A as long as we use the log-
density field only as an input for solving the equations of
motion of the other perturbation variables. For a more
detailed argument, we refer to Appendix A in paper II [11].

D. Equations of motion in matrix form

It is convenient to write the equations of motion in the
familiar matrix form, by defining a vector of perturbation
variables

ψ ≡ ðδ; θ; g; δϵ; A; wi; νi; tijÞ: ð75Þ

The equations of motion can then be brought into the
standard form [74]

ψ 0
k;aðηÞ þΩabðk;ηÞψk;bðηÞ ¼

Z
pq
γabcðp;qÞψp;bðηÞψq;cðηÞ;

ð76Þ

where the subscript labels the wave vector as well as the
component of ψ . Here the index a is understood to run over
all types of perturbations as well as their components, in
case of vector and tensor modes. Summation over repeated
indices is implied. Nonlinear terms are described by the
coupling functions γabcðp; qÞ, that we refer to as vertices.
The linear evolution in presence of a background

dispersion ϵðηÞ is governed by the scale- and time-dependent
matrix Ωabðk; ηÞ. It has a block-diagonal form when group-
ing the perturbation vector ψ ¼ ðψS;ψV;ψTÞ into subsets of
scalar, vector and tensor modes, respectively,

Ω ¼

0
B@ΩS

ΩV

ΩT

1
CA; ð77Þ

with vanishing off-diagonal entries implied by rotational
symmetry. Using the approximation Ωm=f2 → 1 (see paper
II [11] for the general form), the scalar part is given by

ΩS ¼

0
BBBBBB@

−1
−3=2 1=2 k2 k2 k2ϵ

−2ϵ 1

1

−1

1
CCCCCCA
; ð78Þ

for ψS ¼ ðδ; θ; g; δϵ; AÞ. The upper left two-by-two subma-
trix corresponds to the familiar SPT case in the limit of
vanishing background dispersion ϵðηÞ. The second row
corresponds to the Euler equation. Its third and fourth
column capture the impact of scalar perturbation modes g
and δϵ of the velocity dispersion at linear level. Their
equation of motion is contained in the third and fourth
row. The fifth column contains the suppression term related
to background dispersion as discussed above. The linear part
of the equations for δ (first row) and A (last row) are
identical, with a difference arising only at nonlinear level due
to differences in their vertices. For the vector and tensor
parts, one obtains

ΩV ¼
�
1=2 k2

−ϵ 1

�
; ΩT ¼ 1; ð79Þ

where the 2 × 2 vector matrix describes a mixing of vorticity
wi and the vector mode νi of the velocity dispersion tensor.
They are understood to apply separately to each i ¼ x, y, z
component of the doublet ðwi; νiÞ, and for each ij compo-
nent of tij, respectively. Therefore, components with differ-
ent spatial indices evolve separately from each other at the
linear level.
The nonlinear vertices γabc couple scalar, vector and

tensor modes among themselves but also to each other,
respecting rotational symmetry at the nonlinear level. From
Eq. (69) one obtains for example

γδθδðp; qÞ ¼
1

2
αpq; γδwiδðp; qÞ ¼

1

2

ðp × qÞi
p2

; ð80Þ

with the first one being the usual SPT expression, and the
second a vorticity backreaction contribution to the density
contrast. Another example derived from the equation of
motion for vorticity, Eq. (B1) is

γwiAðδϵÞ ¼
1

2
ðp × qÞi; γwiAg ¼ −

1

2

p · q
q2

ðp × qÞi: ð81Þ

These vertices capture the generation of vorticity from two
scalar perturbations, related to the log-density as well as
velocity dispersion perturbations. For a discussion of the
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generation of vorticity within this framework we refer to
paper II [11].
All other nonzero γabc can be read off from the Fourier

space equations of motion given above and in Appendix B
in a similar way. We are free to assume that they are
symmetrized,

γabcðp; qÞ ¼ γacbðq;pÞ; ð82Þ

leading to factors of 1=2 for b ≠ c. Note that this property
holds for all perturbation types, including vorticity, when
interchanging both the wave number as well as the last two
indices. The full set of vertices is collected in Appendix C.
The structure of the equation of motion Eq. (76) suggests

that a perturbative solution analogous to SPT is possible.
Such a solution can indeed be obtained following a
strategy that is a generalization of the well-known recursion
relations for nonlinear kernels known from SPT [1,75].
However, apart from the fact that a separate kernel for each
perturbation mode is required, and a large number of
vertices contributes, the recursion relations take the form
of differential instead of algebraic equations due to the
η-dependence of Ωabðk; ηÞ. An algorithm to deal with a
time- and scale-dependent Ωabðk; ηÞ matrix has been
developed in [76,77], and we present nonlinear solutions
using an extension of this algorithm in paper II [11]. We
emphasize again that our hybrid treatment of including both
δ and A as variables allows us to capture all nonlinear
terms by contributions that are quadratic in ψ . This is an
important requirement for an efficient algorithm to deter-
mine solutions at higher order in perturbation theory.

VI. HIGHER CUMULANTS

In this section we discuss how to incorporate cumulants
of the distribution function above the velocity dispersion
tensor. While these are generically suppressed in a hydro-
dynamic context, where the distribution function is close to
local thermal equilibrium, nonlinear processes related to
shell-crossing generate a highly nontrivial distribution
function, at least at small scales. One example of this
situation was highlighted by halo models in Sec. III (see
also Appendix A). Nevertheless, within the domain of
validity of perturbative methods, i.e., on sufficiently large
scales, the total impact of higher cumulants on observables
is expected to become more and more suppressed.
Therefore, it is important to quantify the impact of higher
cumulants on the framework presented so far.

A. Split of cumulant generating function into
background values and perturbation modes

For the discussion of higher cumulants it is convenient to
use the generating functional, Eq. (37). Here we define a
rescaled version,

C̃ðη; x;LÞ≡ Cðτ; x; lÞ; l ¼ L
ð−fHÞ ; ð83Þ

where η ¼ lnðDÞ. Setting

C̃i1;…;in ≡∇Li1
� � �∇Lin

C̃jL¼0; ð84Þ

we directly obtain the rescaled peculiar velocity, velocity
dispersion and higher cumulants,

ui ¼ C̃i; ϵij ¼ C̃ij; πijk ¼ C̃ijk; Λijkl ¼ C̃ijkl; ð85Þ

in agreement with Eq. (42). In addition, we introduced also
the fourth cumulant Λijkl. Assuming statistical isotropy the
third cumulant has vanishing ensemble average, while the
fourth cumulant can have an expectation value ωðηÞ,

hπijki ¼ 0;

hΛijkli ¼ ðδKijδKkl þ 2 cycÞωðηÞ
5

; ð86Þ

with the normalization chosen such that hΛijkki ¼ ωðηÞδKij,
where δKij is the unit matrix. The equation for the expect-
ation value ωðηÞ as well as the perturbations including
higher cumulants can be derived conveniently from the
equation of motion Eq. (40) of the generating function.
Taking the time-dependent rescaling into account, it reads

∂ηC̃ þ
�
3

2

Ωm

f2
− 1

�
ðL ·∇LÞC̃

− ð∇C̃Þ · ð∇LC̃Þ − ð∇ ·∇LÞC̃ ¼ L ·∇Φ̃: ð87Þ

It is convenient to consider the ensemble average of the
generating function itself. Assuming statistical homo-
geneity and isotropy it is independent of x and can depend
only on L2 ≡ L2,

Eðη; L2Þ≡ hC̃ðη; x;LÞi: ð88Þ

Taking the ensemble average of Eq. (87) and averaging
over the direction of L yields its equation of motion�
∂η þ

�
3

2

Ωm

f2
− 1

�
∂

∂ lnL

�
E ¼ QE ≡

Z
dΩL

4π
h∇C̃ · ∇LC̃i:

ð89Þ

The equations for the expectation values of the individual
cumulants can be obtained by Taylor expanding inL, using

C̃ ¼ Aþ Liui þ
1

2
LiLjϵij þ

1

6
LiLjLkπijk

þ 1

24
LiLjLkLlΛijkl þ � � � ; ð90Þ
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with the ellipsis standing for fifth and higher cumulants.
Taking the ensemble average and using the definitions of
the expectations values in Eqs. (46), (73), and (86) of the
zeroth, second and fourth cumulant, respectively, yields

E ¼ AðηÞ þ 1

2
ϵðηÞL2 þ 1

24

3ωðηÞ
5

L4 þOðL6Þ: ð91Þ

In Sec. VIII we discuss an extension of this expansion to
higher cumulant orders, given by a Taylor expansion in
even powers of L,

E ¼
X
n

E2nðηÞ
L2n

ð2nÞ! ; ð92Þ

where1

E0 ¼ A;

E2 ¼ ϵ;

E4 ¼
3

5
ω; ð93Þ

and E6;… denote background values of the sixth and
higher cumulants. For the moment we restrict ourselves to
the first three terms. Inserting Eq. (91) into Eq. (89) yields

∂ηA ¼ QA ≡QE jL0 ;�
∂η þ 2

�
3

2

Ωm

f2
− 1

��
ϵ ¼ Q≡ 2QE jL2 ;�

∂η þ 4

�
3

2

Ωm

f2
− 1

��
ω ¼ Qω ≡ 24

5

3
QE jL4 ; ð94Þ

where the right-hand side denotes the source term QE

evaluated at a given order in powers of L2. The latter can be
obtained by inserting Eq. (90) into Eq. (87), evaluating the
∇L derivative, and performing the angular average using

Z
dΩL

4π
LiLj ¼

1

3
L2δKij;Z

dΩL

4π
LiLjLkLl ¼

1

15
L4ðδKijδKkl þ 2 cycÞ: ð95Þ

After this integration QE depends only on even powers of
L. For A and ϵ we recover from Eq. (94) the equations of
motion Eqs. (48) and (74) derived previously. Going to
order L4 we find for the source term of the expectation
value ω of the fourth cumulant,

Qω ¼ 1

3
fhð∇iAÞC̃ijjkki þ 4hð∇iujÞΛijkki

þ 2hð∇iϵjjÞπikki þ 4hð∇iϵjkÞπijki
þ 4hð∇iπjkkÞϵiji þ hð∇iΛjjkkÞuiig: ð96Þ

To obtain an equation for the perturbations around the
expectation value we define

δC̃ðη; x;LÞ≡ C̃ðη; x;LÞ − Eðη; L2Þ; ð97Þ

and using Eqs. (87) and (89) we find the equation of motion

�
∂η þ

�
3

2

Ωm

f2
− 1

�
ðL ·∇LÞ − 2

∂E
∂L2

L · ∇ − ð∇ ·∇LÞ
�
δC̃

¼ ð∇δC̃Þ · ð∇LδC̃Þ þL · ∇Φ̃ −QE : ð98Þ

The term involving ∂E=∂L2 ¼ ϵ=2þ L2ω=20þOðL4Þ
generates terms that can be viewed as a generalization of
the “Jeans-like” term discussed above. The equation can be
Taylor expanded in Li to obtain equations of motion for the
perturbation modes of the cumulants. When taking up to
the second cumulant into account, we find results consis-
tent with those from Sec. V.

B. Third and fourth cumulant

In the following we work out the equations of motion
when neglecting fifth and higher cumulants, and taking the
complete set of scalar perturbations of the third and fourth
cumulant into account. We refer to Sec. VIII for fifth and
higher cumulants. We use the decomposition

πSijk ¼−
�
δKij

∇k

∇2
þ 2cyc

�
χ

5
−
∇i∇j∇k

∇4
ðπ− χÞ;

δΛS
ijkl ¼ ðδKijδKklþ 2cycÞψ

5
þ
�
δKij

∇k∇l

∇2
þ 5cyc

�
κ− ξ− 2ψ

2

þ∇i∇j∇k∇l

∇4
ð7ψ þ 5ξ−4κÞ; ð99Þ

with scalar modes π, χ, κ, ξ, ψ defined such that
π ¼ −∇iπijj, κ ¼ Λiijj and ξ ¼ ∇i∇j=∇2Λijkk. Here
δΛijkl ¼ Λijkl − hΛijkli and the superscript indicates that
we take the scalar contribution into account. Inserting this
decomposition in Eq. (96) and using Eq. (94) yields

1Note that while Eq. (92) is identical to Eq. (14) given Eq. (83),
the E2n’s have different normalization than in Sec. III by powers
of ðfHÞ2n. But the normalized cumulants Ē2n [see Eq. (21)] are of
course the same.
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�
∂η þ 2

�
3

2

Ωm

f2
− 1

��
ϵ

¼ 1

3
fhAπi þ hθðg − δϵÞi þ 2hwiνiig;�
∂η þ 4

�
3

2

Ωm

f2
− 1

��
ω

¼ 1

3

�
hθð4ξ − κÞi þ 2hðgþ 3δϵÞπi − 8

5
hgχi

�
; ð100Þ

where, e.g., hAπi ¼ R
d3kPAπðk; ηÞ. The only change in the

equation for ϵ compared to Eq. (63) is the additional hAπi
term. We note that, for ϵ, this is the complete source term,
with no further terms arising even when relaxing the
restriction to third and fourth cumulant scalar modes.
The equation for ω contains cross power spectra of the
first and fourth as well as second and third cumulant
perturbations, respectively. In the present approximation
contributions to the source term for ω from vector and
tensor modes as well as cross spectra of the zeroth and fifth
cumulant are neglected.
For the complete set of scalar perturbations, we find the

following equations in Fourier space in the linear approxi-
mation when considering ϵ as well as ω as given,

∂ηδk¼ θk;�
∂ηþ

�
3

2

Ωm

f2
−1

��
θk¼

3

2

Ωm

f2
δk−ϵk2Ak−k2ðgkþδϵkÞ;�

∂ηþ2

�
3

2

Ωm

f2
−1

��
gk¼ 2ϵθk−πkþ

3

5
χk;�

∂ηþ2

�
3

2

Ωm

f2
−1

��
δϵk¼−

1

5
χk;�

∂ηþ3

�
3

2

Ωm

f2
−1

��
πk¼ωk2Akþϵk2ð3gkþ5δϵkÞþk2ξk;�

∂ηþ3

�
3

2

Ωm

f2
−1

��
χk¼ωk2Akþϵk2ð5δϵkÞ

þ1

2
k2ð5κk−5ξk−8ψkÞ;�

∂ηþ4

�
3

2

Ωm

f2
−1

��
κk¼ 4ωθk−4ϵπk;�

∂ηþ4

�
3

2

Ωm

f2
−1

��
ξk¼

16

5
ωθk−4ϵπkþ

4

5
ϵχk;�

∂ηþ4

�
3

2

Ωm

f2
−1

��
ψk¼ 0; ð101Þ

as well as ∂ηAk ¼ θk such that Ak ¼ δk in the linear
approximation.
The full nonlinear set of equations takes the form of

Eq. (76), with an extended perturbation vector ψ. In the
approximation adopted here only its scalar part changes,

ψS ¼ ðδ; θ; g; δϵ; A; π; χ; κ; ξ;ψÞ: ð102Þ

The extended scalar evolution matrix is given in
Appendix D. In addition, the set of vertices increases.
All additional vertices involving at least one of the third
cumulant perturbations and only scalar modes are collected
in Appendix D. For vertices involving π or χ and vorticity
or vector modes, we refer to future work.
After discussing the linear approximation in the next

section, we extend the cumulant expansion to beyond the
fourth order in Sec. VIII.

VII. LINEAR APPROXIMATION

As an illustrative example, we study the linear solution
of the perturbation equations when taking the expectation
values ϵðηÞ and ωðηÞ of the second and fourth cumulant
(and eventually also higher cumulants) as given, and
neglecting nonlinear couplings between perturbation
modes. We refer to paper II [11] for the nonlinear case.
Following the previous discussion, we expect a suppres-
sion of the density contrast for wave numbers k≳ ϵ−1=2 or
k≳ ω−1=4 even at linear level, arising both from the direct
impact of the background dispersion ϵðηÞ in the Euler
equation, as well as the indirect impact via the perturba-
tions g and δϵ of the velocity dispersion that are in turn
generated in presence of a nonzero ϵðηÞ, and coupled to the
higher cumulant modes.

A. Second cumulant approximation

Let us start by analyzing the approximation where the
third and higher cumulants are neglected, see Sec. V. In this
case only the background dispersion ϵðηÞ is relevant. In
linear approximation, scalar, vector and tensor modes
evolve independently. We therefore focus on the scalar
perturbations, that possess growing modes. Inspecting their
linear evolution equations described by Eq. (78), one finds
that the perturbation mode δϵ of the velocity dispersion
tensor can be solved independently when disregarding
nonlinear terms and higher cumulants, and decays as
e−η ¼ 1=D. It can therefore be neglected in this particular
approximation. Furthermore, there is no difference between
A and δ at linear order. The system of equations therefore
reduces to the three variables δ, θ, g and takes the form

δ0k ¼ θk;

θ0k ¼ −
1

2
θk þ

3

2
δk − k2gk − ϵk2δk;

g0k ¼ −gk þ 2ϵθk: ð103Þ

The third equation has the formal solution

gkðηÞ ¼
Z

η
dη0eη0−η2ϵðη0Þθkðη0Þ: ð104Þ
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Inserting this solution into the Euler equation in Eq. (103)
yields a correction term relative to SPT that is proportional
to k2 and nonlocal in time. These features provide a
particular example for a modification that is consistent with
the most general structure allowed by symmetries [78].
Therefore, as expected, adding second and also higher
cumulants to the perturbative expansion and using the
underlying Vlasov-Poisson dynamics yields a consistent,
and a priori deterministic “UV completion” of SPT.
Note that naively replacing the nonlocal relation between

gk and θk by a local ansatz of the form gk ↦ c2visθk would
yield a dissipative viscosity term in the Euler equation.
However, we stress that the actual nonlocal relation
Eq. (104) is derived from the collisionless dynamics of
the Vlasov equation, being nondissipative. Indeed, it is
possible to check that when using the nonlocal relation
Eq. (104) (or equivalently the underlying equations
Eq. (103) the dynamics does indeed obey the energy
evolution equation for the sum of kinetic and potential
energy, known as the cosmic energy equation [79], at linear
order in perturbation theory (see Appendix E). In contrast, a
naive local replacement of the form mentioned above
would lead to a violation of the cosmic energy equation.
Therefore, the nonlocal relation Eq. (104) cannot be naively
interpreted in terms of a fluidlike dissipative viscosity.
Indeed, when extending the analysis to higher cumulants
(see Sec. VI), additional terms in the last line of Eq. (103)
appear, that would modify Eq. (104), but are still consistent
with nondissipative energy evolution (see Appendix E).
This indicates that the collisionless dynamics is signifi-
cantly more complex than fluidlike dissipative behavior,
and this is indeed what we find further below.
Nevertheless, we observe that in the limit k2ϵ ≪ 1 and at

linear level we can approximate θkðη0Þ → δkðη0Þ ∝ eη
0
such

that gkðηÞ → 2δkðηÞ
R
η dη0e2ðη0−ηÞϵðη0Þ, which yields an

effective Jeans-like suppression scale

1

k2J-like
¼ ϵðηÞ þ 2

Z
η
dη0e2ðη0−ηÞϵðη0Þ: ð105Þ

Importantly, the second and higher cumulants affect also
the nonlinear evolution and go far beyond adding a Jeans-
like term even at linear level, as stressed also above. In
particular, we are interested in the solution over the entire
range of wave numbers, including also the regime where
k2ϵ is not small and the simplification leading to Eq. (105)
cannot be used.
It is therefore most effective to directly solve the coupled

system Eq. (103) including the gk-mode explicitly. The full
linear solution of these equations studied here provides the
starting point for a perturbative solution of the nonlinear
equations (see paper II [11]). Solving Eq. (103) in general
requires some knowledge of the background dispersion.
For illustration we assume a power-law dependence

ϵðηÞ ¼ ϵ0eαη; ð106Þ

with some power-law index α and value ϵ0 today. Apart
from simplicity, this choice is relevant for the limit of a
scaling universe described by a power-law input spectrum
P0ðkÞ ∼ kns , with exponent being given by α ¼ 4=ðns þ 3Þ
in that case (see Sec. IX). Furthermore, it can be viewed as
an approximate description also within ΛCDM cosmology
for a limited redshift interval.
It is convenient to use the rescaled variable

ḡkðηÞ≡ gkðηÞ=ϵðηÞ: ð107Þ

Setting ψ̄ ¼ ðδk; θk; ḡkÞ, Eq. (103) can be written in the
form

ψ̄ 0 þ ðΩ0 þ ϵk2Ω1Þψ̄ ¼ 0; ð108Þ

where

Ω0 ¼

0
B@

0 −1 0

− 3
2

1
2

0

0 −2 1þ α

1
CA; Ω1 ¼

0
B@0 0 0

1 0 1

0 0 0

1
CA: ð109Þ

In the limit k2ϵ ≪ 1 the growing mode solution reads

ψ̄ → ψ̄ ð0Þ ≡ ð1; 1; 2=ð2þ αÞÞeηδk0; ð110Þ

in accordance with the previous discussion and Eq. (104).
Here δk0 stands for the conventional linear density field. We
can obtain a general solution by an iteration in powers of
Ω1, writing ψ̄ ¼ P

j ψ̄
ðjÞ, with

ψ̄ ðjÞðηÞ ¼
Z

η
dη0g0ðη − η0Þð−k2ϵðη0ÞΩ1Þψ̄ ðj−1Þðη0Þ: ð111Þ

Here g0 is the Green function in the limit Ω1 → 0, and
contains the conventional SPT linear propagator in the
upper left 2 × 2 block,

g0ðη − η0Þ ¼ 1

5

0
BB@

3 2 0

3 2 0
6

2þα
4

2þα 0

1
CCAeη−η

0

þ 1

5

0
BB@

2 −2 0

−3 3 0

− 12
2α−1

12
2α−1 0

1
CCAe−3ðη−η0Þ=2

þ

0
BB@

0 0 0

0 0 0
6

ð2α−1Þðαþ2Þ
−4ð1þαÞ

ð2α−1Þðαþ2Þ 1

1
CCAe−ð1þαÞðη−η0Þ:

ð112Þ
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Furthermore, compared to SPT, an additional decaying
mode appears. Using the growing mode initial condition
Eq. (110), one finds

ψ̄ ðjÞðηÞ ¼ ðϵðηÞk2Þjeηδk0ðcðjÞδ ; cðjÞθ ; cðjÞḡ Þ; ð113Þ

with numerical coefficients that can be found recursively
using Eq. (111),

cðjÞδ ¼ −
2ð4þ 3αj − 2αÞ

αjð5þ 2αjÞð2þ αjÞ c
ðj−1Þ
δ ; ð114Þ

and cðjÞḡ ¼ 2ð1þαjÞ
2þαjþα c

ðjÞ
δ , cðjÞθ ¼ ð1þ αjÞcðjÞδ . The recursive

solution can be found in explicit form,

cðjÞδ ¼
�
−

3

α2

�
j 1

j!

Γ
�
jþ 4þα

3α

�
Γ
�
4þα
3α

� Γ
�

5
2α þ 1

�
Γ
�
jþ 5

2α þ 1
�

×
Γ
�
2
α þ 1

�
Γ
�
jþ 2

α þ 1
� : ð115Þ

The sum can be expressed in terms of a generalized
hypergeometric function 1F2. This gives a closed-form
result for the evolution of the density contrast,

δkðηÞ ¼ F1;δðk; ηÞeηδk0; ð116Þ

with linear kernel

F1;δðk;ηÞ ¼ 1F2

�
4þα

3α
; 1þ 2

α
;1þ 5

2α
;
−3k2ϵðηÞ

α2

�
: ð117Þ

The solutions for θk and ḡk can be written in a similar form,

θkðηÞ ¼ F1;θðk; ηÞeηδk0;
ḡkðηÞ ¼ F1;ḡðk; ηÞeηδk0; ð118Þ

with linear kernels given in Appendix F. They are shown
for α ¼ 2 in Fig. 3. The time-dependence can be scaled out
by normalizing the wave number to the scale

kσ ≡ 1ffiffiffiffiffiffiffiffiffi
ϵðηÞp ; ð119Þ

that characterizes the wave-number above which velocity
dispersion becomes important.

In the limit k2ϵ → 0 one has

0
B@

F1;δ

F1;θ

F1;ḡ

1
CA →

0
B@

1

1
2

2þα

1
CA −

0
B@ 1

1þ α

1

1
CA 2ð4þ αÞk2ϵðηÞ

αð2þ αÞð5þ 2αÞ

þOðk4ϵ2Þ; ð120Þ

recovering the growing-mode SPT solution for δ and θ in
the limit ϵ → 0, as well as a negative first-order correction
in ϵ that describes the onset of “Jeans-like” suppression
(assuming α > 0). Equation (120) agrees with the low-k
approach presented in [12]. Note that the suppression given
by the linear kernel is larger for the velocity divergence than
for the density, in agreement with previous results in the
literature [10,12]. In the opposite limit k2ϵ ≫ 1, we find
that the linear kernels decay with a power-law behavior. As
we shall see in Sec. VIII, when including higher cumulants
also an enhancement instead of a suppression can occur in
general, a feature expected for a collisionless system [60],
and in contrast to fluids. Nevertheless, within the second
cumulant approximation discussed here this behavior does
not occur. The asymptotic expansion for large k2ϵ ≫ 1 has
the form

F1;aðk; ηÞ → Das
−da
k þ Eas

−ea
k cos

�
2sk
α

þ φa

�
; ð121Þ

where s2k ≡ 3k2ϵðηÞ. All coefficients, phases and exponents
are given in Table III in Appendix F. One can rewrite it in
the form

FIG. 3. Linear kernels F1;aðk; ηÞ that describe the suppression
relative to SPT for a ¼ δ, θ when taking the second cumulant into
account. In addition, the rescaled scalar perturbation mode
ḡk ¼ gk=ϵ of the dispersion tensor possesses a growing mode,
shown for a ¼ ḡ, with F1;ḡ → 2=ð2þ αÞ for k → 0. Here α ¼ 2

and kσ ¼ 1=
ffiffiffiffiffiffiffiffiffi
ϵðηÞp

such that the time-dependence is scaled out.
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0
B@

F1;δ

F1;θ

F1;ḡ

1
CA →

0
B@ 1

− 1þα
3

−1

1
CADδ

sdδk
þ 2Re

0
B@ 1

isk
2

1
CAEδeið

2sk
α þφδÞ

seδk
:

ð122Þ

At large k ∝ sk the nonoscillating parts dominate for F1;δ

and F1;ḡ since

dδ ¼
16þ 4α

6α
< eδ ¼

19þ 7α

6α
; ð123Þ

for all α > 0. For F1;θ this is only the case for 0 < α < 1,
while the oscillating term dominates for α > 1 due to the
additional factor isk.
It is also possible to find the most general solution

of Eq. (103), including all eigenmodes. We find (see
Appendix F for details)

δk¼Aeη1F2

�
4þα

3α
;1þ 2

α
;1þ 5

2α
;
−3k2ϵðηÞ

α2

�

þBe−
3
2
η
1F2

�
−7þ2α

6α
;1−

1

2α
;1−

5

2α
;
−3k2ϵðηÞ

α2

�

þCe−η1F2

�
−2þα

3α
;1−

2

α
;1þ 1

2α
;
−3k2ϵðηÞ

α2

�
; ð124Þ

where A, B, C are free coefficients. For ϵk2 ≪ 1, all
generalized hypergeometric functions approach unity,
and one recovers the usual growing and decaying modes,
plus an extra decaying mode arising from the gk perturba-
tion of the velocity dispersion tensor. The solution given in
Eq. (116) corresponds to B ¼ C ¼ 0. Assuming ϵ grows
with time, it is justified to assume these generalized
growing-mode initial conditions, which we shall do from
now on. Nevertheless, the general solution can be used to
obtain an analytic expression for the linear propagator that
generalizes the well-known linear propagator from SPT to
include dispersion (see Appendix F).

B. Impact of third and fourth cumulant

We consider the evolution of perturbations when taking
also the third and fourth cumulant into account (see
Sec. VI). The set of differential equations in linear
approximation is given in Eq. (101). We also take the
expectation value ωðηÞ of the fourth cumulant into account,
in addition to ϵðηÞ. For illustration, we assume a constant
dimensionless ratio

ω̄≡ ωðηÞ
ϵðηÞ2 : ð125Þ

This choice is also motivated by the scaling solutions
considered in Sec. IX.

It is convenient to use the dimensionless variables

ḡ≡ g
ϵ
; δϵ̄≡ δϵ

ϵ
; π̄ ≡ π

ϵ
; χ̄ ≡ χ

ϵ
;

κ̄ ≡ κ

ϵ2
; ξ̄≡ ξ

ϵ2
; ψ̄ ≡ ψ

ϵ2
; ð126Þ

in terms of which the linear evolution equations for the
Fourier mode k read (approximating Ωm=f2 → 1 and using
Ak ¼ δk at linear level)

∂ηδk¼ θk;�
∂ηþ

1

2

�
θk¼

3

2
δk−ϵk2ðδkþ ḡkþδϵ̄kÞ;

½∂ηþ1þα�ḡk¼ 2θk− π̄kþ
3

5
χ̄k;

½∂ηþ1þα�δϵ̄k¼−
1

5
χ̄k;�

∂ηþ
3

2
þα

�
π̄k¼ ϵk2ðω̄δkþ3ḡkþ5δϵ̄kþ ξ̄kÞ;�

∂ηþ
3

2
þα

�
χ̄k¼ ϵk2

�
ω̄δkþ5δϵ̄k;þ

1

2
ð5κ̄k−5ξ̄k−8ψ̄kÞ

�
;

½∂ηþ2þ2α�κ̄k¼ 4ω̄θk−4π̄k;

½∂ηþ2þ2α�ξ̄k¼
16

5
ω̄θk−4π̄kþ

4

5
χ̄k;

½∂ηþ2þ2α�ψ̄k¼ 0: ð127Þ

We initialize the perturbations in the growing mode of
the linear set of equations Eq. (127) in the limit k2ϵ → 0,
given by

ψ̄≡ ðδk;θk; ḡk;δϵ̄k; π̄k; χ̄k; κ̄k; ξ̄k; ψ̄kÞ

→ eη
�
1;1;

2

2þα
;0;0;0;

4ω̄

3þ2α
;

16ω̄

5ð3þ2αÞ ;0
�
δk0: ð128Þ

Note that also the δϵ̄k, π̄k and χ̄k modes are generated in the
time-evolution due to the terms proportional to k2ϵ in the
evolution equations Eq. (127). We define linear kernels F1;a

for all perturbation variables by

ψ̄a ≡ F1;aðk; ηÞeηδk0: ð129Þ

Let us now compare three approximations for the
perturbation modes:

cum2 second cumulant approximation (δk; θk; ḡk; δϵ̄k
and background dispersion ϵðηÞ),

cum3+ third cumulant approximation for perturbation
modes (þπ̄k; χ̄k), and fourth cumulant approximation
for expectation values (þωðηÞ), and

cum4 fourth cumulant approximation (þκ̄k; ξ̄k; ψ̄k),
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where in parenthesis we indicated the modes taken into
account. Here (cum2) corresponds to the analytical result
from Sec. VII A, and (cum3þ) to neglecting κ̄k; ξ̄k; ψ̄k in
Eq. (127), but keeping the expectation value ω̄ of the fourth
cumulant. Finally, (cum4) comprises the complete set
Eq. (127). In practice one can disregard ψ̄k for (cum4)
in linear approximation, since its evolution equation is
decoupled and this mode decays at all times. The same is
true for δϵ̄k for (cum2) as discussed in Sec. VII A. Note that
δϵ̄k has to be included even at linear level for (cum3þ) and
(cum4) since this mode of the dispersion tensor is sourced
by the χ̄k perturbation of the third cumulant, see Eq. (127).
As opposed to the second cumulant approximation

(cum2), we solve the equations numerically when taking
higher cumulants into account. We compare the three linear
approximations for the linear kernels F1;δ and F1;θ in Fig. 4,
for two values of ω̄ ¼ �1. The suppression on scales k≲
3kσ is only weakly dependent on the higher cumulant
perturbations, especially for negative ω̄, with somewhat
larger differences occurring in the damping tail. The
numerical finding is also supported by an approximate

analytical solution for small k2ϵ. We find that up to linear
order in k2ϵ the linear kernel is not affected by higher
cumulant perturbations, i.e., identical to Eq. (120) for
(cum2), (cum3þ), and (cum4) for both F1;δ and F1;θ.
For F1;ḡ (Fig. 5) we find a mild shift when including the

third cumulant, and a smaller difference between (cum3þ)
and (cum4). Analytically, we find for small k2ϵ (setting
α ¼ 2 for illustration)

F1;ḡ →
1

2
− k2ϵ ×

8>>><
>>>:

1
6

cum2;

1
6
þ 1þ4ω̄=15

26
cum3þ;

1
6
þ 1þ4ω̄=15

26
þ 2ω̄

273
cum4;

ð130Þ

with no further changes when including even higher (i.e.,
fifth or more) cumulants.
Altogether, even though the hierarchy of perturbation

equations is coupled, we observe that for δ and θ the
transition region between the ideal fluid behavior for
k ≪ kσ and the strongly damped regime for k ≫ kσ is only
mildly dependent on contributions from the third and
fourth cumulant.

VIII. FULL HIERARCHY OF CUMULANTS

The formulation of perturbation theory up to the fourth
cumulant presented in Secs. V and VI is suitable for a
nonlinear perturbative analysis. Here we introduce an
alternative formulation that will allow us to include an
in principle arbitrary number of higher cumulants beyond
fourth order, but is restricted to the linear approximation.
We use this approach in the following to study the
convergence of the cumulant expansion at linear level.
For that purpose it is convenient to consider the

Fourier decomposition of the cumulant generating function
Eq. (97),

FIG. 4. Linear VPT kernels F1;aðk; ηÞ when taking the second,
third and fourth cumulant into account, respectively. The upper
panel shows the case ω̄ ¼ 1, and the lower ω̄ ¼ −1, for δ and θ.
Furthermore, α ¼ 2 and kσ ¼ 1=

ffiffiffiffiffiffiffiffiffi
ϵðηÞp

.

FIG. 5. Linear VPT kernel F1;ḡðk; ηÞ when taking the second,
third and fourth cumulant into account, respectively, for ω̄ ¼ 1
and α ¼ 2.
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δC̃ðη; x;LÞ ¼
Z

d3keik·xδC̃ðη; k;LÞ: ð131Þ

In the following we assume adiabatic cold dark matter initial
conditions, being growing mode initial conditions for the
density contrast and velocity divergence, and vorticity and
higher cumulants that vanish relative to the density contrast
at early times. Then, in linear approximation, all perturba-
tion modes are proportional to the initial, linear density field
δk0. In turn, this implies δC̃ðη; k;LÞ ∝ δk0 for the generating
function. The proportionality factor is described by a
deterministic linear kernel that is given by the linearized
equation of motion Eq. (98), while the dependence on the
stochastic initial density field factors out. Due to rotational
invariance, the linear kernel depends on the wave vector k
and the auxiliary vectorL only via their magnitudes k and L
as well as the scalar projection μ≡ k · L=kL. We introduce
the multipole decomposition

δC̃ðη;k;LÞ ¼
X
l

i−lð2lþ 1ÞClðη; k;LÞPlðμÞeηδk0; ð132Þ

where PlðμÞ are Legendre polynomials and

Clðη; k; LÞ≡ il
Z

1

−1

dμ
2
δC̃ðη; k;LÞPlðμÞ=ðeηδk0Þ: ð133Þ

Note that Cl characterizes the evolution of perturbations,
but we prefer to denote it by Cl instead of δCl for brevity
and since they are more closely related to “transfer
functions,” with the initial density field δk0 being already
factored out. One can express the first four multipoles in
terms of the linear kernels of the scalar modes for the first
four cumulants introduced above, see Eq. (129),

C0 ¼ F1;A þ
ϵL2

6
ðF1;ḡ þ 3F1;δϵ̄Þ þ

ϵ2L4

5!
F1;κ̄ þOðL6Þ;

C1 ¼
L
k

�
F1;θ

3
−
ϵL2

30
F1;π̄ þOðL4Þ

�
;

C2 ¼ −
ϵL2

15
F1;ḡ þ

2ϵ2L4

7 · 5!
ðF1;κ̄ − 3F1;ξ̄Þ þOðL6Þ;

C3 ¼
L
k

�
ϵL2

105
ðF1;π̄ −F1;χ̄Þ þOðL4Þ

�
;

C4 ¼
ϵ2L4

9 · 7 · 5 · 3
ð−4F1;κ̄ þ 5F1;ξ̄ þ 7F1;ψ̄ Þ þOðL6Þ: ð134Þ

Each multipole contains a tower of higher cumulants
multiplied by powers of L2, with the lowest power being
Cl ∝ Ll. Note that the decomposition is limited to the linear
approximation, for which only scalar modes contribute.
Furthermore, we can replace the linear kernel of the log-
density field via F1;A → F1;δ in C0, as appropriate at
linear order.

From the equation of motion Eq. (98) of the cumulant
generating function we obtain in the linear approximation
(i.e., neglecting the quadratic term in δC̃)

�
∂η þ 1þ

�
3

2

Ωm

f2
− 1

�
ðL · ∂LÞ

�
Cl

¼ k
2lþ 1

�
2
∂E
∂L2

Lþ ∂L

�
ððlþ 1ÞClþ1 − lCl−1Þ

þ k
2lþ 1

1

L
ððlþ 1Þðlþ 2ÞClþ1 þ lðl − 1ÞCl−1Þ

−
k
3
LF1;Φ̃δ

K
l1; ð135Þ

where δKl1 is the Kronecker symbol, and

F1;Φ̃ ≡ Φ̃k=ðeηδk0Þ ¼
3

2

Ωm

f2
F1;δ

k2
¼ 3

2

Ωm

f2
C0
k2


L¼0

: ð136Þ

The background values of all cumulants enter via the
function Eðη; L2Þ ¼ hC̃i. The source term QE that enters its
equation of motion Eq. (89) can also be expressed in terms
of the multipole moments,

QE ¼ 4π

Z
∞

0

dkk3e2ηP0ðkÞ
X
l

ðlþ 1Þ
�
Clþ1∂LCl

− Cl∂LClþ1 −
2ðlþ 1Þ

L
Clþ1Cl

�
; ð137Þ

where P0ðkÞ is the conventional linear input power spec-
trum, and the impact of the Vlasov dynamics is encapsu-
lated in the cumulants contained in the Cl. By inserting the
decomposition Eq. (134) into Eq. (135) and Taylor expand-
ing up to the fourth order in L we recover the evolution
equations Eq. (101) for the scalar perturbation modes of up
to the fourth cumulant [when written in terms of the linear
kernels from Eq. (129)]. Similarly, one recovers the
equations Eq. (100) for the background dispersion ϵ and
the fourth cumulant background value ω by expanding
Eq. (137) in L and using Eqs. (89), (91), (134), and (180).

A. Linear kernels beyond fourth cumulant order

The above formulation allows us to include also higher
cumulants beyond the fourth order. It is convenient to scale
out the leading Ll dependence of Cl, and a factor 1=k for
odd l,

Clðη; k; LÞ ¼ Ll ×

(
Člðη; k; LÞ l even;

Člðη; k; LÞ=k l odd:
ð138Þ

To extract evolution equations up to a given order in the
cumulant expansion, we expand
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Člðη; k; LÞ ¼
X
n

L2n

ð2nÞ! Cl;2nðη; kÞ; ð139Þ

where we used that due to the symmetry of the
Legendre decomposition only even powers of L appear.
The relation to the previous notation can be obtained using
Eq. (134), e.g.,

C0;0 ¼ F1;δ; C1;0 ¼ F1;θ=3: ð140Þ

Similarly, as introduced already above in Eq. (92), we
Taylor expand the ensemble-averaged values of the
cumulants,

Eðη; L2Þ ¼
X
n

L2n

ð2nÞ! E2nðηÞ; ð141Þ

such that the previously introduced background values of
the 0th, 2nd, and 4th cumulant are given by

E0 ¼ A; E2 ¼ ϵ; E4 ¼
3ω

5
; ð142Þ

respectively. In general E2nðηÞ denotes the ensemble
expectation value of the 2nth cumulant. Note that due
to statistical isotropy, only even cumulants can possess a
nonzero expectation value.
Inserting these expansions into the equation of motion

Eq. (135) one obtains a system of coupled, ordinary
differential equations for the Cl;2n, that is given explicitly
in Appendix G.
In the following we consider truncations that include

perturbation modes up to a certain maximal cumulant order
cmax, that is we include all Cl;2n with

lþ 2n ≤ cmax; ð143Þ

and set those with higher values lþ 2n > cmax to zero. For
truncations with cmax ≤ 4, this corresponds to the approxi-
mation schemes considered in Sec. VII B as follows:

ðcum2Þ cmax ¼ 2;

ðcum3þÞ cmax ¼ 3;

ðcum4Þ cmax ¼ 4:

Note that the evolution equations depend on the back-
ground values E2n with 2n ≤ cmax þ 1 for odd cmax, and
2n ≤ cmax for even cmax. For example, as noted previously,
for cmax ¼ 3 the expectation value of the 4th cumulant
enters the evolution equations of the 3rd cumulant pertur-
bation modes. Here we see that this pattern extends to
higher cumulant orders correspondingly.

Evolution equations for the E2n can be obtained by
Taylor expanding the source term given in Eq. (137) in
powers of L. They are also given in Appendix G.
As an illustrative example, we consider the solutions for

the perturbation modes obtained when assuming that the
expectation values E2n are taken as external input, while
postponing self-consistent solutions of perturbations and
background values to Sec. IX. Specifically, for concrete-
ness we show in Fig. 6 the linear kernel F1;δ ¼ C0;0 for
various cmax when assuming E2 ≡ ϵ ¼ ϵ0eαη as previously,
and in addition vanishing values for all E2n with 2n ≥ 4. We
checked that the solutions agree with (cum2), (cum3þ),
and (cum4) obtained in Sec. VII for cmax ¼ 2, 3, 4,
respectively.
We observe that for any given wave number k, the linear

VPT kernel for the density contrast converges to a common
limit when increasing cmax. However, for higher wave
numbers a larger value of cmax is required. The second
cumulant approximation cmax ¼ 2 (denoted by (cum2)
previously) is sufficient for k≲ 7kσ, at which point the
linear kernel is already suppressed by about a factor 10
relative to its SPT value (being equal to unity). For higher
wave numbers, the linear kernel quickly drops. The 4th order
(cum4) approximation is close to the limiting value for
k≲ 9kσ , with a suppression of already around two orders of
magnitude relative to SPT. For the highest order we consider,
cmax ¼ 20, the linear kernel is converged for k≲ 18kσ,
corresponding to a suppression of 10−7. Therefore, while
higher cumulant perturbations are important to capture
the behavior for very large k, they only mildly affect the
transition region between the ideal fluid regime and the onset
of suppression within the linear approximation.

FIG. 6. Linear VPT kernel F1;δðk; ηÞ ¼ C0;0 when taking
perturbation modes Cl;2n of cumulants up to lþ 2n ≤ cmax into
account. For this figure we set α ¼ 2 and E2n ¼ 0 with 2n ≥ 4.
As before, the time-dependence of the linear kernel is scaled out
by normalizing the wavenumber to kσ ¼ 1=

ffiffiffi
ϵ

p
. Note how the

inclusion of higher cumulants only enhances the suppression of
UV modes.
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B. Rescaling to dimensionless variables

When including background values E2n of higher cumu-
lants, it is convenient to consider again the dimensionless
quantities

Ē2n ¼ E2n=ϵn ¼ E2n=En
2; ð144Þ

and define dimensionless linear kernels

Tl;2n ¼ Cl;2n=ϵnþ½l=2�; ð145Þ

where ½l=2� ¼ l=2 for even l, and ðl − 1Þ=2 for odd l.
The evolution equations for these rescaled variables are
given in Appendix G.
Collecting all perturbation variables Tl;2n with lþ

2n ≤ cmax into a single vector ψ̄, the evolution equations
may be brought into the form

ψ̄ 0 þ ðΩ0 þ ϵk2Ω1Þψ̄ ¼ 0; ð146Þ

that is formally analogous to Eq. (108). The number of
rows and columns of the matrices Ω0 and Ω1 equals the
number of all scalar perturbation modes for a given cmax,
being given by 4, 6, 9, 12, 16 for cmax ¼ 2, 3, 4, 5, 6,
respectively. We emphasize that cmax denotes the trunca-
tion order for the cumulant expansion of perturbation
modes collected in ψ̄ . The background values of higher
cumulants Ē2n with 2n ≥ 4 enter the matrices Ω0 and Ω1.
As mentioned above, for even cmax, the background values
Ē4; Ē6;…Ēcmax

contribute, while for odd cmax, the equations
for the perturbation modes depend on Ē4; Ē6;…Ēcmaxþ1.
Let us assume again that the background dispersion has a

power-law dependence on the linear growth factor, with
constant α ¼ ∂η ln ϵ, and set Ωm=f2 → 1. Furthermore, we
assume for definiteness that the ratios Ē2n are constant in
time. As will be seen in Sec. IX, this assumption is
consistent for a scaling universe, and may serve as a basis
for a more general treatment in the future. In that case all
entries of Ω0 and Ω1 are constant in time, and the time-
dependence is entirely given by the factor ϵk2.

C. Scaling in the limit ϵ → 0

Since we assume initial conditions for the perturbation
modes with vanishing second and higher cumulants, all
higher cumulant modes can only be generated due to the
presence of the background dispersion ϵ, as well as the
background values of higher cumulants. Therefore, one
expects the higher cumulant perturbations to vanish with a
certain power of ϵ in the limit ϵ → 0, and when assuming
the dimensionless ratios Ē2n to remain finite. Indeed, it
turns out that as expected higher cumulants are more
strongly suppressed for small ϵ. In order to see this, we
consider the solutions of Eq. (146) in the limit ϵk2 ≪ 1.
They are determined by the eigenmodes of Ω0. For any

cmax ≥ 1 the eigenmodes comprise the usual growing and
decaying mode familiar from SPT, as well as further
decaying modes for cmax ≥ 2. Inspecting the evolution
equation Eq. (G6) one finds that all Tl;2n with even l
have a Taylor expansion in powers of ϵk2 that starts with a
constant term, while those with odd l involve at least one
factor of ϵk2. The only exception is l ¼ 1, n ¼ 0, related to
the velocity divergence T1;0 ¼ F1;θ=3 ¼ 1=3þOðϵk2Þ.
The reason is the extra term in its evolution equation
corresponding to the gravitational force in the Euler
equation. Together with Eq. (145) this implies the counting

Cl;2n ∝

8>><
>>:

ϵðlþ2nÞ=2½1þOðϵk2Þ þ…� l even;

ϵ0½1þOðϵk2Þ þ…� l ¼ 1; n ¼ 0;

ϵðl−1þ2nÞ=2½Oðϵk2Þ þ…� lodd;lþ 2n ≥ 3;

ð147Þ

which shows that higher cumulants of order c ¼ lþ 2n are
suppressed by higher powers of the background dispersion
ϵ in the limit ϵ → 0. The counting assumes that the Ē2n are
parametrically of order unity in this limit, which implies
E2n ∝ ϵn for the background values of cumulant order 2n.
This is consistent with the scaling of the perturbation
modes Cl;2n of the same cumulant order. By inspecting the
evolution equation Eq. (98) of the cumulant generating
function, we find that this result can be generalized to the
following scaling of the leading contribution in the limit
ϵ → 0:

δ; A; θ ∝ Oðϵ0Þ;
wi ¼ ð∇ × uÞi ∝ Oðϵ1Þ;

ϵij ∝ Oðϵ1Þ;
Cijk ∝ Oðϵ2Þ;
Cijkl ∝ Oðϵ2Þ;

Cijklm ∝ Oðϵ3Þ;
Cijklmn ∝ Oðϵ3Þ; ð148Þ

and so on for cumulants of order 0; 1; 2; 3; 4; 5; 6;…. Here
the only exception is θ that is contributing already at zeroth
order in ϵ as discussed above, while being of cumulant
order one. Note that the remaining part of the first
cumulant, i.e., the vorticity, has the “generic” scaling since
the gravitational force does not contribute to the vorticity
equation.
Since the equations of motion couple the various

cumulants, the self-consistency of this hierarchy is not
obvious, but, as can be checked using Eq. (98), indeed
holds in general. In particular, it remains valid beyond the
linear approximation, and holds also for the fully nonlinear
system, i.e., the complete Vlasov hierarchy.
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D. Stability conditions

Within collisional fluid dynamics, fluid perturbations are
damped due to microscopic pressure and viscosity. In
contrast, for the collisionless Vlasov system underlying
the cumulant evolution equations derived above this is in
general not guaranteed. As we shall show below, the
linearized system of coupled cumulants indeed may develop
instabilities. In the following we show under which circum-
stances this occurs, and derive stability conditions.
When including background values E2n of higher cumu-

lants, the linear kernels remain qualitatively similar to those
shown in Fig. 6 provided the dimensionless quantities Ē2n
[see Eq. (144)] are not too large in magnitude. However, for
sizeable values of the Ē2n, the linear kernels develop an
exponential instability for large ϵk2. Even though this
behavior may in principle be cured when including non-
linearities, the resulting dynamics would be outside the
realm of perturbation theory. We therefore require that no
such exponential growth occurs. This imposes restrictions
on the magnitude of the higher cumulant expectation values.
To make this statement quantitative, we investigate the

solutions of Eq. (146) in the limit ϵk2 ≫ 1. The asymptotic
behavior can be obtained by taking a further η derivative
and using that Ω1 is a nilpotent matrix, with Ω1 ·Ω1 ¼ 0 in
the matrix sense, giving ψ̄ 00 − ½Ω0 ·Ω0 þ ϵk2ðΩ0 · Ω1þ
Ω1 ·Ω0 − αΩ1Þ�ψ̄ ¼ 0. Furthermore we switch variables
from η to

sk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ϵðηÞk2

q
; ð149Þ

using α ¼ ∂η ln ϵ ¼ const, giving

∂η ¼
1

2
ð∂η ln ϵÞsk∂sk ¼

α

2
sk∂sk : ð150Þ

Altogether, Eq. (146) can be rewritten as

�
α2

4
s2k∂

2
sk −Ω0 ·Ω0 −

α

2
Ω0

−
s2k
3

�
Ω0 ·Ω1 þΩ1 · Ω0 −

α

2
Ω1

��
ψ̄ ¼ 0: ð151Þ

For sk ≫ 1, the solution is given by a linear combination of
eigenmodes with time-dependence given by

Tl;2n ∝ e�2
ffiffi
λ

p
sk=α for sk ≫ 1; ð152Þ

where λ are the eigenvalues of the matrix

Mcmax
≡ 1

3

�
Ω0 · Ω1 þ Ω1 ·Ω0 −

α

2
Ω1

�
: ð153Þ

The solutions therefore possess an exponential instability ifffiffiffi
λ

p
has a nonzero real part for any of the eigenvalues. The

absence of this instability requires that all eigenvalues are
real and smaller or equal to zero,

ImðλÞ ¼ 0; ReðλÞ ≤ 0: ð154Þ

This statement is equivalent to the condition that all roots of
the characteristic polynomial

pcmax
ðλÞ≡ detðλ1 −Mcmax

Þ; ð155Þ

are zero or lie on the negative real axis. For the truncations
up to the fourth cumulant we find

p1 ¼ ð1=3þ λÞ2;
p2 ¼ λ2ð1þ λÞ2;

p3 ¼ ð1=3þ λÞ2
�
λ2 þ 2λþ 1

9
ð3 − Ē4Þ

�
2

;

p4 ¼ λ3ð1þ λÞ2
�
λ2 þ 10

3
λþ 5

9
ð3 − Ē4Þ

�
2

: ð156Þ

Remarkably, the characteristic polynomials are indepen-
dent of α ¼ ∂η ln ϵ. We find that this property extends also
to higher cmax. This implies that any constraints from
stability are insensitive to the time-dependence of the
background dispersion. In addition, there is no restriction
from stability on the size of the background dispersion ϵ≡
E2 itself. Thus, only fourth and higher cumulant expect-
ation values are subject to stability conditions.
For cmax ¼ 1, 2 the stability condition is always satisfied.

We note that for cmax ¼ 2 [equivalent to (cum2)] the two
solutions λ ¼ 0;−1 precisely correspond to the exponential
factors in the time-dependence found in the asymptotic
limit given in Eq. (122) of the analytical solution of the
linear kernel. In addition there is a power-law dependence
on sk that is not captured by the leading asymptotic solution
considered above. Note that for cmax ¼ 1 a Jeans-like term
proportional to ϵ is contained in the perturbation equations,
leading to a nontrivial linear kernel even in that case. The
negative root λ ¼ −1=3 implies that the linear kernels
exhibit oscillations in the limit ϵk2 ≫ 1 for this most
restrictive truncation.
For cmax ¼ 3, 4 (equivalent to (cum3þ) and (cum4),

respectively), the expectation value Ē4 ¼ 3ω̄=5 of the 4th
cumulant enters the equations of motion. The condition that
all roots are real and negative or zero imposes a restriction
on the size of Ē4,

cmax ¼ 3∶ − 6 ≤ Ē4 ≤ 3;

cmax ¼ 4∶ − 2 ≤ Ē4 ≤ 3: ð157Þ

When including even higher cumulant perturbations, we
find that the characteristic polynomials possess a recursive
structure,
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pcmax
ðλÞ ¼

�
λpcmax−2ðλÞqcmax

ðλÞ2 cmax even;

pcmax−2ðλÞqcmax
ðλÞ2 cmax odd:

ð158Þ

This implies that the roots of pcmax−2 are also roots of pcmax

for any cmax > 2. In addition, for even cmax, the solution
λ ¼ 0 corresponds to a root with higher multiplicity. The
new roots that appear when increasing cmax by two units are
described by an additional factor, that can be written as the
square of a polynomial qcmax

ðλÞ given in Table IV in
Appendix G up to cmax ¼ 12. They are of order Ncmax

¼
2; 2; 3; 3; 4; 4;… for cmax ¼ 3; 4; 5; 6; 7; 8;….
The recursive structure implies for the set of eigenvalues

that appear at a given truncation order

fλgcmax−2 ⊂ fλgcmax
⊂ fλgcmaxþ2 � � � : ð159Þ

This means that the stability conditions of the linear
solution obtained for given even (odd) cmax continue to
hold at all higher even (odd) values of cmax, with additional
conditions arising from the additional eigenvalues given by
the roots of qcmax

ðλÞ.
A necessary condition for stability is that no real and

positive roots exist. This is ensured if all coefficients of
qcmax

ðλÞ have the same sign, according to the Descartes sign
rule (which can easily be proven by contradiction in that
case). Inspecting Table IV, this leads to the conditions

Ē4 ≤ 3;

Ē6 ≥ 15ðĒ4−1Þ;
Ē8 ≤ 105−210Ē4þ35Ē2

4þ28Ē6;

Ē10 ≥ 45Ē8þ210Ē4ð15þ Ē6Þ−945−1575Ē2
4−630Ē6;

Ē12 ≤ 10395þ51975Ē2
4−5775Ē3

4þ13860Ē6þ462Ē2
6

−495Ē4ð105þ28Ē6− Ē8Þ−1485Ē8þ66Ē10; ð160Þ

for all values of cmax for which the corresponding expect-
ation values enter, being cmax ≥ 3, 5, 7, 9, 11 for the five
inequalities, respectively. The first condition is consistent
with Eq. (157). These conditions are however not sufficient.
A sufficient set of stability conditions can be obtained by

applying an algorithm known as Sturm chain. To that end
we define a set of polynomials PnðλÞ, starting from

P0ðλÞ ¼ qcmax
ðλÞ; P1ðλÞ ¼ dqcmax

=dλ: ð161Þ

Then, we recursively compute the polynomial quotient
QnðλÞ from polynomial division of Pn by Pnþ1, and define

Pnþ2 ¼ QnPnþ1 − Pn; ð162Þ

being the rest term up to an overall sign. The order of the
polynomials decreases with increasing n, and at some point
one obtains a constant, where the chain is terminated. For

all cmax we considered, this is the case for n being equal to
the order of the polynomial qcmax

ðλÞ, being

Ncmax
≡ ½ðcmax þ 1Þ=2�: ð163Þ

Here the square bracket denotes the integer part. The
number of roots of qcmax

ðλÞ in the intervall a < λ ≤ b for
some real values a < b is then given by σðaÞ − σðbÞ,
where σðλÞ is the number of sign changes in the series
P0ðλÞ; P1ðλÞ;…; PNcmax

ðλÞ.
Stability requires that all Ncmax

roots of qcmax
ðλÞ lie in the

intervall −∞ < λ ≤ 0. We therefore consider the choice
a → −∞ and b ¼ 0, and require σðaÞ − σðbÞ ¼ Ncmax

. The
only way how this condition can be satisfied is if σðaÞ ¼
Ncmax

and σðbÞ ¼ 0. For λ → −∞ the coefficient of the
highest monomial in each Pn determines its sign, and
for λ ¼ 0 the constant term. We write the polynomials in
the form

PnðλÞ ¼ Cnλ
Ncmax−n þ � � � þDn; ð164Þ

where the ellipsis denotes summands with powers λm with
0 < m < Ncmax

− n, that are irrelevant here. Due to the
alternating sign of λNcmax−n for n ¼ 0;…; Ncmax

and λ < 0,
all coefficients Cn are required to have the same sign in
order to satisfy σð−∞Þ ¼ Ncmax

. Furthermore, by definition
of the characteristic polynomial, we have C0 ¼ þ1. This
implies the conditions that Cn ≥ 0 for all n ¼ 0;…; Ncmax

.
Similarly, the constraint σð0Þ ¼ 0 implies that all Dn have
to have the same sign. In principle they could all be positive
or all be negative. However, the latter can be excluded by
the following argument: For the constant polynomial with
n ¼ Ncmax

, the term with highest and lowest power of λ are
trivially identical, i.e., CNcmax

¼ DNcmax
. Since we already

obtained the condition that all Cn need to be non-negative,
this implies that also all Dn have to be non-negative for
stability to hold,

Cn ≥ 0; Dn ≥ 0; 0 ≤ n ≤ Ncmax
: ð165Þ

As mentioned above, the condition is trivially satisfied for
C0 ¼ 1 and degenerate for Cn ¼ Dn for n ¼ Ncmax. There
are therefore in general 2Ncmax

distinct conditions. However,
some of them are either trivially satisfied or equivalent.
For example, for cmax ¼ 4 one has Ncmax

¼ 2 and we find

C1¼2;C2¼D2¼ 5
9
ð2þ Ē4Þ and D0 ¼ 5

9
ð3 − Ē4Þ; D1 ¼ 10

3
.

The stability conditions Eq. (165) therefore precisely yield
the constraint Eq. (157) obtained previously for cmax ¼ 4.
The same can be checked for cmax ¼ 3.
In addition, the Sturm chain algorithm allows us to

obtain stability conditions for arbitrary truncation order
cmax. We observe a number of general patterns: We find that
C1 ¼ Ncmax

, such that the condition C1 ≥ 0 is trivially
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satisfied. From the condition C2 ≥ 0 we obtain a lower
bound on Ē4 for all cmax ≥ 3,

Ē4 ≥

(
− 6

cmax−2
cmax odd;

− 6
cmax−1

cmax even:
ð166Þ

This is a generalization of the lower bound obtained
in Eq. (157).2

Furthermore, the condition obtained from D0 ≥ 0 is
equivalent to the first line in Eq. (160) for cmax ¼ 3, 4,
to the second line for cmax ¼ 5, 6, the third line for
cmax ¼ 7, 8, and so on. Similarly, D1 ≥ 0 yields the first
line in Eq. (160) for cmax ¼ 5, 6, the second line for
cmax ¼ 7, 8, etc.
The complete set of stability conditions obtained from

the Sturm chain algorithm for cmax ¼ 5 reads

−2 ≤ Ē4 ≤ 3;

15ðĒ4 − 1Þ ≤ Ē6 ≤ 10ð6 − Ē4Þ;
0 ≤ 100ð24þ 12Ē4 − 6Ē2

4 þ 5Ē3
4Þ

− 40Ē6ð2þ 3Ē4Þ − Ē2
6: ð167Þ

For cmax ¼ 6 we obtain

−
6

5
≤ Ē4 ≤ 3;

15ðĒ4 − 1Þ ≤ Ē6 ≤ 10ð2þ Ē4=3Þ;
0 ≤ 20ð216þ 324Ē4 þ 90Ē2

4 þ 175Ē3
4Þ

− 108Ē6ð4þ 10Ē4Þ − 27Ē2
6: ð168Þ

The conditions for cmax ¼ 7, 8 are given in Appendix G.
We checked that vanishing expectation values Ē2n ¼ 0 for
2n ≥ 4 do satisfy the stability conditions in all cases.
Therefore, in general, stability sets an upper limit on the
magnitude of the Ē2n, i.e., how strongly non-Gaussian the
distribution function can be (on average).
Let us now discuss the impact of stability constraints. For

cmax ¼ 1, 2 the stability conditions are trivially satisfied,
and for cmax ¼ 3, 4 they amount to the constraint on the size
of Ē4 given in Eq. (157). For cmax ¼ 5, 6 the perturbation
equations depend on Ē4 and Ē6, and the stability constraints
given in Eqs. (167) and (168) are satisfied within a finite
region in the two-dimensional ðĒ4; Ē6Þ parameter space,
shown in Fig. 7 (top panel). We see that the point Ē4 ¼
Ē6 ¼ 0 lies within the stable region, as claimed above.

Furthermore, the allowed region is more restricted for
cmax ¼ 6 compared to cmax ¼ 5.
For cmax ¼ 7, 8, also Ē8 enters in the perturbation

equations. Stability yields an allowed region in the
three-dimensional parameter space ðĒ4; Ē6; Ē8Þ, that con-
tains the origin. In Fig. 7 we show the projection of this
region on the ðĒ4; Ē6Þ as well as ðĒ4; Ē8Þ plane in the top
and bottom panel, respectively. As expected, the allowed
regions for higher cmax are contained in those for lower
values of cmax. Generically, one may expect the normalized

FIG. 7. Constraints on the non-Gaussianity of the distribution
function from requiring stability of the linear solutions. The top
panel shows the parameter region allowed by stability within the
plane spanned by the dimensionless 4th and 6th cumulant
expectation values ðĒ4; Ē6Þ, while the bottom panel shows
constraints on the 4th and 8th cumulant expectation values
ðĒ4; Ē8Þ. In each case, these are obtained from the evolution
equations for perturbations modes of cumulants up to cmax as
given in the legend. Note that Ē6 is relevant for cmax ≥ 5, and Ē8

for cmax ≥ 7. The gray dashed and black lines show the expect-
ation from the Evans and NFW halo models, see Sec. III. The
fact that the backreaction on linear modes from dispersion and
higher cumulants expected from halos is broadly stable is
reassuring, making linearized VPT a good starting point for a
perturbative expansion.

2The same condition can alternatively be derived from the
Laguerre-Samuelson rule, being that the generalized discriminant
is positive, qð2Þcmaxq

ð0Þ
cmax

2Ncmax
Ncmax−1

≤ ðqð1ÞcmaxÞ2, where qcmax
ðλÞ ¼P

n q
ðnÞ
cmaxλ

Ncmax−n. However, the Laguerre-Samuelson rule is
necessary but not sufficient for stability, while the full set of
conditions derived from the Sturm chain are sufficient. We
checked Eq. (166) up to cmax ¼ 12.
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quantities Ē2n to be broadly of order unity, which is allowed
by stability. Nevertheless, the stability conditions impose
relevant constraints, in particular for Ē4, as well as
correlations among the relative size of the Ē2n.
It is instructive to compare the stability regions of the

cumulant expectation values with those obtained within the
Evans and NFW halo models discussed in Sec. III, that are
shown as gray dashed and black lines in Fig. 7, respec-
tively. Since the stability conditions for the linearized
Vlasov hierarchy and the averaged cumulants obtained
from virialized halos are based on quite distinct physical
situations, it is remarkable that the latter are largely
contained within the stable regions for a wide range of
halo concentrations (NFW halos) and different halo shapes
(Evans halos). Note the Evans halos hit the stability
boundary when the shape parameter q approaches the
unphysical limit of extreme oblateness q ¼ 1=

ffiffiffi
2

p
, where

the density ceases to be positive definite. For NFW halos,
the stability boundary is hit for high mass halos, corre-
sponding to high concentrations which are the most non-
Gaussian (See Fig. 2). But this is unrealistic since in
practice we have a spectrum of halos, and the abundance of
high-mass halos is exponentially suppressed, therefore one
must integrate over the mass function to compare properly.
The advantage of using the results of individual halos in
Fig. 7 is that we are insensitive to the initial power spectrum
shape, therefore these results apply broadly to scale-free
power spectra as well as CDM spectra. The dependence on
the initial spectrum enters only through the weight given to
different halo masses (or concentrations) by the mass
function. That the constraints on non-Gaussianity of the
distribution function are satisfied by halo estimates implies
that the linear solutions within VPT can be considered as a
good starting point for a perturbative analysis for realistic
values of the higher cumulant expectation values.

IX. DISPERSION IN A SCALING UNIVERSE

So far, we treated the background dispersion ϵðηÞ ¼ E2

as well as the expectation value ωðηÞ ¼ 5E4=3 of the fourth
cumulant, and those of yet higher cumulants (E2n), as
external inputs for solving the equations for perturbation
modes up to a certain cumulant order. In this section we
return to the Eqs. (47), (89), (94), and (137) for the
background quantities themselves, that are in turn sourced
by the fluctuations of the perturbation modes, and present
self-consistent solutions of the perturbation and back-
ground equations in various approximations. For illustra-
tion, we restrict ourselves to a scaling universe in this work,
for which the differential equations for the background
values turn into algebraic equations, as we shall see. This
makes the problem tractable and allows us to study the
dependence on the truncation of the cumulant expansion.
A scaling universe is characterized by a power-law initial

spectrum,

P0ðkÞ ¼ Akns ; ð169Þ

with spectral index ns, and an EdS background (Ωm ¼ 1).
The linear power spectrum in the SPT approximation is
given by

Plin
SPTðk; ηÞ ¼ e2ηP0ðkÞ; ð170Þ

where e2η ¼ D2 is the square of the conventional linear
growth factor, which in turn equals the scale-factor within
EdS. For the dimensionless power spectrum Δ≡ 4πk3P
this means

Δlin
SPTðk; ηÞ ¼ 4πe2ηAknsþ3 ≡

�
k

knlðηÞ
�

nsþ3

; ð171Þ

where we introduced the usual nonlinear scale

knlðηÞ ¼ knle−2η=ðnsþ3Þ; ð172Þ

with knl ¼ ð4πAÞ−1=ðnsþ3Þ being the nonlinear scale today
(η ¼ 0). The power spectrum obeys a scaling symmetry
(for any r > 0)

k → rk; eη → r−ðnsþ3Þ=2eη; ð173Þ

that suggests that the nonlinear power spectrum (of any
dimensionless variable) is a function of the ratio

Δðk; ηÞ ¼ Δðk=knlðηÞÞ: ð174Þ

The background value ϵðηÞ of the velocity dispersion
defines the scale

kσðηÞ≡ 1ffiffiffiffiffiffiffiffiffi
ϵðηÞp : ð175Þ

The scaling symmetry suggests that kσðηÞ=knlðηÞ is con-
stant, implying that

ϵ ¼ ϵ0eαη; ð176Þ

follows a power-law with exponent

α ¼ 4=ðns þ 3Þ: ð177Þ

We denote the value today by

kσ ≡ 1=
ffiffiffiffiffi
ϵ0

p
; ð178Þ

without time-argument. In addition, when taking higher
cumulants into account, the dimensionless ratio Ē4 ¼ 3ω̄=5
as well as in general all Ē2n are constant in time. As
anticipated, the scaling universe therefore provides an
example for which the assumptions on the time-dependence
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of ϵðηÞ and higher cumulant expectation values taken in
Secs. VII and VIII are satisfied exactly, and the correspond-
ing linear kernels for the perturbation variables can be used.
The linear matter power spectrum within VPT is

given by

Plin
δδ ðk; ηÞ ¼ F1;δðk; ηÞ2e2ηP0ðkÞ; ð179Þ

where F1;δ is the linear kernel obtained from a solution of
the appropriate linearized perturbation equations. The
(cross-)power spectra for any pair a; b ¼ δ; θ; ḡ; δϵ̄;… of
dimensionless perturbation modes in VPT is analogously
given by

Plin
abðk; ηÞ ¼ F1;aðk; ηÞF1;bðk; ηÞe2ηP0ðkÞ: ð180Þ

As shown in Secs. VII and VIII, for any truncation order of
the cumulant expansion the linear kernels F1;aðk; ηÞ ¼
F1;aðsÞ depend on time and scale only via the dimension-
less variable

s≡ skðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ϵðηÞk2

q
: ð181Þ

Therefore we may write the dimensionless power spectrum
Δlin

ab ¼ 4πk3Plin
ab as

Δlin
abðk; ηÞ ¼ x × Δ̂lin

abðsÞ; ð182Þ

where

x≡
�

kσffiffiffi
3

p
knl

�
nsþ3

¼
�

1

3ϵ0k2nl

�nsþ3
2

; ð183Þ

is time-independent, and we defined

Δ̂lin
abðsÞ≡ F1;aðsÞF1;bðsÞsnsþ3: ð184Þ

A similar relation holds for the full nonlinear power
spectrum, computed within VPT. As in SPT, one can
use the perturbative solutions to obtain a loop expansion,

Δabðk; ηÞ ¼
X
L≥0

ΔL−loop
ab ðk; ηÞ; ð185Þ

with L ¼ 0 being the linear solution. For ab ¼ δδ; δθ; θθ,
the loop corrections formally take a similar form as in SPT,
but with nonlinear kernels computed based on the pertur-
bation modes and their nonlinear vertices presented here.
For a detailed discussion of loop corrections within VPTwe
refer to paper II [11]. Here we restrict ourselves to the
general structure of loop corrections. Since the L-loop
contribution encompasses Lþ 1 factors of P0 ∝ A ∝ x,
one has

ΔL−loop
ab ðk; ηÞ ¼ xLþ1 × Δ̂L−loop

ab ðsÞ; ð186Þ

with the second factor involving loop integrals for L ≥ 1.
Let us now discuss how to obtain a self-consistent

solution for the background dispersion ϵðηÞ. Its equation
of motion is given in Eq. (47), with source term from
Eq. (100). It can be written in terms of dimensionless
quantities as

ϵ0ðηÞ
ϵðηÞ þ 1¼ 1

3

Z
∞

0

dk
k
ðΔθḡ −Δθδϵ̄ þ 2Δwi ν̄i þΔAπ̄Þ; ð187Þ

where ḡ ¼ g=ϵ, δϵ̄ ¼ δϵ=ϵ and ν̄i ¼ νi=ϵ are the dimen-
sionless scalar and vector perturbation modes of the
velocity dispersion tensor, π̄ ¼ π=ϵ is a scalar mode of
the third cumulant, and we have set Ωm=f2 ↦ 1.
For the time-dependence Eq. (176) expected from

scaling symmetry, the left-hand side of this equation
is constant, and equal to αþ 1 ¼ ðns þ 7Þ=ðns þ 3Þ.
Therefore, the ansatz Eq. (176) is consistent if also the
right-hand side is time-independent. Using Eq. (184) in
linear approximation and Eq. (186) in general, we see that
this is indeed the case, since the variable x is time-
independent and the power spectrum integrated over
s ∝ k as well. Therefore, Eq. (187) turns into an algebraic
equation for x given by

ns þ 7

ns þ 3
¼ 1

3

X
L≥0

xLþ1IL−loopðnsÞ; ð188Þ

where

IL−loopðnsÞ≡
Z

∞

0

ds
s
ðΔ̂θḡðsÞ − Δ̂θδϵ̄ðsÞ

þ 2Δ̂wi ν̄iðsÞ þ Δ̂Aπ̄ðsÞÞL−loop: ð189Þ

In particular, the linear contribution (L ¼ 0) reads

IlinðnsÞ ¼
Z

∞

0

ds snsþ2ðF1;θðsÞðF1;ḡðsÞ − F1;δϵ̄ðsÞÞ

þ F1;δðsÞF1;π̄ðsÞÞ; ð190Þ

where we used that vorticity and vector modes contribute
only starting at one-loop, and that A ↦ δ in linear
approximation. When including terms up to a given loop
order L, Eq. (188) is a polynomial equation for x of degree
Lþ 1, the solution(s) x� of which determine the ratio
of scales

kσ=knl ¼
ffiffiffi
3

p
x1=ðnsþ3Þ
� ; ð191Þ

setting the overall magnitude of the background dispersion
ϵ0 ¼ 1=k2σ. In linear approximation, the solution is given by
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xlin� ¼ 3ðns þ 7Þ=ððns þ 3ÞIlinðnsÞÞ: ð192Þ

While significant changes from nonlinear corrections can be
expected, we discuss self-consistent solutions in linear
approximation as a proof-of-principle in this work. Non-
linear corrections are presented in paper II [11]. In particu-
lar, we are interested in the sensitivity to the truncation of
the cumulant expansion, and start with the case of including
velocity dispersion only.

A. Self-consistent solution in second cumulant
approximation

When neglecting third and higher cumulants, we can
obtain the self-consistent solution for the background
dispersion by computing the integral Eq. (190) using the
analytical linear kernels for F1;θ and F1;ḡ given in
Appendix F, while F1;π̄ ¼ F1;δϵ̄ ¼ 0. The latter follows
since the scalar mode δϵ has no growing mode in linear
approximation, and at second cumulant order, and the
former since the third cumulant perturbation π is neglected
presently (see below for the generalization to higher
cumulants).
The self-consistent solution exists provided that the

integral IlinðnsÞ converges. In the infrared limit,
k ∝ s → 0, one has F1;θ → 1 and F1;ḡ → 2=ð2þ αÞ.
Therefore the integral is infrared-finite provided that
ns > −3. In the ultraviolet limit k ∝ s ≫ 1, the linear
kernels have asymptotic form given in Eq. (121). The
integral is absolutely convergent if

dðnsÞ≡ 3þ ns −minðdθ þ dg; dθ þ eg; eθ þ dg; eθ þ egÞ
ð193Þ

is less than zero. Using results from Appendix F one finds

dðnsÞ ¼
�−ð11ns þ 53Þ=24 for ns < 1;

−ðns þ 7Þ=3 for ns > 1;
ð194Þ

which is less than zero for ns > −53=11 ≈ −4.8. Note that
even for a very blue initial spectrum (large ns), the
damping due to velocity dispersion is strong enough to
compensate the growth of power at large k and make the
integral converge. On the contrary, the sensitivity to short
modes grows when decreasing ns, e.g., dð−1Þ ≈ −1.8,
dð−2Þ ≈ −1.3, dð−3Þ ≈ −0.8. Overall, the whole integral
is convergent for all ns > −3. Note that the solution is not
valid for ns < −3, because then one would have α < 0, i.e.,
a velocity dispersion that was larger in the past and decays
with time, rather than being generated, leading to a
qualitatively different behavior. For the relevant case
where ns → −3 from above, one has α → ∞, i.e., velocity
dispersion grows very quickly.
In Fig. 8, the ratio of kσ ¼ ϵ−1=20 and knl, as determined

by the linear approximation, is shown by the black line. The

ratio is always larger than one, and becomes very large for
ns → −3. This implies that nonlinear corrections are
expected to be more relevant the smaller ns.

B. Self-consistent solution in third and fourth
cumulant approximation

When including perturbation modes of the third and
fourth cumulant, the background value ωðηÞ of the fourth
cumulant has to be taken into account. Its equation of
motion when neglecting fifth cumulant perturbations is
given in Eq. (100), and can (forΩm=f2 ¼ 1) be rewritten as

ω0 þ 2ω

ϵ2
¼ 1

3

Z
∞

0

dk
k
f4Δθξ̄ − Δθκ̄ þ 2Δḡ π̄

þ 6Δδϵ̄ π̄ −
8

5
Δḡ χ̄g; ð195Þ

where π̄; χ̄ and ξ̄; κ̄ are the dimensionless perturbation
modes of the third and fourth cumulant, respectively. Let us
show that for a scaling universe, solutions with time-
dependence ωðηÞ ∝ ϵðηÞ2 are consistent with this equation
of motion. For constant ω̄ ¼ ω=ϵ2, the left-hand side of
Eq. (195) is equal to 2ðαþ 1Þω̄ ¼ 2ðns þ 7Þω̄=ðns þ 3Þ,
and is itself time-independent. The dimensionless power
spectra on the right-hand side can be decomposed in a sum
over loop contributions. Each of them satisfies a relation
analogous to Eq. (186), except that the Δ̂L−loop

ab can depend
on ω̄ in addition to s. Therefore, also the right-hand side of
Eq. (195) is constant after integration over k ∝ s, if ω̄ is
constant. Thus, both the left- and right-hand side of
Eq. (195) are time-independent for constant ω̄, implying
that ωðηÞ ∝ ϵðηÞ2 is a consistent ansatz. What remains to be

FIG. 8. Velocity dispersion scale kσ ¼ ϵ−1=2 relative to the
nonlinear scale knl for power-law initial spectrum P0 ∝ kns ,
obtained when using the linear approximation for the source
term for ϵ, and neglecting third and higher cumulants.
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done is to find a solution for the constant values of kσ=knl
and ω̄, or equivalently x and ω̄. For that purpose we rewrite
Eqs. (188) and (195) in the form

ns þ 7

ns þ 3
¼ 1

3

X
L≥0

xLþ1IL−loopðns; ω̄Þ;

2
ns þ 7

ns þ 3
ω̄ ¼ 1

3

X
L≥0

xLþ1JL−loopðns; ω̄Þ; ð196Þ

yielding a coupled set of equations for the unknowns x and
ω̄, with a polynomial dependence on x for any given loop
order, and an implicit dependence on ω̄ that can in general
only be determined numerically. Here we defined

JL−loopðns; ω̄Þ≡
Z

∞

0

ds
s
ð4Δ̂θξ̄ðsÞ − Δ̂θκ̄ðsÞ þ 2Δ̂ḡ π̄ðsÞ

þ 6Δ̂δϵ̄ π̄ðsÞ −
8

5
Δ̂ḡ χ̄ðsÞÞL−loop: ð197Þ

The integrals IL−loop are given by the same expression as in
Eq. (189), but with power spectra computed based on
kernels and nonlinear vertices including third and fourth
cumulants. In turn, this leads to an implicit dependence on
the background value of the fourth cumulant ω̄, as indicated
in the arguments of IL−loop and JL−loop.
In linear approximation, we can eliminate x by taking the

ratio of both equations in Eq. (196), giving an implicit
equation for the fourth cumulant expectation value ω̄,

ω̄ ¼ 1

2

Jlinðns; ω̄Þ
Ilinðns; ω̄Þ

: ð198Þ

The solution ω̄lin� of this equation can be determined
numerically using Eq. (190) for Ilin as well as an analogous
expression for Jlin ≡ J0−loop and Eq. (197). The power
spectra entering both integrals can be expressed in terms of
the linear kernels F1;a for the dimensionless perturbation
variables via Eq. (184). The F1;a are obtained by numeri-
cally solving the linear evolutions equations Eq. (127) and
using Eq. (129). Finally, the background dispersion scale
kσ=knl can be obtained using Eq. (191) with the linear
solution for x given by Eq. (192) with Ilin ¼ Ilinðns; ω̄lin� Þ
evaluated on the solution ω̄ ¼ ω̄lin� .
When truncating the perturbation modes at third cumu-

lant order, corresponding to (cum3þ) or equivalently
cmax ¼ 3, we find that Eq. (198) indeed has a solution
in linear approximation. The corresponding values of ω̄ as
well as kσ=knl are given in Table II for various spectral
indices ns. We observe that the dimensionless fourth
cumulant expectation value is of order unity, indicating
that higher cumulants are relevant quantitatively, but of the
same order as the background dispersion. In addition, the
shift in the value of kσ=knl compared to the second
cumulant approximation is sizeable, while the overall

magnitude is comparable. This indicates that higher cumu-
lants are important quantitatively, but do not invalidate the
qualitative behavior of the second cumulant approximation.
We find that no self-consistent solutions exist when
including fourth cumulant perturbations, which may be
attributed to the shortcomings of the linear approximation.
We investigate the impact of cumulants beyond the fourth
order in the next section.

C. Self-consistent solutions for the full
cumulant hierarchy

The self-consistent solutions of background values for a
scaling universe can be extended to truncations including
cumulants beyond the fourth order following Sec. VIII. In
linear approximation, the expectation values E2n of the 2nth
cumulant satisfy equations of motion given in Eq. (G4). For
2n ¼ 2 and 2n ¼ 4 they agree with those discussed above
for ϵ ¼ E2 and ω ¼ 5E4=3, respectively. For a scaling
universe these equations allow for constant values of the
dimensionless ratios Ē2n ¼ E2n=ϵn, determined by the set
of implicit equations (in linear approximation)

n
ns þ 7

ns þ 3
Ē2n ¼ x × Ilin

Ē2n
ðns; Ē4; Ē6;…Þ; ð199Þ

with

IĒ2n ¼
Z

∞

0

dssnsþ2
Xn
l¼0

ðlþ 1Þ
Xn−l

m1;m2¼0

δKm1þm2;n−l

×
ð2nÞ!ð2ðm2 −m1 − lÞ− 3Þ

ð2m1Þ!ð2m2Þ!
Tlþ1;2m1

ðsÞTl;2m2
ðsÞ;

ð200Þ

where δKi;j is the Kronecker symbol, and Tl;2mðsÞ are the
dimensionless linear kernels for perturbation modes of
cumulant order lþ 2m defined in Eq. (145). The linear
kernels are given by numerical solutions of the equations of
motion Eq. (G6). They depend on time and scale via the
single variable s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ϵðηÞk2

p
, which can be seen using

Eq. (150) and that α ¼ ∂η ln ϵ is constant for a scaling
universe. In addition, the linear kernels depend parametri-
cally on the spectral index ns due to α ¼ 4=ð3þ nsÞ, as
well as the backgound values Ē4; Ē6;…. Therefore,
Eq. (199) is a highly implicit and coupled set of equations
for the self-consistent values of Ē2n with 2n ≥ 4 as well as
the overall magnitude of the background dispersion para-
metrized by the variable x defined in Eq. (183). By taking
the ratio of Eq. (199) for 2n ≥ 4 and Eq. (199) for 2n ¼ 2,
and using that Ē2 ¼ 1 by definition, we obtain a coupled set
of equations for the cumulant expectation values of order
2n ≥ 4 that is independent of x,
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Ē2n ¼
1

n

Ilin
Ē2n

ðns; Ē4; Ē6;…Þ
Ilin
Ē2
ðns; Ē4; Ē6;…Þ : ð201Þ

These implicit equations can be viewed as a generalization
of Eq. (198) to beyond the fourth cumulant order. Once a
solution to these equations is found, it can be inserted in
Eq. (199) for n ¼ 1, yielding the solution for x and thereby
for the background dispersion scale

kσ
knl

¼
ffiffiffi
3

p �
ns þ 7

ðns þ 3ÞIlin
Ē2

�
1=ðnsþ3Þ

: ð202Þ

For a given truncation of cumulant perturbations at order
cmax, all Tl;2mðsÞwith lþ 2m > cmax are neglected. In this
case the equations for the linear kernels and therefore also
Ilin
Ē2n

depend only on the background values Ē4;…; Ēcmaxþ1

for odd cmax, and Ē4;…; Ēcmax
for even cmax. For cmax ¼ 2

only the background dispersion enters and it is sufficient
to solve Eq. (202), with results identical to those from
Sec. IX A. For cmax ¼ 3, 4, Eq. (201) reduces to a single

equation and yields values for Ē4 ¼ 3ω̄=5 consistent with
those obtained in Sec. IX B. For cmax ¼ 5, 6, Eq. (201)
yields a coupled set of equations for Ē4; Ē6. For cmax ¼ 7, 8,
one obtains three coupled equations for Ē4; Ē6; Ē8. Up to
eighth order, we find that within the linear approximation
considered here a joint self-consistent solution exists only
for cmax ¼ 2, 3, 6, 7, confirming the previous findings for
cmax ¼ 2, 3. The corresponding values are shown in
Table II for various values of ns. We observe that the size
of Ē4 is comparable for cmax ¼ 3, 6, 7, and the one of Ē6 for
cmax ¼ 6, 7, indicating that increasing the truncation order
does not lead to dramatic changes.
The dependence of the dispersion scale kσ on the

truncation order cmax is shown in Fig. 9. The largest shift
occurs when going from cmax ¼ 2 to cmax ¼ 3, while even
higher cumulants have only a minor impact. This indicates
that the relevant contributions to the source terms Eq. (200)
arise from scales where the dependence of the linear kernels
on cmax is already converged. In addition, we find that the
impact of higher cumulants is smaller for larger ns. While
spectra with large values of ns do have a lot of power on
small scales initially, it is more efficiently erased by the
suppression due to the buildup of velocity dispersion,
making the linear kernels drop faster, and hence the source
terms less sensitive to the contribution from large wave
numbers.

X. CONCLUSIONS

In this work we discuss the extension of standard
perturbation theory (SPT) to include higher cumulants of
the phase-space distribution function, based on the under-
lying Vlasov-Poisson dynamics for collisionless matter,
dubbed Vlasov Perturbation Theory (VPT). This takes into
account that even for an initially perfectly cold dark matter
distribution, orbit crossing generates velocity dispersion
and higher cumulants. We provide the explicit form of
nonlinear evolution equations when taking up to the fourth
cumulant into account, and derive evolution equations
linear in perturbations up to arbitrary order in the cumulant
expansion.
VPT splits cumulants into their average values and

fluctuations around them. The evolution equations for

TABLE II. Self-consistent solutions within linear approximation for the velocity dispersion scale kσ ¼ ϵ−1=2 ¼ E−1=2
2 relative to the

nonlinear scale, as well as the normalized expectation values Ē2n ¼ E2n=ϵn of higher cumulants. We show results for scaling universes
with spectral indices ns ¼ −1, 0, 1, 2, and for various truncations of the cumulant expansion, with perturbation modes up to order cmax.
The cases cmax ¼ 2, 3 are equivalent to (cum2) and (cum3þ), respectively, with Ē4 ¼ 3ω̄=5.

ns ¼ −1 ns ¼ 0 ns ¼ 1 ns ¼ 2

cmax kσ=knl Ē4 Ē6 Ē8 kσ=knl Ē4 Ē6 Ē8 kσ=knl Ē4 Ē6 Ē8 kσ=knl Ē4 Ē6 Ē8

2 4.1 3.0 2.6 2.3
3 3.4 0.45 2.5 0.40 2.2 0.37 2.0 0.35
6 3.8 0.37 0.86 2.7 0.34 0.92 2.3 0.31 0.93 2.1 0.29 0.92
7 3.8 0.36 0.78 3.5 2.7 0.36 0.94 4.5 2.3 0.35 1.03 5.1 2.1 0.34 1.08 5.3

FIG. 9. Velocity dispersion scale kσ ¼ ϵ−1=2 relative to the
nonlinear scale knl for power-law initial spectrum P0 ∝ kns ,
obtained from a self-consistent solution when including cumulant
perturbations up to order cmax, and for ns ¼ −1, 0, 1, 2,
respectively. The corresponding self-consistent solutions for
the fourth, sixth, and eighth cumulant expectation values are
shown in Table II.
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the perturbations depend on the average values, and vice
versa. Since in general the average values are sourced by
fluctuations integrated over all scales, we argue that the
background values of even cumulants should be treated as
“Oð1Þ” quantities. This leads to a consistent, systematic
perturbative expansion scheme for the fluctuations, and
allows us to describe the screening of UV modes crucial for
improving the convergence of SPT, as we discuss in paper
II [11]. The resulting VPT equations can be cast into a form
that is formally analogous to SPT (see Sec. V D), but with
an extended set of perturbation variables and nonlinear
interactions among them, in presence of a background
given by the average values of the even cumulants.
Our main findings are
(i) Linear VPT is far richer than SPT. Even in the

simplest approximation, where linear theory is trun-
cated at the second cumulant, the effective descrip-
tion in terms of density and velocity divergence is
nonlocal in time (see Sec. VII A), which is key to
satisfy the cosmic energy equation (see Eq. (E5) in
Appendix E). Indeed, given that at the fundamental
level we deal with collisionless particles interacting
only by gravity, local in time contributions from the
velocity divergence are forbidden in the Euler
equation, as this corresponds to dissipation and thus
violate the cosmic energy equation.

(ii) When a given mode k crosses the dispersion scale
kσ , its growth is suppressed (see Sec. VII A). This
back reaction on modes from small-scale dispersion
is completely absent in SPT. The suppression is only
affected by higher cumulants when k ≫ kσ, and they
make the screening mechanism even more efficient
(see Sec. VIII A, in particular Fig. 6). For any given
wave number the cumulant expansion converges.
This motivates a further study of perturbation theory
with a truncated cumulant expansion beyond the
linear approximation. This is what we carry out in
paper II [11].

(iii) The UV screening mechanism is in principle not
guaranteed, i.e., the complexity of the linear theory
of collisionless dynamics allows exponential insta-
bilities. Requiring that these be absent leads to
stability conditions that we derive analytically up
to cumulant of order eight (see Sec. VIII D). Re-
markably, these stability conditions are independent
of the value of the velocity dispersion and spectral
index and only constrain the non-Gaussianity of the
distribution function. The Gaussian case (vanishing
average values of fourth and higher cumulants) is
always within the stable domain.

(iv) We therefore consider higher cumulants averaged
over stationary dark matter haloes, finding that they
are generically of order unity when compared to an
appropriate power of the second cumulant (see
Figs. 1 and 2). While the halo analysis is not

required for the development of the VPT frame-
work, it serves as a useful benchmark and to gain
some insight into the distribution function non-
Gaussianity. Interestingly, we find that the cumulant
expectation values obtained from the halo analysis
satisfy the stability conditions (see Fig. 7 in
Sec. VIII D). Altogether, this implies that the linear
approximation within VPT is a good starting point
for a perturbative analysis with realistic values of
the cumulant expectation values.

(v) Finally, we determine self-consistent solutions of the
coupled set of perturbation and background equa-
tions. We consider a scaling universe for this
analysis, allowing us to transform the set of equa-
tions for the average values into coupled algebraic
equations, that we solve up to cumulant of order
eight (see Sec. IX). We find that the decoupling of
UV modes is more pronounced for larger spectral
index ns. This is because very blue initial spectra
lead to pronounced orbit crossing on small scales
and therefore quickly generate a large dispersion.
Remarkably, this causes the integral over the power
spectra of cumulant perturbations that source the
average values to converge even for arbitrarily large
ns. The resulting background values for the cumu-
lants in this self-consistent approach also satisfy the
stability conditions.

In summary, the VPT framework of perturbation theory
for dark matter clustering laid out in this work is directly
derived from the underlying fundamental collisionless
Vlasov-Poisson equations. It can, from the conceptual
point of view, be regarded as a straightforward extension
of SPT by taking second and higher cumulants of the
distribution function into account. Our results show that
VPT captures physical effects that are neglected in SPT, in
particular shell crossing and the screening of UV modes.
It therefore abandons a major shortcoming of SPT.
Furthermore, the framework does by construction neither
contain any ad hoc assumptions nor undetermined free
fitting parameters, and therefore preserves the predictivity
of the underlying Vlasov-Poisson equations. Nevertheless,
it allows for systematic and tractable extensions of SPT. In
an accompanying work, we show that the extended
framework can be used beyond the linear approximation
as well, and present detailed comparisons with N-body
simulation results (see paper II [11]).
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APPENDIX A: FURTHER DETAILS ON HALO CALCULATIONS

In this appendix we provide some extensions of the calculations presented in Sec. III for the cumulants of the phase-space
distribution function and an alternative approach in the NFW case that gives the shape of the distribution function itself.

1. Evans halos

We first we provide some more details on the halo calculations presented in Sec. III A. For the distribution function given
by Eq. (4), the expectation values of the sixth and eighth cumulants are, respectively

7E6 ¼
315

8
hwai þ

105

8
hwbi þ 105hwci þ

687

4
hw3

ai −
1449

8
hw2

ai −
315

2
hwawbi þ

987

4
hw2

awbi −
315

8
hw2

bi

þ 525

4
hwaw2

bi þ
105

4
hw3

bi −
1785

4
hwawci þ

987

2
hw2

awci −
945

4
hwbwci þ 525hwawbwci þ

315

2
hw2

bwci
− 315hw2

ci þ 525hwaw2
ci þ 315hwbw2

ci þ 210hw3
ci; ðA1Þ

9E8 ¼
3465

16
hwai þ

945

16
hwbi þ 945hwci −

42399

16
hw2

ai þ
28215

4
hw3

ai −
42003

8
hw4

ai −
15435

8
hwawbi þ

34965

4
hw2

awbi

−
18549

2
hw3

awbi −
6615

16
hw2

bi þ
16065

4
hwaw2

bi −
26649

4
hw2

aw2
bi þ

2835

4
hw3

bi −
4725

2
hwaw3

bi −
2835

8
hw4

bi
− 7875hwawci þ 21924hw2

awci − 18549hw3
awci − 3780hwbwci þ 20790hwawbwci − 26649hw2

awbwci
þ 5670hw2

bwci − 14175hwaw2
bwci − 2835hw3

bwci − 6615hw2
ci þ 25515hwaw2

ci − 26649hw2
aw2

ci þ 14175hwbw2
ci

− 28350hwawbw2
ci − 8505hw2

bw
2
ci þ 11340hw3

ci − 18900hwaw3
ci − 11340hwbw3

ci − 5670hw4
ci: ðA2Þ

As mentioned in Sec. III, for infinite halos wb drops from these expressions and everything can be written down in terms
of wa due to the wa þ wb þ wc ¼ 1 identity. The integrals over the halo of wn

a can be done analytically, resulting in simple
analytic expressions for the expectation value of the cumulants. Defining a real-valued function fðqÞ for both prolate
(q > 1) and oblate (q < 1) halos,

fðq > 1Þ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

p arc cot

�
qffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 − 1
p �

; fðq < 1Þ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p arc coth

�
qffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − q2
p �

; ðA3Þ

we have for the expectation value of the cumulants

E2 ¼ 1 −
1

3
q2 þ q

3
ð2q2 − 1ÞfðqÞ; E4 ¼

1

5
ð1 − 14q2Þ þ q

5
ð2q2 − 1Þð7q2 þ 6ÞfðqÞ; ðA4Þ

E6 ¼ −
3q2

28
ð1 − 234q2 þ 144q4Þ þ 3q

28
ð2q2 − 1Þð108q4 − 234q2 þ 1ÞfðqÞ; ðA5Þ

E8 ¼
q2

24
ð3183 − 12308q2 þ 52924 − 13696q6Þ þ q

8
ð2q2 − 1Þð2568q6 þ 924q4 þ 940q2 þ 1411ÞfðqÞ: ðA6Þ

These are the expressions used to compute the normalized cumulants Ē2n ¼ E2n=En
2 shown in Fig. 1.

2. NFW halos

In Sec. III B we calculated the cumulants of the phase-space distribution function for a distribution function with constant
anisotropy, Eq. (22), by integrating the steady Vlasov equation directly, leading to a recursion relation for the moments in
terms of the density profile and potential, Eq. (29). Here we take an alternative approach, which is to compute directly the
shape of the distribution function. The function fE in Eq. (22) can be computed by a generalization of the so-called
Eddington inversion method [60,80] originally developed for the isotropic case (β ¼ 0),
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fEðεÞ ¼
2β

ð2πÞ3=2Γð1 − λÞΓð1 − βÞ
d
dε

Z
ε

0

dψ
ðε − ψÞλ

dnh
dψn ;

ðA7Þ

where ε≡ −E ¼ ψ − p2=2 ≥ 0 is the binding energy per
unit mass, ψ ¼ −Φ, λ ¼ 3=2 − β − n, n ¼ ½3=2 − β� and
h≡ r2βρ is the radially weighted density profile expressed
as a function of ψ rather than r. When β is half-integer
(β ¼ 1=2;−1=2;…) this reduces to only derivatives, giving
a simple expression for the distribution function [81],

fðE; L2Þ ¼ 1

2π2
L−2β

ð−2βÞ!!
d3=2−βh

dψ3=2−β jψ¼ε: ðA8Þ

In particular, we are interested in β ¼ 1=2 in which case
this expression reduces to a first derivative. Using these
results, one could compute the cumulants by integration
over momentum rather than using the recursion relation

Eq. (29), but in practice the latter is actually easier.
However, this approach also gives us explicitly the dis-
tribution function. For β ¼ 1=2 we have,

fðp; xÞ ¼ 1

2π2
1

pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðp̂ · x̂Þ2

p dh
dψ


ψ→ψ−p2=2

;

fð0Þðp; rÞ ¼ 1

pr
dh
dψ


ψ→ψ−p2=2

; ðA9Þ

where r≡ jxj. Taking the monopole of this distribution by
integrating over the direction of momentum gives fð0Þ.
Figure 10 shows the result of this calculation for β ¼ 1=2
(solid lines), comparing it to a Gaussian distribution of the
same width (dashed). As expected from the form of the
distribution function, and the normalized cumulants shown
in the left panel of Fig. 2, the distribution is fairly different
from a Maxwellian.

APPENDIX B: EQUATIONS OF MOTION UP TO THE SECOND CUMULANT

In this appendix we give the equations of motion up to the second cumulant when neglecting third and higher order
cumulants in nonlinear terms (see Appendix D for those). The equations for the density contrast δ, the velocity divergence θ
and the log-density field A are given in the main text in Eqs. (69), (71), and (72), respectively. We use nonbold symbols to
denote wave vectors here and below.

1. Equation of motion for the vorticity

w0
k;i þ

�
3

2

Ωm

f2
− 1

�
wk;i þ k2νk;i ¼

Z
pq

�
−

1

p2
θpðk × ðp × wqÞÞi þ

1

p2
ðk × ððp × wpÞ × wqÞÞi

−
p · q
q2

ðp × qÞiApgq þ ðp × qÞiApδϵq −
1

q2
½ðp · qÞðk · qδKij − kjqiÞ

− ðp × qÞiðp × qÞj�Apνq;j − εijnkjpmAptq;nm

�
: ðB1Þ

FIG. 10. The distribution function monopole for NFW halos with β ¼ 1=2 (solid) compared to a Gaussian distribution with the same
second cumulant (dashed), at the scale radius of the halo x≡ cr=rvir ¼ 1. The left panel shows fð0ÞðpÞ as a function of momentum p in
units of p0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GmfðcÞc=rvir

p
while the right panel shows 4πp2fð0ÞðpÞ.
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2. Equations of motion for scalar, vector, and tensor perturbations of ϵij

g0k þ 2

�
3

2

Ωm

f2
− 1

�
gk − 2ϵθk

¼
Z
pq

��
3
ðk · pÞ2
k2p2

− 1

�
θpδϵq þ

p · q
q2

�
k2

p2
þ 1

2
−
3

2

ðk · pÞ2
k2p2

�
θpgq þ 3

k · p
p2k2

ðp × qÞ · wpδϵq

þ 1

p2

�
3

2

ðk · qÞ2
k2q2

þ 3
k · qp · q
k2q2

−
p · q
q2

−
1

2

�
ðp × qÞ · wpgq −

1

k2p2q2
ðp · qk2 þ 3k · pk · qÞθpðp × qÞ · νq

−
p · q
p2q2

ðp · qδKij − qipjÞwp;iνq;j −
6k · q − k2 þ 3p · q

k2p2q2
ðp × qÞ · wpðp × qÞ · νq

−
2k2 − 3p · q − 6k · p

2k2p2
pipjθptq;ij þ

2k2ðp × wpÞi þ 9ðp × qÞ · wppi

2k2p2
pjtq;ij

�
; ðB2Þ

δϵ0k þ 2

�
3

2

Ωm

f2
− 1

�
δϵk ¼

Z
pq

�
k · pk · q
k2p2

θpδϵq þ
p · q

2p2q2k2
ððk · pÞ2 − p2k2Þθpgq þ

k · q
p2k2

ðp × qÞ · wpδϵq

þ k2q2 − ðk · qÞ2 þ 2p · qk · p
2p2q2k2

ðp × qÞ · wpgq þ
1

q2

�
1 −

ðk · pÞ2
k2p2

�
θpðp × qÞ · νq

þ p · q
p2q2

ðp · qδKij − qipjÞwp;iνq;j þ
2k · q − k2 þ p · q

k2p2q2
ðp × qÞ · wpðp × qÞ · νq

þ 2k · q − p · q
2k2p2

pipjθptq;ij −
2k2ðp × wpÞi þ 3ðp × qÞ · wppi

2k2p2
pjtq;ij

�
−Qδð3ÞðkÞ; ðB3Þ

ν0k;i þ 2

�
3

2

Ωm

f2
− 1

�
νk;i − ϵwk;i ¼

Z
pq

�
−2

k · pðp × qÞi
k2p2

θpδϵq þ
p · qk · pðp × qÞi

k2p2q2
θpgq

þ k · pðk · pδKij − pikjÞ − ðp × qÞiðp × qÞj
k2p2

wp;jδϵq

þ k · qp · qðk · pδKij − pikjÞ þ ðp × qÞiðp × qÞjðk2 − p2Þ
k2p2q2

wp;jgq

þ k2p · qðk · qδKij − qikjÞ − ðp × qÞiðp × qÞjðp2 − q2Þ
k2p2q2

θpνq;j

þ k2 − p2

k2p2q2
½ðk × ðp × wpÞÞiðp × qÞ · νq − ðp × qÞ · wpðk × ðq × νqÞÞi�

− 2
ðp × qÞi
k2p2q2

ðp × qÞ · wpðp × qÞ · νq þ
ðk2 − q2Þϵinmkn − ðp × qÞipm

k2p2
pjθptq;mj

þ 2ðp × qÞ · wpϵinmkn − ðk × ðp × wpÞÞipm

k2p2
pjtq;mj

�
; ðB4Þ
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t0k;ij þ 2

�
3

2

Ωm

f2
− 1

�
tk;ij ¼

Z
pq

���
δKij −

kikj
k2

�
− 2

ðp × qÞiðp × qÞj
ðp × qÞ2

� ðp × qÞ2
k2p2

�
θpδϵq −

1

2

p · q
q2

θpgq þ θp
ðp × qÞ · νq

q2

�

þ 1

k2p2

�
ðq2ki − k2qiÞðpmδ

K
jl þ plδ

K
jmÞ þ ðq2kj − k2qjÞðpmδ

K
il þ plδ

K
imÞ

þ p · q

�
δKilδ

K
jm þ δKimδ

K
jl −

plpm

k2

�
δKij −

kikj
k2

��

− 2
plpm

k2

�
kipj þ kjpi − kikj þ q2δKij − k · p

kikj
k2

��
θptq;lm

þ 1

k2p2

�
ðp × wpÞiðkjðk · pÞ − k2pjÞ þ ðp × wpÞjðkiðk · pÞ − k2piÞ

þ ðp × qÞ · wp

�
k · p

�
δKij þ

kikj
k2

�
− kipj − kjpi

��
δϵq

þ 1

p2q2

�
ðp × wpÞiðp · qÞ

�
k · q

kj
k2

− qj

�
þ ðp × wpÞjðp · qÞ

�
k · q

ki
k2

− qi

�

þ ðp × qÞ · wp

��
δKij þ

kikj
k2

�
k · qðk · qþ 2p · qÞ

2k2
þ qiqj

þ 1

2
ðk2 − p2Þ

�
δKij −

kikj
k2

þ 2
kiqj þ kjqi

k2

���
gq

þ p2ki − k2pi

k2p2q2
½ðp × qÞ · νqðp × wpÞj − ðp × qÞ · wpðq × νqÞj�

þ p2kj − k2pj

k2p2q2
½ðp × qÞ · νqðp × wpÞi − ðp × qÞ · wpðq × νqÞi�

þ p · q
p2q2

�
ðp × wpÞiðq × νqÞj þ ðp × wpÞjðq × νqÞi − ðp × wpÞ · ðq × νqÞ

�
δKij −

kikj
k2

��

−
ðp × qÞ · wpðp × qÞ · νq

p2q2

��
δKij þ

kikj
k2

�
3p · qþ 2q2

k2
− 2

kiqj þ kjqi
k2

−
�
δKij −

kikj
k2

��

þ 1

2p2

�
2

�
δKij −

kikj
k2

�
½ðp × wpÞmpn þ ðp × wpÞnpm�

− 2ðp × wpÞi
�
pnδ

K
jm þ pmδ

K
jn − 2

pmpnkj
k2

�
− 2ðp × wpÞj

�
pnδ

K
im þ pmδ

K
in − 2

pmpnki
k2

�

þ ðp × qÞ · wp

�
6
pmpn

k2

�
δKij þ

kikj
k2

�
þ δKim

�
δKjn − 4

pnkj
k2

�

þ δKjn

�
δKik − 4

pmki
k2

�
þ δKin

�
δKjm − 4

pmkj
k2

�
þ δKjm

�
δKin − 4

pnki
k2

���
tq;mn

�
: ðB5Þ

APPENDIX C: VERTICES UP TO THE SECOND CUMULANT

In this appendix we collect all vertices γabcðp; qÞ for perturbation modes up to the second cumulant. We write ϵ instead of
δϵ in the index for simplicity. Furthermore k≡ pþ q in the vectorial sense.

GARNY, LAXHUBER, and SCOCCIMARRO PHYS. REV. D 107, 063539 (2023)

063539-36



1. Vertices involving only scalar perturbations

γδθδðp; qÞ ¼
1

2
αpq ¼

ðpþ qÞ · p
2p2

;

γθθθðp; qÞ ¼ βpq ¼
ðpþ qÞ2p · q

2p2q2
;

γAθAðp; qÞ ¼
1

2

q · p
p2

;

γθAgðp; qÞ ¼ −
1

2
ðpþ qÞ · q q · p

q2
;

γθAϵðp; qÞ ¼ −
1

2
ðpþ qÞ · p; ðC1Þ

γgθgðp; qÞ ¼
1

2

p · q
q2

�
k2

p2
þ 1

2
−
3

2

ðk · pÞ2
k2p2

�
;

γgθϵðp; qÞ ¼
1

2

�
3
ðk · pÞ2
k2p2

− 1

�
;

γϵθgðp; qÞ ¼
1

2

p · q
2p2q2k2

ððk · pÞ2 − p2k2Þ;

γϵθϵðp; qÞ ¼
1

2

k · pk · q
k2p2

: ðC2Þ

2. Vertices involving at most one vorticity, vector,
or tensor perturbation

γδwiδðp; qÞ ¼ γAwiAðp; qÞ ¼
1

2

ðp × qÞi
p2

;

γθwiθðp; qÞ ¼
1

2

�
1þ 2p · q

q2

� ðp × qÞi
p2

;

γθAνiðp; qÞ ¼
1

2

�
1þ 2p · q

q2

�
ðp × qÞi;

γθAtijðp; qÞ ¼ −
1

2
pipj; ðC3Þ

γgwigðp;qÞ¼
1

2

1

p2

�
3

2

ðk ·qÞ2
k2q2

þ3
k ·qp ·q
k2q2

−
p ·q
q2

−
1

2

�
ðp×qÞi;

γgwiϵðp;qÞ¼
1

2
3
k ·p
p2k2

ðp×qÞi;

γgθνiðp;qÞ¼−
1

2

1

k2p2q2
ðp ·qk2þ3k ·pk ·qÞðp×qÞi;

γgθtijðp;qÞ¼−
1

2

2k2−3p ·q−6k ·p
2k2p2

pipj; ðC4Þ

γϵwigðp; qÞ ¼
1

2

k2q2 − ðk · qÞ2 þ 2p · qk · p
2p2q2k2

ðp × qÞi;

γϵwiϵðp; qÞ ¼
1

2

k · q
p2k2

ðp × qÞi;

γϵθνiðp; qÞ ¼
1

2

1

q2

�
1 −

ðk · pÞ2
k2p2

�
ðp × qÞi;

γϵθtijðp; qÞ ¼
1

2

2k · q − p · q
2k2p2

pipj; ðC5Þ

γwiAgðp; qÞ ¼ −
1

2

p · q
q2

ðp × qÞi;

γwiAϵðp; qÞ ¼
1

2
ðp × qÞi;

γνiθgðp; qÞ ¼
1

2

p · qk · pðp × qÞi
k2p2q2

;

γνiθϵðp; qÞ ¼ −
1

2
2
k · pðp × qÞi

k2p2
; ðC6Þ

γtijθgðp; qÞ ¼ −
1

2

ðp × qÞ2p · q
2k2p2q2

��
δKij −

kikj
k2

�

− 2
ðp × qÞiðp × qÞj

ðp × qÞ2
�
;

γtijθϵðp; qÞ ¼
1

2

ðp × qÞ2
k2p2

��
δKij −

kikj
k2

�

− 2
ðp × qÞiðp × qÞj

ðp × qÞ2
�
: ðC7Þ

3. Vertices involving two vorticity, vector,
or tensor perturbations

γθwiwj
ðp; qÞ ¼ −

ðp × qÞiðp × qÞj
p2q2

;

γϵwiνjðp; qÞ ¼
1

2

ðp · q − p2 þ q2Þðp × qÞiðp × qÞj
p2q2k2

;

þ 1

2

k2ðp · qÞðδKijp · q − pjqiÞ
p2q2k2

;

γgwiνjðp; qÞ ¼
1

2

ðp2 − 5q2 − 7p · qÞðp × qÞiðp × qÞj
p2q2k2

;

−
1

2

k2ðp · qÞðδKijp · q − pjqiÞ
p2q2k2

;

γgwitjmðp; qÞ ¼
1

2

9ðp × qÞipj þ 2k2εijlpl

2k2p2
pm;

γϵwitjmðp; qÞ ¼ −
1

2

3ðp × qÞipj þ 2k2εijlpl

2k2p2
pm; ðC8Þ
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γwiθwj
ðp; qÞ ¼ 1

2

δKijp · k − pipj

p2
;

γwiAνjðp; qÞ ¼
1

2

ðp × qÞiðp × qÞj þ ðp · qÞðpjqi − δKijðk · qÞÞ
q2

;

γwiAtnmðp; qÞ ¼ −
1

2
εijnkjpm;

γνiwjgðp; qÞ ¼
1

2

ðδKijp · k − piqjÞðq · kÞðp · qÞ
p2q2k2

þ 1

2

ðp × qÞiðp × qÞjðk2 − p2Þ
p2q2k2

;

γνiwjϵðp; qÞ ¼
1

2

ðδKijp · k − piqjÞðp · kÞ − ðp × qÞiðp × qÞj
p2k2

;

γνiθνjðp; qÞ ¼
1

2

ðδKijq · k − pjqiÞðp · qÞk2 þ ðp × qÞiðp × qÞjðq2 − p2Þ
p2q2k2

;

γνiθtmj
ðp; qÞ ¼ 1

2

ðk2 − q2Þεinmkn − ðp × qÞipm

k2p2
pj; ðC9Þ

γtijwlgðp;qÞ ¼
1

2

1

p2q2

�
εinlpnðp ·qÞ

�
k ·q

kj
k2

−qj

�
þ εjnlpnðp ·qÞ

�
k ·q

ki
k2

−qi

�

þ εlnmpnqm

��
δKijþ

kikj
k2

�
k ·qðk ·qþ2p ·qÞ

2k2
þqiqjþ

1

2
ðk2−p2Þ

�
δKij−

kikj
k2

þ2
kiqjþkjqi

k2

���
;

γtijwlϵðp;qÞ ¼
1

2

pn

k2p2

�
εinlðkjðk ·pÞ−k2pjÞþ εjnlðkiðk ·pÞ−k2piÞþ εlnmqm

�
k ·p

�
δKijþ

kikj
k2

�
−kipj−kjpi

��
;

γtijθνlðp;qÞ ¼
1

2

εmnlpmqnðp×qÞ2
k2p2q2

��
δKij−

kikj

k2

�
−2

ðp×qÞiðp×qÞj
ðp×qÞ2

�
;

γtijθtlmðp;qÞ ¼
1

2

1

k2p2

�
ðq2ki−k2qiÞðpmδ

K
jlþplδ

K
jmÞþðq2kj−k2qjÞðpmδ

K
ilþplδ

K
imÞ

þp ·q
�
δKilδ

K
jmþ δKimδ

K
jl−

plpm

k2

�
δKij−

kikj
k2

��
−2

plpm

k2

�
kipjþkjpi−kikjþq2δKij−k ·p

kikj
k2

��
: ðC10Þ

4. Vertices involving three vorticity, vector, or tensor perturbations

γwiwjwl
ðp; qÞ ¼ εimjplpm þ δKilðp × qÞj

2p2
þ εimlqjqm − δKijðp × qÞl

2q2
;

γνiwjνlðp; qÞ ¼
1

2

1

p2q2k2
f½δKilq · k − plqi�ðp × qÞjðk2 − p2Þ − ½δKijp · k − piqj�ðp × qÞlðk2 − p2Þ

− 2ðp × qÞiðp × qÞjðp × qÞlg;

γνiwltmj
ðp; qÞ ¼ 1

2

2ðp × qÞlεinmkn − pmðpiql − k · pδKilÞ
k2p2

pj; ðC11Þ
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γtijwlνmðp; qÞ ¼
1

2

p2ki − k2pi

k2p2q2
½εmnsεjrlpr − εlnsεjrmqr�pnqs þ

1

2

p2kj − k2pj

k2p2q2
½εmnsεirlpr − εlnsεirmqr�pnqs

þ 1

2

p · q
p2q2

pnqr

�
εinlεjrm þ εjnlεirm − εsnlεsrm

�
δKij −

kikj
k2

��

−
1

2

εlnsεmkrpnpkqsqr
p2q2

��
δKij þ

kikj
k2

�
3p · qþ 2q2

k2
− 2

kiqj þ kjqi
k2

−
�
δKij −

kikj
k2

��
;

γtijwltmn
ðp; qÞ ¼ 1

2

1

2p2

�
2

�
δKij −

kikj
k2

�
½εmrlpn þ εnrlpm�pr

− 2εirlpr

�
pnδ

K
jm þ pmδ

K
jn − 2

pmpnkj
k2

�
− 2εjrlpr

�
pnδ

K
im þ pmδ

K
in − 2

pmpnki
k2

�

þ εlrsprqs

�
6
pmpn

k2

�
δKij þ

kikj
k2

�
þ δKim

�
δKjn − 4

pnkj
k2

�

þ δKjn

�
δKik − 4

pmki
k2

�
þ δKin

�
δKjm − 4

pmkj
k2

�
þ δKjm

�
δKin − 4

pnki
k2

���
: ðC12Þ

APPENDIX D: THIRD AND FOURTH CUMULANT

1. Evolution matrix for scalar perturbations

The scalar part of the block-diagonal evolution matrix Ωabðk; ηÞ for the perturbation modes up to the fourth cumulant

ψS ¼ ðδ; θ; g; δϵ; A; π; χ; κ; ξ;ψÞ; ðD1Þ

in the approximation Ωm=f2 → 1 is given by

ΩS ¼

0
BBBBBBBBBBBBBBBBBB@

−1
−3=2 1=2 k2 k2 k2ϵ

−2ϵ 1 1 −3=5
1 1=5

−1
−3k2ϵ −5k2ϵ −k2ω 3=2 −k2

−5k2ϵ −k2ω 3=2 −5=2k2 5=2k2 4k2

−4ω 4ϵ 2

−16=5ω 4ϵ −4=5ϵ 2

2

1
CCCCCCCCCCCCCCCCCCA

: ðD2Þ
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2. Vertices involving scalar modes π and χ
of the third cumulant

γgAπðp;qÞ ¼
1

4

p · q
q2

−
3

4

ðk · qÞ2p · q
k2q4

;

γgAχðp;qÞ ¼ −3γϵAχðp;qÞ;

γϵAπðp;qÞ ¼ −
1

4

p · q
q2

þ 1

4

ðk · qÞ2p · q
k2q4

;

γϵAχðp;qÞ ¼
1

4

�
p · q
5q2

þ 2

5

k ·pk · q
k2q2

−
ðk · qÞ2p · q

k2q4

�
; ðD3Þ

γπggðp; qÞ ¼
k2ðp · qÞ2
p2q2

þ 1

2
p · q

�
k · q
q2

þ k · p
p2

�
;

γπϵgðp; qÞ ¼
1

2
k · q

�
3þ 5p · q

q2

�
;

γπϵϵðp; qÞ ¼
5

2
k2;

γπθπðp; qÞ ¼
1

2

k2p · q
p2q2

þ k · qðp · qÞ2
p2q4

;

γπθχðp; qÞ ¼
1

5

k · q
q2

þ 2

5

k · pp · q
p2q2

−
k · qðp · qÞ2

p2q4
; ðD4Þ

γχggðp; qÞ ¼ −
15

4

k · qk · pp · q
p2q2

þ 5

2
γπggðp; qÞ;

γχϵgðp; qÞ ¼ −
15

4

�
k · qp · q

q2
þ ðk · qÞ3

k2q2

�
þ 5

2
γπϵgðp; qÞ;

γχϵϵðp; qÞ ¼ −
15

4
k2 þ 5

2
γπϵϵðp; qÞ;

γχθπðp; qÞ ¼ −
5

4

ðk · qÞ2p · qðk2 þ 2k · pÞ
k2p2q4

þ 5

2
γπθπðp; qÞ;

γχθχðp; qÞ ¼ −
3

4

k2p · q
p2q2

−
3

2

ðk · pÞ2k · q
k2p2q2

þ 5

4

ðk · qÞ2p · qðk2 þ 2k · pÞ
k2p2q4

þ 5

2
γπθχðp; qÞ:

ðD5Þ

APPENDIX E: THE LOCAL COSMIC ENERGY
EQUATION

In this section we review the evolution equation for the
total energy (see, e.g., [60]), given by the sum of kinetic and
potential energy,

Ekin ¼
1

2

Z
d3p

p2

a2
fðτ; x;pÞ ¼ 1

2
ð1þ δÞðσii þ viviÞ;

Epot ¼
1

2
Φδ: ðE1Þ

Using the evolution equation for σij, the continuity, Euler
and Poisson equations one obtains

∂τEkin þ 2HEkin þ∇iJkini ¼ −Φ∂τδ;

∂τEpot þ qHEpot þ∇iJ
pot
i ¼ þΦ∂τδ; ðE2Þ

where

Jkini ¼ Ekinvi þ ð1þ δÞ
�
σijvj þ viΦþ 1

2
Cijj

�
;

Jpoti ¼ 1

8πGρ̄0a2
ðΦ∂τ∇iΦ − ð∇iΦÞ∂τΦÞ; ðE3Þ

with third cumulant Cijk and

q≡ −
d lnða2ρ̄0Þ
d ln a

→ 1; ðE4Þ

for the usual scaling ρ̄0 ∝ a−3 of the matter rest energy
density, that we assume throughout. The evolution of the
total energy is therefore given by

∂τEþHð2Ekin þ EpotÞ þ∇iJi ¼ 0; ðE5Þ

with Ji ¼ Jkini þ Jpoti , and recovering the energy conserva-
tion law on a static background. Equation (E5) is the local
version of the cosmic energy equation [79]. Rescaling to
η ¼ lnðDÞ and X̂ ¼ X=ðfHÞ2 for X ¼ Φ; E; Ekin; Epot and
X̂i ¼ Xi=ð−fHÞ3 for X ¼ J; Jkin; Jpot gives

∂ηÊkinþ 2

�
3

2

Ωm

f2
− 1

�
Êkin−∇iĴ

kin
i ¼−Φ̃∂ηδ;

∂ηÊpotþ 2

�
3

2

Ωm

f2
−1−

1

2f

�
Êpot−∇iĴ

pot
i ¼þΦ̃∂ηδ; ðE6Þ

where

Ĵkini ¼ Êkinui þ ð1þ δÞ
�
ϵijuj þ uiΦ̃þ 1

2
πijj

�
;

Ĵpoti ¼ f2

3Ωm
ðΦ̃∂η∇iΦ̃ − ð∇iΦ̃Þ∂ηΦ̃Þ; ðE7Þ

with πijk ¼ Cijk=ð−fHÞ3 and
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Êkin ¼
1

2
ð1þ δÞðϵii þ uiuiÞ;

Êpot ¼
1

2
Φ̃δ; ðE8Þ

so that

∂ηÊþ 2

�
3

2

Ωm

f2
− 1

�
Ê −∇iĴi ¼

1

f
Êpot; ðE9Þ

where Ĵi ¼ Ĵkini þ Ĵpoti .
Let us check that the local cosmic energy equation is

indeed satisfied at lowest order in perturbation theory, when
including second and higher cumulant contributions as
done in this work. We insert the expansion ϵij ¼ ϵðηÞδKij þ
δϵij as well as the decomposition of δϵij and πijk from
Eqs. (57) and (99). Keeping terms up to linear order in
perturbations (except for contributions involving δϵ, see
below) yields

Êkin ¼
3

2
ð1þ δÞðϵðηÞ þ δϵÞ þ 1

2
g;

∇iĴi ¼
5

2
ϵ∇iui þ

1

2
∇iπijj ¼

5

2
ϵðηÞθ − 1

2
π; ðE10Þ

while Êpot ¼ 0 at this order. In the following we use the
EdS approximation Ωm ¼ f ¼ 1. One can check that, as
expected, Eq. (E9) is indeed satisfied up to terms of higher
order in perturbation theory when using the linear equa-
tions of motion (see Sec. VI)

∂ηδ ¼ θ; ð∂η þ 1Þδϵ ¼ −χ=5 −Q;

ð∂η þ 1Þg ¼ 2θϵðηÞ − π − 3χ=5; ðE11Þ

as well as the background dispersion evolution equation
ð∂η þ 1ÞϵðηÞ ¼ Q. Note that here it is important to retain
the contribution fromQ in the equation for δϵ, which has to
cancel with corresponding contributions from the equation
for ϵðηÞ. Alternatively, this cancellation can be seen directly
by realizing that they appear in the combination ϵþ δϵ, and
that Q drops out when adding the corresponding equations
of motion.

APPENDIX F: KERNELS IN LINEAR
APPROXIMATION

The linear solution for the velocity divergence θk and
scalar perturbation mode ḡk ¼ gk=ϵ of the velocity
dispersion tensor in the second-cumulant approximation
and for a power-law dependence ϵ ¼ ϵ0eαη is given by
Eq. (118), with linear kernels

F1;θðk; ηÞ ¼ F1;δðk; ηÞ −
2ð4þ αÞk2ϵ

ð2þ αÞð5þ 2αÞ 1F2

�
4þ 4α

3α
; 2þ 2

α
; 2þ 5

2α
;
−3k2ϵ
α2

�
;

F1;ḡðk; ηÞ ¼
2

2þ α

�
1F2

�
4þ α

3α
; 2þ 2

α
; 1þ 5

2α
;
−3k2ϵ
α2

�

−
ð4þ αÞk2ϵ

ð1þ αÞð5þ 2αÞ 1F2

�
4þ 4α

3α
; 3þ 2

α
; 2þ 5

2α
;
−3k2ϵ
α2

��
: ðF1Þ

The coefficients for the expansion Eq. (121) for large k2ϵ
are given in Table III.
The full linear solution of the coupled system Eq. (103)

for δk, θk, gk, that includes all eigenmodes, can be found by
making the ansatz

δk ¼ eλη
X
n≥0

cnðϵðηÞk2Þn; θk ¼ eλη
X
n≥0

dnðϵðηÞk2Þn;

k2gk ¼ eλη
X
n≥0

enðϵðηÞk2Þn; ðF2Þ

with some exponent λ and coefficients cn, dn, en. Inserting
this ansatz into Eq. (103) and assuming ϵ ∝ eαη yields the
recursions

cnðλþ αnÞ ¼ dn; dn

�
λþ αnþ 1

2

�
¼ 3

2
cn − cn−1 − en;

enðλþ αnþ 1Þ ¼ 2dn−1; ðF3Þ

for n ≥ 1. They can be combined into

cn ¼ −cn−1
3ðλþ αnÞ þ 1− 2α

ðλþ αn− 1Þðλþ αnþ 1Þðλþ αnþ 3
2
Þ ; ðF4Þ

with explicit expression given by

cn ¼
�
−3
α2

�
n
c0

Γðnþp1Þ
Γðp1Þ

Γðq1Þ
Γðnþ q1Þ

Γðq2Þ
Γðnþ q2Þ

Γðq3Þ
Γðnþ q3Þ

;

ðF5Þ

where
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p1 ≡ 3λþ 1þ α

3α
; q1 ≡ 1þ λ − 1

α
;

q2 ≡ 1þ λþ 1

α
; q3 ≡ 1þ λþ 3

2

α
: ðF6Þ

The sum over all n yields a solution in terms of generalized
hypergeometric functions. To find the allowed values for λ
it is sufficient to consider Eq. (103) in the limit ϵ → 0,
which yields a linear set of three algebraic equations for
ðc0; d0; e0Þ,

0
B@

λ −1 0

− 3
2

λþ 1
2

1

0 0 λþ 1

1
CA
0
B@

c0
d0
e0

1
CA ¼ 0: ðF7Þ

Nontrivial solutions exist for λ ¼ þ1 (with c0 ¼ d0;
e0 ¼ 0), λ ¼ −3=2 (with c0 ¼ − 2

3
d0; e0 ¼ 0) and λ ¼

−1 (with c0 ¼ −d0 ¼ e0). Each possibility yields one of
the three linearly independent solutions. Inserting the
values for λ in the recursion relation, and building a generic
linear combination of the three solutions, yields the general
solution Eq. (124). The solution for all three perturbation
modes can be written as

0
B@

δk

θk

gk

1
CA ¼ MkðηÞ

0
B@ A

B

C

1
CA; ðF8Þ

with free coefficients A, B, C and 3 × 3matrix given by the
tensor product

MkðηÞ≡
0
B@

1

∂η

ð−∂2η − 1
2
∂η þ 3

2
− ϵk2Þ=k2

1
CA ⊗

�
eη1F2ðp1; q2; q3; xÞ; e−3

2
η
1F2ðp1; q1; q2; xÞ; e−η1F2ðp1; q1; q3; xÞ

�
; ðF9Þ

with x≡ −3k2ϵðηÞ
α2

, and pi, qi evaluated for λ ¼ 1;−3=2;−1
for the three terms, respectively. This result can be used to
give an analytic expression for the linear propagator

Gkðη; η0Þ ¼ MkðηÞ½Mkðη0Þ�−1: ðF10Þ

A full treatment of the scalar modes in second cumulant
approximation requires to include also the mode δϵk as well
as Ak. Including δϵk leads to an additional decaying mode
solution gk ¼ −δϵk ¼ De−η and δk ¼ θk ¼ Ak ¼ 0, with
free coefficient D. This solution remains valid also for
ϵk2 ≫ 1, and can easily be included in the linear propagator
by extending Eq. (F8) by a fourth row. The solutions given
previously remain valid when including δϵk.
Finally, taking the Ak mode into account formally yields

an additional eigenvalue λ ¼ 0, related to the freedom to
choose different initial conditions for δk and Ak. This is
irrelevant for the linear evolution, but the additional linearly
independent solution enters in the linear propagator. The
corresponding additional solution is given by

δk ¼ E½2F3ð1; p1; q1; q2; q3; xÞ − 1�; ðF11Þ

with free coefficient E and pi, qi evaluated for λ ¼ 0, and
Ak ¼ Eþ δk; θk ¼ ∂ηδk, k2gk ¼ ð−∂2η − 1

2
∂η þ 3

2
− ϵk2Þδk,

and δϵk ¼ 0. The most general solution for all five scalar
modes is therefore given by

0
BBBBBB@

δk

θk

gk
δϵk

Ak

1
CCCCCCA

¼ Mð5×5Þ
k ðηÞ

0
BBBBBB@

A

B

C

D

E

1
CCCCCCA
; ðF12Þ

with Mð5×5Þ
k ðηÞ given by the 5 × 5 matrix

TABLE III. Coefficients in the expansion Eq. (121) of the linear kernels F1;aðk; ηÞ for large k2ϵ.

a da ea Da Ea φa

δ 2
3α ð4þ αÞ 19þ7α

6α 5α4
2−α
3α Γð2αÞΓð 5

2αÞ
Γð4αþ7

6α ÞΓð2ð1þαÞ
3α Þ − 5α

19−5α
6α Γð2αÞΓð 5

2αÞffiffi
π

p
Γð4þα

3α Þ
5α−19
12α π

θ 2
3α ð4þ αÞ 19þα

6α − 5α4
2−α
3α ðαþ1ÞΓð2αÞΓð 5

2αÞ
3Γð4αþ7

6α ÞΓð2ð1þαÞ
3α Þ − 5α

19−5α
6α Γð2αÞΓð 5

2αÞffiffi
π

p
Γð4þα

3α Þ
11α−19
12α π

ḡ 2
3α ð4þ αÞ 19þ7α

6α − 5α4
2−α
3α Γð2αÞΓð 5

2αÞ
Γð4αþ7

6α ÞΓð2ð1þαÞ
3α Þ − 10α

19−5α
6α Γð2αÞΓð 5

2αÞffiffi
π

p
Γð4þα

3α Þ
5α−19
12α π
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0
BBBBBBBB@

0 2F3ð1; p1;q1; q2; q3;xÞ− 1

MkðηÞ 0 ∂η½2F3ð1; p1;q1; q2; q3;xÞ− 1�
−e−η Dη½2F3ð1; p1;q1; q2; q3;xÞ− 1�

0 0 0 e−η 0

eη1F2ðp1;q2; q3;xÞ e−
3
2
η
1F2ðp1;q1; q2;xÞ e−η1F2ðp1;q1; q3;xÞ 0 2F3ð1; p1;q1; q2; q3;xÞ

1
CCCCCCCCA
; ðF13Þ

where Dη ≡ ð−∂2η − 1
2
∂η þ 3

2
− ϵk2Þ=k2. The corresponding linear propagator reads

Gð5×5Þ
k ðη; η0Þ ¼ Mð5×5Þ

k ðηÞ½Mð5×5Þ
k ðη0Þ�−1: ðF14Þ

APPENDIX G: EVOLUTION EQUATIONS FOR THE FULL HIERARCHY OF CUMULANTS

The linear evolution equation obtained from expanding Eq. (135) in powers of L is given by

�
∂η þ 1þ

�
3

2

Ωm

f2
− 1

�
ðlþ 2nÞ

�
Cl;2n ¼

f1; k2g
2lþ 1

Rl;2n þ
1

2
δKl1δ

K
n0
Ωm

f2
C0;0; ðG1Þ

where fA;Bg ¼ A for even l, and B for odd l, δK is the Kronecker symbol, and

Rl;2n ≡
Xn
m¼0

ð2nÞ!
ð2mþ 1Þ!ð2n − 2mÞ! E2mþ2ððlþ 1Þð2n − 2mÞð2n − 2m − 1ÞClþ1;2ðn−m−1Þ − lCl−1;2ðn−mÞÞ

þ ðlþ 1Þð2lþ 3þ 2nÞClþ1;2n −
l

2nþ 1
Cl−1;2ðnþ1Þ: ðG2Þ

We solve this system of equations with growing mode initial conditions

C0;0 → 1;

C1;0 →
1

3
;

Cl;2n → 0; lþ 2n ≥ 2; ðG3Þ

for η → −∞, as appropriate for cold dark matter and adiabatic initial conditions.

TABLE IV. Factor qcmax
ðλÞ contributing to the characteristic polynomial related to the asymptotic behavior of the linear kernels

for large ϵk2 when taking scalar perturbation modes of cumulants up to order cmax into account. Stability requires that all roots of
qcmax

ðλÞ lie on the negative real axis or are zero. We set X10 ≡ 945þ 1575Ē2
4 þ 630Ē6 − 210Ē4ð15þ Ē6Þ − 45Ē8 þ Ē10 and

X12 ≡ 10395þ 51975Ē2
4 − 5775Ē3

4 þ 13860Ē6 þ 462Ē2
6 − 495Ē4ð105þ 28Ē6 − Ē8Þ − 1485Ē8 þ 66Ē10 − Ē12.

cmax qcmax
ðλÞ

3 λ2 þ 2λþ 1
9
ð3 − Ē4Þ

4 λ2 þ 10
3
λþ 5

9
ð3 − Ē4Þ

5 λ3 þ 5λ2 þ 5
3
λð3 − Ē4Þ þ 1

27
ð15 − 15Ē4 þ Ē6Þ

6 λ3 þ 7λ2 þ 35
9
λð3 − Ē4Þ þ 7

27
ð15 − 15Ē4 þ Ē6Þ

7 λ4 þ 28
3
λ3 þ 70

9
λ2ð3 − Ē4Þ þ 28

27
λð15 − 15Ē4 þ Ē6Þ þ 1

81
ð105 − 210Ē4 þ 35Ē2

4 þ 28Ē6 − Ē8Þ
8 λ4 þ 12λ3 þ 14λ2ð3 − Ē4Þ þ 28

9
λð15 − 15Ē4 þ Ē6Þ þ 1

9
ð105 − 210Ē4 þ 35Ē2

4 þ 28Ē6 − Ē8Þ
9 λ5 þ 15λ4 þ 70

3
λ3ð3 − Ē4Þ þ 70

9
λ2ð15 − 15Ē4 þ Ē6Þ þ 5

9
λð105 − 210Ē4 þ 35Ē2

4 þ 28Ē6 − Ē8Þ þ 1
243

X10

10 λ5 þ 55
3
λ4 þ 110

3
λ3ð3 − Ē4Þ þ 154

9
λ2ð15 − 15Ē4 þ Ē6Þ þ 55

27
λð105 − 210Ē4 þ 35Ē2

4 þ 28Ē6 − Ē8Þ þ 11
243

X10

11 λ6 þ 22λ5 þ 55λ4ð3 − Ē4Þ þ 308
9
λ3ð15 − 15Ē4 þ Ē6Þ þ 55

9
λ2ð105 − 210Ē4 þ 35Ē2

4 þ 28Ē6 − Ē8Þ þ 22
81
λX10 þ 1

729
X12

12 λ6 þ 26λ5 þ 715
9
λ4ð3 − Ē4Þ þ 572

9
λ3ð15 − 15Ē4 þ Ē6Þ þ 143

9
λ2ð105 − 210Ē4 þ 35Ē2

4 þ 28Ē6 − Ē8Þ þ 286
243

λX10 þ 13
729

X12
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The evolution equation for the expectation values of even cumulants obtained from Eq. (89) and Taylor expanding
Eq. (137) in L is given by �

∂η þ
�
3

2

Ωm

f2
− 1

�
2n

�
E2n ¼ QE2n ; ðG4Þ

with

QE2n ¼ 4π

Z
∞

0

dk k2e2ηP0ðkÞ
Xn
l¼0

ðlþ 1Þ
Xn−l

m1;m2¼0

δKm1þm2;n−l
ð2nÞ!

ð2m1Þ!ð2m2Þ!
ð2m2 − 2m1 − 2l − 3ÞClþ1;2m1

Cl;2m2
: ðG5Þ

The evolution equations for the rescaled variables Tl;2n ¼ Cl;2n=ϵnþ½l=2� and Ē2n ¼ E2n=ϵn read

�
∂η þ 1þ

�
3

2

Ωm

f2
− 1

�
ðlþ 2nÞ þ ðnþ fl=2; ðl − 1Þ=2gÞð∂η ln ϵÞ

�
Tl;2n ¼

f1; ϵk2g
2lþ 1

R̄l;2n þ
1

2
δKl1δ

K
n0
Ωm

f2
T0;0; ðG6Þ

�
∂η þ

�
3

2

Ωm

f2
− 1

�
2nþ nð∂η ln ϵÞ

�
Ē2n ¼ Q̄E2n ; ðG7Þ

where R̄l;2n ¼ Rl;2njC→T;E→Ē and Q̄E2n ¼ QE2n jC→T .
The stability conditions for cmax ¼ 7 are given by those for cmax ¼ 5, and in addition

0 ≤ 6þ 5Ē4;

0 ≤ 105 − 210Ē4 þ 35Ē2
4 þ 28Ē6 − Ē8;

0 ≤ 630 − 525Ē4 − 35Ē2
4 þ 21Ē6 þ Ē8;

0 ≤ 70ð216þ 108Ē4 − 378Ē2
4 þ 215Ē3

4Þ − 14ð−108þ 180Ē4 þ 95Ē2
4ÞĒ6 þ 63Ē2

6 þ ð66þ 95Ē4 þ 3Ē6ÞĒ8;

0 ≤ 70ð72þ 132Ē4 þ 2Ē2
4 þ 85Ē3

4Þ − 1680Ē4Ē6 − 63Ē2
6 þ ð6þ 5Ē4ÞĒ8;

0 ≤ 34300ð5184þ 5184Ē4 − 8208Ē2
4 þ 7008Ē3

4 − 9204Ē4
4 þ 16340Ē5

4 þ 1445Ē6
4Þ

− 54880ð432þ 1296Ē4 − 2016Ē2
4 þ 4100Ē3

4 þ 1805Ē4
4ÞĒ6 þ 1372ð−4104þ 13500Ē4 þ 15390Ē2

4 þ 2275Ē3
4ÞĒ2

6

− 592704Ē3
6 − 64827Ē4

6 þ ½−7840ð−108 − 324Ē4 − 441Ē2
4 − 290Ē3

4 þ 170Ē4
4Þ þ 4704ð−72 − 150Ē4 þ 95Ē2

4ÞĒ6

þ 882ð−54þ 35Ē4ÞĒ2
6�Ē8 − 7ð396þ 1140Ē4 þ 335Ē2

4 þ 72Ē6ÞĒ2
8 − Ē3

8: ðG8Þ

The stability conditions for cmax ¼ 8 are given by those for cmax ¼ 6, and in addition

0 ≤ 6þ 7Ē4;

0 ≤ 105 − 210Ē4 þ 35Ē2
4 þ 28Ē6 − Ē8;

0 ≤ 210 − 105Ē4 − 35Ē2
4 − 7Ē6 þ Ē8;

0 ≤ 210ð24þ 36Ē4 − 34Ē2
4 þ 49Ē3

4Þ − 14ð−12þ 252Ē4 þ 91Ē2
4ÞĒ6 − 49Ē2

6 þ ð78þ 147Ē4 þ 7Ē6ÞĒ8;

0 ≤ 14ð72þ 204Ē4 þ 90Ē2
4 þ 203Ē3

4Þ − 784Ē4Ē6 − 49Ē2
6 þ ð6þ 7Ē4ÞĒ8;

0 ≤ 980ð1728þ 5184Ē4 þ 3024Ē2
4 þ 7776Ē3

4 þ 2628Ē4
4 þ 22932Ē5

4 þ 5887Ē6
4Þ

− 4704ð144þ 720Ē4 þ 384Ē2
4 þ 2436Ē3

4 þ 1183Ē4
4ÞĒ6 þ 588ð−120þ 1932Ē4 þ 1274Ē2

4 þ 147Ē3
4ÞĒ2

6

þ 21952Ē3
6 − 7203Ē4

6 þ ½−672ð−36 − 180Ē4 − 411Ē2
4 − 294Ē3

4 þ 203Ē4
4Þ þ 672ð−24 − 42Ē4 þ 91Ē2

4ÞĒ6

þ 2058ð−2þ 3Ē4ÞĒ2
6�Ē8 − 3ð156þ 588Ē4 þ 259Ē2

4 þ 56Ē6ÞĒ2
8 − Ē3

8: ðG9Þ
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