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It is known that primordial black holes (PBHs) can leave an imprint on cosmic microwave background
(CMB) anisotropy power spectra, due to their accretion-powered injection of energy into the recombining
plasma. Here we study a qualitatively new CMB observable sourced by accreting PBHs: the temperature
trispectrum or connected four-point function. This non-Gaussian signature is due to the strong spatial
modulation of the PBH accretion luminosity, thus ionization perturbations, by large-scale supersonic
relative velocities between PBHs and the accreted baryons. We first derive a factorizable quadratic transfer
function for free-electron fraction inhomogeneities induced by accreting PBHs. We then compute the
perturbation to the CMB temperature anisotropy due to a general modification of recombination and apply
our results to accreting PBHs. We calculate a new contribution to the temperature power spectrum due to
the spatial fluctuations of the ionization perturbation induced by accreting PBHs, going beyond past studies
that only accounted for its homogeneous part. While these contributions are formally comparable, we find
the new part to be subdominant due to the poor correlation of the perturbed temperature field with the
standard CMB anisotropy. For the first time, we compute the temperature trispectrum due to accreting
PBHs. This trispectrum is weakly correlated with the local-type primordial non-Gaussianity trispectrum;
hence constraints on the latter do not lead to competitive bounds on accreting PBHs. We also forecast
Planck’s sensitivity to the temperature trispectrum sourced by accreting PBHs. Excitingly, we find it to be
more sensitive to PBHs under ∼103M⊙ than current temperature-only power-spectrum constraints. This
result motivates our future work extending this study to temperature and polarization trispectra induced by
inhomogeneously accreting PBHs.
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I. INTRODUCTION

Not only are primordial black holes (PBHs) a probe of
very early-universe physics, but they could also be the
culprit behind several cosmological and astrophysical
mysteries. For instance, even if they constitute only a
small fraction of cold dark matter (CDM), intermediate-
mass PBHs (1–104M⊙) could be the seed for supermassive
black holes [1] or account for recent LIGO/Virgo gravita-
tional wave observations [2]. Thus, even if the abundance
of PBHs in this mass range is heavily constrained [3], it
proves invaluable to inspect further.
The intermediate-mass range is where PBH accretion

may leave a non-negligible signature on the cosmic micro-
wave background (CMB). The underlying physical phe-
nomena that lead to an indirect signal are the following.
PBHs accrete primordial plasma throughout cosmic time;
some fraction of the infalling material is converted into
radiation; this radiation propagates and deposits energy into
the background recombining plasma, heating, and ionizing
it; finally, this change to the ionization history perturbs the
last-scattering surface, ultimately altering the observed
CMB temperature and polarization anisotropy. In fact,
the strongest constraints on the abundance of PBHs in

this mass range come from this effect [3]; however, the
authors of previous literature have only looked for a signal
in two-point CMB anisotropy statistics [4–6].
One avenue that has not been inspected is the non-

Gaussianity that is induced in the CMB by accreting PBHs.
Although the PBH accretion rate and radiation power are
largely uncertain, they necessarily depend on the magni-
tude of the local relative velocity between the accreted
matter (baryons) and PBHs, which behave as CDM on
large scales [4–6]. This dependence implies a spatial
modulation of the luminosity of accreting PBHs and thus
inhomogeneities in their perturbation to recombination. It is
known that inhomogeneous recombination generates non-
Gaussian signatures in CMB anisotropies [7–9]. The goal
of this paper is to quantify this qualitatively different CMB
signature of accreting PBHs, for the first time to our
knowledge.
The effect considered here is similar in spirit to that

studied in Ref. [9] in the context of dark matter (DM)
annihilation, with, however, two major differences.
First, since the PBH luminosity depends on the relative
velocity squared, the lowest-order non-Gaussian statistics
induced by accreting PBHs is the trispectrum, or connected
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four-point function. This is to be contrasted with the
bispectrum (three-point function) sourced by energy injec-
tion from inhomogeneous annihilating DM [9]. Second,
in the case of annihilating DM, the inhomogeneity in
energy injection is of order the DM density fluctuation
around recombination, that is, of order ∼10−3 on scales
k ∼ 0.1 Mpc−1. In contrast, the PBH luminosity has order-
unity fluctuations on the same scales [10], as it is strongly
modulated by supersonic relative velocities [11]. This
implies that the inhomogeneities in the free-electron
fraction sourced by accreting PBHs are comparable to
its mean enhancement, as we demonstrated explicitly in
Ref. [10], hereafter Paper I. We therefore expect the
amplitude of the non-Gaussian signature of accreting
PBHs to be ∼103 times larger than that of inhomoge-
neously annihilating DM, at equal amplitudes of the two-
point function perturbation.
In Paper I, we found that, for a PBH abundance saturating

CMB power-spectra limits, the free-electron perturbation is
of order δe ∼ 10−3 around z ∼ 103, both in mean and in
root mean square (rms) (see Fig. 14 of Paper I). This
relatively large effect implies that the CMB trispectrum
could be significantly more sensitive to PBHs than CMB
power spectra, as we now show with two simple order-of-
magnitude estimates. First, without any exotic energy
injection nor primordial non-Gaussianity, recombination
is intrinsically inhomogeneous, with perturbations
δe;std ∼ 10−4 [7,12]. This leads to non-Gaussianities with
an amplitude just below detectability threshold for
Planck [7,13]. This suggests that an inhomogeneity of order
δe ∼ 10−3 would lead to a non-Gaussian signalwith a signal-
to-noise ratio (SNR) of order 10. Second, in the presence of a
perturbation δe to the free-electron fraction, the CMB
temperature anisotropy Θ ¼ Θð0Þ þ Θð1Þ is displaced from
its standard value Θð0Þ ∼ ζ, where ζ ∼ 10−4.5 is the primor-
dial curvature perturbation, by an amount Θð1Þ ∼ δeζ.
We therefore expect the connected four-point function to
be of order hΘΘΘΘic ¼ hΘð0ÞΘð0ÞΘð0ÞΘð1Þi ∼ 10−3hζ2i2 for
a PBH abundance saturating CMB power-spectra limits.
In comparison, primordial trispectra lead to four-point
functions of order hΘΘΘΘic ∼ gNLhζ2i3 ∼ 10−9gNLhζ2i2.
Planck’s upper limits on the amplitude of local-type pri-
mordial non-Gaussianity is jgNLj ≲ 105 [14], implying that
Planck is sensitive to a four-point function of order
hΘΘΘΘic ∼ 10−4hζ2i2. Here again, this estimates indicates
that PBHs saturating CMB power-spectra limits could lead
to a trispectrum detectable with SNR ∼ 10. Put differently,
the trispectrum could be sensitive to PBH abundances an
order of magnitude below current CMB power-spectra
limits. As an ancillary effect, the perturbation of CMB
power spectra induced by accreting PBHs ought to be
modified by order unity when properly accounting for
the inhomogeneities in δe, which were neglected in past
works [4–6].

These promising estimates warrant a detailed calculation
of the effects of inhomogeneously-accreting PBHs on
CMB power spectra and trispectra. In this work, we take
the first step in this program by computing the temperature-
only two-point and four-point functions. We moreover
forecast Planck’s sensitivity to PBHs from the temperature
trispectrum. We find that the inhomogeneity in recombi-
nation only leads to a ≲10% correction to the effect of
accreting PBHs on the temperature power spectrum. We
also find that the temperature trispectrum is approximately
as sensitive to accreting PBHs as the temperature power
spectrum is, and is thus not quite as powerful a probe as our
simple order-of-magnitude estimates indicated. This is
likely due to the imperfect correlation between the standard
temperature anisotropy Θð0Þ and the perturbation Θð1Þ
sourced by inhomogeneous ionization fluctuations. Still,
we find that, for Mpbh ≲ 103M⊙, the CMB temperature
trispectrum would be a more sensitive probe of accreting
PBHs than the temperature power spectrum is. This result
motivates exploring the full temperature and polarization
trispectrum, which we take up in future work.
The remainder of this paper is organized as follows. In

Sec. II we begin by briefly reviewing accreting PBHs as a
source of inhomogeneous recombination. By assuming
spherical accretion and taking the luminosity prescription
from Ref. [5] (hereafter AK17), we derive a quadratic
transfer function for the perturbed free-electron fraction.
This transfer function incorporates the radiation transport
simulation and perturbed recombination calculation
from Paper I. We are able to make the transfer function
factorizable with some justified approximations specific
to accreting PBHs, which tremendously reduces the
computational cost of calculating the high-dimensional
trispectrum.
In Sec. III we derive general equations for the perturbed

temperature anisotropy at first order in free-electron frac-
tion perturbations, starting from the Boltzmann-Einstein
system, and using the line-of-sight method [15]. The results
of this section are general and not limited to perturbations
from accreting PBHs. As in previous works [9,16] we
neglect “feedback” terms in the first-order perturbation.
However, for the first time we quantify the error induced
by this approximation in the case of the power-spectrum
perturbation induced by homogeneous free-electron
perturbations.
In Sec. IV we apply these results to recombination

perturbations due to accreting PBHs. We compute the
perturbation to the temperature anisotropy power spectrum
sourced by the inhomogeneous part of free-electron frac-
tion perturbations, which we find to be more than an order
of magnitude smaller than its counterpart induced by the
homogeneous effect on the ionization history. We moreover
compute the temperature trispectrum induced by accreting
PBHs, given in Eq. (94), which is one of the main results of
this work.
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In Sec. V we extract new limits on PBH abundance from
Planck upper bounds on the local-shape primordial tris-
pectrum [14], which indirectly constrains the PBH-induced
trispectrum with which it partially overlaps. But due to a
poor correlation between the two trispectra, the constraints
are an order of magnitude weaker than the constraints
from the power-spectra analysis. We also forecast the
sensitivity of Planck to the temperature four-point func-
tion induced by accreting PBHs, based on the optimal
trispectrum estimator of Ref. [17]. We are able to make
these computations efficiently by precomputing purely
geometric rotational-invariant coefficients. We find that
the temperature trispectrum could probe PBH abundances
lower than current temperature-only power-spectrum limits
for Mpbh ≲ 103M⊙. We conclude and discuss future work
in Sec. VI.
We discuss a few points in more detail in the

Appendixes. In Appendix A, we justify the approximation
of general nonlinear functions of vbc by a biased tracer of
v2bc. We describe our numerical resolution and convergence
tests in Appendix B. We review a few useful properties of
spin-weighted spherical harmonics in Appendix C, which
we then use in Appendix D to derive simple expressions for
the rotational-invariant quantities involved in the trispec-
trum sensitivity forecast calculation. In Appendix E we
compute the autopower spectrum of the temperature
perturbation induced by accreting PBHs and its correlation
coefficient with the standard temperature anisotropy. Last,
in Appendix F, we inspect the redshift dependence of the
signal-to-noise ratio of the PBH-induced trispectrum.

II. PERTURBED RECOMBINATION
FROM ACCRETING PBHs

In this section we briefly review the effect of accreting
PBHs on the ionization history. We derive an approximate
factorized form for the free-electron fraction fluctuations,
quadratic in the initial perturbations, which will help
simplify our trispectrum calculations later on.

A. Effect of accreting PBHs on the ionization
history: General expressions

If present in the early universe, PBHs would accrete
baryons that would power some radiation—atminimum, the
heated, compressed, and eventually ionized accreted gas
would emit free-free radiation. The PBH luminosity L is a
function of the baryon sound speed cs and of the magnitude
of the local relative velocity between baryons and dark
matter vbcðrÞ (both evaluated far from the accretion region).
The detailed dependence is estimated in AK17, accounting
for Compton heating and Compton drag, and in two limiting
regimes for the ionization structure of the accretion flow;
throughout this paper, and unless otherwise stated, we will
assume the most conservative “collisionally ionized” limit.
Following AK17, we approximate the effect of relative

velocities by adding them in quadrature to the baryon
sound speed cs, i.e., approximating Lðcs; vbc ≠ 0Þ≈
Lð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2s þ v2bc
p

; 0Þ. While the baryon sound speed is very
nearly homogeneous near recombination, relative velocities
have large-scale fluctuations, with rms values of order 5
times the sound speed [11]; as a consequence, the PBH
luminosity LðrÞ ¼ L̄ð1þ δLðz; rÞÞ is strongly inhomo-
geneous, tracing the large-scale fluctuations of relative
velocities.
Assuming, to simplify, that PBHs all have the same mass

Mpbh and make a fraction fpbh of the dark matter, their
accretion-powered luminosity leads to a volumetric energy
injection rate

_ρinjðz; rÞ ¼ _̄ρinjðzÞð1þ δLðz; rÞÞ;

_̄ρinjðzÞ≡ fpbh
ρ̄cðzÞ
Mpbh

L̄ðzÞ; ð1Þ

where z is the redshift and ρ̄c is the mean dark matter mass
density. Note that this equation is trivially generalizable to
an extended mass distribution. This inhomogeneously-
injected energy is partially deposited at some later time,
and some distance away from the injection site. Some of
this energy is deposited in the form of extra ionizations,
leading to a perturbation Δxeðz; rÞ to the free-electron
fraction. The latter is a convolution of the volumetric
energy injection rate with a dimensionless injection-to-
ionization Green’s function. In Fourier space, this con-
volution is a simple product,

Δxeðz;kÞ¼
Z

∞

z

dz0

1þ z0
Ginj

xe ðz;z0;kÞ
_̄ρinj

nHHEI

����
z0
δLðz0;kÞ; ð2Þ

where nH is the mean number density of hydrogen,H is the
Hubble rate, and EI ≡ 13.6 eV is hydrogen’s ionization
energy. The homogeneous part of the ionization-fraction
perturbation is obtained from a similar time integral,
involving the homogeneous part of Green’s function:

ΔxeðzÞ ¼
Z

a

0

dz0

1þ z0
Ginj

xe ðz; z0; 0Þ
_̄ρinj

nHHEI

����
z0
: ð3Þ

In Paper I, we computed Green’s function Ginj
xe ðz; z0; kÞ

numerically, by convolving the injection-to-deposition
Green’s function obtained from a radiative transfer code
with the deposition-to-ionization Green’s functions com-
puted with a modified HYREC-2 [18–20].

B. Quadratic transfer function
of ionization perturbations

The scale dependence of the luminosity perturbations δL
is nontrivial, as the PBH luminosity is a nonlinear function
of v2bc. However, as we will see below, at lowest order
Δxe affects CMB anisotropy statistics only through
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cross-correlations with other fields. As we demonstrate in
Appendix A, to a good approximation these cross-
correlations can be obtained by approximating the full
function by a biased tracer of v2bc, with the same first
moment:

δLðz; rÞ ≈ bðzÞ
�
v2bcðz; rÞ
hv2bciðzÞ

− 1

�
; b≡ 3

2

hv2bcδLi
hv2bci

: ð4Þ

This approximation is most accurate in both the large-scale
and small-scale regimes, and as a consequence is reason-
ably accurate at all scales. We show the bias parameter b as
a function of redshift in Fig. 1 for several black hole masses
for the AK17 accretion luminosity model. It is systemati-
cally negative, reflecting the suppression of the accretion
rate and luminosity in regions of large relative velocity, and
its absolute value is roughly of order unity across a broad
range of masses and redshifts. Although the accretion
model is highly uncertain, we expect that these qualitative
features should be robust and hold even for very different
accretion models, such as disklike accretion [6].
Assuming scalar initial conditions and linear evolution,

the relative velocity field is purely longitudinal, and we
denote its transfer function by ṽbcðz; kÞ defined such that

vbcðz; kÞ ¼ −ik̂ṽbcðz; kÞζðkÞ; ð5Þ

where ζðkÞ is the primordial curvature perturbation. We
then have

v2bcðz; kÞ ¼ ðvbc · vbcÞðz; kÞ

¼ −
Z

Dðk1k2Þ=δðk1 þ k2 − kÞðk̂1 · k̂2Þ

× ṽbcðz; k1Þṽbcðz; k2Þζðk1Þζðk2Þ; ð6Þ

where from here on we denote Dðk1 ���kNÞ≡d3k1=ð2πÞ3 ���
d3kN=ð2πÞ3 and =δðkÞ≡ ð2πÞ3δDðkÞ.
We denote by δe ≡ Δxe=x

ð0Þ
e ¼ δ̄e þ δe;inh the total frac-

tional perturbation to the standard (and homogeneous)

ionization history xð0Þe . The first part, δ̄e, is the homo-
geneous contribution, and the second part, δe;inh, is the
inhomogeneity, which has zero mean, hδe;inhi ¼ 0.
Inserting Eq. (4) into Eq. (2), we obtain the Fourier

transform of δe;inh for k ≠ 0:

δe;inhðz; kÞ≡ Δxeðz; kÞ
xð0Þe ðzÞ

≈ fpbh

Z
Dðk1k2Þ=δðk1 þ k2 − kÞ

× Teðz; k1; k2Þζðk1Þζðk2Þ; ð7Þ

where, for k1 þ k2 ≠ 0, the ionization-perturbation quad-
ratic transfer function Te is defined as

Teðz; k1; k2Þ≡ −
k̂1 · k̂2

xð0Þe ðzÞ

Z
∞

z

dz0

1þ z0
Ginj

xe ðz; z0; jk1 þ k2jÞ

×
ρ̄cL̄b

MpbhnHHEI

����
z0

ṽbcðk1Þṽbcðk2Þ
hv2bci

����
z0
: ð8Þ

We moreover define

Teðz; k1;−k1Þ ¼ 0; ð9Þ

so that we may use Eq. (7) even for k ¼ 0, in which case it
gives δe;inhðk ¼ 0Þ ¼ 0, as it should since δe;inh is defined to
have a vanishing spatial average.1

C. Factorized approximation of the quadratic
ionization transfer function

We now derive an approximate, factorized form for Te,
which will tremendously simplify our subsequent calcu-
lations of CMB power spectra and trispectra. We do so by
making two approximations.

(i) For z≳ 103, Green’s function Ginj
xe ðz; z0Þ is peaked at

z0 ≈ z (see Fig. 9 in Paper I). We may therefore
approximate the last ratio in Eq. (8) by its value at
z0 ¼ z. For z≲ 103, Green’s function is increasingly
broad; however, after kinematic decoupling at
zdec ≈ 1020, relative velocities redshift as ṽbcðz; kÞ ∝
ð1þ zÞ, independently of scale [11]. Therefore,
the last term in Eq. (8) is independent of redshift
for z0 ≲ zdec. We therefore make the following

FIG. 1. Bias parameter bðzÞ of the PBH accretion luminosity,
approximated as a biased tracer of v2bc [see precise definition in
Eq. (4)]. The bias is shown as a function of redshift and for
several PBH masses 1M⊙ ≤ Mpbh ≤ 104M⊙.

1A more rigorous approach would be to keep track of the term
proportional to =δðkÞ in δe;inhðkÞ; upon cross-correlating with other
fields, this approach would give the same results as using Eq. (7)
for all k and imposing Teðk1;−k1Þ ¼ 0.
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approximation in Eq. (8), which we expect to be
accurate at all redshifts:

ṽbcðk1Þṽbcðk2Þ
hv2bci

����
z0
≈
ṽbcðk1Þṽbcðk2Þ

hv2bci
����
z
: ð10Þ

This approximation implies the following
simplification:

Teðz; k1; k2Þ ¼ ðk̂1 · k̂2ÞGeðz; jk1 þ k2jÞ

×
ṽbcðz; k1Þṽbcðz; k2Þ

hv2bciz
; ð11Þ

Geðz; kÞ≡ −
Z

∞

z

dz0

1þ z0
Ginj

xe ðz; z0; kÞ
xð0Þe ðzÞ

ρ̄cL̄b
MpbhnHHEI

����
z0
:

ð12Þ

(ii) As illustrated in Fig. 2, we find that Geðz; kÞ is an
approximatelyGaussian function of thewave number,
with a characteristic cutoff at a redshift-dependent
scale k�ðzÞ:

Geðz; kÞ ≈Geðz; 0Þe−k2=k2�ðzÞ: ð13Þ

Given that ðk1 þ k2Þ2 ≤ 2k21 þ 2k22, wemay therefore
approximately bracket Ge as follows:

Geðz;
ffiffiffi
2

p
k1ÞGeðz;

ffiffiffi
2

p
k2Þ

Geðz; 0Þ
≤ Geðz; jk1 þ k2jÞ

≤ Geðz; 0Þ: ð14Þ

By default, wewill conservatively approximateGe by
the lower bound of this range. This approximation is
accurate at large scales k1; k2 ≲ k�ðzÞ, at which

propagation effects are not relevant to energy
deposition.

With these two approximations, the quadratic ionization
transfer function takes on the factorized form

Teðz; k1; k2Þ ≈ ðk̂1 · k̂2ÞΔeðz; k1ÞΔeðz; k2Þ; ð15Þ

Δeðz; kÞ≡Geðz;
ffiffiffi
2

p
kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Geðz; 0Þ
p ṽbcðz; kÞ

hv2bci1=2z

; ð16Þ

where we recall that this expression holds for k1 þ k2 ≠ 0
only and that Teðz; k1;−k1Þ ¼ 0.
Our approximation for Geðz; jk1 þ k2jÞ can significantly

underestimate the true signal at small scales, in particular
for k1 ≈ −k2 or k1 ≪ k2. Moreover, it modifies the geo-
metric dependence of the signal. To estimate the error that
this approximation induces, we will also show our results in
the spatially on-the-spot approximation Geðz;kÞ≈Geðz;0Þ,
which systematically overestimates the signal. In that case,
the quadratic ionization transfer function still takes the

form (15), but with Δeðz; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Geðz; 0Þ

p ṽbcðz;kÞ
hv2bci1=2z

. We show

Δeðz; kÞ as a function of wave number and redshift
in Fig. 3, both for our default approximation and in the
on-the-spot limit.

III. TEMPERATURE ANISOTROPY
FROM PERTURBED RECOMBINATION:

GENERAL EQUATIONS

We turn to computing the temperature anisotropy in the
presence of a general deviation from the standard free-
electron fraction evolution, including spatial variations.
Because observed CMB anisotropies are consistent with
the standard ΛCDM prediction and canonical homo-
geneous recombination, this deviation is necessarily small,
allowing for a perturbative treatment.

A. Temperature Boltzmann equation

The evolution of the phase-space distribution of photons is
governed by the Boltzmann-Einstein differential system.
CMB photons follow geodesics in an expanding universe
subject to Thomson scattering off free electrons. Provided
photons remain thermal, they are described entirely by their
temperature fluctuations Θðη; x; n̂Þ and transverse, symmet-
ric trace-free 3 × 3 polarization tensor Pabðη; x; n̂Þ, where n̂
is thepropagationdirection andη is the conformal time. In the
conformal Newtonian gauge, the Boltzmann-Einstein equa-
tion for the temperature perturbation is [21]

dΘ
dη

≡ _Θþ n̂ · ∇Θþ n̂ ·∇ψ − _ϕ ¼ _τC½Θ; Pab; vb�; ð17Þ

where overdots denote partial derivatives with respect to η.
In this equation, vb is the baryon velocity, and _τ≡ aneσT is

FIG. 2. Normalized injection-integrated Green’s function de-
fined in Eq. (12), at various redshifts, for 100M⊙ PBHs. This
function is approximately Gaussian with a characteristic cutoff
k�ðzÞ, beyond which ionization inhomogeneities are suppressed
due to finite propagation of injected photons.
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the conformal scattering rate by free electrons with number
density ne, where a is the scale factor, and σT is the
Thomson cross section. C is a linear operator encapsulating
the geometry of Thomson scattering:

C½Θ; Pab; vb�ðn̂Þ≡ L½Θ; Pab; vb�ðn̂Þ − Θðn̂Þ; ð18Þ

L½Θ; Pab; vb�ðn̂Þ≡ Θ0 þ n̂ · vb þ n̂an̂bΠab; ð19Þ

where Θ0 is the photon temperature monopole,

Θ0 ≡
Z

d2n̂
4π

Θðn̂Þ; ð20Þ

and the symmetric trace-free tensor Πab is a linear
combination of the photon quadrupole moment and the
angle-averaged polarization tensor:

Πab ≡
Z

d2n̂
4π

�
1

4
ð3n̂an̂b − δabÞΘðn̂Þ þ

3

2
Pabðn̂Þ

�
: ð21Þ

To close the Boltzmann-Einstein differential system, the
evolution equations for baryons, cold dark matter, neutri-
nos, and photon polarization are needed [21], but we do not
explicitly list them here.

B. Standard solution

We now briefly review the standard solution obtained
with scalar initial conditions and for linear evolution, and
given the standard, homogeneous free-electron fraction

xð0Þe . The notation and expressions derived here will be
useful in the following section dealing with the perturbation
to CMB anisotropies induced by modified recombination.
We denote all standard variables by a superscript (0),

e.g., Θð0Þ and ψ ð0Þ. For short, we also denote Cð0Þ ≡
C½Θð0Þ; Pð0Þ

ab ; v
ð0Þ
b �, and similarly for Lð0Þ.

The Boltzmann equation (17) is most easily solved in
terms of the variable Θeff ≡ Θþ ψ , and in Fourier space.
For the standard case, it takes the form

_Θð0Þ
eff þ ik · n̂Θð0Þ

eff þ _τð0ÞΘð0Þ
eff ¼ _τð0ÞSð0Þ; ð22Þ

Sð0Þ ≡ Lð0Þ þ ψ ð0Þ þ 1

_τð0Þ
ð _ψ ð0Þ þ _ϕð0ÞÞ: ð23Þ

The solution at an arbitrary conformal time is given by the
line-of-sight solution [15]

Θð0Þ
eff ðη; k; n̂Þ ¼ exp

�Z
η0

η
dη00 _τð0Þðη00Þ

�
×
Z

η

0

dη0 gðη0ÞSð0Þðη0; k; n̂Þeik·n̂ðη0−ηÞ; ð24Þ

where η0 is the conformal time today and gðηÞ is the
standard visibility function,

gðηÞ≡ _τð0ÞðηÞ exp
�
−
Z

η0

η
dη0 _τð0Þðη0Þ

�
: ð25Þ

In particular, the line-of-sight solution today, and at the
spatial origin x ¼ 0, is given by [15]

Θð0Þ
eff ðη0; x ¼ 0; n̂Þ ¼

Z
Dk

Z
η0

0

dη gðηÞ

× Sð0Þ ðη; k; n̂Þ e−ik·n̂χ ; ð26Þ

where from here on we denote χ ≡ η0 − η.

FIG. 3. Δeðz; kÞ as defined in Eq. (16) for PBHs of 100M⊙ plotted for various redshifts as a function of scale (left) and for various
scales as a function of redshift (right). We also show this function if we ignore photon propagation and consider energy deposition as
spatially on-the-spot (dashed lines). These plots reveal the shape of the free-electron perturbations induced by v2bc as well as the
amplitude suppression when considering nonlocal energy deposition from accreting PBHs.
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Under scalar adiabatic initial conditions, the baryon
velocity is purely longitudinal, i.e., in Fourier space,

vð0Þb ðkÞ ¼ −ikθð0Þb =k2. Moreover, we have n̂an̂bΠ
ð0Þ
ab ðkÞ ¼

−Πð0ÞP2ðk̂ · n̂Þ, where Πð0Þ ≡ ðFγ2 þ Gγ0 þGγ2Þ=8 is a
combination of the photon temperature quadrupole and
polarization monopole and quadrupole moments (here we
used the notation of Ref. [21]). We thus have

Sð0Þðk; n̂Þ ¼ Θð0Þ
0 þ ψ ð0Þ þ 1

_τð0Þ
ð _ψ ð0Þ þ _ϕð0ÞÞ

−
i
k
ðk̂ · n̂Þθð0Þb − P2ðk̂ · n̂ÞΠð0Þ; ð27Þ

where the dependence of Θð0Þ
0 , vð0Þb , etc., on k is implicit.

To simplify this expression, note that −ik̂ · n̂e−ik·n̂χ ¼
∂kχe−ik·n̂χ , where ∂kχ ≡ 1

k
∂

∂χ. In Eq. (26) we may then

conveniently substitute Sð0Þ by an angle-independent
differential operator acting on the geometric exponential
term,

Sð0Þðk; n̂Þ→ Sð0Þ
∂
ðkÞ≡Θð0Þ

0 þψ ð0Þ þ 1

_τð0Þ
ð _ψ ð0Þ þ _ϕð0ÞÞ

þ θð0Þb

k
∂kχ þΠð0Þ

�
3

2
∂
2
kχ þ

1

2

�
: ð28Þ

Using this substitution, and from the Rayleigh formula,

e−ik·n̂χ ¼
X
l

ð−iÞlð2lþ 1ÞjlðkχÞPlðn̂ · k̂Þ ð29Þ

¼ 4π
X
lm

ð−iÞljlðkχÞYlmðn̂ÞY�
lmðk̂Þ; ð30Þ

where jl are the spherical Bessel functions, we may
directly read off the harmonic multipoles (for l > 0) of
the standard temperature anisotropy from Eq. (26):

Θð0Þ
lm ¼ 4πð−iÞl

Z
DkY�

lmðk̂Þ
Z

η0

0

dηgðηÞSð0Þ
∂

ðk;ηÞjlðkχÞ;

ð31Þ

where the operator Sð0Þ
∂

now acts on the Bessel function.

Last, we denote by S̃ð0Þ
∂
ðk; ηÞ the transfer function of Sð0Þ

∂
,

defined such that

Sð0Þ
∂
ðk; ηÞ ¼ S̃ð0Þ

∂
ðk; ηÞζðkÞ; ð32Þ

where ζðkÞ is the primordial curvature perturbation. We
thus obtain

Θð0Þ
lm ¼ 4πð−iÞl

Z
DkY�

lm ðk̂ÞΔlðkÞζðkÞ; ð33Þ

ΔlðkÞ≡
Z

η0

0

dη gðηÞ S̃ð0Þ
∂

ðk; ηÞjlðkχÞ: ð34Þ

Assuming the primordial curvature perturbation is
Gaussian, with power spectrum PζðkÞ, i.e., such that

hζðkÞζðk0Þi ¼ ð2πÞ3δDðkþ k0ÞPζðkÞ
≡ =δðkþ k0ÞPζðkÞ; ð35Þ

the canonical temperature anisotropy angular power spec-

trum, hΘð0Þ
lmΘ

�ð0Þ
l0m0 i≡ δll0δmm0Cð0Þ

l , is then given by

Cð0Þ
l ¼ 4π

Z
Dk½ΔlðkÞ�2PζðkÞ: ð36Þ

The ΔlðkÞ are the temperature fluctuation multipole trans-
fer functions that can be extracted from cosmological codes
such as CLASS [22]. In practice, since we will need to
compute similar integrals later on, we compute the con-
formal time integral in Eq. (34) ourselves, using only the
source term transfer functions in Eq. (28) from CLASS. We
also compute the k-integral in Eq. (36) ourselves, and we
checked that our results match those of CLASS to high
accuracy. We discuss our numerical resolution and con-
vergence tests in Appendix B.

C. Temperature anisotropy due
to perturbed recombination

We now suppose the free-electron fraction is perturbed,

xe ¼ xð0Þe ð1þ δeÞ. Importantly, we make no assumption
about the spatial dependence of δe, which in general has
both a homogeneous and an inhomogeneous piece.
As a result of the modified Thomson scattering rate
_τ ¼ _τð0Þð1þ δeÞ≡ _τð0Þ þ _τð1Þ, all matter and metric fields
also get altered: Θ ¼ Θð0Þ þ Θð1Þ, ψ ¼ ψ ð0Þ þ ψ ð1Þ, etc. For
short, we again denote Cð1Þ ≡ C½Θð1Þ; Pð1Þ

ab ; v
ð1Þ
b �, and sim-

ilarly for Lð1Þ.
In general, matter and metric fields depend nonlinearly

on δe; however, in the limit of small δe, we may solve them
with a perturbative expansion in δe ≪ 1. The zeroth-order
equation is the canonical Boltzmann-Einstein system dis-
cussed in Sec. III B. At first order in δe ≪ 1, the photon
temperature Boltzmann equation is

_Θð1Þþ n̂ ·∇Θð1Þþ n̂ ·∇ψ ð1Þ− _ϕð1Þ ¼ _τð0ÞCð1Þþ _τð1ÞCð0Þ: ð37Þ

It is convenient to rewrite these equations in terms of the
variable Θð1Þ

eff ≡ Θð1Þ þ ψ ð1Þ, as follows:

_Θð1Þ
eff þ n̂ ·∇Θð1Þ

eff þ _τð0ÞΘð1Þ
eff ¼ _τð0ÞSð1Þ; ð38Þ

where the source term Sð1Þ will be discussed shortly. Again,
Eq. (38) can easily be solved in Fourier space, with the
familiar line-of-sight solution. In particular, the order-one
photon temperature perturbation at present time η0, and at
the spatial origin, takes the form
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Θð1Þ
eff ðη0; x ¼ 0; n̂Þ

¼
Z

Dk
Z

η0

0

dη gðηÞSð1Þ ðk; η; n̂Þe−ik·n̂χ : ð39Þ

The first-order source term Sð1Þ contains two pieces:

Sð1Þ ¼ Sð1Þd þ Sð1Þf ; ð40Þ

Sð1Þd ≡ δe � Cð0Þ; ð41Þ

Sð1Þf ≡ Lð1Þ þ ψ ð1Þ þ 1

_τð0Þ
ð _ψ ð1Þ þ _ϕð1ÞÞ: ð42Þ

The first piece Sð1Þd, we coin as the “direct” term, as it
depends directly on the perturbed free-electron fraction δe,
and otherwise on zeroth-order terms through Cð0Þ, which
can thus be extracted in a relatively straightforward fashion
from CLASS. Note that δe � Cð0Þ denotes a multiplication in
real space, or a convolution in Fourier space. The second
piece Sð1Þf , we dub the feedback term, as it depends on first-
order terms; it thus requires solving explicitly for the
infinite Boltzmann hierarchy similar to that solved at zeroth
order, but with an additional source term, containing wave-
mode mixing due to convolutions in Fourier space [16].
As in previous studies [8,9], we will not solve for the

feedback term in this work. However, we now quantify its
magnitude for the first time, in the limit of homogeneous
perturbations to recombination.

D. Magnitude of the feedback term for homogeneous δe
We consider the limiting case where δeðη; xÞ ¼ δ̄eðηÞ is

homogeneous. Our perturbative expansion in δe applies just
as well in this case, as long as δ̄e ≪ 1. We shall include
only the “direct” source term, and then explicitly check our
results against the exact output from CLASS, which can
handle arbitrary homogeneous perturbations to the recom-
bination history, thus effectively accounting for both direct
and feedback sources (although the calculation is not split
this way in CLASS).
Let us rewrite the direct source term as

Sð1Þdhom ¼ δ̄eCð0Þ ¼ δ̄eðLð0Þ þ ψ ð0ÞÞ − δ̄eΘ
ð0Þ
eff ; ð43Þ

where the subscript “hom” is there to remind the reader that
we are considering a homogeneous free-electron fraction in
this section.
The contribution of the second term to the innermost

integral of Eq. (39) can be rewritten in the formZ
η0

0

dη gðηÞ δ̄eðηÞΘð0Þ
eff ðη; k; n̂Þe−ik·n̂χ

¼
Z

η0

0

dη gðηÞ D̄eðηÞSð0Þðη; k; n̂Þe−ik·n̂χ ; ð44Þ

where

D̄eðηÞ≡
Z

η0

η
dη0 _τð0Þðη0Þδ̄eðη0Þ: ð45Þ

To obtain this result, we inserted the arbitrary-time line-of-
sight solution (24) for Θð0Þ

eff and switched the order of
integration. We therefore arrive at the following expression
for the direct contribution to the first-order temperature
perturbation in the homogeneous case:

Θð1Þd
homðη0; x ¼ 0; n̂Þ

¼
Z

Dk
Z

η0

0

dη gðηÞ

× ½δ̄eðηÞðLð0Þ
∂

þ ψ ð0ÞÞ − D̄eðηÞSð0Þ∂
�e−ik·n̂χ ; ð46Þ

where Lð0Þ
∂
ðk; ηÞ is the operator obtained from Lð0Þðk; η; n̂Þ

in the same fashion as Sð0Þ
∂

is obtained from Sð0Þ

[cf. Eq. (28)].
Using the same steps as in Sec. III B, we thus arrive at the

following expression for the spherical-harmonic compo-
nents of the direct-only part of Θð1Þ

hom:

Θð1Þd
lm;hom ¼ 4πð−iÞl

Z
DkY�

lmðk̂ÞΔð1Þd
l;homðkÞζðkÞ; ð47Þ

Δð1Þd
l;homðkÞ≡

Z
η0

0

dη gðηÞ½δ̄eðηÞðL̃ð0Þ
∂

þ ψ̃ ð0ÞÞ

− D̄eðηÞS̃ð0Þ∂
�jlðkχÞ; ð48Þ

where L̃ð0Þ
∂
ðk; ηÞ and ψ̃ ð0Þðk; ηÞ are the transfer functions of

Lð0Þ
∂
ðk; ηÞ and ψ ð0Þðk; ηÞ.

We may now compute the perturbation to the angu-
lar power spectrum. To linear order in δ̄e ≪ 1, we have

Cl ¼ Cð0Þ
l þ Cð1Þ

l;hom, where we defined 2hΘð1Þ
lm;homΘ

�ð0Þ
l0m0 i≡

δll0δmm0Cð1Þ
l;hom. We find that the direct contribution to

Cð1Þ
l;hom is then

Cð1Þd
l;hom ¼ 8π

Z
DkPζðkÞΔlðkÞΔð1Þd

l;homðkÞ: ð49Þ

We computed Cð1Þd
l;hom using the homogeneous part of the

free-electron perturbation sourced by accreting PBHs, as
calculated in AK17. We compare this result against the

exact Cð1Þ
l;hom obtained from CLASS in Fig. 4. We see that

neglecting the feedback term Sð1Þfhom leads to an order ∼10%
relative error on Cð1Þ

l;hom for relevant black hole masses,
indicating that the term is subdominant. While there is no
guarantee that this subdominance carries over in general at
higher-order statistics, it still gives us some confidence that
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neglecting Sð1Þf is a reasonable approximation, at least as a
first step, and especially considering the large theoretical
uncertainty in the PBH accretion model.
In what follows, we will therefore approximate Sð1Þ ≈

Sð1Þd ¼ δe � Cð0Þ and no longer indicate that we use the
direct term only by a label “d.”

E. Alternative calculation of Cð1Þd
l;hom

Before moving to the full calculation of Θð1Þ, includ-
ing ionization fraction inhomogeneities, we present an

alternative calculation of Δð1Þd
l;homðkÞ, required for the cross-

power spectrumCð1Þ
l;hom. This approach relies on intermediate

quantities also used for the trispectrum calculation, and
provides a useful cross-check of our numerical methods.
For any quantity Xðk; n̂ · k̂Þ, we define its Legendre

multipole moments XlðkÞ as usual through

XlðkÞ≡ il

2

Z
1

−1
dμPlðμÞXðk; μÞ; ð50Þ

such that

Xðk; k̂ · n̂Þ ¼
X
l

ð−iÞlð2lþ 1ÞXlðkÞPlðn̂ · k̂Þ ð51Þ

¼ 4π
X
lm

ð−iÞlXlðkÞYlmðk̂ÞY�
lmðn̂Þ: ð52Þ

We denote by C̃ð0Þðη; k; k̂ · n̂Þ the transfer function of
Cð0Þðη; k; n̂Þ (i.e., such that Cð0Þ ¼ C̃ð0Þζ), and we define
J ðη; k; n̂ · k̂Þ≡ e−iχk·n̂C̃ð0Þðη; k; k̂ · n̂Þ.

Substituting Sð1Þðk; η; n̂Þe−ik·n̂χ ¼ δeJ ðη; k; n̂ · k̂ÞζðkÞ
and inserting the spherical-harmonic expansion of J into
Eq. (39), we then arrive again at Eq. (47), with

Δð1Þd
l;homðkÞ≡

Z
η0

0

dη gðηÞδ̄eðηÞJ lðη; kÞ: ð53Þ

Using the plane-wave expansion (30) and the Legendre
expansion of the product of two Legendre polynomials, we
may relate the coefficients J l to the Legendre coefficients
of C̃ð0Þ as follows:

J lðη; kÞ ¼
4π

2lþ 1

X
l1l2

il−l1−l2ðgl1l2lÞ2jl1ðkχÞC̃ð0Þl2
ðη; kÞ;

ð54Þ
where gl1l2l is proportional to a three-J symbol and is
defined in Eq. (C2). Since this coefficient is nonvanishing
only if l1 þ l2 þ l is even, we may substitute il−l1−l2 ¼
ð−1Þðl−l1−l2Þ=2 ¼ ð−1Þðlþ3l1þ3l2Þ=2. The Legendre coeffi-
cients of the collision operator are given explicitly by

C̃ð0Þl ¼ 1

3
ṽð0Þbγ δl1 þ

1

5
Π̃ð0Þδl2 − Θ̃ð0Þ

l ð1 − δl0 − δl1Þ: ð55Þ

The sums over l1 and l2 in Eq. (54) are formally infinite
and must be truncated in practice. Since the higher l2-
modes from the collision term are induced after the peak of
the visibility function, we choose to truncate the l2 sum at
some finite lcut. This automatically renders the double sum
finite, since for a given l2, l1 is bounded by the triangle
condition, jl − l2j ≤ l1 ≤ lþ l2.

We compute Δð1Þd
l;hom as given by Eq. (53) and use it to

obtain Cð1Þd
l;hom from Eq. (49). We show the results in Fig. 5,

for various lcut, and compare them to the result obtained
with the line-of-sight commutation method described in
Sec. III D. We see that the former converges to the latter as
lcut is increased, as it should, giving us confidence in the
robustness of our numerical methods and results.

IV. PERTURBED TEMPERATURE
ANISOTROPY STATISTICS DUE TO

INHOMOGENEOUSLY-ACCRETING PBHs

A. Temperature anisotropy transfer functions

1. Definitions

Neglecting lensing and other nonlinearities, the standard
temperature perturbation is linearly related to the primor-
dial curvature perturbation, through [cf. Eq (31)]

Θð0Þ
lm ¼

Z
DkTð0Þ

lmðkÞζðkÞ; ð56Þ

Tð0Þ
lmðkÞ≡ 4πð−iÞlΔlðkÞY�

lmðk̂Þ: ð57Þ

FIG. 4. Fractional change to the temperature anisotropy power
spectrum from the homogeneous perturbation to the free-electron
fraction, δeðηÞ, for various PBH masses and abundances. We
compare the exact nonperturbative effect extracted from CLASS to
the perturbative solution including only the direct source term
discussed in Sec. III D. Our approximation of neglecting the
feedback term is reasonably accurate, and we assume this carries
over for the inhomogeneous free-electron fraction case.
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Approximating the free-electron fraction perturbation
due to accreting PBHs as quadratic in the initial conditions
[cf. Eq. (7)], the corresponding temperature anisotropy
perturbation due to accreting PBHs is cubic in the initial
curvature perturbation. The goal of this section is to derive
an explicit expression for the cubic transfer function

Tð1Þ
lmðk1; k2; k3Þ, defined through

Θð1Þ
lm;inh ¼ fpbh

Z
Dðk1k2k3ÞTð1Þ

lmðk1; k2; k3Þ

× ζðk1Þζðk2Þζðk3Þ; ð58Þ

where the label “inh” indicates that here we focus on the
inhomogeneous-δe contribution toΘð1Þ, recalling that it also
has a piece Θð1Þ

hom due to the homogeneous δe, which we

computed in Sec. III D, so that the totalΘð1Þ ¼ Θð1Þ
hom þ Θð1Þ

inh.
In addition, we shall derive the harmonic coefficients of

this cubic transfer function, defined as

Tð1Þ
lmðk1; k2; k3Þ ¼ ð4πÞ3

X
l1l2l3

ð−iÞl1þl2þl3

×
X

m1m2m3

Tm1m2m3;m
l1l2l3;l

ðk1; k2; k3Þ

× Yl1m1
ðk̂1ÞYl2m2

ðk̂2ÞYl3m3
ðk̂3Þ: ð59Þ

2. Calculation

Neglecting the feedback term, the source term for the
line-of-sight solution of Θð1Þ

inh is the convolution between the
collision term and inhomogeneous part of the free-electron
fraction, Sð1Þ ¼ δe;inh � Cð0Þ. Using Eqs. (7) and (15), we
can write explicitly

Sð1Þðη; k; n̂Þ ¼ fpbh

Z
Dðk1k2k3Þ=δðk1 þ k2 þ k3 − kÞ

× ðk̂1 · k̂2ÞΔeðη; k1ÞΔeðη; k2Þ
× C̃ð0Þðη; k3; k̂3 · n̂Þζðk1Þζðk2Þζðk3Þ; ð60Þ

where again C̃ð0Þðη; k; k̂ · n̂Þ is the transfer function of
Cð0Þðη; k; n̂Þ. Taking the harmonic transform of the line-
of-sight solution for Θð1Þ, Eq. (39), we then find

Tð1Þ
lmðk1; k2; k3Þ ¼

Z
η0

0

dη gðηÞ
Z

d2n̂ Y�
lmðn̂Þ

× ðk̂1 · k̂2ÞΔeðη; k1ÞΔeðη; k2Þ
× C̃ð0Þðη; k3; k̂3 · n̂Þe−iχn̂·ðk1þk2þk3Þ: ð61Þ

Note that this function is symmetric under the exchange of
k1 and k2. Let us recall, also, that the expression above only

holds for k1 þ k2 ≠ 0, and that Tð1Þ
lmðk1;−k1; k3Þ ¼ 0, since

we are only considering the inhomogeneous part (with zero
mean) of the free-electron fraction perturbation.
To obtain the harmonic coefficients of Tð1Þ

lm, we first
rewrite (denoting χ ≡ χn̂)

ðk1 · k2Þe−iχ ·ðk1þk2Þ ¼ −½∇χe−iχ ·k1 � · ½∇χe−iχ ·k2 �
¼ −∂χðe−iχ ·k1Þ∂χðe−iχ ·k2Þ

−
1

χ2
½∇n̂e−iχ ·k1 � · ½∇n̂e−iχ ·k2 �; ð62Þ

where ∇χ is the gradient with respect to χ , which we have
split into its radial part n̂∂χ and its angular part 1χ ∇n̂. Using
the plane-wave expansion (30), we thus have

ðk̂1 · k̂2Þe−iχn̂·ðk1þk2Þ

¼−ð4πÞ2
X
l1l2

ð−iÞl1þl2
X
m1m2

Yl1m1
ðk̂1ÞYl2m2

ðk̂2Þ

×

�
j0l1ðχk1Þj0l2ðχk2ÞY�

l1m1
ðn̂ÞY�

l2m2
ðn̂Þ

þ jl1ðχk1Þ
χk1

jl1
ðχk2Þ
χk2

∇n̂Y�
l1m1

ðn̂Þ ·∇n̂Y�
l2m2

ðn̂Þ
�
: ð63Þ

Combining this result with the Legendre expansion of
e−iχn̂·k3 C̃ð0Þðη; k3; k̂3 · n̂Þ [Eq. (54)], we are now in the
position to compute Tm1m2m3;m

l1l2l3;l
defined in Eq. (59):

Tm1m2m3;m
l1l2l3;l

ðk1; k2; k3Þ ¼ Al1l2;l3ðk1; k2; k3ÞQm1m2m3m
l1l2l3l

þ Bl1l2;l3
ðk1; k2; k3ÞQ̃m1m2;m3m

l1l2;l3l
;

ð64Þ

FIG. 5. Fractional change to the temperature anisotropy power
spectrum from the homogeneous perturbation to the free-electron
fraction, δeðηÞ, due to 100M⊙ accreting PBHs, computed with the
“commutation” method, using Eq. (48), or with the “direct
summation method,” using Eq. (53), where J l is given by the
sum (54), truncated at l2 ≤ lcut. We see that the direct summa-
tion result converges to the commutation result as lcut is
increased, as it should.
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where the rotationally invariant coefficients Al1l2;l3 and
Bl1l2;l3 are given by

Al1l2;l3
ðk1; k2; k3Þ≡−

Z
dηgðηÞj0l1ðχk1ÞΔeðη; k1Þ

× j0l2ðχk2ÞΔeðη; k2ÞJ l3
ðη; k3Þ; ð65Þ

Bl1l2;l3ðk1; k2; k3Þ≡−
Z

dηgðηÞ jl1ðχk1Þ
χk1

Δeðη; k1Þ

×
jl2ðχk2Þ
χk2

Δeðη; k2ÞJ l3ðη; k3Þ; ð66Þ

and the purely geometric terms Qm1m2m3m4

l1l2l3l4
and Q̃m1m2;m3m4

l1l2;l3l4
are integrals of the product of four spherical harmonics or
their gradients:

Qm1m2m3m4

l1l2l3l4

≡
Z

d2n̂ Y�
l1m1

ðn̂ÞY�
l2m2

ðn̂ÞY�
l3m3

ðn̂ÞY�
l4m4

ðn̂Þ; ð67Þ

Q̃m1m2;m3m4

l1l2;l3l4

≡
Z

d2n̂∇n̂Y�
l1m1

ðn̂Þ ·∇n̂Y�
l2m2

ðn̂ÞY�
l3m3

ðn̂ÞY�
l4m4

ðn̂Þ: ð68Þ

Note that we have separated the groups of indices on
which the functions depend fully symmetrically:
Al1l2;l3

ðk1; k2; k3Þ and Bl1l2;l3ðk1; k2; k3Þ are symmetric
under the exchange of ðl1; k1Þ with ðl2; k2Þ, Qm1m2m3m4

l1l2l3l4
is

symmetric under the exchange of any two ðl; mÞ pairs, and
Q̃m1m2;m3m4

l1l2;l3l4
is symmetric under the exchange of ðl1; m1Þ

with ðl2; m2Þ, as well as under the exchange of ðl3; m3Þ
with ðl4; m4Þ.

B. Perturbed temperature angular power spectrum

We have derived all the required transfer functions and
are now equipped to compute statistical properties of Θð1Þ

inh.
Because the perturbed temperature anisotropy is cubic in
the primordial curvature perturbation, it has a nonvanishing
cross-correlation with the standard temperature anisotropy.
Using Eqs. (31) and (58), we have

hΘð1Þ
lm;inhΘ

�ð0Þ
l0m0 i ¼ fpbh

Z
Dðk1k2k3k0ÞTð1Þ

lmðk1;k2;k3Þ

×T�ð0Þ
l0m0 ðk0Þhζðk1Þζðk2Þζðk3Þζ�ðk0Þi: ð69Þ

Using Wick’s theorem, and recalling that Tð1Þ
lmðk1;−k1;

k3Þ ¼ 0 and that Tð1Þ
lm is symmetric in its first two arguments,

we get

hΘð1Þ
lm;inhΘ

�ð0Þ
l0m0 i ¼ 2fpbh

Z
Dðkk0ÞTð1Þ

lmðk0;−k; kÞ

× T�ð0Þ
l0m0 ðk0ÞPζðkÞPðk0Þ; ð70Þ

From Eq. (61), we have

Tð1Þ
lmðk0;−k; kÞ ¼ −ðk̂0 · k̂Þ

Z
η0

0

dη gðηÞΔeðη; k0ÞΔeðη; kÞ

×
Z

d2n̂ Y�
lmðn̂ÞC̃ð0Þðη; k; k̂ · n̂Þe−iχn̂·k

0
:

ð71Þ

Averaging over the direction k̂, we then obtainZ
d2k̂
4π

Tð1Þ
lmðk0;−k; kÞ

¼ i
Z

η0

0

dη gðηÞΔeðη; k0ÞΔeðη; kÞC̃ð0Þ1 ðη; kÞ

×
Z

d2n̂ Y�
lmðn̂Þðk̂0 · n̂Þe−iχn̂·k

0
; ð72Þ

where C̃ð0Þ1 ðη; kÞ≡ i 1
2

R
1
−1 dμP1ðμÞC̃ð0Þðη; k; μÞ is the order-1

Legendre coefficient of C̃ð0Þ, which is proportional to the
baryon-photon relative velocity (or baryon-photon slip):

C̃ð0Þ1 ðη; kÞ ¼ 1

3
ṽbγðη; kÞ; ð73Þ

where we defined vbγðkÞ≡ ðvb − vγÞðkÞ ¼ −ik̂ṽbγðkÞζðkÞ.
Using the plane-wave expansion Eq. (30), this expres-

sion further simplifies toZ
d2k̂
4π

Tð1Þ
lmðk0;−k; kÞ

¼ −
4π

3
ð−iÞl

Z
η0

0

dη gðηÞΔeðη; k0ÞΔeðη; kÞ

× ṽbγðη; kÞj0lðk0χÞY�
lmðk̂0Þ: ð74Þ

Finally inserting Eqs. (57) and (74) into Eq. (70), we arrive
at the following simple result:

hΘð1Þ
lm;inhΘ

�ð0Þ
l0m0 i ¼ 1

2
δll0δmm0Cð1Þ

l;inh; ð75Þ

where the cross-power spectrum is given by the conformal
time integral

Cð1Þ
l;inh ¼ −

16π

3
fpbh

Z
η

0

dη gðηÞγðηÞμlðηÞ; ð76Þ

where we have defined
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γðηÞ≡
Z

DkPζðkÞΔeðη; kÞṽbγðη; kÞ; ð77Þ

μlðηÞ≡
Z

DkPζðkÞΔeðη; kÞΔlðkÞj0lðkχÞ: ð78Þ

We see that the factorization of the free-electron pertur-
bation transfer function has allowed us to obtain a very
simple expression for Cð1Þ

l;inh: it only requires precomputing
tables of μlðηÞ and γðηÞ, and then computing a one-
dimensional integral. It can equivalently be rewritten in
the same form as Eq. (49):

Cð1Þ
l;inh ¼ 8π

Z
DkPζðkÞΔlðkÞΔð1Þ

l;inhðkÞ; ð79Þ

Δð1Þ
l;inhðkÞ≡ −

2

3
fpbh

Z
η0

0

dη gðηÞγðηÞΔeðk; ηÞj0lðkχÞ: ð80Þ

Equation (76), or the equivalent form (79), constitutes one
of the main results of this work.
We computed Cð1Þ

l;inh from Eq. (76) and checked that
Eq. (79) gives the same result. We show the result in Fig. 6,

where we compare this term to its counterpart Cð1Þ
l;hom

sourced by the homogeneous part of the free-electron
fraction perturbation, for 100M⊙ accreting PBHs. Even
though these two contributions should in principle be
comparable, given that hδ2ei1=2 ∼ δ̄e (see Paper I), we find

that Cð1Þ
l;inh is suppressed by a factor ∼10–100, depending on

scale, relative to Cð1Þ
l;hom for all black hole masses. This turns

out to be due to both a poor correlation between Θð1Þ
inh and

Θð0Þ, and a suppression of the characteristic amplitude of

Θð1Þ
inh itself. We expound on this point in Appendix E.

C. Temperature trispectrum

We now compute the connected four-point correlation
function of temperature anisotropy,

hΘ1Θ2Θ3Θ4ic≡ hΘ1Θ2Θ3Θ4i− hΘ1Θ2ihΘ3Θ4i
− hΘ1Θ3ihΘ2Θ4i− hΘ1Θ4ihΘ2Θ3i; ð81Þ

where the numbered subscripts index both l and m,
Θ1 ≡ Θl1m1

, and c denotes subtracting out the unconnected

parts of the trispectrum. Recalling that Θ ¼ Θð0Þ þ Θð1Þ
hom þ

Θð1Þ
inh and that Θð0Þ and Θð1Þ

hom are both linear in the initial
Gaussian curvature perturbation, to lowest order in electron
density perturbations, the trispectrum is given by

hΘ1Θ2Θ3Θ4ic ¼ hΘð1Þ
1;inhΘ

ð0Þ
2 Θð0Þ

3 Θð0Þ
4 ic

þ hΘð0Þ
1 Θð1Þ

2;inhΘ
ð0Þ
3 Θð0Þ

4 ic
þ hΘð0Þ

1 Θð0Þ
2 Θð1Þ

3;inhΘ
ð0Þ
4 ic

þ hΘð0Þ
1 Θð0Þ

2 Θð0Þ
3 Θð1Þ

4;inhic: ð82Þ

We may now compute each term using Eq. (58) for Θð1Þ
lm;inh.

For instance, the last term is

FIG. 6. Fractional change to the temperature anisotropy power spectrum due to accreting PBHs of 100M⊙ comprising all the dark

matter. Left: Comparison of the contribution due to the inhomogeneous part of the ionization fraction perturbations,Cð1Þ
l;inh, calculated for

the first time in this work, with the one arising from the homogeneous part of the free-electron fraction, Cð1Þ
l;hom, previously computed in

AK17; we also overlay the total change to the temperature power spectrum from both. Right: The ratio between Cð1Þ
l;inh and Cð1Þ

l;hom.

Although one would expectCð1Þ
l;inh to be of the same order of magnitude as Cð1Þ

l;hom a priori, we find in practice that the former is ∼10–100
times smaller than the latter. In both cases, dashed curves correspond to the spatial on-the-spot approximation, which neglects the spatial
smearing of energy deposition due to the finite propagation of injected photons.

TREY W. JENSEN and YACINE ALI-HAÏMOUD PHYS. REV. D 107, 063532 (2023)

063532-12



hΘð0Þ
1 Θð0Þ

2 Θð0Þ
3 Θð1Þ

4;inhic ¼ fpbh

Z
Dðkk0k00ÞTð1Þ

4 ðk; k0; k00Þ

× ½hζðkÞζðk0Þζðk00ÞΘð0Þ
1 Θð0Þ

2 Θð0Þ
3 i − hζðkÞζðk0Þζðk00ÞΘð0Þ

1 ihΘð0Þ
2 Θð0Þ

3 i
− hζðkÞζðk0Þζðk00ÞΘð0Þ

2 ihΘð0Þ
1 Θð0Þ

3 i − hζðkÞζðk0Þζðk00ÞΘð0Þ
3 ihΘð0Þ

1 Θð0Þ
2 i�; ð83Þ

where we used the explicit definition of the connected four-
point function, Eq. (81). Using Wick’s theorem to compute
the six-point and four-point functions of Gaussian fields
appearing in the integrand above, simplifying, and renam-
ing dummy integration variables, we arrive at

hΘð0Þ
1 Θð0Þ

2 Θð0Þ
3 Θð1Þ

4;inhic ¼ fpbh

Z
Dðkk0k00Þ

× hζðkÞΘð0Þ
1 ihζðk0ÞΘð0Þ

2 ihζðk00ÞΘð0Þ
3 i

× ½Tð1Þ
4 ðk;k0;k00Þ þ 5perms�; ð84Þ

where the five permutations involve all other possible
permutations of k, k0, k00. The relevant two-point functions
are easily computed with the line-of-sight expression for

Θð0Þ
lm, Eq. (33), and we obtain

hζðkÞΘð0Þ
lmi ¼ 4πð−iÞlY�

lmðk̂ÞΔlðkÞPζðkÞ: ð85Þ

Integrating over the wave numbers’ directions, and using
the harmonic decomposition of Tð1Þ given in Eq. (59), we
thus arrive at

hΘð0Þ
l1m1

Θð0Þ
l2m2

Θð0Þ
l3m3

Θð1Þ
l4m4;inh

ic
¼ ð4πÞ3fpbh

Z
Dðk1k2k3Þ

× Pζðk1ÞPζðk2ÞPζðk3ÞΔl1ðk1ÞΔl2ðk2ÞΔl3ðk3Þ
× ½Tm1m2m3;m4

l1l2l3;l4
ðk1; k2; k3Þ þ 5 perms�; ð86Þ

where the five permutations involve all other possible
permutations of k1, k2, k3 simultaneously with the corre-
sponding permutation of the indices li; mi; i ¼ 1, 2, 3, i.e.,
such that the position of the index li, mi always corre-
sponds to the position of ki.
We now take advantage of the factorized form of

Tm1m2m3;m4

l1l2l3;l4
ðk1; k2; k3Þ, given in Eqs. (64)–(66). In addition

to the function μlðηÞ defined in Eq. (78), we define the
following functions of time and multipole:

νlðηÞ≡
Z

DkPζðkÞΔeðχ; kÞΔlðkÞ
jlðkχÞ
kχ

; ð87Þ

λlðηÞ≡
Z

DkPζðkÞΔlðkÞJ lðη; kÞ: ð88Þ

We then define the following one-dimensional integrals:

Al1l2;l3 ≡ −2ð4πÞ3
Z

dη gðηÞμl1ðηÞμl2ðηÞλl3ðηÞ; ð89Þ

Bl1l2;l3 ≡ −2ð4πÞ3
Z

dη gðηÞνl1ðηÞνl2ðηÞλl3ðηÞ; ð90Þ

which are symmetric in their first two arguments. We then
find, using the symmetry of Tð1Þ in its first two arguments
and the symmetries of the Q and Q̃ symbols defined in
Eqs. (67) and (68),

1

fpbh
hΘð0Þ

l1m1
Θð0Þ

l2m2
Θð0Þ

l3m3
Θð1Þ

l4m4;inh
ic

¼ Aðl1l2l3ÞQ
m1m2m3m4

l1l2l3l4
þ Bl1l2;l3Q̃

m1m2;m3m4

l1l2;l3l4

þ Bl2l3;l1
Q̃m2m3;m1m4

l2l3;l1l4
þ Bl3l1;l2Q̃

m3m1;m2m4

l3l1;l2l4
; ð91Þ

where2

Aðl1l2l3Þ ≡Al1l2;l3 þAl2l3;l1 þAl3l1;l2 : ð92Þ

Finally, summing over the four permutations in Eq. (82),
we arrive at the main result of this work, which is the
temperature trispectrum sourced by accreting PBHs,

hΘl1m1
Θl2m2

Θl3m3
Θl4m4

ic ¼ fpbhðT pbhÞm1m2m3m4

l1l2l3l4
; ð93Þ

ðT pbhÞm1m2m3m4

l1l2l3l4

≡Aðl1l2l3l4ÞQ
m1m2m3m4

l1l2l3l4
þ Bl1l2;ðl3l4ÞQ̃

m1m2;m3m4

l1l2;l3l4

þ Bl1l3;ðl2l4ÞQ̃
m1m3;m2m4

l1l3;l2l4
þ Bl1l4;ðl2l3ÞQ̃

m1m4;m2m3

l1l4;l2l3

þ Bl2l3;ðl1l4ÞQ̃
m2m3;m1m4

l2l3;l1l4
þ Bl2l4;ðl1l3ÞQ̃

m2m4;m1m3

l2l4;l1l3

þ Bl3l4;ðl1l2ÞQ̃
m3m4;m1m2

l3l4;l1l2
; ð94Þ

where we have defined the symmetrized coefficients

Aðl1l2l3l4Þ ≡Aðl1l2l3Þ þAðl2l3l4Þ

þAðl3l4l1Þ þAðl4l1l2Þ; ð95Þ

2Note that we do not use the standard symmetrization notation,
i.e., do not divide by the number of terms, in order to avoid the
proliferation of numerical prefactors.
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Bl1l2;ðl3l4Þ ≡ Bl1l2;l3 þ Bl1l2;l4 : ð96Þ

V. TRISPECTRUM CONSTRAINTS
AND SENSITIVITY FORECASTS

In this section we compute and present trispectrum
constraints and sensitivity forecasts on the fraction of dark
matter made of PBHs, fpbh. A full trispectrum analysis of
the Planck satellite temperature data would be very
challenging and is well beyond the scope of this work.
Instead, we compute the overlap of the PBH-induced
trispectrum with the local-type primordial non-
Gaussianity (PNG) trispectrum template, in order to extract
an indirect limit on the PBH abundance, given Planck’s
limits on glocNL [14]. In addition, we forecast Planck’s
sensitivity to the trispectrum induced by accreting PBHs.
For the scope of this paper, we ignore biases that may arise
due to lensing or other nonlinear effects, but they should, of
course, be accounted for in a full data analysis.

A. General equations

Given that the trispectrum induced by accreting PBHs is
approximately linear in fpbh, as given by Eq. (93), one can
build an optimal quartic estimator f̂pbh for fpbh [17,23]. Its
precise expression will not be needed here and is given in
Eq. (24) of Ref. [17]. The inverse variance of this estimator
is given by Eq. (25) in Ref. [17]. Approximating the noise
covariance matrix as diagonal in l, the variance of the
estimator is given by

σ2fpbh ¼ hT pbh · T pbhi−1; ð97Þ

where for any two trispectra T A and T B, we define their
inverse-noise weighted dot product as

hT A · T Bi≡ fsky
4!

X
l0s

1

C0
l1
C0
l2
C0
l3
C0
l4

×
X
m0s

ðT AÞm1m2m3m4

l1l2l3l4
ðT BÞm1m2m3m4

l1l2l3l4
; ð98Þ

where C0
l ≡ Cl þ Nl is the total variance of the observed

CMB temperature, including both the cosmological signal
Cl and instrumental noise Nl, fsky is the fraction of the sky
covered by the experiment, and the sums carry over all four
indices.
Primordial non-Gaussianity also generates a CMB tem-

perature trispectrum, proportional to a non-Gaussianity
parameter gNL:

hΘl1m1
Θl2m2

Θl3m3
Θl4m4

ic ¼ gNLðT pngÞm1m2m3m4

l1l2l3l4
: ð99Þ

One can build an optimal estimator ĝNL for gNL in the
same way as fpbh. The non-Gaussianity sourced by

inhomogeneously accreting PBHs would lead to a system-
atic bias in this estimator, even in the absence of primordial
non-Gaussianity. This bias is linear in fpbh:

hΔĝNLipbh ¼ fpbhR; ð100Þ

R≡ σ2gNLhT pbh · T pngi; ð101Þ

where σ2gNL is the variance of the quadratic estimator ĝNL,
given by

σ2gNL ≡ hT png · T pngi−1: ð102Þ

Constraints on the amplitude gNL of primordial non-
Gaussianity therefore directly translate into bounds on
the PBH abundance fpbh. In what follows we will specifi-
cally consider the local-type primordial trispectrum, which
is most tightly constrained by CMB anisotropy observa-
tions, and whose shape is given in [17],

ðT loc
pngÞm1m2m3m4

l1l2l3l4
¼ Cðl1l2l3l4ÞQ

m1m2m3m4

l1l2l3l4
; ð103Þ

Cðl1l2l3l4Þ ≡ Cl1l2l3;l4 þ 3 perm; ð104Þ

Cl1l2l3;l4 ≡ 6

Z
r2dr βl1ðrÞβl2ðrÞβl3ðrÞαl4ðrÞ; ð105Þ

where Qm1m2m3m4

l1l2l3l4
is given by Eq. (67) and we used the

standard notation of Refs. [17,24]:

αlðrÞ≡ 5

3
ð4πÞ

Z
DkΔlðkÞjlðkrÞ; ð106Þ

βlðrÞ≡ 3

5
ð4πÞ

Z
DkΔlðkÞjlðkrÞPζðkÞ: ð107Þ

B. Sums over m’s

Before proceeding with the numerical evaluation of
Eqs. (97) and (100), we first simplify the sums over m’s,
which involve purely geometric quantities. Specifically, we
define

ðQ2Þl1l2l3l4 ≡
X
m0s

ðQm1m2m3m4

l1l2l3l4
Þ2; ð108Þ

ðQQ̃Þl1l2;l3l4 ≡
X
m0s

Q�m1m2m3m4

l1l2l3l4
Q̃m1m2;m3m4

l1l2;l3l4
; ð109Þ

ðQ̃2Þl1l2;l3l4 ≡
X
m0s

ðQ̃m1m2;m3m4

l1l2;l3l4
Þ2; ð110Þ

ðQ̃ Q̃TÞl1l2;l3l4 ≡
X
m0s

fQ�m1m2;m3m4

l1l2;l3l4
Q̃m3m4;m1m2

l3l4;l1l2
; ð111Þ
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ðQ̃ Q̃SÞl1;l2l3;l4
≡X

m0s

fQ�m1m2;m3m4

l1l2;l3l4
Q̃m1m3;m2m4

l1l3;l2l4
; ð112Þ

where “T” stands for transpose and “S” for “scrambled.”The
same symmetry rules applywhere each set of indices divided

by or surrounded by commas are symmetric. We simplify
these quantities in Appendix D, where we reduce them to a
single sum of products of 3j symbols.
Inserting Eq. (94) into Eq. (97), carrying out the sums

over m’s, and simplifying, the inverse variance of the
estimator f̂pbh becomes

ðσ2fpbhÞ−1 ¼
fsky
4!

X
l0s

1

C0
l1
C0
l2
C0
l3
C0
l4

× ½ðAðl1l2l3l4ÞÞ2ðQ2Þl1l2l3l4 þ 12Aðl1l2l3l4ÞBl1l2;ðl3l4ÞðQQ̃Þl1l2;l3l4 þ 6ðBl1l2;ðl3l4ÞÞ2ðQ̃2Þl1l2;l3l4

þ 6Bl1l2;ðl3l4ÞBl3l4;ðl1l2ÞðQ̃Q̃TÞl1l2;l3l4 þ 24Bl1l2;ðl3l4ÞBl1l3;ðl2l4ÞðQ̃Q̃SÞl1;l2l3;l4 �: ð113Þ

Similarly, the bias on local-type non-Gaussianity due to
accreting PBHs simplifies to

hΔĝlocNLipbh ¼ fpbh ×
fsky
4!

σ2
glocNL

X
l0s

Cðl1l2l3l4Þ
C0
l1
C0
l2
C0
l3
C0
l4

× ½Aðl1l2l3l4ÞðQ2Þl1l2l3l4

þ 6Bl1l2;ðl3l4ÞðQQ̃Þl1l2;l3l4 �; ð114Þ

where the inverse variance of ĝlocNL is given by

ðσ2glocNL
Þ−1 ¼ fsky

4!

X
l0s

ðCðl1l2l3l4ÞÞ2
C0
l1
C0
l2
C0
l3
C0
l4

ðQ2Þl1l2l3l4 : ð115Þ

C. Application to Planck data

We now apply the above results to the Planck experi-
ment [14,25,26]. The relevant fraction of sky coverage is
fsky ¼ 0.78 [14], and the instrumental noise Nl is obtained
from combining the noises of the 100, 143, and 217 GHz
frequency channels,

Nl ¼
�X

c

N−1
l;c

�
−1
; ð116Þ

where, for each channel c, the noise is modeled as a
Gaussian with variance per pixel σ2c and beam size θFWHM;c:

Nl;c ¼
�
σcθFWHM;c

T0

�
exp

�
lðlþ 1Þθ2FWHM;c

8 ln 2

�
; ð117Þ

where T0 ¼ 2.73 K is the CMB monopole. The respective
parameters for each channel are3

νc θFWHM;c σc

100 GHz 9.660 10.77 μK
143 GHz 7.270 6.40 μK
217 GHz 5.010 12.48 μK

The Planck 2018 limits on glocNL are given by [14]

glocNL ¼ ð−5.8� 6.5Þ × 104 ð68% confidenceÞ ð118Þ

≡dglocNL � σglocNL
: ð119Þ

As a cross-check of our numerical code, we compared the
standard deviation of the local-type trispectrum estimator
that we obtain from Eq. (115) to the one reported by the
Planck collaboration, and given above. We find that they
agree within 5%.
To derive an indirect bound on fpbh from the Planck

constraint on glocNL, we proceed as follows. Using Bayes’
theorem, and assuming the estimator for glocNL has a Gaussian
distribution, the unnormalized posterior probability distri-
bution for fpbh is given by

PðfpbhÞ ∝ exp

�
−
1

2

ðRfpbh −dglocNLÞ
2

σ2
glocNL

�
HðfpbhÞ; ð120Þ

where in this context HðxÞ designates the Heaviside
function, enforcing a positive prior on fpbh. The (1 − ϵ)-
confidence upper limit on fpbh, is then obtained from
solving the implicit equationZ

∞

fpbh

dfPðfÞ ¼ ϵ

Z
∞

0

dfPðfÞ: ð121Þ

D. Results and discussion

Weare now fully equipped to compute upper limits onfpbh
indirectly from the Planck constraint on glocNL, and to forecast
Planck’s sensitivity to fpbh from the temperature trispectrum.3https://wiki.cosmos.esa.int/planckpla/index.php/Main_Page.
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We shall compare these limits and forecasts to Planck power-
spectra limits on fpbh. We obtain the latter with exactly the
same procedure as in AK17, but using Planck 2018 data [25]
(instead of 2015). Specifically, we use the foreground-
marginalized Plik-lite log-likelihood for Cl’s at l ≥ 30,
which we Taylor expand near the Planck best-fit cosmology,
and account approximately for the low-l data by imposing a
Gaussian prior on the optical depth to reionization. For the
joint TT, TE, EE limits, we use the modified versions of
HYREC andCLASS as implemented byAK17; in particular,we
use their approximate homogeneous injection-to-deposition
Green’s function. In addition to the joint TT, TE, EE limits,
we also compute a TT-only upper limit on fpbh—we still
retain the optical depth prior, however, so our “TT-only”
limits are technically temperatureþ low-l polarization lim-
its. For a fair comparison with our TTTT trispectrum limits
and forecasts, for the TT limit we compute the effect of
accretingPBHs at first order infpbh, including the direct term
only, and using our more accurate injection-to-ionization
Green’s function. We also include the effect of inhomo-
geneous ionization perturbations on the temperature power
spectrum for completeness, but this makes a negligible
difference on the results.
We find that the indirect limit on fpbh obtained from

Planck’s bounds on glocNL is systematically 1 order of
magnitude weaker than the TT-only power-spectrum limit,
for all PBH masses. This is due to the weak overlap of the
trispectrum induced by primordial non-Gaussianity with
the one induced by accreting PBHs: we find that the
correlation coefficient of the two shapes is less than 10%
across all black hole masses [using the dot product defined
in Eq. (98)]. We therefore do not show this limit in our final
figure.
We show our forecasted 1-σ sensitivity of Planck to the

trispectrum of accreting PBHs in Fig. 7, alongside current
Planck power-spectra upper limits on fpbh. The upper set of
curves correspond to the conservative collisional ionization
limit of AK17, while the lower set of curves correspond to
the photoionization limit (see AK17 for details). In both
cases the qualitative results are the same: we see that the
temperature-only trispectrum is not as sensitive as we had
expected it to be a priori, as its sensitivity is comparable to
current TT upper limits (rather than an order of magnitude
better than joint temperature and polarization limits).
Nevertheless, the temperature trispectrum is still more
sensitive than temperature-only power-spectrum con-
straints for Mpbh ≲ 103M⊙. In particular, the tempera-
ture-only trispectrum has the potential to probe PBHs
lighter by a factor of ∼2 than the current reach of temper-
ature-only power-spectrum limits.
Interestingly, the mass dependence of the trispectrum

sensitivity forecast is shallower than that of the power-
spectrum constraints. Moreover, we find that making the
spatial on-the-spot approximation (as described in Sec. II C)
affects trispectrum forecasts by no more than 20%. Both of

these features can be explained qualitatively by the different
redshift dependence of the trispectrum and power-spectrum
signals, which we explore in Appendix F.
Figure 7 also shows the updated Planck joint temperature

and polarization power-spectrum constraints (TT, TE, EE).
We see that these constraints are tighter than the TT-only
constrains by about an order of magnitude. This stems from
the relatively larger effect of recombination perturbations
on the polarization signal (see, e.g., Fig. 13 of AK17),
indicating a stronger cross-correlation of the perturbed
CMB polarization with the unperturbed field. This provides
a strong motivation to extend our work to all temperature
and E-mode polarization trispectra, TTTE, TTEE, TEEE,
EEEE, which may be significantly more sensitive to
accreting PBHs than the temperature-only trispectrum. In
addition, the inhomogeneity in the free-electron fraction
ought to induce B-mode polarization of magnitude com-
parable with the corresponding E-mode polarization,

Bð1Þ
inh ∼ Eð1Þ

inh. This means that, to linear order in fpbh,
trispectra involving one B mode (TTTB, TTEB, TEEB,
EEEB) ought to carry a comparable signal to the corre-
sponding four-point functions involving temperature and
E-modes only. Importantly, absent primordial tensor modes
or accreting PBHs, the primary (unlensed) CMB B-mode
polarization vanishes. Therefore, after delensing, one can
effectively eliminate cosmic variance in the B-mode meas-
urement. We thus expect these B-mode trispectra to have a
significantly enhanced signal-to-noise ratio relative to their
E-mode counterparts [27]. We defer to a future publication
for the extension of this work to polarization trispectra.

VI. CONCLUSIONS

This work is the second part of a series of three papers
studying the imprints of inhomogeneously-accreting PBHs

FIG. 7. Planck 2018 CMB power-spectra constraints (solid
lines) and temperature trispectrum forecasted sensitivity (dashed
red line) to the fraction of dark matter in PBHs, as a function of
PBH mass. Our forecasted sensitivity from the temperature
trispectrum is better than TT-only constraints for Mpbh ≲
103M⊙ for both the collisional ionization (thick lines) and
photoionization (thin lines) limits (see AK17 for details about
these different regimes).
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on CMB anisotropies, in particular their higher-order
statistics. The first part, Ref. [10], inspected in detail
how inhomogeneous energy injection from nonuniformly
accreting PBHs perturbs recombination. In the present
analysis, we compute the perturbed temperature anisotropy
and its two-point and four-point functions. In the upcoming
third paper of this series, we will extend this work to
polarization.
Our main results can be summarized as follows:
(i) The inhomogeneous part of the free-electron per-

turbation leads to a sub-10% effect on the perturba-
tion to the CMB temperature power spectrum. In
other words, it is sufficient to only account for the
average perturbation to the free-electron fraction
when computing the effect of accreting PBHs on the
CMB temperature power spectrum. This subdomi-
nant contribution was not expected a priori and is
due to the poor correlation of the perturbed CMB
temperature field with the standard temperature
anisotropy. It is not guaranteed that the same holds
true for CMB polarization power spectra.

(ii) We set new constraints on the PBH abundance,
obtained indirectly from Planck’s upper limits on
local-type primordial non-Gaussianity. Indeed, the
shape of PBH-induced trispectrum overlaps with
that of primordial non-Gaussianities, although
weakly. This weak correlation implies that our
new constraints are not competitive with existing
CMB temperature power-spectrum constraints. Still,
they provide a qualitatively different probe of PBH
abundance, complementary to the usual two-point
function limits.

(iii) We forecast the sensitivity of Planck to the temper-
ature trispectrum induced by inhomogeneously ac-
creting PBHs. Although our numerical results show
a weaker sensitivity than what could have been
expected from simple order-of-magnitude estimates,
still we find that the temperature trispectrum would
be sensitive to PBH abundances lower than current
bounds from the CMB temperature-only two-point
function, for Mpbh ≲ 103M⊙. This is our most
important result, which demonstrates that the
CMB trispectrum is, indeed, a useful probe of PBHs.

The calculation of higher-order CMB statistics is quite
involved, and we necessarily had to make several approx-
imations to keep it tractable. First, following previous
studies of perturbed recombination, we only accounted
for the direct piece of the source term for the perturbation to
CMB anisotropies, and neglected the feedback piece.
Unlike previous studies, however, we explicitly quantified
this approximation in the limiting case of homogeneous
ionization perturbations, and we showed that it is accurate
to better than ∼20% in that case. Still, a rigorous and
definitive calculation of the trispectrum should eventually
include the feedback term self-consistently. Second, we

made several approximations in order to derive a factorized
quadratic transfer function for the free-electron fraction
perturbation. In particular, we conservatively approximated
the injection-to-ionization Green’s function by a factorized
form that bounds it from below. This approximation was
needed to get a factorized trispectrum, much more man-
ageable computationally than the exact trispectrum would
be. To quantify the error induced by this approximation, we
also considered the limit of spatially on-the-spot energy
deposition, which bounds the injection-to-ionization
Green’s function from above. We found that all our results
are nearly unchanged when considering this limit, thus
giving us confidence in their robustness. Third, in our
analysis of the primordial non-Gaussianity bias and our
trispectrum sensitivity forecast, we neglected non-
Gaussianities induced by CMB lensing. An actual analysis
of CMB data should, of course, correct for the lensing bias.
The most uncertain part of our calculation remains the

physics of accretion and radiation. All our numerical results
rely on the semianalytic model of AK17 [5], with a simple
prescription for the effect of relative velocities. While, of
course, the quantitative results would change with different
assumptions about the accretion geometry and radiative
efficiency, it seems unavoidable that the PBH accretion
luminosity should be strongly modulated by large-scale
supersonic relative velocities. We also neglected entirely
the effects of nonlinear clustering post-recombination [28].
We expect relative velocities would also modulate the
baryon content of the first halos, hence the accretion rate
in these environments. Hence, our results should still be
robust qualitatively, regardless of the details of the accre-
tion model, or of the relevance of accretion in nonlinear
halos. Moreover, the formalism we develop is quite general
and could be applied to arbitrary perturbations of recombi-
nation spatially modulated by relative velocities, or even
more generally quadratic in initial conditions.
Even if the temperature trispectrum is not quite as

sensitive to PBHs as we had anticipated from the simple
order of magnitude presented in the Introduction, our
results are still very significant and promising. Indeed,
we uncovered a completely new CMB observable to probe
PBHs, with a sensitivity comparable to, and in some cases
better than, current CMB temperature power-spectrum
constraints. Importantly, while several energy injection
processes could in principle mimic the effect of accreting
PBHs in CMB power spectra, to our knowledge the
trispectrum signature studied in this work is unique to
them. These considerations provide strong motivation to
extend this work and study the polarization signal of
inhomogeneously accreting PBHs. In addition to trispectra
involving E-mode polarization (TTTE, TTEE, TEEE,
EEEE), wez also expect B-mode non-Gaussianity, in the
form of TTTB, TTEB, TEEB, EEEB trispectra at leading
order in PBH abundance. These B-mode trispectra ought to
have amplitudes comparable to their E-mode counterparts,
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but much lower noise. We defer the computation of these
promising observables to the third and last installment of
this series of publications.
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APPENDIX A: CORRELATION FUNCTIONS
INVOLVING A FUNCTION
OF RELATIVE VELOCITY

In what follows we denote v≡ vbc the relative velocity of
baryons and dark matter. We need to compute (N þ 1)-
point functions of the form

hFðkÞδ1ðk1Þ � � � δNðkNÞi ¼ PNðk; k1;…; kNÞ
× ð2πÞ3δð3Þðkþ k1 þ � � � þ kNÞ;

ðA1Þ
where F depends on position only through the magnitude v
of the relative velocity field, i.e., FðxÞ ¼ FðvðxÞÞ, and has
zero mean, hFi ¼ 0, and δ1;…; δN are scalars also with
zero mean linearly related to the primordial curvature
perturbation. This (N þ 1)-point function is nonzero only
if N is even, given that F is an even function of relative
velocity. The (N þ 1)-spectrum PN is the Fourier transform
of the (N þ 1)-point correlation function

ξNðx1;…; xNÞ≡ hFðvð0ÞÞδ1ðx1Þ � � � δNðxNÞi: ðA2Þ
The goal of this appendix is to derive an approximate
expression for ξN, from which one can also approxi-
mate PN .
In full generality, provided v; δ1;…; δN are Gaussian-

distributed, we have

ξNðx1;…; xNÞ ¼
Z

d3v dδ1 � � � dδNFðvÞδ1 � � � δN

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π detðCÞp exp

�
−
1

2
XT · C−1 · X

�
;

ðA3Þ
where

XT ≡ ðṽ; δ̃TÞ≡
�

v
σ1d

;
δ1
σδ1

;…;
δN
σδN

�
; ðA4Þ

with σ21d≡hv2i=3 and σ2δi≡hδ2i i.C is the (Nþ3) by (N þ 3)

normalized covariance matrix of ṽð0Þ; δ̃1ðx1Þ;…;fδNðxNÞ.
Explicitly, this matrix is given by C ¼ C0 þ Δ, with

C0 ≡
� 13×3 03×N
0N×3 Cδ̃

�
; ðA5Þ

Δ≡

0BBBBB@
03×3

ΞT
1

ΞT
2

ΞT
3

Ξ1 Ξ2 Ξ3 0N×N

1CCCCCA ðA6Þ

where Cδ̃ is the N × N normalized covariance matrix of the
δ̃’s, andΞi, i ¼ 1, 2, 3, are theN-dimensional columnvectors

Ξi ≡

0BB@
hṽið0Þδ̃1ðx1Þi

..

.

hṽið0Þδ̃NðxNÞi

1CCA: ðA7Þ

In words, the matrix C0 includes all correlations except
for the velocity-δ correlations, which are included in Δ.
So far, these expressions are exact. We expect that, in

general,Δ is small for any separation. Indeed, this is always
true in the large-separation limit. Moreover, statistical
isotropy implies that hvð0ÞδðxÞi → 0 when x → 0, since
there is no non-null isotropic rank-1 tensor. This can be
seen in Fig. 8 where we correlate vi with the canonical
monopoles of the Θð0Þ line-of-sight source transfer func-
tions of Sð0Þ [cf. the first line of Eq. (27)] for example.
We may therefore expand C−1 around C−1

0 to compute
ξN . We’ll see that it is required to include terms at second
order in Δ,

FIG. 8. Correlation function of the monopole terms of the line-
of-sight source for Θð0Þ near recombination with the relative
velocity between CDM and baryons at various redshifts. Namely
we plot the variance normalized correlation function c̃r, where

hvðzÞSð0Þ0 ðz0 ¼ 1100Þi≡ crðr; zÞr̂ and the subscript implies the
monopole terms only. Even at intermediate scales it is less than
unity and justifies expanding the covariance matrix discussed in
Appendix A.
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C−1¼C−1
0 −C−1

0 ΔC−1
0 þC−1

0 ΔC−1
0 ΔC−1

0 þOðΔ3Þ; ðA8Þ

from which we get, at second order in Δ,

exp

�
−
1

2
XTC−1X

�
¼ Λ × exp

�
−
1

2
XTC−1

0 X

�
;

Λ≡ 1þ 1

2
X̃TΔX̃ þ 1

8
ðX̃TΔX̃Þ2

−
1

2
X̃TΔC−1

0 ΔX̃; ðA9Þ

with X̃ ≡ C−1
0 X. With this approximation, we thus have

ξN ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðC0Þ
detðCÞ

s
hFðvÞδ1 � � � δNΛi0

≈ hFðvÞδ1 � � � δNΛi0; ðA10Þ
where the average h� � �i0 is over the “unperturbed”
ðN þ 3Þ-D Gaussian distribution with covariance matrix
C0, which is the product of two uncorrelated Gaussian
distributions: an isotropic Gaussian distribution for vð0Þ
and a N-dimensional Gaussian for ðδ1ðx1Þ;…; δNðxNÞÞ,
with covariance matrix Cδ. The second equality is valid to
lowest order in Δ.
Upon integrating over velocities, the contribution of the

first term in Λ (i.e., 1) vanishes, since hFðvÞi ¼ 0. Let us
now compute the other terms. First, let us compute

X̃TΔ ¼
�
δTC−1

δ Ξ1; δTC−1
δ Ξ2; δTC−1

δ Ξ3;
vi
σ21d

ΞT
i

�
; ðA11Þ

where the first three terms are scalars, and the last term
contains an implicit sum over i, and is a N-dimensional
vector. We therefore have

Λ1 ≡ X̃TΔX̃ ¼ 2vi
σ21d

ΞT
i C

−1
δ δ ¼ 2vi

σ21d
δTC−1

δ Ξi: ðA12Þ

The second term Λ1 is therefore linear in vi. Therefore
hFðvÞδ1 � � � δNΛ1i0 ¼ 0 since hviFðvÞi ¼ 0, by isotropy.
We thus need to include only the third and last terms in

Λ, quadratic in Δ.
Let us start with the third term, proportional to Λ2

1. From
our previous results, we have

Λ2
1 ¼

4

σ41d
vivjΞT

i C
−1
δ δδTC−1

δ Ξj; ðA13Þ

where repeated indices are summed over. Using
hFðvÞvivji0 ¼ 1

3
δijhv2FðvÞi0, we thus find

hFðvÞδ1 � ��δNΛ2
1i0¼

4

3σ41d
hv2FðvÞi

×ΞT
i C

−1
δ hδ1 � ��δNδδTi0C−1

δ Ξi: ðA14Þ

On the other hand, we have

Λ2 ≡ X̃TΔC−1
0 ΔX̃

¼ vivj
σ41d

ΞT
i C

−1
δ Ξj þ terms independent of v: ðA15Þ

This implies

hFðvÞδ1 ���δNΛ2i0¼
hv2FðvÞi
3σ41d

hδ1 ���δNiΞT
i C

−1
δ Ξi: ðA16Þ

Therefore, combining terms, we obtain

ξNðx1;…; xNÞ ≈
1

8
hFðvÞδ1 � � � δNΛ2

1i0

−
1

2
hFðvÞδ1 � � � δNΛ2i0

¼ hv2FðvÞiSðx1;…; xNÞ; ðA17Þ

where we have defined

S≡ 1

6σ41d
ΞT
i C

−1
δ hδ1 � � � δNðδδT − CδÞiC−1

δ Ξi: ðA18Þ

We see that in this approximation, the shape of the N-point
correlation is entirely determined by Sðx1;…; xNÞ, regard-
less of the function FðvÞ. The latter only affects the overall
amplitude of the correlation function, and only through its
moment hv2FðvÞi.
Therefore, to compute the N-point correlation function,

one may substitute FðvÞ with a simpler function F̃ðvÞ, as
long as hv2F̃ðvÞi ¼ hv2FðvÞi. The simplest such function
is F̃ðvÞ≡ bFð v2

3σ2
1d
− 1Þ. It is such that

hv2F̃ðvÞi ¼ 2bFσ21d: ðA19Þ

Hence, we may use F̃ðvÞ instead of FðvÞ provided the
parameter bF is given by

bF ¼ 1

2σ21d
hv2FðvÞi: ðA20Þ

This result was proven in configuration space but also
holds in the Fourier domain, where it is most useful: we
have proven that, for any N-point function involving N
scalar functions (provided the δvi correlations are suffi-
ciently small at all separations), we may use F̃ðvÞ ¼
bFð v2

3σ2
1d
− 1Þ in order to compute N-point functions.

Importantly, this means that the shape we derive for the
trispectrum should be relatively insensitive to the details of
accretion physics—the shape still has some dependence on
it, as in practice the bias parameter bF is redshift dependent,
in a way that depends on the details of accretion.
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APPENDIX B: NUMERICAL RESOLUTION
AND CONVERGENCE

In this appendix we describe our sampling of η, k, and l
integrals and sums.
Because each conformal-time integral relevant to the

PBH-induced trispectrum includes the visibility function
gðηÞ, we sample η more finely during recombination.
Starting from zmax ¼ 1400, we sample η with logarithmic
step size Δ ln η ¼ 10−3 until zrec ¼ 900, after which we
increase the step size to Δ ln η ¼ 2 × 10−2 until zre ¼ 10,
and then finally we sample linearly in η until z ¼ 0 with
step size Δη ¼ 50 Mpc.
For k integrals, we compute quantities on a grid from

kmin ¼ 10−5 Mpc−1 up to a maximumwave number kmax ¼
5000η−10 with a step size Δk ¼ minðϵk; κ0Þ, where ϵ ¼
0.006 and κ0 ¼ 10−4 Mpc−1; i.e., we use logarithm spacing
for low-k to linear spacing at high-k.
Finally, our l sampling consists of the floors of an array

of real l values spaced logarithmically in 2 ≤ l < 400with
Δ lnl ¼ 0.0225, and linearly in 400 ≤ l < lmax ¼ 3000
with Δl ¼ 19.5. Note that these values were chosen to
produce an l sampling similar to the standard output of
CLASS, with almost double the resolution.
We reproduce the standard CMB temperature angular

power spectrum, Eq. (36), and compare to the output of
CLASS [22]. We find a subpercent fractional difference for
all l < lmax. We also recompute all results with increased
resolution prescribed via

ðΔ ln η;Δη; kmax; ϵ; κ0Þ

→

�
2

3
Δ ln η;

2

3
Δη;

3

2
kmax;

2

3
ϵ;
2

3
κ0

�
: ðB1Þ

We find, for both the power spectrum and trispectrum
calculations, there is a fractional change in the results only
at the subpercent level, far below the theoretical uncertainty
of the problem at hand.
Last, the trispectrum results depend on the intermediate

quantity J l, given in Eq. (54) as an infinite double sum.
We truncate this sum at a maximum l2 ¼ lcut (which
automatically truncates the l1 sum due to the triangle
inequality). We find that our trispectrum results are con-
verged within 0.1% by lcut ¼ 50.

APPENDIX C: SPIN-WEIGHTED
SPHERICAL HARMONICS

Spin-weighted spherical harmonics are related to Wigner
D-matrices. They become regular spherical harmonics
when their spin is zero, ð0YlmÞ ¼ Ylm and inherit similar
orthogonal and completeness relations. They have the
familiar property ðsYlmÞ� ¼ ð−1Þsþmð−sYl−mÞ, as well as
a product rule similar to the Gaunt relation involving
Wigner 3j symbols [29],

s1
Yl1m1

ðn̂Þs2Yl2m2
ðn̂Þ ¼

X
s3;l3m3

g−s1ð−s2Þð−s3Þl1l2l3

×

�
l1 l2 l3

m1 m2 m3

�
s3
Y�
l3m3

ðn̂Þ;

ðC1Þ

where the g symbols are defined by

gs1s2s3l1l2l3
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3

s1 s2 s3

�
;

gl1l2l3 ≡ g000l1l2l3
; ðC2Þ

For shorthand we also define the Gaunt coefficient,

Gl1l2l3
m1m2m3

≡ gl1l2l3

�
l1 l2 l3

m1 m2 m3

�
: ðC3Þ

For the Wigner 3j symbols to be nonzero, the l’s in the
first row must be positive and obey the triangle inequality.
Likewise, the sum of the bottom row of azimuthal modes
(m1, m2, m3) must equate to zero, and each must satisfy
−li ≤ mi ≤ li. The Wigner 3j symbols also have an
orthogonality condition that we utilize,

X
m1m2

�
l1 l2 l3

m1 m2 m3

��
l1 l2 l0

3

m1 m2 m0
3

�

¼ δl3l03δm3m0
3

2l3 þ 1
fl1l2l3g; ðC4Þ

where fl1l2l3g is 1 if the three l’s satisfy the triangle
inequality and 0 otherwise.
When summing over the azimuthal modes of the product

of spin-weighted spherical harmonics, we have

X
m

ðsYlmðn̂ÞÞðs0Ylmðn̂0ÞÞ� ¼ ð−1Þs 2lþ 1

4π
dlss0 ðμÞ; ðC5Þ

where we have introduced theWigner small d-functions and
μ≡ n̂ · n̂0 [17]. If s ¼ s0 ¼ 0, then the d-functions reduce to
normal Legendre polynomials. These d-functions them-
selves satisfy the orthogonality condition

Z
1

−1
dμ dl1

ss0 ðμÞdl2ss0 ðμÞ ¼
2

2lþ 1
δl1l2 ðC6Þ

and are equipped with the identity

dl−sð−s0ÞðμÞ ¼ dls0sðμÞ ¼ ð−1Þsþs0dlss0 ðμÞ: ðC7Þ
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They also have the property that their product can be
expanded via [29]

dl1s1s02
ðμÞdl2s2s02ðμÞ

¼
X
l;s;s0

ð2lþ 1Þ
�
l1 l2 l

s1 s2 s

�
dlss0 ðμÞ

�
l1 l2 l

s01 s02 s0

�
:

ðC8Þ
APPENDIX D: SUMS OF PRODUCTS

OF Q AND Q̃ SYMBOLS

Computing the multipoles of the nonlinear perturbation
of temperature anisotropy introduces integrals of products
of four (spin-weighted) spherical harmonics, denoted as the
Q symbols in Eqs. (67) and (68). In this appendix we lay
out the math to simplify the sums and products of these Q
symbols necessary for the first-order trispectrum calcula-
tions. We borrow the tools introduced in Appendix C.
Let us start with ðQ2Þl1l2l3l4 defined in Eq. (108). Given

the definitions of Qm1m2m3m4

l1l2l3l4
, it is given by

ðQ2Þl1l2l3l4 ¼
X
m0s

Z
d2n̂

Z
d2n̂0

Y
i

Ylimi
ðn̂ÞY�

limi
ðn̂0Þ:

ðD1Þ
Let us now use Eq. (C5), which reduces to Legendre
polynomials in this case:X

mi

Ylimi
ðn̂ÞY�

limi
ðn̂0Þ ¼ 1

4π
ð2li þ 1ÞPliðμÞ; ðD2Þ

where μ≡ n̂ · n̂0. We may carry out one of the angular
integrals and get

ðQ2Þl1l2l3l4 ¼
1

ð4πÞ2
1

2

Y
i

ð2li þ 1Þ

×
Z

1

−1
dμPl1ðμÞPl2ðμÞPl3ðμÞPl4ðμÞ: ðD3Þ

Now, recall the product rule for Wigner d-functions (or
Legendre polynomials in this case), Eq (C8),

Pl1Pl2
¼

X
l

ð2lþ 1Þ
�
l1 l2 l

0 0 0

�
2

Pl: ðD4Þ

Therefore, using the orthogonality relation Eq. (C6), we
obtain

ðQ2Þl1l2l3l4 ¼
1

ð4πÞ2
Y
i

ð2li þ 1Þ
X
l

ð2lþ 1Þ

×

�
l1 l2 l

0 0 0

�
2
�
l l3 l4

0 0 0

�
2

¼
X
l

1

2lþ 1
ðgl1l2lÞ2ðgll3l4Þ2; ðD5Þ

with a result that should be independent of the grouping of
the two pairs of l’s.
To generalize this to sums involving Q̃ is relatively

straightforward, but requires general Wigner small
d-functions. We note that the angular derivatives present
in Q̃ can be expressed in terms of spin-1 spin-weighted
spherical harmonics [17]. That is,

∇n̂Yl1m1
· ∇n̂Yl2m2

¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðl1 þ 1Þl2ðl2 þ 1Þ

p
×

X
s¼�1

sYl1m1−sYl2m2
; ðD6Þ

such that

Q̃m1m2;m3m4

l1l2;l3l4
¼ −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðl1 þ 1Þl2ðl2 þ 1Þ

p
×

X
s¼�1

Z
d2n̂ sY�

l1m1
ðn̂Þ−sY�

l2m2
ðn̂Þ

× Y�
l3m3

ðn̂ÞY�
l4m4

ðn̂Þ: ðD7Þ

For short we define

g̃l1l2;l ≡
X
s¼�1

gs;−s;0l1;l2;l
; ðD8Þ

which is symmetric in its first two indices. Using the
properties of d-functions outlined in Appendix C, we
obtain for Eq. (108)–(112)

ðQQ̃Þl1l2;l3l4 ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðl1 þ 1Þl2ðl2 þ 1Þ

p
×
X
l

1

2lþ 1
gl1l2lg̃l1l2;lðgl3l4lÞ2; ðD9Þ

ðQ̃2Þl1l2;l3l4 ¼
1

4
l1ðl1 þ 1Þl2ðl2 þ 1Þ

×
X
l

1

2lþ 1
ðg̃l1l2;lÞ2ðgll3l4Þ2; ðD10Þ

ðQ̃Q̃TÞl1l2;l3l4 ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðl1þ1Þl2ðl2þ1Þ

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l3ðl3þ1Þl4ðl4þ1Þ

p
×
X
l

1

2lþ1
ðgl1l2lg̃l1l2;lÞðgl3l4lg̃l3l4;lÞ;

ðD11Þ
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ðQ̃ Q̃SÞl1;l2l3;l4 ¼ −
1

4
l1ðl1 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðl2 þ 1Þl3ðl3 þ 1Þ

p
×

X
s¼�1

X
l

1

2lþ 1
g̃l1l2;lg

s;−s;0
l;l1;l2

× g−s;s;0l;l3;l4
gll3l4 : ðD12Þ

APPENDIX E: PERTURBED TEMPERATURE
ANISOTROPY AUTOPOWER SPECTRUM

In this paper we found that the temperature-only trispec-
trum induced by accreting PBHs was not as sensitive as
we expected a priori. Additionally, the amplitude of the
power-spectrum perturbation sourced by inhomogeneities

in the free-electron fraction,Cð1Þ
l;inh ≡ 2hΘð1Þ

llm;inhΘ
ð0Þ�
lm i, is up

to 2 orders of magnitude smaller than its counterpart

Cð1Þ
l;hom ≡ 2hΘð1Þ

lm;homΘ
ð0Þ�
lm i, as revealed in Fig. 6. In this

appendix, we show this is due to a combination of a poor

correlation betweenΘð1Þ
inh and the standard CMB temperature

anisotropy Θð0Þ, and a suppression of the characteristic

amplitude of Θð1Þ
inh itself, relative to its counterpart Θð1Þ

hom.
We do so by computing and comparing the autopower

spectra of Θð1Þ
hom and Θð1Þ

inh. The results are shown in Fig. 9.

From Eq. (47), the autopower spectrum of Θð1Þ
hom is

trivially

Cð11Þ
l;hom ¼ 4π

Z
DkPζðkÞ½Δð1Þd

l;homðkÞ�2; ðE1Þ

where hΘð1Þ
lm;homΘ

�ð1Þ
l0m0;homi≡ δll0δmm0Cð11Þ

l;hom.
The autopower spectrum of the inhomogeneous-ioniza-

tion counterpart, hΘð1Þ
lm;inhΘ

�ð1Þ
l0m0;inhi≡ δll0δmm0Cð11Þ

l;inh, is
much more involved. In what follows, we denote the
integral operator,Z

Dðk1k2k3ÞPζðk1ÞPζðk2ÞPζðk3Þ≡
Z

D3P: ðE2Þ

We begin similarly as we did for the trispectrum calculation
in Sec. IV C. Starting with Eq. (58), using Wick’s theorem

and exploiting the fact that Tð1Þ
lmðk1;−k1; k3Þ ¼ 0 and Tð1Þ

lm
is symmetric in its first two k arguments, we find

hΘð1Þ
lm;inhΘ

�ð1Þ
l0m0;inh0 i

¼ f2pbh

Z
D3P

n
4Tð1Þ

lmðk1; k2;−k2ÞT�ð1Þ
l0m0 ðk1; k3;−k3Þ

þ 2Tð1Þ
lmðk1; k2; k3ÞT�ð1Þ

l0m0 ðk1; k2; k3Þ
þ 4Tð1Þ

lmðk1; k2; k3ÞT�ð1Þ
l0m0 ðk3; k2; k1Þ

o
: ðE3Þ

The first term can be solved with the same method as for the
inhomogeneous power spectrum in Sec. IV B. That is,Z

D3PTð1Þ
lmðk1; k2;−k2ÞT�ð1Þ

l0m0 ðk1; k3;−k3Þ

¼ δll0δmm0
16π

9

Z
η0

0

dη
Z

η0

0

dη0 gðηÞgðη0Þ

×Alðη; η0ÞγðηÞγðη0Þ; ðE4Þ

where γðηÞ is defined in Eq. (77) and

Alðη; η0Þ≡
Z

DkPζðkÞΔeðη; kÞj0lðkχÞΔeðη0; kÞj0lðkχ0Þ:

ðE5Þ

The remaining two terms are not as simple. Using
Eq. (59) and integrating over all three k̂’s (but restoring
them for notational convenience by absorbing factors of
4π), the second term can be written asZ

D3PTð1Þ
lmðk1; k2; k3ÞT�ð1Þ

l0m0 ðk1; k2; k3Þ

¼ ð4πÞ3
X
mi;li

Z
D3PTm1m2m3;m

l1l2l2;l
T�m1m2m3;m0
l1l2l3;l0 ; ðE6Þ

where we have suppressed the k dependence in Tm1m2m3;m4

l1l2l3;l4
,

defined in Eq. (64), and the sum is over li and mi, with
i ¼ 1, 2, 3. Without having to expand the terms with

FIG. 9. Top: Autopower spectrum of the perturbed temperature
anisotropy due to accreting PBHs defined as hΘð1Þ

lmΘ
�ð1Þ
l0m0 i≡

δll0δmm0Cð11Þ
l , normalized by the standard angular power spec-

trum. Bottom: Correlation coefficients between Θð1Þ and Θð0Þ. In
both cases we assume 100M⊙ PBHs comprising all the dark
matter, but the qualitative trends are general for all PBH masses.

The suppressed amplitude in the autopower spectrum of Θð1Þ
inh

(purple curves) compared to Θð1Þ
hom (red curves) and the poor

correlation explains the large difference in amplitude for the
computed power spectra in Sec. IV B.
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spherical harmonics, we can exploit the fact that the
Universe is statistically isotropic and instead compute

hΘð1Þ
lm;inhΘ

�ð1Þ
l0m0;inhi ¼

δll0δmm0

2lþ 1

X
m00

hΘð1Þ
lm00;inhΘ

�ð1Þ
lm00;inhi: ðE7Þ

This enables us to use the machinery we derived in
Appendix D and write the second term asZ

D3PTð1Þ
lmðk1;k2;k3ÞT�ð1Þ

l0m0 ðk1;k2;k3Þ

¼ð4πÞ3δll0δmm0

2lþ1

X
mi;li

Z
D3PfA2

l1l2;l3
ðk1;k2;k3ÞðQ2Þl1l2l3l

þ2ABl1l2;l3ðk1;k2;k3ÞðQQ̃Þl1l2;l3l

þB2
l1l2;l3

ðk1;k2;k3ÞðQ̃2Þl1l2;l3lg:

We apply the same logic to the third term. We then take
advantage of the factorized forms of Eqs. (64)–(66) to write
a computationally manageable final solution as

Cð11Þ
l;inh ¼ f2pbh

�
4Al þ

X
l1l2l3

ð2Bl1l2;l3;l þ 4Cl1;l2;l3;lÞ
�
;

ðE8Þ

where

Al≡4π

9

Z
η0

0

dη
Z

η0

0

dη0gðηÞgðη0ÞAlðη;η0ÞβðηÞβðη0Þ; ðE9Þ

Bl1l2;l3;l ≡
ð4πÞ3
2lþ 1

Z
dη

Z
dη0gðηÞgðη0Þ

×
n
Al1

ðη; η0ÞAl2ðη; η0ÞJl3ðη; η0ÞðQ2Þl1l2l3l
þ 2Kl1ðη; η0ÞKl2ðη; η0ÞJl3ðη; η0ÞðQQ̃Þl1l2;l3l
þ Bl1

ðη; η0ÞBl2ðη; η0ÞJl3ðη; η0ÞðQ̃2Þl1l2;l3l
o
;

ðE10Þ

Cl1;l2;l3;l≡
ð4πÞ3
2lþ1

Z
dη

Z
dη0gðηÞgðη0Þ

×
n
Ãl1

ðη;η0ÞÃl2ðη0;ηÞAl3ðη;η0ÞðQ2Þl1l2l3l
þ2Ãl1ðη;η0ÞKl2ðη;η0ÞB̃l3

ðη0;ηÞðQQ̃Þl3l2;l1l
þ B̃l1

ðη;η0ÞB̃l2ðη0;ηÞBl3ðη;η0ÞðQ̃Q̃SÞl1;l2l3;l
o
;

ðE11Þ

with

Blðη;η0Þ≡
Z

DðkÞPζðkÞ
jlðχkÞ
χk

Δeðη;kÞ
jlðχ0kÞ
χ0k

Δeðη0;kÞ;

Klðη;η0Þ≡
Z

DðkÞPζðkÞj0lðχkÞΔeðη; kÞ
jlðχ0kÞ
χ0k

Δeðη0;kÞ;

Jlðη;η0Þ≡
Z

DðkÞPζðkÞJ lðη; kÞJ lðη0;kÞ;

Ãlðη;η0Þ≡
Z

DðkÞPζðkÞj0lðχkÞΔeðη; kÞJ lðη0; kÞ;

B̃lðη;η0Þ≡
Z

DðkÞPζðkÞ
jlðχkÞ
χk

Δeðη;kÞJ lðη0; kÞ: ðE12Þ

We plot the results, Eq. (E8) and Eq. (E1), in Fig. 9. We
see there is ultimately an order of magnitude difference
between the amplitudes of the inhomogeneous and homo-
geneous temperature perturbation autopower spectrum. We
also see that the correlation between our newly computed
inhomogeneous temperature perturbation and the standard
CMB temperature anisotropy is very poor. Both these facts
are likely the culprits behind both the unexpected sensi-
tivity from the forecast on the trispectrum and the 2 orders
of magnitude difference in the power-spectra amplitudes
we observe in Fig. 6. Additionally, it can be seen that, if it
were not for the very small correlation at large l, the scale
suppression due to photon propagation would have a much
bigger effect in both the inhomogeneous power-spectrum
and trispectrum results.

APPENDIX F: REDSHIFT DEPENDENCE OF THE
TEMPERATURE TRISPECTRUM INDUCED

BY ACCRETING PBHs

In this appendix we inspect the redshift dependence of
the temperature trispectrum from accreting PBHs, by
reproducing the forecast analysis of Sec. V, but artificially
imposing that the free-electron fraction perturbation van-
ishes outside of redshift bins of size Δz ¼ 50. In a given
redshift bin, we compute the signal-to-noise, S=N, assum-
ing a Planck-like experiment for both the temperature-only
trispectrum and power spectrum. That is, for the trispec-
trum we compute ðS=NÞtri ≡ 1=σfpbh from Eq. (113). For
the power spectrum we compute the similar forecasted
quantity,

ðS=NÞps ≡
�
fsky
2

X
l
ð2lþ 1Þ

�
Cð1Þ
l

C0
l

�2�1=2
; ðF1Þ

where Cð1Þ
l ¼ Cð1Þ

l;hom þ Cð1Þ
l;inh is the total (cf. Fig. 6) per-

turbed TT power spectrum due to accreting PBHs (con-
sidering only the direct term discussed in Sec. III D). Note
that a rigorous treatment would properly account for
correlations between different redshift bins and involve a
principal component analysis. Still, the simple estimation
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of S=N should give us a reasonable qualitative under-
standing of the redshift dependence of the signal.
We compare the two S=N as a function of redshift in

Fig. 10 for 100M⊙ PBHs. We see that the temperature
trispectrum S=N is rather sharply peaked around
z ∼ 900–1000, in contrast with the temperature power-
spectrum signal, which receives comparable contributions
from a broad range of redshifts 200≲ z≲ 1200.
This is consistent with the following observations. First,

by inspecting the on-the-spot energy deposition limit dis-
cussed in Sec. II C, we found that the trispectrum is
negligibly affected by photon propagation that is more
suppressive at late times. Namely the strongest spatial
fluctuations for the accreting PBHs due to relative velocities
occur at a few 10’s ofMpc scales as shown in Fig. 13 of Paper
I, but this is not noticeably suppressed until z ≈ 800 when
inspecting Fig. 2. Second, we find that the trispectrum
constraints converge much more quickly than compared to
the power spectrum when varying the max multipole on the
zeroth-order collision term present in the line-of-sight
source. Namely, the trispectrum is unaffected by higher-
order multipoles of zeroth-order temperature anisotropy
which are induced at later times. Third and more subtly,
the fpbh-Mpbh power-law dependence is weaker for the
trispectrum constraints than it is for the power-spectrum
constraints. As found in AK17, the luminosity of a spheri-
cally accreting PBH is proportional toM3 at all times when
excluding their radiative efficiency. The radiative efficiency,

however, turns out to have an inverse dependence on black
hole mass whose power depends on redshift. This power
converges to zero at late times, and implies that the mass
dependence on fpbh constraints is weaker if the signal
receives support from earlier redshifts. This can be seen
directly in Fig. 8 of AK17 where they plot the mean
luminosity as a function of redshift for various Mpbh.
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