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We reconsider the gravitational wave spectrum induced by scalar perturbations in spatially flat
Friedmann-Lemaître-Robertson-Walker spacetimes, focusing on the matter- and Λ-dominated epochs.
During matter domination, subhorizon modes are not free, and a commonly applied approximation for the
derivative of the tensor perturbation is flawed. We show analytically that this leads to a significant
overestimation of the energy density spectrum. In addition, we demonstrate that gauge-dependent
nonoscillating tensor perturbations appear in the presence of a cosmological constant. Complementing
the analytical calculations, we compute the according present-day spectrum numerically for a Planck-like
ΛCDM cosmology, finding that nonoscillating growing modes appear during the transition between matter
and Λ domination in conformal Newtonian gauge.
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I. INTRODUCTION

The first detection of gravitational waves from binary
black hole mergers by LIGO/Virgo Collaborations [1,2]
marked the beginning of gravitational wave astronomy.
Existing and future detectors like ground-based [3–6] and
space-based [7,8] interferometers and pulsar timing arrays
[9–11] cover a large range of frequencies, including those
relevant for stochastic signals of cosmological origin. The
latter could be sourced by, e.g., phase transitions, cosmic
defects, nonperturbative phenomena like preheating or in
the form of primordial fluctuations in inflationary scenarios
(see [12] for a review). An interesting candidate for the
detection of a stochastic gravitational wave background is a
signal recently reported by the NANOGrav Collaboration
[10], PPTA [13], and EPTA [14]. However, the gravita-
tional wave origin of the signal is yet to be confirmed.
Primordial gravitational waves are particularly interesting,
as they could provide decisive evidence for inflation. Their
signal can be constrained, e.g., by observations of the B-
mode polarization of the cosmic microwave background
(CMB) [15,16]. Results from the BICEP2/Keck Array [17]
and the Planck Collaboration [18] place upper limits to the
tensor-to-scalar ratio, r≲ 0.1, and even tighter constraints
when combined.

Regardless of the existence of these more exotic sources,
however, evolving curvature perturbations generate gravi-
tational waves at second order in perturbation theory (see
[19] for a recent review). This is true for a standard cosmic
history but could also be used to probe, e.g., an early
matter-dominated era due to ultralight primordial black
holes (PBHs) [20–22]. Long-lived PBHs are a candidate for
dark matter (see, e.g., [23,24] for reviews) and might form
by gravitational collapse during radiation domination if
there exist large primordial fluctuations [25,26]. The
evolution of the latter would contribute to the induced
gravitational wave background and could be used to
constrain the PBH abundance [27,28]. There is a vast
amount of literature on PBHs and their gravitational wave
counterpart, and we refer the interested reader to the review
articles [12,19,29] and references therein.
For the remainder of this paper, we focus on a standard

ΛCDM cosmology. During late-time matter domination,
the first-order evolution of curvature perturbations corre-
sponds to the linear evolution of the density contrast, i.e.,
the regime of linear structure formation. Analytical descrip-
tions of the second-order tensor spectrum were started by
Ananda et al. [30] and Baumann et al. [31] for radiation
and matter domination, completed by Espinosa et al. [32]
and Kohri and Terada [33] and semianalytically extended to
transitions between matter and radiation domination
by the latter. Domènech [34] generalized the analytical
computations to general cosmological backgrounds with
equation of state parameter w≡ p=ρ ∈ ð0; 1�. The tensor

*sipp@thphys.uni-heidelberg.de
†bjoern.malte.schaefer@uni-heidelberg.de

PHYSICAL REVIEW D 107, 063538 (2023)

2470-0010=2023=107(6)=063538(12) 063538-1 © 2023 American Physical Society

https://orcid.org/0000-0001-9293-3366
https://orcid.org/0000-0002-9453-5772
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.063538&domain=pdf&date_stamp=2023-03-24
https://doi.org/10.1103/PhysRevD.107.063538
https://doi.org/10.1103/PhysRevD.107.063538
https://doi.org/10.1103/PhysRevD.107.063538
https://doi.org/10.1103/PhysRevD.107.063538


perturbations induced by (nonlinearly evolving) cosmic
large-scale structure can also be obtained from general-
relativistic cosmological N-body simulations [35,36].
One interesting finding of the aforementioned studies is a

strong enhancement of the gravitational wave spectrum
during matter domination. However, the relevant modes
do not redshift as one would expect for a radiation fluid. In
addition, a strong gauge dependence of these induced
tensor perturbations was demonstrated by Hwang et al.
[37]. Domènech and Sasaki [38] could show an approxi-
mate gauge independence though, explaining why results
for modes sourced during radiation domination agree
throughout a large class of gauges. The required assumption
that gravitational waves are essentially free on small scales
breaks down during matter domination, where they are
continuously sourced. Ali et al. [39], however, could show
that computations agree in seven different gauges when only
the oscillating part of the tensor perturbation is considered.
As an aside, theymention that no nonoscillating contribution
exists in conformal Newtonian gaugewhenworkingwith the
proper definition of the gravitational wave energy density.
Indeed, in large parts of previous literature the latter is
defined in away implicitly assuming that gravitationalwaves
are free. Since this approximation is flawed during matter
domination, however, we reconsider the scalar-induced
gravitational wave spectrum in cosmologies dominated by
matter and a cosmological constant in this paper. While we
focus on a standardPlanck-likeΛCDMmodel, our analytical
solutions can also be applied to nonstandard scenarios like an
early matter domination.
We recapitulate the formalism for scalar-induced gravi-

tational waves in Sec. II, including a brief discussion of the
gauge issue in Sec. II B. Thereafter, analytical solutions for
a matter dominated epoch are presented in Sec. III A,
followed by the (approximately) de Sitter case in Sec. III B.
In Sec. IV, we present numerical solutions for a standard
cosmological model with a spatially flat background and a
cosmological constant in order to correctly account for
transitions between the cosmological eras.

II. INDUCED GRAVITATIONAL WAVES

The background spacetime of the cosmological standard
model (ΛCDM) is of the well-known Friedmann-Lemaître-
Roberson-Walker (FLRW) type with a cosmological con-
stant Λ, populated by cold Dark Matter (CDM) and a small
fraction of baryons [40]. It is constructed under the
assumptions of spatial homogeneity and isotropy, well
justified by large-scale observations of the cosmos, e.g.,
CMB measurements [41]. Einstein’s field equations then
simplify to Friedmann’s equations, which describe the
dynamics of spacetime in terms of a scale factor a.
Under these assumptions, the cosmic fluid energy-momen-
tum tensor, as seen from a comoving observer, is that of a
perfect fluid. Here, we will restrict ourselves to a spatially
flat background.

Evidently, the Universe does not exactly obey the
aforementioned Robertson-Walker symmetries, as attested
by the existence of cosmic structures. The latter already
appear at first order in perturbation theory, where scalar,
divergence-free vector and traceless, and transverse tensor
modes evolve independently [42,43]. At linear order, vector
modes decay quickly and tensor perturbations are sourced
by anisotropic stress, which vanishes necessarily for a
perfect cosmic fluid (see, e.g., [44,45] for excellent
reviews). Therefore, only first-order scalar perturbations
are considered in our study. They can be parametrized by
the gauge-invariant Bardeen potential Φ as a generalization
of the Newtonian gravitational potential [42]. At higher
order in perturbation theory, mode mixing can occur,
transferring amplitudes of excitations between scalar and
tensorial perturbations. In order to investigate gravitational
waves induced by linearly evolving cosmic perturbations,
one thus has to go beyond linear order.
In conformal Newtonian gauge, the second-order metric

takes the form

g ¼ a2
�
−ð1þ 2ΦÞdη2 þ

�
ð1 − 2ΦÞγij þ

1

2
hij

�
dxidxj

�
;

ð1Þ

where γij denotes the Euclidean metric and all second-order
modes but the traceless-transverse tensor hij were dis-
carded.1 This is justified by the fact that nth order scalar,
vector, and tensor perturbations still decouple, only mixing
with lower-order variables [45]. Starting instead with first-
order tensor perturbations and second-order scalar modes,
for example, one could investigate signatures of primordial
gravitational waves on the density contrast of cosmic large-
scale structure [46–48].
Inserting the above metric into Einstein’s field equations,

together with the perfect fluid energy-momentum tensor,
they yield the second-order gravitational wave equation
[30,31,49],

h00ij þ 2Hh0ij − ∇2hij ¼ 4STT
ij : ð2Þ

On the right-hand side, the superscript TT denotes taking
the traceless and transverse part, and H≡ a0=a is the
conformal Hubble rate, with the prime indicating deriva-
tives with respect to conformal time η. The source term is
given by

Sij ¼ κa2ðρ̄þ p̄Þδuiδuj − 4Φ∂i∂jΦ − 2∂iΦ∂jΦ; ð3Þ

1Throughout this work we denote spatial and spacetime
indices with Latin and Greek letters, respectively. We also use
Einstein’s summation convention. Furthermore, we work in units
where the speed of light equals unity, c ¼ 1.
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where κ ¼ 8πG and ρ̄, p̄ are the background density and
pressure, respectively. δui is the first-order velocity per-
turbation of the fluid. The second and third term of (3) are
effective sources arising in the perturbative expansion of
the Einstein tensor. This is precisely how first-order
perturbations induce higher-order modes.
The first-order perturbation variables evolve linearly, and

it is useful to separate the Bardeen potential into an initial
perturbation and a transfer function,Φðk; ηÞ ¼ TΦðk; ηÞϕk.
Furthermore, δukk under the aforementioned assumptions
(cf. Appendix A), such that we can write δuðk; ηÞ ¼
Tuðk; ηÞϕkk. In Fourier space, the source reads

STT
ij ðk;ηÞ¼⊥ij

abðk̂Þ
Z
R3

d3q
ð2πÞ3qaqbϕqϕk−qfðq; jk−qj;ηÞ;

with the expression

fðq; p; ηÞ≡ −3ð1þ wÞH2Tuðq; ηÞTuðp; ηÞ
þ 2TΦðq; ηÞTΦðp; ηÞ; ð4Þ

where wðηÞ≡ p̄ðηÞ=ρ̄ðηÞ denotes the background equation
of state parameter. The definition of the traceless-transverse
projector is adopted from Caprini and Figueroa [12],

⊥ijlmðk̂Þ≡ PilPjm −
1

2
PijPlm

with Pijðk̂Þ≡ δij − k̂ik̂j;

where a hat indicates unit vectors. At first order in relativistic
perturbation theory, the potential and velocity transfer
functions can be related (via (A2) in Appendix A),

Tuðk; ηÞ ¼
2i

3ð1þ wÞH2
ðT 0

Φ þHTΦÞ: ð5Þ

Equation (4) can thus be written as [31]

fðq; p; ηÞ ¼
�

4

3ð1þ wÞ þ 2

�
TΦðq; ηÞTΦðp; ηÞ

þ 4

3ð1þ wÞH2
T 0
Φðq; ηÞT 0

Φðp; ηÞ

þ 4

3ð1þ wÞH
�
TΦðq; ηÞT 0

Φðp; ηÞ

þ TΦðq; ηÞT 0
Φðp; ηÞ

�
: ð6Þ

In Fourier space, (2) can be solved using a suitable Green’s
function gkðη; η̄Þ, such that (see Appendix B)

hijðk; ηÞ ¼
4

aðηÞ
Z

η

ηi

dη̃ gkðη; η̃Þaðη̃ÞSTT
ij ðk; η̃Þ; ð7Þ

where ηi is some time where initial conditions are specified.

A. Gravitational wave spectra

In the context of cosmological scalar perturbations, the
sources are random fields and thus characterized by their
statistics. Therefore, a similar treatment is indicated for
the induced stochastic background of gravitational waves.
As usual, a power spectrum can be defined in terms of the
Fourier-transformed two-point correlator,

hhijðk; ηÞh�ijðk̃; ηÞi≡ ð2πÞ3Phðk; ηÞδð3ÞD ðk − k̃Þ;

where δð3ÞD denotes the Dirac distribution. Substituting the
expressions above and using Wick’s theorem, one finds
[e.g., [30,31,33]]

Phðk; ηÞ ¼
4

π2

Z
∞

0

dq
Z þ1

−1
dμ q6ð1 − μ2Þ2

× I2ðk; q; μ; ηÞPϕðqÞPϕðjk − qjÞ; ð8Þ

with the initial scalar power spectrum Pϕ and the kernel

Iðk; q; μ; ηÞ≡
Z

η

ηi

dη̃ gkðη; η̃Þ
aðη̃Þ
aðηÞ fðq; jk − qj; η̃Þ: ð9Þ

If one were to go to higher order in perturbation theory,
an effective energy-momentum source would be contrib-
uted by the gravitational waves themselves. Even though
this energy cannot be localized in general relativity, an
effective energy density can be defined by averaging over a
suitably large volume. Sufficiently below the horizon, it
reads [50]

ρGWðx; ηÞ ¼
hh0ijðx; ηÞh0ijðx; ηÞi

32πGa2
;

taking the typical form of a kinetic term, i.e., the energy
(density) of a massless excitation. Equivalently, using the
conventions of, e.g., Watanabe and Komatsu [51], the
dimensionless energy density spectrum reads

ΩGWðk; ηÞ≡ 1

ρcr

dρGW
d log k

;

with the cosmological critical density ρcr ¼ 3H2=ðκa2Þ.
In our model, this yields2

2The temporal dependence of hij is completely absorbed in the
kernel I .
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ΩGWðk; ηÞ ¼
4k3

3πH2ðηÞ
Z

∞

0

dq
Z þ1

−1
dμ q6ð1 − μ2Þ2

× I 02ðk; q; μ; ηÞPϕðqÞPϕðjk − qjÞ: ð10Þ

This expression can now be evaluated for any given initial
power spectrum of scalar perturbations and their temporal
evolution. It shall be noted that in literature gravitational
waves are commonly assumed to be freely propagating, i.e.,
without significant sourcing or resonance effects. In this
case, one has h0ij ∝ khij, and thus,

ΩGWðk; ηÞ
����
free

≃
π

3

k5Phðk; ηÞ
H2ðηÞ : ð11Þ

In a cosmology dominated by matter or dark energy,
however, this assumption is invalid and the full expression
(10) has to be used instead. Wewill quantify the importance
of this analytically in Sec. III and numerically in Sec. IV.
Before, the issue of gauge ambiguity shall briefly be
addressed.

B. The gauge issue

The metric (1) is valid in the conformal Newtonian
gauge. This choice, however, is arbitrary. In fact, the group
of gauge transformations is isomorphic to the diffeomor-
phism group in general relativity [52,53]. It is, therefore,
directly related to the freedom of coordinate choice, which
is paramount to the theory. Any one-parameter family of
diffeomorphisms can be expressed as a (generally infinite-
rank) one-parameter family of knight diffeomorphisms [54].
The latter are compositions of one-parameter groups of
diffeomorphisms that are each the flow of a generating
vector field. This construction allows a perturbative expan-
sion of coordinate transformations and thus a well-defined
notion of nth order gauge transformations.
Under a gauge transformation ϕϵ that is parametrized by

an expansion parameter ϵ, any tensorial quantity Q trans-
forms as [54]

Q̃≡ ðϕϵÞ�Q ¼ Qþ ϵLXð1ÞQþ ϵ2

2
ðL2

Xð1Þ þ LXð2Þ ÞQþ…;

where an asterisk denotes the pullback and L the Lie
derivative. The generators XðiÞ are four-vector fields, and
thus, each have two scalar and one vector, but no tensorial
degree of freedom. One can, therefore, immediately see that
first-order gravitational waves are gauge-invariant. As
discussed above, however, scalar and vector degrees of
freedom enter the second-order (and higher) gravitational
wave equation, making the gauge issue more intricate:
While the tensor perturbation is not directly affected by the
transformation, the sources are. Therefore, only free3

gravitational waves are gauge-invariant at higher order.

This is at the heart of the gauge issue of scalar-induced
gravitational waves, which was made explicit by Hwang
et al. [37], who found vast differences in their power
spectra in different gauges.
One can, of course, construct a gauge-invariant second-

order tensor variable. As Domènech and Sasaki [38] point
out, however, there are infinitely many ways of doing so,
and there is no a priori preferred choice, and it remains
unclear how to connect the constructed variable to physical
observables. There are different ways of approaching this
ambiguity: De Luca et al. [55], for example, try to choose a
preferred gauge from the perspective of a gravitational
wave laser interferometer, arguing in favor of synchronous
gauge. This choice, however, suffers from a relevant
residual gauge freedom [56]. As an alternative approach,
Domènech and Sasaki [38] define a class of reasonable
gauges in which a detector should not oscillate in absence
of physical gravitational waves. This includes the con-
formal Newtonian gauge that we use here and emphasizes
the correspondence between the detector and a fundamental
observer in a FLRW universe. They show that within this
class, the gravitational wave energy density spectrum is
gauge-invariant and decays as expected for a radiation
fluid, provided that the sources are practically inactive.
On subhorizon scales, this is often the case as, e.g., in a
radiation-dominated universe the sourcing of a mode is
strongest at horizon crossing and quickly decays afterwards
[31]. This approximate gauge invariance can be well
understood in light of the aforementioned gauge invariance
of free gravitational waves: In a reasonable class of gauges,
the effective source terms vanish whenever the physical
sources do. The gravitational wave equation then becomes
purely tensorial and is thus unaffected by any knight
diffeomorphism, i.e., gauge transformation.
There is, however, one caveat to the above argument: In

cosmological epochs where c2s ¼ 0, e.g., matter or dark
energy domination, the sources become constant in terms
of the Bardeen potentials and, therefore, remain active.
Indeed, this leads to the appearance of gauge artifacts and a
nonoscillatory contribution to the tensor perturbations.
Arguing that only oscillating tensor modes can be regarded
as gravitational waves, Inomata and Terada [57] show that
the kernel I (and thus ΩGW) coincides up to nonoscillatory
terms during matter domination in conformal Newtonian
and synchronous gauge, and Ali et al. [39] extend this
result to seven different gauges. Such a distinction between
oscillating and nonoscillating contributions is reasonable, as
at second order in perturbation theory gauge transformations
simply adds terms to the kernel [56]. For the well-behaved
class of gauges mentioned above, the gauge artifacts should
be nonoscillating. Both strain and energy density of the
oscillating gravitational wave part of the tensor perturbation
are then gauge-invariant within this class.
In addition, the authors of [39] mention that the only

nonoscillatory term appearing in conformal Newtonian3Here, free means that both real and effective sources vanish.
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gauge is constant and thus automatically disappears if
one uses (10) instead of (11) when computing ΩGW. We
want to stress, however, that this is not merely a useful
trick, but that using (11) implicitly employs the approxi-
mation h0ij ∝ khij, which is invalid as long as sources are
active—only free gravitational waves obey this relation.
Nonetheless, this form of ΩGW is widespread in literature,
even when matter-dominated universes are discussed. With
this in mind, we want to reconsider the scalar-induced
gravitational wave spectrum in different cosmological
epochs in the following sections.

III. ANALYTICAL TENSOR SPECTRA

For a constant equation of state of the cosmic fluid and
adiabatic perturbations, analytical solutions for the gravi-
tational wave spectrum can be found. First analytical
investigations were made for radiation and matter domi-
nation [30–32,58]. Transitions between these epochs were
modeled in a semianalytical way by Kohri and Terada [33],
and it was shortly after shown that the spectrum also
depends on the specifics of the transition [59,60]. More
recently, a general solution for 0 < w ≤ 1 was given by
Domènech [34].
During radiation domination, the scalar source Φ is

suppressed as ðkηÞ−2, so the approximation of free sub-
horizon gravitational wave modes is valid. Therefore, we
will not focus on this case in more detail and refer to
previous literature, where it was found that for a flat
primordial curvature power spectrum, the induced gravi-
tational wave spectrum is also of constant amplitude
[30,31,33]. In a standard ΛCDM cosmology, we therefore
expect the “UV tail” emitted during radiation domination to
be flat. As discussed above, however, gravitational waves
are not free on any scale when the scalar perturbations are
dominated by matter with c2s ¼ 0.

A. Matter domination

During (pressureless) matter domination, both the cos-
mic equation of state and the speed of sound vanish,
w ¼ c2s ¼ 0. The first-order equation (A4) for the evolution
of scalar perturbations then simplifies to

Φ00 þ 6

η
Φ0 ¼ 0;

which has an irrelevant decaying and a constant solution.
Normalizing TΦ to unity during matter domination, (6) sim-
ply reduces to

fðq; p; ηÞ ¼ 10

3
: ð12Þ

Sufficiently below the horizon and during the matter-
dominated era, a Newtonian treatment of cosmic structure
should be applicable (see Appendix A). However, one

should evolve the primordial curvature power spectrum to
the present day using the fully relativistic transfer func-
tions and only employ the Newtonian model to work
backwards from there. Otherwise, relevant processes in
the radiation-dominated Universe are neglected, and the
observed present-day matter power spectrum is not
recovered. Indeed, combining the linearized continuity
equation (A5) and the Poisson equation (A6), assuming
a purely matter-dominated background density ρ̄ ¼
Ωmρcra−3, one obtains the relation

Tu ¼
2ai

3ΩmH2
0

ðT 0
Φ þHTΦÞ:

During matter domination, where w ¼ 0 and H2 ¼
H2

0Ωma−1, this exactly coincides with the relativistic
relation (5). Furthermore, the potential transfer function
is related to the density perturbation via the Poisson
equation. With the same normalization as before, it can
be expressed in terms of the growth function Dþ as
TΦ ¼ Dþ=a, which is unity during matter domination.
Thus, (12) is recovered in the Newtonian approximation.
While expected on small scales, this shows that the
Newtonian result coincides with the relativistic one which
was derived without the aforementioned restriction.
With the appropriate Green’s function (B5), the kernel

(9) can be integrated analytically, yielding [cf. [33]]

Iðk; ηÞ ¼ 10

3

�
1

k2
þ 3

kη cosðkηÞ − sinðkηÞ
k5η3

�
: ð13Þ

Splitting ΩGW into a purely spatial and a time-dependent
part, ΩGWðk; ηÞ ¼ T2

GWðk; ηÞωGWðkÞ, we arrive at

T2
GWðk; ηÞ≡

�
I 0ðk; ηÞ
HðηÞ

�
2

¼ 25ð3kη cosðkηÞ þ ðk2η2 − 3Þ sinðkηÞÞ2
k10η6

:

ð14Þ

The leading order in a Taylor expansion, which gives the
superhorizon behavior, is proportional to η4 ∝ a2, while the
dominant term ignoring oscillations is of order η−2 ∝ a−1.
This is consistent with the fact that the sourcing is peaked
around horizon entry, and afterwards, the gravitational
waves, being massless excitations following null geodesics,
should redshift like any radiation fluid. Interestingly, this
contradicts the results first obtained by Baumann et al. [31],
where it is claimed that second-order gravitational waves
induced during matter domination do not redshift. Their
results are recovered, however, when employing (11),
which gives
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T2
GWðk; ηÞ

����
free

≡
�
kIðk; ηÞ
HðηÞ

�
2

¼ 25ð3kη cosðkηÞ − 3 sinðkηÞ þ k3η3Þ2
9k8η4

:

ð15Þ

Consequently, the first order in Taylor expansion would be
proportional to η6 ∝ a3 and the late-time behavior to
η2 ∝ a. A comparison of the two results, both normalized
to unity at kη ¼ 1, is shown in Fig. 1.
Ali et al. [39], who define gravitational waves as the

oscillatory part of the tensor perturbation only, note that the
difference is due to a nonoscillatory contribution—the k−2-
term in (13)—which automatically vanishes in conformal
Newtonian gauge when applying the time derivative. For
gauges where the nonoscillatory term is time-dependent,
the authors explicitly discard it. Alternatively, the non-
oscillatory contribution can be removed by a gauge trans-
formation [38].
We want to stress, however, that this contribution is not

simply a gauge mode, but a consequence of an invalid
approximation: As mentioned earlier, employing I 0 ∝ kI
is only valid for free waves. During matter domination,
however, the sources remain constant, rendering the
approximation inapplicable. This is important, as non-
oscillatory gauge-dependent contributions to the tensor
perturbation are not necessarily irrelevant: When doing
calculations in some arbitrary gauge, they cannot simply be
discarded, even if one defines gravitational waves as purely

oscillatory. What is actually relevant is the response of
some detector. Employing the aforementioned approxima-
tion outside its scope of validity will lead to erroneous
contributions to the second-order tensor perturbations.
While ubiquitous in literature, it should, therefore, be used
with caution and the physical approximation in mind,
resorting to the full expression (i.e., (10) in our case)
when necessary.
The above discussion is also an argument in favor of

conformal Newtonian gauge for the computation of ΩGW,
as in that case only oscillating modes (which typical
detectors are sensitive to) contribute to the energy density
up until matter domination. Any gauge transformation
would transform the kernel as [39,56]

Iðk; q; μ; ηÞ → Iðk; q; μ; ηÞ þ δIðk; q; μ; ηÞ;

where δIðk; q; μ; ηÞ is, in general, time-dependent and
thus does not vanish upon applying a time derivative.
Furthermore, as discussed in Sec. II B, the additional
terms will be nonoscillatory for a large class of gauges.
Transforming from conformal Newtonian to synchronous
gauge, for example, we would have4 [39]

δIðk; q; μ; ηÞ ¼ η2

72
½ðq2 − kqμÞη2 − 44�:

The kernels for matter domination in seven different gauges
can be found in Ref. [39].
So far, the discussion has been independent from the

initial matter power spectrum. Consider now a flat power
spectrum k3PϕðkÞ ¼ const. The spatial integrals in (8) and
(10) are divergent in this case. Furthermore, very small
wavelengths are in the nonlinear regime of structure
formation, and the second-order perturbative approach
would become insufficient. We will, therefore, employ a
UV cutoff kUV [33,58],

k3

2π2
PϕðkÞ ¼

4

9
Δ2

Rðk0ÞΘðkUV − kÞ;

with the Heaviside function Θ and a dimensionless nor-
malization Δ2

Rðk0Þ. In practice, matter domination is not
past-eternal anyway, and the cutoff scale arises naturally
during the smooth transition between radiation and matter
domination. In order to keep the results of this section
more general, we will not specify an explicit value for kUV
here.
Following the calculation of Kohri and Terada [33], we

arrive at

FIG. 1. Comparison of the correct time evolution of ΩGW
during matter domination (blue solid) with the incorrectly
approximated result (orange dashed) commonly used in liter-
ature, both normalized to unity at horizon scale, x ¼ 1. The
correct solution decays as η−2 ∝ a−1 on subhorizon scales, as
expected for gravitational waves.

4Note that our convention for I differs by a factor of 25=9k−2
from [39].
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ωGWðkÞ ¼ Δ4
Rk

4
16π3

25515

8>><
>>:

105k̃2 þ 768k̃ − 2520þ 1792k̃−1 ð0 < k̃ ≤ 1Þ
105k̃2 − 768k̃þ 1960 − 1792k̃−1 þ 896k̃−4 − 256k̃−6 ð1 < k̃ ≤ 2Þ
0 ð2 < k̃ < ∞Þ

; ð16Þ

where k̃≡ k=kUV. The complete energy density spectrum,

ΩGWðk; ηÞ ¼ T2
GWðk; ηÞωGWðkÞ;

is shown in Fig. 2 at a time kUVη ¼ 102 sufficiently after the
onset of matter domination, for both the correctly evaluated
time-dependent part (13) and the flawed approximation
(15). The latter case is the result commonly encountered in
literature [33]. Clearly, the erroneous nonoscillating con-
tributions introduced by the flawed approximation of the
kernel strongly dominate over the approximately gauge-
invariant oscillating part, leading to a strong overestimation
of the spectrum. It is particularly pronounced close to kUV,
which is in accordance with the asymptotic behavior
mentioned before. Qualitatively, the spectrum computed
with the exact definition of ΩGW reaches its maximum near
horizon entry and redshifts thereafter, while the invalidly
approximated result grows towards the cutoff. This ex-
plains the strong maximum at the scale of matter-radiation
equality found by Baumann et al. [31].
Albeit we focus on a standard ΛCDM model in

this work, the analytical considerations above do not
depend on this assumption and equally apply to an early

matter-dominated era. However, as pointed out in
Ref. [38], the tensor perturbations generated during early
matter domination do propagate freely in a subsequent era
after the sources have decayed, and initially nonoscillating
contributions could start to oscillate. Nevertheless,
the observable signal has to be gauge independent, so
differences between gauges should be eliminated in the
transition from early matter domination to the subsequent
era. Indeed, it has been shown that the specifics of this
transition may significantly impact the spectrum [59,60].
A more thorough investigation of an early matter-
dominated scenario in light of the flawed free-wave
approximation is thus left for subsequent research.

B. Dark energy domination

A de Sitter universe is perfectly homogeneous, as the
cosmological constant does not cluster. In this section,
however, we will consider a universe whose background
evolution is driven by the cosmological constant (w ¼ −1),
while matter fluctuations with c2s ¼ 0 are present. The first
term of (4) vanishes and only effective source terms remain.
Again, the same is obtained in Newtonian cosmology, as
the linear growth factor obeys D0þ ¼ 0 in this case. With
H ∝ a, i.e., a ∝ η−1 and the dominant behavior of the
potentials Φ ∝ a−1, we have fðηÞ ∝ η2 ∝ a−2. For the
kernel, we obtain

Iðk; ηÞ ∝ η2

k2
þ 2

1 − kη sinðkηÞ − cosðkηÞ
k4

;

such that the temporal evolution of the energy density
power spectrum reads

T2
GWðk; ηÞ≡

�
I 0ðk; ηÞ
HðηÞ

�
2

∝
4η4

k4
sin4

�
kη
2

�
:

The wavelength of oscillations is increased by a factor of 2
compared to the gravitational wave expectation, which can
be traced back to the nonoscillating term in the kernel. In
contrast to the matter-dominated case it does not drop out,
as it is time-dependent even in conformal Newtonian
gauge. Indeed, following the reasoning of [39] and the
physical arguments as to why a this particular term should
not contribute, we instead obtain

T2
GWðk; ηÞ ∝

4η4cos2ðkηÞ
k4

:

Physically, the critical density freezes during cosmological
constant domination, such that the energy density of a

FIG. 2. Analytical solution for the gravitational wave energy
density spectrum ΩGWðk; ηÞ induced in an (ongoing) matter-
dominated era assuming a scale-invariant primordial matter
power spectrum. A sharp UV cutoff, kUV, was imposed and
the time set to kUVη ¼ 102. Beyond the cutoff scale, a realistic
spectrum would transition to the flat spectrum produced during a
preceding radiation-dominated era. For comparison, both the
improved result (blue solid) and the one using a commonly
applied, though flawed, approximation for the kernel is shown
(orange dashed).
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radiation fluid should decay proportional to a−4, which the
above result fulfills. In addition, the gravitational wave
frequency redshifts until the mode ceases to oscillate upon
crossing the shrinking comoving horizon. For a flat
primordial matter power spectrum, one could introduce a
UV cutoff similarly to the above treatment of matter
domination, but the spatial integration, and thus (16),
would remain unchanged.
In order to compute the late-time induced gravitational

wave spectrum in a ΛCDM universe, one would now need
to investigate the transition between matter and cosmo-
logical constant domination. A semianalytical approach
similar to the one in [33], where the transition between
matter and radiation domination was investigated, is more
complicated here due to the transition from a growing to a
decaying relationship between conformal time and redshift.
We shall not pursue this further here and leave it for future
research. The details of such a transition, however, may
have a significant impact on the spectrum [59,60].

IV. NUMERICAL RESULTS FOR
A PLANCK-LIKE ΛCDM COSMOLOGY

In order to account for the transition between the
cosmological epochs in a realistic model, we integrate
(10) numerically for a ΛCDM cosmology with Planck-like
parameters and a slightly red-tilted initial matter power
spectrum [61]. The potential transfer function is obtained
from the numerical Boltzmann solver CLASS [62]. In Fig. 3,
the present-day tensor energy density spectrumΩðk; z ¼ 0Þ
is shown, both using the full definition (10) and the
approximated expression (11). In the latter case, our results

are compatible with Ref. [31]. As expected from the
analytical discussion of Sec. III A, however, the power
on large and intermediate scales is strongly overestimated
by the invalid free-wave assumption h0ij ∝ khij. Indeed,
while previous calculations find that the second-order
signal dominates over an optimistic5 primordial gravita-
tional wave background from slow-roll inflation on scales
close to the horizon at matter-radiation equality, this is far
from true for the new results.
Note, however, that the oscillatory features are still

suppressed on large and intermediate scales for the results
that do not employ the flawed approximation. This is
expected due to nonoscillatory tensor perturbations induced
in the presence of the cosmological constant. In fact, Fig. 3
also includes a plot for ΩΛ ¼ 0, where the aforementioned
effect is absent. In Fig. 4, the temporal evolution of a single
mode, k ¼ 10−2 hMpc−1, is shown, both with and without
cosmological constant. As expected from (14), the spec-
trum redshifts in the latter case, while in the former it starts
to rapidly grow again after a ≈ 2 × 10−1. The growth seems
to be mainly in a (strongly gauge-dependent) nonoscilla-
tory component, as oscillatory features are increasingly
suppressed towards a ¼ 1. While we cannot explain this
in terms of the analytical de Sitter solution from Sec. III B,
we have seen there that nonoscillatory contributions to the
tensor perturbations arise in the presence of a cosmological
constant in conformal Newtonian gauge. In addition,
when the cosmological constant becomes the dominant

FIG. 3. Present-day tensor spectrum ΩGWðk; z ¼ 0Þ for a
Planck-like cosmology (blue solid), similarly for ΩΛ ¼ 0 (blue
dotted) and the results obtained using the approximation hij ∝
khij that is not justified during matter domination (orange
dashed). For comparison, the primordial first-order spectrum
for a simple inflationary model with optimistic tensor-to-scalar
ratio r ¼ 0.1 is shown (gray dotted) [cf. [51]].

FIG. 4. Temporal evolution of ΩGWðk ¼ 10−2 h=Mpc; aÞ. The
mode enters the horizon during matter domination. For both a
Planck-like ΛCDM cosmology (blue solid) and an identical one,
except ΩΛ ¼ 0, Ωm ¼ 1 − Ωr (orange dashed), and the mode
redshifts after horizon entry (∝ a−1), as expected during matter
domination (cf. Fig. 1). In the presence of a cosmological
constant, however, it starts to grow again after a ≈ 2 × 10−1.
In addition, the oscillations are suppressed, i.e., there are non-
oscillating contributions.

5Tensor-to-scalar ratio r ¼ 0.1.
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component of the Universe’s energy-momentum content,
linear structure starts to dilute again, which might contrib-
ute to the sourcing of tensor perturbations. However, for an
analytical understanding of the numerically computed late-
time growth, the transition between matter and dark energy
domination needs to be investigated more closely.

V. SUMMARY AND CONCLUSION

In this paper, we revisit the late-time scalar-induced
gravitational wave background in a ΛCDM cosmology in
light of the breakdown of a commonly applied approxi-
mation during cosmological epochs with vanishing speed
of sound, c2s ¼ 0. We stress that during matter domination
subhorizon gravitational waves are not free, in contrast
to, e.g., radiation domination. While this is well known, it
also implies that one cannot employ the approximation
h0ij ∝ khij, which is commonly applied implicitly in the
definition of ΩGW, an issue that was briefly addressed
also by Ali et al. [39]. We reconsider previous analytical
computations for a matter-dominated universe with flat
primordial matter power spectrum, showing that the erro-
neous assumption leads to a strong overestimation of the
gravitational wave energy density spectrum.
Furthermore, the presence of a cosmological constant

introduces nonoscillating and, therefore, strongly gauge-
dependent contributions to the spectrum. The sources are
first-order perturbations, and our results are independent of
whether they are modeled in relativistic or Eulerian
perturbation theory. However, one cannot simply take a
fluid energy-momentum tensor and use it as a source for the
first-order gravitational wave equation, as this would miss
effective source terms arising at second order in relativistic
perturbation theory.
In order to account for the transition between matter and

dark energy domination, we numerically compute the
spectrum for a Planck-like cosmology, reconsidering the
results of Baumann et al. [31] with the aforementioned in
mind. While the numerical results generally agree with the
analytical findings, we observe a nonoscillating growing
contribution to the spectrum that might be due to the
transition between two cosmological epochs that has not
been analytically accounted for. This could be a subject of
further research.
While our results were obtained in conformal Newtonian

gauge, we argue that restricting to purely oscillating
contributions to the tensor perturbations would yield
approximately gauge-invariant results, along the lines of
Refs. [38,39,47]. However, the fact that the nonoscillating
tensor perturbations are strongly gauge dependent does not
mean that they are completely irrelevant. As Domènech
[19] points out, a proper understanding of a second-order
detector response would clarify the measurable signal of
induced gravitational waves, constituting another important
direction for further research.
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APPENDIX A: RELATIVISTIC AND EULERIAN
FIRST-ORDER SCALAR PERTURBATIONS

In order to make this paper self-contained, we summa-
rize the relevant results of first-order (scalar) perturbation
theory in the following. Cosmic structure can be treated in
terms of small perturbations on top of a homogeneous and
isotropic background. First-order perturbation theory of
Einstein’s field equations of general relativity around a
spatially flat FLRW background with perfect fluid energy-
momentum results in a set of equations for the gauge-
invariant Bardeen potential [44],

∇2Φ − 3HðΦ0 þHΦÞ ¼ 4πGa2δρ; ðA1Þ

∂iðaΦÞ0 ¼ −4πGa2ðρ̄þ p̄Þδuki; ðA2Þ

Φ00 þ 3HΦ0 þ ð2H0 þH2ÞΦ ¼ 4πGa2δp; ðA3Þ

in conformal Newtonian gauge. With a suitable choice of
gauge-invariant variables replacing δρ, δp, and δuik, how-
ever, these expressions are valid for arbitrary gauges. Note
that δuik denotes the scalar (or divergence) part of the velocity
perturbation. Since the vorticity quickly decays at first order
under the above assumptions, we can safely reduce the first-
order velocity perturbation to the scalar part at late times [45].
Equations (A1) and (A3) can be combined into

Φ00 þ 3ð1þ c2s ÞHΦ0 þ ð2H0 þ ð1þ 3c2s ÞH2− c2s∇2ÞΦ¼ 0;

ðA4Þ

where entropy perturbations were neglected (i.e., adiabatic
perturbations were assumed) and c2s ¼ δp=δρ.
Sufficiently below the background curvature scaleH, the

background is approximately flat. In this regime, and since
only small perturbations are assumed, the Newtonian limit
of gravity is valid for nonrelativistic matter. It is, therefore,
common to model linearly evolving late-time structure as
fluid obeying the linearized Euler, continuity, and Poisson
equations. In comoving coordinates, they read [64,65]

au0 þ 2Hau ¼ −
∇δp
ρ̄

−∇Φ;

δ0 þ a∇ · u ¼ 0; ðA5Þ

∇2Φ ¼ 4πGa2ρ̄δ; ðA6Þ
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respectively, where δ≡ δρ=ρ̄, and u denotes the comoving
peculiar velocity. Note that the Poisson equation (A6) is
indeed the small scale limit, H2 ≪ k2, of (A1). From the
first two equations it can be concluded that again vorticity
decays [65]. The above equations can be combined to yield,
in the adiabatic case, the growth equation

D00þ þHD0þ ¼ ð4πGa2ρ̄þ c2s∇2ÞDþ; ðA7Þ

where Dþ is the temporal part of the density contrast,
δðx; ηÞ ¼ DþðηÞδðx; ηiÞ, normalized to unity at some
initial time ηi unless stated otherwise. For nonrelativistic
matter, the Poisson equation implies Φ ∝ Dþ=a. In the
pressureless case we have w ¼ c2s ¼ 0, and (A7) is
exactly equivalent to (A4) upon subtraction of the second
Friedmann equation.

APPENDIX B: GREEN’S FUNCTIONS TO THE
GRAVITATIONAL WAVE EQUATION

In Fourier space, the gravitational wave equation (2) is
equivalent to [31]

H00
ij þ

�
k2 −

a00

a

�
Hij ¼ 4aSTT

ij ; ðB1Þ

where Hij ≡ ahij and the source are understood as func-
tions of k and η. This is a second-order inhomogeneous
linear ordinary differential equation. Specifying initial
conditions at some time ηi, the corresponding initial value
problem on the domain η ∈ ½ηi;∞Þ can be solved using the
Green’s function method, yielding (7). The Green’s func-
tion gk is given in terms of two linearly independent
solutions vk, uk to the homogeneous equation to (B1),

gkðη; η̃Þ ¼
ukðη̃ÞvkðηÞ − ukðηÞvkðη̃Þ
ukðη̃Þv0kðη̃Þ − u0kðη̃Þvkðη̃Þ

:

The denominator defines the Wronskian W½uk; vk�ðη̃Þ. For
modes well within the horizon, H2 ≪ k2, the term propor-
tional to a00=a is negligible, and the homogeneous equation
is simply a harmonic oscillator. A simple set of homo-
geneous solutions is given by sinðkηÞ and cosðkηÞ, such
that

gkðη; η̃Þ ¼
sinðkðη − η̃ÞÞ

k
: ðB2Þ

Consider a general cosmic fluid with constant equation of
state w ≠ −1=3. From Friedmann’s equations, we have

�
a0

a2

�
2

∝ ρ ∝ a−3ð1þwÞ ⇒ a ∝ η
2

1þ3w;

and thus the homogeneous part for (B1) reads

H00
ij þ

�
k2 −

2 − 6w
ð1þ 3wÞ2

1

η2

�
Hij ¼ 0: ðB3Þ

For radiation domination, w ¼ 1=3, this is again a har-
monic oscillator, so (B2) is recovered [31].
Introducing the substitution HijðηÞ ¼ ffiffiffi

η
p

fðηÞ, multiply-
ing with η

3
2 and using ∂η ¼ k∂kη, Eq. (B3) takes the form of

Bessel’s differential equation,

η2∂2ηf þ η∂ηf þ
�
ðkηÞ2 −

�
3 − 3w
2þ 6w

�
2
�
f ¼ 0:

Two linearly independent solutions are, therefore, given by
Bessel functions of first and second kind, and resubstitution
yields [34]

ukðηÞ ¼
ffiffiffi
η

p
J3−3w

2þ6w
ðkηÞ; vkðηÞ ¼

ffiffiffi
η

p
Y 3−3w

2þ6w
ðkηÞ: ðB4Þ

For both nonrelativistic matter, w ¼ 0, or a cosmological
constant, w ¼ −1, the homogeneous solutions (B4)
become proportional to [31]

ukðηÞ ¼ ηj1ðkηÞ; vkðηÞ ¼ ηy1ðkηÞ;

with the spherical Bessel functions j1 and y1. The
Wronskian is W½uk; vk�ðη̃Þ ¼ k−1 [cf. [66]] and the result-
ing Green’s function

gkðη; η̃Þ¼
�
1þ 1

k2ηη̃

�
sinðkðη− η̃ÞÞ

k
−
ðη− η̃Þcosðkðη− η̃ÞÞ

k2ηη̃
:

ðB5Þ

One can see that the leading order term in k−1 is just (B2),
and thus the small scale limit is recovered as k → ∞. For
both (B2) and (B5), small scales are suppressed, justifying
the assumption that the sourcing of a mode is strongest just
around horizon entry.
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