
Phase transitions in de Sitter spacetimes: Quantum Corrections
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We investigate the decay rate of a false vacuum state in de Sitter space at high Hubble rates, using two
methods: the Hawking-Moss instanton method which is fully quantum mechanical but relies on the saddle-
point approximation, and the Starobinsky-Yokoyama stochastic approach which is nonperturbative but
does not include quantum effects. We use the flux over population method to compute the Hawking-Moss
decay rate at one-loop order, and demonstrate that in its domain of validity, it is reproduced by the
stochastic calculation using the one-loop constraint effective potential. This suggests that the stochastic
approach together with the constraint effective potential can be used to accurately describe vacuum decay
beyond the saddle-point approximation.
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I. INTRODUCTION

A ubiquitous phenomenon of quantum field theories is
quantum tunnelingwhich renders a classically stablevacuum
metastable and leads to phase transitions. Precision calcu-
lations of the decay rate of such metastable vacuum are
relevant for understanding and constraining possible physics
beyond the standard model (SM) and nonminimal gravita-
tional couplings. Given the current measurements of the SM
Higgs and top quark masses [1,2], our Universe seems to lie
in ametastable statewhich should have a small enough decay
rate [3–7]. In the early Universe the decay rate can be
enhanced by different mechanisms [8]; hence, rigorous
calculations of such decay rates are important to understand
the constraints on new physics.
In flat space, a formal definition of the decay rate

of the false vacuum is given by Γ ¼ −2ImðEÞ ¼
2ImðlimT→∞ðlnZÞ=TÞ, where Z is the path integral. The
decay rate per unit volume can be computed using the
saddle-point approximation which at next-to-leading
(NLO) gives [9,10]

Γ
V
¼

�
B
2π

�
2
���� det0S00ðϕbÞ
det S00ðϕfvÞ

����−1=2e−B ð1:1Þ

where ϕb is the saddle-point or bounce, ϕfv is the false
vacuum, the prime on the determinant indicates that only
nonzero modes are included, B ¼ SðϕbÞ − SðϕfvÞ, and S is
the Euclidean action. Note that the functional determinant
ratio is divergent and can be regularized using standard
QFT methods. Classically, the false vacuum is well defined
as a local minimum of the potential given by ϕðxÞ ¼ ϕfv.
Quantum mechanically, we require that the false vacuum
satisfies hϕðxÞi ¼ ϕfv, in addition to its wave function

being localized at ϕfv. Since tunneling is allowed, a wave
function localized in the false vacuum does not correspond
to an eigenstate of the Hamiltonian. Thus, the false vacuum
is a metastable state with complex energy whose imaginary
part is proportional to the decay rate [11,12].
A formal definition of the decay rate in curved space-

times is not available, yet one can push forward by making
analogies with the flat space result. At high curvatures, this
analogy breaks down, but it has been argued [13] that one
can use a thermal interpretation of de Sitter (dS) spacetime
instead to define the decay rate. In this letter, we compute
one-loop quantum corrections using the thermal interpre-
tation and show that the stochastic Starobinsky-Yokoyama
effective theory can then be used to compute the decay rate
including these corrections. We argue that this result is
valid even beyond the saddle-point approximation.

II. DECAY RATE IN DS SPACE

In the following, we will focus on decays in fixed Sitter
backgrounds. The generalization of the decay rate compu-
tation to curved spacetimes was proposed in [14]. At small
ratios of spacetime curvature to the curvature at the top of
the potential barrier (H=

ffiffiffiffiffiffiffiffiffiffiffijV 00
topj

p
) the Coleman-de Luccia

bounce is expected to drive the decay [15], but as the
spacetime curvature is increased, or the top of the potential
barrier becomes more flat, a solution that has no flat space
analog takes over, this is the Hawking-Moss instanton [16].
In the large curvature case, the decay rate can also be
computed through a different method dubbed the stochastic
formalism [17–19]. In the following we give a short review
of both approaches. We will focus on computing the one-
loop corrections through saddle-point approximation and
comparing this result with the stochastic formalism one.
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A. Stochastic approach

The stochastic formalism relies on splitting a light
quantum field living in a dS space into long (classical)
and short (quantum) modes, and describing the latter as
stochastic noise. This framework has been shown to be
useful for perturbative and nonperturbative quantum field
theory computations in dS backgrounds, particularly in
addressing issues for light fields [20–23]. Assuming that
the long-wavelength modes, ϕ, satisfy an overdamped
Langevin equation, it is found that the one-point probability
distributionPðt;ϕÞ of ϕ at time t follows the Fokker-Planck
(FP) equation

∂P̃ðt;ϕÞ
∂t

¼ 3H3

4π2
D̃ϕP̃ðt;ϕÞ; ð2:1Þ

D̃ϕ ¼ 1

2

∂
2

∂ϕ2
−
1

2
ðv0ðϕÞ2 − v00ðϕÞÞ; ð2:2Þ

vðϕÞ ¼ 4π2

3H4
VðϕÞ; ð2:3Þ

P̃ðt;ϕÞ ¼ e
4π2VðϕÞ
3H4 Pðt;ϕÞ: ð2:4Þ

By expanding the probability in terms of the eigenfunctions
of the FP equation, it can be found that the decay rate of
the false vacuum is given by the lowest nonzero eigen-
value [19,24].
Within the regime of validity of the saddle-point

approximation, the decay rate as computed in the stochastic
formalism from the lowest nonzero eigenvalue can be
equivalently1 computed through the flux over population
method [24] which is described below. Thus, in the saddle-
point approximation the decay rate is given by

ΓS:F: ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00
fvjV 00

topj
p

3H
e−

8π2ΔV
3H4 : ð2:5Þ

Note that this description is intrinsically classical. As we
will show in this article, the thermally assisted tunneling
approach suggests that one can use the constraint one-loop
effective action in the stochastic approach to capture
quantum corrections.

B. Thermally-assisted tunneling

1. Bounce solutions in de Sitter

When we include gravity and consider decays from de
Sitter to de Sitter, the topology of the bounce solution is
assumed to be a 4-sphere with the metric given by

ds2 ¼ dξ2 þ ρðξÞ2dΩ2
3, where ρ has zeros at ξ ¼ 0 and

ξ ¼ ξmax. The bounce satisfies the boundary conditions
ϕ0ð0Þ ¼ ϕ0ðξmaxÞ ¼ 0, and while the field can approach the
false vacuum, it actually never reaches it. For simplicity, we
will consider a fixed de Sitter background, ρ¼ sinðξHÞ=H,
which corresponds to the analytic continuation of the de
Sitter static path. This approximation is justified for small
barriers where ΔV ≡ VðϕtopÞ − VðϕfvÞ ≪ VðϕfvÞ. Here,
we focus on the Hawking-Moss (HM) solution given by
ϕ ¼ ϕtop. In analogy with flat space, the decay rate is
given as

Γ
V
∼ e−B; B ¼ 8π2ΔV

3H4
: ð2:6Þ

The HM solution describes the transition of a Hubble
volume from the false vacuum to the top of the barrier. In a
similar manner to the flat space case, this bounce solution
describes a decay only when there is a single negative
eigenvalue of S00HM which happens as long as2

H >
ffiffiffiffiffiffiffiffiffiffiffi
jV 00

topj
q

=2: ð2:7Þ

Thus the HM solution is expected to describe the decay rate
at large curvatures, when the Coleman-de Luccia bounce
doesn’t exist or its properties are different from standard low
curvature expectations.

2. Thermal interpretation

When considering tunneling in a fixed de Sitter back-
ground, one can interpret the bounce solutions as thermally
assisted tunneling. This is possible since in de Sitter
spacetimes we can define a temperature [28]

T ¼ H
2π

; ð2:8Þ

due to the finiteness of its horizon. To compute the decay
rate in dS, we will work within the thermal interpretation
proposed by Brown and Weinberg [13] (based on previous
results by [29–31]). We start by considering the scalar field
living in a fixed dS spacetime whose action can be thought
as the thermal effective action where the thermal modes, in
this case the gravitons and subhorizon modes, have been
integrated out. This effective field theory (EFT) description
is appropriate to compute the tunneling rate since the
bubble scale, H, is much smaller than the scale of the
thermal modes, MPl; 1=λsubH. Intuitively, the tunneling
process can be thought of as consisting of two parts: the
first one corresponding to the thermal excitation of states

1This equivalence holds when there is only one direction in
field space for the false vacuum to decay and as long as we are
within in the weak-noise limit [25,26]. An example where the
equivalence is not straightforward is treated in Sec. III.

2The eigenvalues of S00HM are given by λn ¼ nðnþ 3ÞH2 þ
V 00
top [27].
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localized in the false vacuum with E > Efv and the second
one the quantum tunneling.
Formally, the decay rate can be defined as a thermal

average given by [29]

Γ ¼ 1

Zfv

Z
∞

0

dEe−βEρðEÞΓðEÞ; ð2:9Þ

where β ¼ 1=T ¼ ð2πÞ=H, ρðEÞ is the density of states,
and ΓðEÞ is the tunneling rate for a given energy E. At high
temperatures (equivalently, high curvatures), the integral is
dominated by the E > V top region, and the decay rate can
estimated as [13]

Γ
V

high T
∼
Z

∞

Etop

dEe−βEeβEfv ∼ e−βðEtop−EfvÞ; ð2:10Þ

which agrees with the HM estimate computed from path
integral methods in Eq. (2.6) when we identify the potential
energy increment in a horizon volume as

ΔE ¼ Etop − Efv ¼
4π

3H3
fv

ΔV: ð2:11Þ

From this, we see that the Hawking-Moss solution can be
interpreted as a purely thermal transition where the
thermal fluctuations push the field all the way to the
top of the potential barrier and then rolls down to the true
vacuum [11]. Thus we note that as we increase the
temperature, we observe a transition from the Coleman-
de Luccia to Hawking Moss driven decay rate.
The result for the decay rate in Eq. (2.6) is missing

the prefactor which requires a more careful calculation.
Nevertheless, we cannot use a straightforward generaliza-
tion of Eq. (1.1) since the Hawking-Moss case does not have
a clear analogy with flat space decays in the sense that there
are no zero modes and the dilute gas approximation cannot
be used. Instead, we will perform a more precise calculation
by pushing forward the thermal interpretation of the de
Sitter static patch [11,13,28,32–34]. For clarity, we want to
note that we are only applying the thermal interpretation to
the calculation of decay rates mediated by constant field
configurations, and not to quantum field theory in de Sitter
space in general. This assumption is well motivated since at
high temperatures the physics is driven by long-wavelength
(λ > H−1) modes which suggests that we can use a
semiclassical approach in this regime [21,32,35–41]. To
perform this semiclassical approximation we use the flux
over population method for computing escape rates [42–45]
which we review below.

3. Semiclassical approximation via
flux over population method

We will describe the Hawking-Moss driven decay as a
thermal transition as considered in [11,13]. For our

purposes, we can consider an effective field theory describ-
ing the physics of long wavelength modes which can be
described classically. Through a matching procedure one
can encode the quantum corrections of the full theory in the
EFT operators. Thus, we can compute one-loop corrections
by using this semiclassical approximation. We assume that
the EFT degrees of freedom are encoded in a scalar field ϕ.
This situation has been previously analyzed in [42–46]. In
the following, we give a short review with emphasis on our
proposal of its application to computing decay rates in de
Sitter space. The classicalization of the long wavelength
modes leads to a statistical description of the system where
the dynamics of the scalar field are governed by the
Langevin equation

ð∂2t −∇2Þϕðx⃗;tÞþ∂VðϕÞ
∂ϕ

þη _ϕðx⃗;tÞ¼ ξðx⃗;tÞ; ð2:12Þ

where the damping coefficient is η ¼ 3H and ξ is the
Gaussian white noise. The noise encodes the thermal
modes that have been integrated out.
Within the classical EFT point of view, the HM decay

rate is computed as the escape rate. This is done by using
the flux over population method which consists of solving
for the dynamics of the scalar field assuming an initial
probability distribution localized in the false vacuum which
evolves to the equilibrium state. The solution relies on the
special boundary conditions given by the steady-state
solution which assumes a source behind the false vacuum
and a sink right after the top of the barrier so that there is a
constant probability current across the barrier. This also
guarantees that we only compute the decay of the false
vacuum and we do not include contributions from the flux
crossing the barrier back to the false vacuum. These extra
contributions exist when there is a minimum on the other
side of the barrier—that is, the true vacuum—but they do
not appear if the potential is unbounded from below on the
other side of the barrier. Note also that the temperature
cannot grow indefinitely since we require that it is smaller
than ΔE to have a well-defined initial state localized at the
false vacuum.
By looking at the Euclidean action in the space of field

configurations, one can define transition surfaces by the
separatrices between gradient flows which splits the
regions of field space into metastable, stable, and unstable
regions. Here, we will only focus on one of such transition
surfaces. The Hawking-Moss solution lies on this surface
and corresponds to the mode with the smallest Euclidean
action on this surface. Since the flux of probability has a
Boltzmann suppression, the largest contribution to the
escape rate comes from the HM solution and we can
perform a saddle-point approximation of the Euclidean
action. The escape rate is thus computed as
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Γ ¼
Z
TS

J · dS⊥; ð2:13Þ

where the integral is over the transition surface, J is the
probability flux normalized with respect to the partition
function of the false vacuum (the “population” in the false
vacuum), and S⊥ a surface perpendicular to the transition
surface. Computing the probability current, one sees that it
splits into an equilibrium and nonequilibrium (σ) contri-
butions as [42–46]

J ¼ σðuÞ e
−S½ϕ�

Zfv
; ð2:14Þ

where σðuÞ is a vector in phase space that parametrizes the
deviation from equilibrium due to thermal fluctuations near
the HM solution. This vector depends on u¼Uðϕ−ϕtopÞþ
Ūπ, where π is the momentum conjugate of ϕ, which
describes linear fluctuations around the HM profile. Note
that, as explained in Sec. II B 2, the suppression given by
the Euclidean action S½ϕ� is equivalent to the standard
βE½ϕ� Boltzmann suppression since we are working with a
compact space of Hubble volume size over a Hubble time.
The integral in Eq. (2.13) can be rewritten as an integral

of the current over the phase space restricted to the negative
eigenmode subspace which parametrizes the transition
surface. Thus, the flux over population method leads to
a decay rate that factorizes into an equilibrium and a
nonequilibrium contribution [42–46]. After performing a
saddle-point approximation, the one-loop HM decay rate is
given by

Γ ¼ κ

2π

���� det S00ðϕtopÞ
det S00ðϕfvÞ

����−1=2e−B for 2πT > κ: ð2:15Þ

In analogy to the quantum mechanical case [29], we
assume that this large temperature behavior breaks down
at T ¼ κ=ð2πÞ which corresponds to the transition to the
Coleman-de Lucia instanton. The factor of κ=ð2πÞ is the
nonequilibrium contribution, commonly referred to as
the dynamical factor, where κ is the growth rate of the
unstable mode at the saddle point. It arises from the
integration over the momenta conjugate to the negative
mode in field space. To compute the dynamical prefactor,
we look at the scalar field equation of motion which is
given by Eq. (2.12). Expanding the scalar field ϕ in a series
around ϕtop and taking the ansatz ϕ − ϕtop ¼ Ceκt, one
finds that

κ ¼ −
3

2
H

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jV 00

topj
9H2

s �
: ð2:16Þ

In obtaining the result above, we have assumed that
the field gradients and the noise term are subdominant.

We highlight that we can obtain an analytic solution for the
prefactor in the Hawking-Moss case since the saddle point
is given by a constant, but this not the case in more general
situations. In several applications where dissipation can be
neglected, the dynamical factor can be shown to be given
by the negative eigenvalue. This can not be done in our case
because the dissipation, given by the damping coefficient η,
is proportional to the Hubble parameter which cannot be
much smaller than

ffiffiffiffiffiffiffiffiffiffiffijV 00
topj

p
, see Eq. (2.7). Taking the small

dissipation limit is equivalent to taking jV 00
topj=H2 ≫ 1. In

this limit, κ approaches the HM negative eigenvalueffiffiffiffiffiffiffiffiffiffiffijV 00
topj

p
, but the Hawking-Moss instanton does not

describe tunneling anymore. One can also note that the
HM-CdL transition occurs as we approach the limit κ ¼ H.
In the large temperature (large friction) limit we have ϕ̈ ≪
3H _ϕ which leads to the simplified expression for the
prefactor

κhigh T ¼ jV 00
topj

3H
: ð2:17Þ

4. Matching to stochastic formalism

Once we have a computation of the Hawking-Moss
decay rate including the prefactor [Eq. (2.15)] we can
compare our result to the stochastic formalism within the
regime where the saddle-point approximation is valid.
Before doing so, we highlight some similarities and
fundamental differences between both approaches. While
both approaches rely on the description given by a
Langevin equation, the fundamental differences arise in
the presence of the gradient term, the interpretation of the
noise term, and the physics they capture. On the stochastic
formalism case, there is no gradient term and the noise
captures the physics of the short-wavelength modes of the
scalar field. It further takes an overdamped approximation
which leads to the Fokker-Planck equations with a
Gaussian noise. Hence, it only capture classical physics.
Meanwhile, in the thermal interpretation of the Hawking-
Moss solution, the noise encodes the thermal modes. The
thermal effective field theory captures quantum effects in a
fixed de Sitter background. In Eq. (2.15) the one-loop
effects are captured by the prefactor; this can be seen by
restoring factors of ℏ and moving the prefactor to the
exponential. By doing so, it is clear that the prefactor
corresponds to ℏ corrections to the action.
By matching the decay rate computed in both approaches

in the saddle-point approximation, we can understand how
to capture quantum corrections in the stochastic formalism.
To do so, we write the decay rate in Eq. (2.15) explicitly as

Γ ¼ κ

2π

ffiffiffiffiffiffiffi
V 00
fv

p
ffiffiffiffiffiffiffiffiffiffiffijV 00

topj
p

R Q
n≠0

dctopnffiffiffiffi
2π

p e−Stop−
1
2

P
n≠0

ðctopn Þ2λtopn

R Q
n≠0

dcfvnffiffiffiffi
2π

p e−Sfv−
1
2

P
n≠0

ðcfvn Þ2λfvn
; ð2:18Þ
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where we have expanded the field as ϕ ¼ ϕi þ
P

n c
i
nψn,

with ψn the eigenfunctions of S00, i ¼ ftop; fvg, and
rewritten the integration measure in terms of the coeffi-
cients cn. Furthermore, we integrated over the homo-
geneous modes ψ0. This is useful since it will allow us
to rewrite expression in terms of an effective potential.
Note that when the volume of space is finite, such as in

the Euclidean de Sitter case considered here, finite volume
effects mean that different definitions of the effective
potential are not equivalent contrary to the infinite volume
case [47]. An intuitive definition that coincides with the
usual derivation from 1PI diagrams in the infinite volume
case is the constraint effective potential [47,48]. It intro-
duces a δ function in the functional integral making the
field ϕ have a constant expectation value and it is given by

e−
R

d4xU1 loop ¼
Z

dϕe−S½ϕ�δ
�
1

V

Z
ϕd4x − ϕb

�

¼one-loop
Z Y

n

dcnffiffiffiffiffiffi
2π

p e−S−
1
2

P
n
c2nλnδðc0Þ; ð2:19Þ

where the delta function in the second line tells us to
integrate over the inhomogeneous modes only. We can now
rewrite Eq. (2.18) using the constraint effective potential as

Γ ¼ κ

2π

ffiffiffiffiffiffiffiffiffiffiffi
V 00
fv

jV 00
topj

s
e−

8π2ΔU1 loop

3H4 ; ð2:20Þ

and in the high temperature limit (jV 00
topj=ð4π2Þ ≪ T2), we

find

Γhigh T ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00
fvjV00

topj
p

3H
e−

8π2ΔU1 loop

3H4 : ð2:21Þ

The simplicity and validity of our analysis heavily relies on
the fact that the Hawking-Moss solution is given by a
constant saddle point, ϕ ¼ ϕtop. This allows for the simple
interpretation of the escape rate as the tunneling rate, since
both endpoints correspond to the top of the barrier.
Similarly this avoids possible issues with double counting
of modes when using the constraint effective potential since
our saddle point is simply a constant [45,49].
We can now compare our result to the stochastic

formalism one in the high temperature limit, which is
equivalent to the small mass limit in which the stochastic
formalism is valid. The difference with respect to the HM
result arises from the fact that the HM result is a standard
4d field theoretical calculation while the stochastic for-
malism is a zero-dimensional field theory calculation.
Thus, in the saddle-point approximation the stochastic
formalism result does not include the ratio of functional
determinants which are encoded in the constraint effective
potential. Comparing Eq. (2.5) to Eq. (2.21) we see that the
one-loop corrections can be encoded in the stochastic

formalism by exchanging the potential V for the constraint
one-loop effective potentialU1 loop. Furthermore, we expect
that the stochastic formalism, modified in this way to
encode one-loop corrections, can now be applied beyond
the saddle-point approximation.
In the following section, we will show with explicit

examples that the HM calculation agrees with the sto-
chastic approach in the region where both results are
applicable. One should highlight again that the HM result
is a saddle-point approximation. This approximation
breaks down when perturbation theory ceases to be valid
at either the top of the barrier or at the false vacuum. The
latter corresponds to the region where ΔE < T, that is,
when the thermal fluctuations are large. In such region, we
cannot have a metastable state localized in the false
vacuum since the thermal fluctuations are large enough
to destabilize it. Meanwhile the stochastic approach is not
expected to be valid at large field masses due to the
overdamped assumption. Outside of these regimes, both
calculations of the decay rate agree, by construction, as
long as we use the constraint effective potential in the
stochastic approach.

III. COMPARISON BETWEEN STOCHASTIC AND
THERMAL APPROACHES

In this section we will compare the results from the
thermal HM decay rate calculation and the stochastic
formalism one. For simplicity, we will consider that the
one-loop constraint effective potential is given by

UðϕÞ ¼ 3H2M2
Pl þ μ3ϕ −

1

2
m2ϕ2 −

M
3!

ϕ3

þ λ

4!
ϕ4 −

λ5
5!H

ϕ5 þ λ6
6!H2

ϕ6: ð3:1Þ

In general, the shape of this potential will be given
by a more complicated dependence on ϕ and should
include a renormalization scale μ that arises after renorm-
alizing the one-loop divergences. Nevertheless, this simple
example is enough for our purposes of comparing the
different calculations of the decay rate. We proceed to
write the potential in terms of dimensionless variables.
Defining

α¼ m2

H2λ1=2
; β¼ μ3

H3λ1=4
; γ¼ M

Hλ3=4
; Λ5 ¼

λ5
λ5=4

;

Λ6¼
λ6
λ6=4

; x¼Ωλ1=4
ϕ

H
; Ω¼ 1þ ffiffiffi

α
p þβþ γ1=3;

ð3:2Þ

the rescaled potential reads
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vðzÞ
π2

¼ 4M2
Pl

H2
þ 4βz

3Ω
−
2αz2

3Ω2
−
2γz3

9Ω3

þ z4

18Ω4
−

Λ5z5

90Ω5
−

Λ6z6

540Ω6
: ð3:3Þ

We now analyze the decay rate for three different cases.
The first one corresponds to a potential unbounded from
below on one side, with a metastable vacuum where
μ ¼ λ ¼ λ6 ¼ 0. The dimensionless variables α, γ, and x
are now defined as in Eq. (3.2) with λ ¼ 1. The decay rate
for this potential computed both from the thermal HM and
stochastic approaches is shown in Fig. 1(a). We can see that
the results agree for large masses which is the region where
the thermal fluctuations are small and do not destabilize the
unstable vacuum. In this region, the numerical calculation
of the eigenvalues becomes difficult and analytic expres-
sion such as Eq. (2.20) becomes useful. At small masses,
when the potential barrier becomes increasingly small, we
can no longer trust the thermal HM calculation. Meanwhile,
the stochastic result still describes the decay rate as long as
an unstable vacuum exists. One should note that at very
large masses (large α), the stochastic approach result
becomes less precise, see Fig. 1(b). The massless limit
assumed in the stochastic approach is equivalent to the high
temperature limit result in Eq. (2.21), but the precise value
of the decay rate receives corrections that grow with the
curvature of the potential at the top of the barrier, as seen
in Eq. (2.16).
Since solving the FP equation is equivalent to solv-

ing the Schrödinger equation for a supersymmetric
Hamiltonian [50], we can use well-known results from
zero-dimensional supersymmetry to understand the relation

between the stochastic and the HM computations. In the
stochastic approach, the decay rate is given by the lowest
eigenvalue of the FP equation. Thus, given a potential v, the
equation with the flipped potential, −v, will have the same
lowest eigenvalue. This tells us that we can think of the
decay rate as being computed for the flipped potential and
that the decay rate should be symmetric under the exchange
false vacuum ↔ top of the barrier, which we see that is
indeed the case at large temperatures [Eq. (2.21)].
The second case is a potential with a true and a false

vacuum where γ ¼ λ5 ¼ λ6 ¼ 0. We analyze this potential
for different values of α and β and show our results in
Fig. 2. As in the previous case, the thermal HM calculation
breaks down at small α. Meanwhile, for large enough α and
β where there is a clear distinction between the false and
true vacuum, we see perfect agreement between the HM
and stochastic approach. When we decrease β, the vacua
are nearly degenerate. The HM result still describes the
tunneling from the false vacuum to the true vacuum, given
the boundary conditions chosen to solve the FP equation
when computing the escape rate. On the other hand, the
stochastic approach includes the fluctuation bouncing back
from the true vacuum to the false vacuum. We can see this
by looking again at the flipped potential −v. In that case
there is a false vacuum (previously the top of the wall) with
one wall on each side. Due to supersymmetry, the stochas-
tic formalism will simply give the same result, while for the
HM computation we have to account for the probability to
transition to either side, or in other words double the decay
rate. This is confirmed in the results from Fig. 2 where we
compare twice the value of the HM decay rate from
Eq. (2.20), with the numerical computation for the lowest
eigenvalue of the FP equation.

FIG. 1. Comparison of the decay rate for an unbounded potential with a metastable vacuum. We have taken the potential in Eq. (3.1)
with β ¼ λ ¼ Λ6 ¼ 0,H ¼ 10−2MPl, and λ5 ¼ 10−4. For plot (a), the green line corresponds to Eq. (2.20) and the blue line is computed
from the lowest eigenvalue of the Fokker-Planck equation in the stochastic approach. To the left of the vertical red line the saddle-point
approximation breaks. In plot (b), we can observe that as α increases the discrepancy between the decay rates increases too. This is
explained due to the increase in V 00

top.
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We consider a third case which will demonstrate the
breaking of the HM result due to the non-Gaussianity of the
path integral at the top of the barrier. In this case, we take a
potential with α ¼ γ ¼ λ5 ¼ 0. The parameter β measures
the curvature at the top of the barrier, as we take β → 0, V 00

top

vanishes. Since we have V 00
top ≪ Vð4Þ

top, perturbation theory,
and hence the saddle-point approximation break. This is
observed in Fig. 3 where the HM result largely deviates
from the stochastic one as we decrease the coefficient of the
linear term.
Last, we analyze in detail the regions where the validity

of the saddle-point approximation breaks. As a first step,
we should find the region where ΔE=T < 1. In principle,

this requires knowledge of the tree-level potential, which
we do not have for the present examples. Nevertheless,
if we assume perturbation theory is valid then
ΔE=T ∼ ΔE1 loop=T, where the one-loop difference in
energies is given by the difference between the constraint
effective potential evaluated at the top of the barrier and at
the false vacuum. Thus, the region where perturbation
theory is valid and the saddle-point approximation holds
corresponds to ΔE1 loop=T > 1. Another possibility for the
failure of the saddle-point approximation is the breaking of
perturbation theory. For the first two examples analyzed
here, we can see that the breaking of perturbation theory at
the false vacuum happens when T < E1 loop ∼m4=ðλH3Þ,

FIG. 2. Comparison of the decay rate of the false vacuum. We have taken the potential in Eq. (3.1) with γ ¼ Λ5 ¼ Λ6 ¼ 0,
H ¼ 10−3MPl, and λ ¼ 0.05. For plots (a) and (c), the green line is computed using Eq. (2.20) and the blue line is computed in the
stochastic approach. Note that the sudden drop in the HM decay rate corresponds to the value of αwhere the potential ceases to have two
vacua. To the left of the vertical red line (value at which ΔE ¼ T) the saddle-point approximation breaks. For plots (b) and (d), the blue
line shows the discrepancy between the stochastic and instanton approach, we can see that for the present cases it is always small to the
right of the red vertical line.
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that is at small α. In fact, the lack of exponential
suppression for the decay rate, which can be understood
as thermal fluctuations becoming large and destabilizing
the false vacuum, is equivalent to the non-Gaussianity of
the path integral at the false vacuum. In this regime, the
decay rate computed from the HM bounce is not valid; this
can be observed in Figs. 1(a) and 2. The second region
where the saddle-point approximation breaks corresponds
to the breaking of perturbation theory near the top of the
barrier. In the third case analyzed above, this happens when
the curvature at the top of the potential approaches zero (see
Fig. 3). On the other hand, the stochastic approach
assumptions break down at higher masses, i.e. higher α,
since the over-damped approximation is used when solving
the Langevin equation. In this regime, the prefactor
receives corrections that grow with the curvature at the
top of the barrier as seen in Fig. 1(b).

IV. DISCUSSION

In this article, we computed an explicit analytic formula
for the decay rate in a de Sitter space at high Hubble rates
using the Hawking-Moss instanton approximation includ-
ing one-loop quantum corrections. We then showed that the
stochastic Starobinsky-Yokoyama approach reproduces the
Hawking-Moss result when the one-loop constraint effec-
tive potential is used instead of the classical potential, in the
regime where both calculations are valid, that is, when the
saddle-point approximation holds at both the false vacuum
and the top of the barrier, and the curvature of the potential
is smaller than the Hubble rate. It is important to note that
because of the finite volume of the de Sitter space, different
definitions of effective potential are not equivalent. For
example, the more commonly used perturbative effective
potential is not equal to the constraint effective potential.
Our results suggest that the stochastic approach with the

constraint effective potential can give a non-perturbative
way of computing vacuum decay rates when the saddle-
point approximation, which the Hawking-Moss calculation
relies on, is not valid. Correspondingly, we show that the
stochastic method, which relies on the overdamped
assumption, fails when the curvature of the potential
becomes comparable to the Hubble rate. Meanwhile, the
Hawking-Moss calculation is valid in this regime.
Therefore, both methods are needed for a complete
description of vacuum decay in de Sitter spacetimes at
high Hubble rates.
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