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CMB temperature trispectrum from accreting primordial black holes

Trey W. Jensen® and Yacine Ali-Haimoud

Center for Cosmology and Particle Physics, Department of Physics,
New York University New York, New York 10003, USA

® (Received 1 December 2022; accepted 7 March 2023; published 21 March 2023)

It is known that primordial black holes (PBHs) can leave an imprint on cosmic microwave background
(CMB) anisotropy power spectra, due to their accretion-powered injection of energy into the recombining
plasma. Here we study a qualitatively new CMB observable sourced by accreting PBHs: the temperature
trispectrum or connected four-point function. This non-Gaussian signature is due to the strong spatial
modulation of the PBH accretion luminosity, thus ionization perturbations, by large-scale supersonic
relative velocities between PBHs and the accreted baryons. We first derive a factorizable quadratic transfer
function for free-electron fraction inhomogeneities induced by accreting PBHs. We then compute the
perturbation to the CMB temperature anisotropy due to a general modification of recombination and apply
our results to accreting PBHs. We calculate a new contribution to the temperature power spectrum due to
the spatial fluctuations of the ionization perturbation induced by accreting PBHs, going beyond past studies
that only accounted for its homogeneous part. While these contributions are formally comparable, we find
the new part to be subdominant due to the poor correlation of the perturbed temperature field with the
standard CMB anisotropy. For the first time, we compute the temperature trispectrum due to accreting
PBHs. This trispectrum is weakly correlated with the local-type primordial non-Gaussianity trispectrum;
hence constraints on the latter do not lead to competitive bounds on accreting PBHs. We also forecast
Planck’s sensitivity to the temperature trispectrum sourced by accreting PBHs. Excitingly, we find it to be
more sensitive to PBHs under ~10°M, than current temperature-only power-spectrum constraints. This
result motivates our future work extending this study to temperature and polarization trispectra induced by

inhomogeneously accreting PBHs.
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I. INTRODUCTION

Not only are primordial black holes (PBHs) a probe of
very early-universe physics, but they could also be the
culprit behind several cosmological and astrophysical
mysteries. For instance, even if they constitute only a
small fraction of cold dark matter (CDM), intermediate-
mass PBHs (1-10*M o) could be the seed for supermassive
black holes [1] or account for recent LIGO/Virgo gravita-
tional wave observations [2]. Thus, even if the abundance
of PBHs in this mass range is heavily constrained [3], it
proves invaluable to inspect further.

The intermediate-mass range is where PBH accretion
may leave a non-negligible signature on the cosmic micro-
wave background (CMB). The underlying physical phe-
nomena that lead to an indirect signal are the following.
PBHs accrete primordial plasma throughout cosmic time;
some fraction of the infalling material is converted into
radiation; this radiation propagates and deposits energy into
the background recombining plasma, heating, and ionizing
it; finally, this change to the ionization history perturbs the
last-scattering surface, ultimately altering the observed
CMB temperature and polarization anisotropy. In fact,
the strongest constraints on the abundance of PBHs in
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this mass range come from this effect [3]; however, the
authors of previous literature have only looked for a signal
in two-point CMB anisotropy statistics [4-6].

One avenue that has not been inspected is the non-
Gaussianity that is induced in the CMB by accreting PBHs.
Although the PBH accretion rate and radiation power are
largely uncertain, they necessarily depend on the magni-
tude of the local relative velocity between the accreted
matter (baryons) and PBHs, which behave as CDM on
large scales [4-6]. This dependence implies a spatial
modulation of the luminosity of accreting PBHs and thus
inhomogeneities in their perturbation to recombination. It is
known that inhomogeneous recombination generates non-
Gaussian signatures in CMB anisotropies [7-9]. The goal
of this paper is to quantify this qualitatively different CMB
signature of accreting PBHs, for the first time to our
knowledge.

The effect considered here is similar in spirit to that
studied in Ref. [9] in the context of dark matter (DM)
annihilation, with, however, two major differences.
First, since the PBH luminosity depends on the relative
velocity squared, the lowest-order non-Gaussian statistics
induced by accreting PBHs is the trispectrum, or connected

© 2023 American Physical Society
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four-point function. This is to be contrasted with the
bispectrum (three-point function) sourced by energy injec-
tion from inhomogeneous annihilating DM [9]. Second,
in the case of annihilating DM, the inhomogeneity in
energy injection is of order the DM density fluctuation
around recombination, that is, of order ~10~3 on scales
k ~ 0.1 Mpc~!. In contrast, the PBH luminosity has order-
unity fluctuations on the same scales [10], as it is strongly
modulated by supersonic relative velocities [11]. This
implies that the inhomogeneities in the free-electron
fraction sourced by accreting PBHs are comparable to
its mean enhancement, as we demonstrated explicitly in
Ref. [10], hereafter Paper 1. We therefore expect the
amplitude of the non-Gaussian signature of accreting
PBHs to be ~10° times larger than that of inhomoge-
neously annihilating DM, at equal amplitudes of the two-
point function perturbation.

In Paper I, we found that, for a PBH abundance saturating
CMB power-spectra limits, the free-electron perturbation is
of order 5, ~ 1073 around z ~ 10°, both in mean and in
root mean square (rms) (see Fig. 14 of Paper I). This
relatively large effect implies that the CMB trispectrum
could be significantly more sensitive to PBHs than CMB
power spectra, as we now show with two simple order-of-
magnitude estimates. First, without any exotic energy
injection nor primordial non-Gaussianity, recombination
is intrinsically inhomogeneous, with perturbations
O std ~ 10~* [7,12]. This leads to non-Gaussianities with
an amplitude just below detectability threshold for
Planck [7,13]. This suggests that an inhomogeneity of order
5, ~ 1073 would lead to a non-Gaussian signal with a signal-
to-noise ratio (SNR) of order 10. Second, in the presence of a
perturbation §, to the free-electron fraction, the CMB
temperature anisotropy ® = 0 + @) is displaced from
its standard value ®©) ~ ¢, where  ~ 10™* is the primor-
dial curvature perturbation, by an amount @) ~§,l.
We therefore expect the connected four-point function to
be of order (BOOO), = (81O N) ~ 1073(¢?)? for
a PBH abundance saturating CMB power-spectra limits.
In comparison, primordial trispectra lead to four-point
functions of order (BOOO), ~ gn. (%) ~ 1072 gn (L)%
Planck’s upper limits on the amplitude of local-type pri-
mordial non-Gaussianity is |gn. | < 10° [14], implying that
Planck is sensitive to a four-point function of order
(©O00), ~ 1074(¢?)?. Here again, this estimates indicates
that PBHs saturating CMB power-spectra limits could lead
to a trispectrum detectable with SNR ~ 10. Put differently,
the trispectrum could be sensitive to PBH abundances an
order of magnitude below current CMB power-spectra
limits. As an ancillary effect, the perturbation of CMB
power spectra induced by accreting PBHs ought to be
modified by order unity when properly accounting for
the inhomogeneities in ,, which were neglected in past
works [4-6].

These promising estimates warrant a detailed calculation
of the effects of inhomogeneously-accreting PBHs on
CMB power spectra and trispectra. In this work, we take
the first step in this program by computing the temperature-
only two-point and four-point functions. We moreover
forecast Planck’s sensitivity to PBHs from the temperature
trispectrum. We find that the inhomogeneity in recombi-
nation only leads to a <10% correction to the effect of
accreting PBHs on the temperature power spectrum. We
also find that the temperature trispectrum is approximately
as sensitive to accreting PBHs as the temperature power
spectrum is, and is thus not quite as powerful a probe as our
simple order-of-magnitude estimates indicated. This is
likely due to the imperfect correlation between the standard
temperature anisotropy ©(©) and the perturbation ©(!)
sourced by inhomogeneous ionization fluctuations. Still,
we find that, for M, < 10°M, the CMB temperature
trispectrum would be a more sensitive probe of accreting
PBHs than the temperature power spectrum is. This result
motivates exploring the full temperature and polarization
trispectrum, which we take up in future work.

The remainder of this paper is organized as follows. In
Sec. II we begin by briefly reviewing accreting PBHs as a
source of inhomogeneous recombination. By assuming
spherical accretion and taking the luminosity prescription
from Ref. [5] (hereafter AK17), we derive a quadratic
transfer function for the perturbed free-electron fraction.
This transfer function incorporates the radiation transport
simulation and perturbed recombination calculation
from Paper I. We are able to make the transfer function
factorizable with some justified approximations specific
to accreting PBHs, which tremendously reduces the
computational cost of calculating the high-dimensional
trispectrum.

In Sec. III we derive general equations for the perturbed
temperature anisotropy at first order in free-electron frac-
tion perturbations, starting from the Boltzmann-Einstein
system, and using the line-of-sight method [15]. The results
of this section are general and not limited to perturbations
from accreting PBHs. As in previous works [9,16] we
neglect “feedback” terms in the first-order perturbation.
However, for the first time we quantify the error induced
by this approximation in the case of the power-spectrum
perturbation induced by homogeneous free-electron
perturbations.

In Sec. IV we apply these results to recombination
perturbations due to accreting PBHs. We compute the
perturbation to the temperature anisotropy power spectrum
sourced by the inhomogeneous part of free-electron frac-
tion perturbations, which we find to be more than an order
of magnitude smaller than its counterpart induced by the
homogeneous effect on the ionization history. We moreover
compute the temperature trispectrum induced by accreting
PBHs, given in Eq. (94), which is one of the main results of
this work.
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In Sec. V we extract new limits on PBH abundance from
Planck upper bounds on the local-shape primordial tris-
pectrum [14], which indirectly constrains the PBH-induced
trispectrum with which it partially overlaps. But due to a
poor correlation between the two trispectra, the constraints
are an order of magnitude weaker than the constraints
from the power-spectra analysis. We also forecast the
sensitivity of Planck to the temperature four-point func-
tion induced by accreting PBHs, based on the optimal
trispectrum estimator of Ref. [17]. We are able to make
these computations efficiently by precomputing purely
geometric rotational-invariant coefficients. We find that
the temperature trispectrum could probe PBH abundances
lower than current temperature-only power-spectrum limits
for Mpypn < 103M . We conclude and discuss future work
in Sec. VL

We discuss a few points in more detail in the
Appendixes. In Appendix A, we justify the approximation
of general nonlinear functions of v, by a biased tracer of
v2.. We describe our numerical resolution and convergence
tests in Appendix B. We review a few useful properties of
spin-weighted spherical harmonics in Appendix C, which
we then use in Appendix D to derive simple expressions for
the rotational-invariant quantities involved in the trispec-
trum sensitivity forecast calculation. In Appendix E we
compute the autopower spectrum of the temperature
perturbation induced by accreting PBHs and its correlation
coefficient with the standard temperature anisotropy. Last,
in Appendix F, we inspect the redshift dependence of the
signal-to-noise ratio of the PBH-induced trispectrum.

II. PERTURBED RECOMBINATION
FROM ACCRETING PBHs

In this section we briefly review the effect of accreting
PBHs on the ionization history. We derive an approximate
factorized form for the free-electron fraction fluctuations,
quadratic in the initial perturbations, which will help
simplify our trispectrum calculations later on.

A. Effect of accreting PBHs on the ionization
history: General expressions

If present in the early universe, PBHs would accrete
baryons that would power some radiation—at minimum, the
heated, compressed, and eventually ionized accreted gas
would emit free-free radiation. The PBH luminosity L is a
function of the baryon sound speed ¢, and of the magnitude
of the local relative velocity between baryons and dark
matter vy, (r) (both evaluated far from the accretion region).
The detailed dependence is estimated in AK17, accounting
for Compton heating and Compton drag, and in two limiting
regimes for the ionization structure of the accretion flow;
throughout this paper, and unless otherwise stated, we will
assume the most conservative “collisionally ionized” limit.
Following AK17, we approximate the effect of relative

velocities by adding them in quadrature to the baryon
sound speed c,, i.e., approximating L(c,; vy #0)=
L(y/c?+ vi.;0). While the baryon sound speed is very
nearly homogeneous near recombination, relative velocities
have large-scale fluctuations, with rms values of order 5
times the sound speed [11]; as a consequence, the PBH
luminosity L(r) = L(1 + 5, (z,r)) is strongly inhomo-
geneous, tracing the large-scale fluctuations of relative
velocities.

Assuming, to simplify, that PBHs all have the same mass
M, and make a fraction fyp, of the dark matter, their
accretion-powered luminosity leads to a volumetric energy
injection rate

Pini(2,7) = Pinj (2) (1 + 8. (2,7)),

Pini (2) = frbn i;ij: L(z). (1)

where z is the redshift and p,. is the mean dark matter mass
density. Note that this equation is trivially generalizable to
an extended mass distribution. This inhomogeneously-
injected energy is partially deposited at some later time,
and some distance away from the injection site. Some of
this energy is deposited in the form of extra ionizations,
leading to a perturbation Ax,(z,r) to the free-electron
fraction. The latter is a convolution of the volumetric
energy injection rate with a dimensionless injection-to-
ionization Green’s function. In Fourier space, this con-
volution is a simple product,

) d’ ini Ti.
arlek = [T G0 6k, @
Z

1+Z/ e nHHE1 7

where ny is the mean number density of hydrogen, H is the
Hubble rate, and E; = 13.6 eV is hydrogen’s ionization
energy. The homogeneous part of the ionization-fraction
perturbation is obtained from a similar time integral,
involving the homogeneous part of Green’s function:

“ dZ/ inj ;)in'
A - GJ ) laO ! . 3
w0 = [ 1ot B )

In Paper I, we computed Green’s function Gy (z, 7, k)
numerically, by convolving the injection-to-deposition
Green’s function obtained from a radiative transfer code
with the deposition-to-ionization Green’s functions com-
puted with a modified HYREC-2 [18-20].

B. Quadratic transfer function
of ionization perturbations

The scale dependence of the luminosity perturbations o,
is nontrivial, as the PBH luminosity is a nonlinear function
of v%c. However, as we will see below, at lowest order
Ax, affects CMB anisotropy statistics only through
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cross-correlations with other fields. As we demonstrate in
Appendix A, to a good approximation these cross-
correlations can be obtained by approximating the full
function by a biased tracer of vi,, with the same first
moment:

v (z,r V2.6,

This approximation is most accurate in both the large-scale
and small-scale regimes, and as a consequence is reason-
ably accurate at all scales. We show the bias parameter b as
a function of redshift in Fig. 1 for several black hole masses
for the AK17 accretion luminosity model. It is systemati-
cally negative, reflecting the suppression of the accretion
rate and luminosity in regions of large relative velocity, and
its absolute value is roughly of order unity across a broad
range of masses and redshifts. Although the accretion
model is highly uncertain, we expect that these qualitative
features should be robust and hold even for very different
accretion models, such as disklike accretion [6].
Assuming scalar initial conditions and linear evolution,
the relative velocity field is purely longitudinal, and we
denote its transfer function by #y.(z, k) defined such that

Ve (2, k) = =ik, (z, k)¢ (), (5)

where {(k) is the primordial curvature perturbation. We
then have

vic(z’k) = (vbc : vbc)(z’k)

__ / D(kyky)§(ky + ke — k) (ky - o)

X Do (2, k1) Doe (2, k2 )E (K )E (k). (6)
_02 | - Mpbh=104 M@
Mpbh=]—03 M@
—0.4 1 — Myp=102M,
—06 — Mpbh=]—0 M@
= Mppn=1 Mo
Q 0.8
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FIG. 1. Bias parameter b(z) of the PBH accretion luminosity,

approximated as a biased tracer of v%c [see precise definition in
Eq. (4)]. The bias is shown as a function of redshift and for
several PBH masses 1M g < My, < 10°M,.

where from here on we denote D(k; ---ky) =d’k, /(27)> -
&ky/(27)* and J(k) = (27)36p (k).

We denote by 6, = Ax,/ xg(» = 8, + 8, nn the total frac-
tional perturbation to the standard (and homogeneous)
ionization history x£°>. The first part, Se, is the homo-
geneous contribution, and the second part, J,;,,, is the
inhomogeneity, which has zero mean, (5, ;,,) = 0.

Inserting Eq. (4) into Eq. (2), we obtain the Fourier
transform of &, ;,, for k # 0:

Ax,(z,k)
o (2)

zfpbh/D(k17<2)§3(kl +k, — k)
x T,(z.ky, k)¢ (ky ) (k). (7)

6e,inh (Z’ k) =

where, for k; + k, # 0, the ionization-perturbation quad-
ratic transfer function 7', is defined as

ki ky [ d7
Te(z’klikZ)E_ (10) 2/ 1 !
Xe (Z) z +z

Gicr?(z’ 7, ky + k)

% ﬁcib T]bc(kl)zﬁbc(l@) ) (8)
MynngHE; |, (vie) 2
We moreover define
Te(zvklv_kl) :O’ (9)

so that we may use Eq. (7) even for kK = 0, in which case it
gives 8, i, (kK = 0) = 0, as it should since &, ;,, is defined to
have a vanishing spatial average.

C. Factorized approximation of the quadratic
ionization transfer function

We now derive an approximate, factorized form for 7',
which will tremendously simplify our subsequent calcu-
lations of CMB power spectra and trispectra. We do so by
making two approximations. .

(i) Forz 2 103, Green’s function GY'(z, 7') is peaked at

7 =~z (see Fig. 9 in Paper I). We may therefore
approximate the last ratio in Eq. (8) by its value at
7 = z. For z < 10°, Green’s function is increasingly
broad; however, after kinematic decoupling at
Zgee & 1020, relative velocities redshift as ¥y, (z, k) o
(1 +z), independently of scale [11]. Therefore,
the last term in Eq. (8) is independent of redshift
for 7/ < zgeee We therefore make the following

'A more rigorous approach would be to keep track of the term
proportional to §(k) in 8, i, (k); upon cross-correlating with other
fields, this approach would give the same results as using Eq. (7)
for all k and imposing T, (k;,—k;) = 0.
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approximation in Eq. (8), which we expect to be
accurate at all redshifts:

f)bc(kl)@bc(kZ) ~ ﬁbcz(kl)fjbc(kz)

. (10)
<v%c> 7 <U%c> z
This  approximation implies the following
simplification:

T (z. ki k) = (k) - k)G, (z. k) + ky))
T}bc(zvkl)f}bc(zﬂk2>
X 5 ,
<ch>z

© d GV(z,7,k)
G,(z,k)=— £
(@ H /z I+ )

(11)

pcLb
Mpth’lHHE] z"
(12)

(i) As illustrated in Fig. 2, we find that G,(z, k) is an
approximately Gaussian function of the wave number,
with a characteristic cutoff at a redshift-dependent
scale k,(z):

G, (2. k) = G,(z,0)e ¥ /k ), (13)

Given that (k; + k,)? < 2k7 + 2k3, we may therefore
approximately bracket G, as follows:

Ge (Z’ \/ikl )Ge(z7 \/§k2)
G,(z,0)

<G,(z,

ki + k)
<G(z,0). (14)
By default, we will conservatively approximate G, by

the lower bound of this range. This approximation is
accurate at large scales kj,k, < k,(z), at which

Mpph=102 M ¢
1.0 77— — z=1200
— z=1100
— z=1000
0.8 — z=900
—_ — z=800
el 2=500
N z=100
~ 0.61
O
=
Y4
N 0.4
)
O]
0.2 1
0.0 { B
1073 1072 1071 10° 10t

k

FIG. 2. Normalized injection-integrated Green’s function de-
fined in Eq. (12), at various redshifts, for 100M, PBHs. This
function is approximately Gaussian with a characteristic cutoff
k.(z), beyond which ionization inhomogeneities are suppressed
due to finite propagation of injected photons.

propagation effects are not relevant to energy
deposition.
With these two approximations, the quadratic ionization
transfer function takes on the factorized form

T (z.ki k) = (ky - ko)A, (2. k) A (2. ky), (15)

A.(z, k) = (16)

)
VG.(2.0) (i2)V?

where we recall that this expression holds for k; + k, # 0
only and that T,(z,k;,—k,) = 0.

Our approximation for G, (z, |k; + k,|) can significantly
underestimate the true signal at small scales, in particular
for k; ~ —k, or k; < k,. Moreover, it modifies the geo-
metric dependence of the signal. To estimate the error that
this approximation induces, we will also show our results in
the spatially on-the-spot approximation G,(z,k)~G,(z,0),
which systematically overestimates the signal. In that case,
the quadratic ionization transfer function still takes the
form (15), but with A,(z,k) = 1/G,(z,0) Z:%S,I/? We show
A.(z,k) as a function of wave number and redshift
in Fig. 3, both for our default approximation and in the
on-the-spot limit.

III. TEMPERATURE ANISOTROPY
FROM PERTURBED RECOMBINATION:
GENERAL EQUATIONS

We turn to computing the temperature anisotropy in the
presence of a general deviation from the standard free-
electron fraction evolution, including spatial variations.
Because observed CMB anisotropies are consistent with
the standard ACDM prediction and canonical homo-
geneous recombination, this deviation is necessarily small,
allowing for a perturbative treatment.

A. Temperature Boltzmann equation

The evolution of the phase-space distribution of photons is
governed by the Boltzmann-Einstein differential system.
CMB photons follow geodesics in an expanding universe
subject to Thomson scattering off free electrons. Provided
photons remain thermal, they are described entirely by their
temperature fluctuations ©(n, x, 1) and transverse, symmet-
ric trace-free 3 x 3 polarization tensor P, (17, x, it), where 7t
is the propagation direction and 7 is the conformal time. In the
conformal Newtonian gauge, the Boltzmann-Einstein equa-
tion for the temperature perturbation is [21]

d—ﬂE@—Ffl-V@—Ffl'vV/_d):%C[G’Pabvvb]’ (17)

where overdots denote partial derivatives with respect to 7.
In this equation, v, is the baryon velocity, and 7 = an o7 is
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FIG. 3.
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z

A, (z, k) as defined in Eq. (16) for PBHs of 100M, plotted for various redshifts as a function of scale (left) and for various

scales as a function of redshift (right). We also show this function if we ignore photon propagation and consider energy deposition as
spatially on-the-spot (dashed lines). These plots reveal the shape of the free-electron perturbations induced by vZ, as well as the
amplitude suppression when considering nonlocal energy deposition from accreting PBHs.

the conformal scattering rate by free electrons with number
density n,, where a is the scale factor, and ot is the
Thomson cross section. C is a linear operator encapsulating
the geometry of Thomson scattering:

ClO. Pup, vp|() = L]O, Py, v (A1) —O(2),  (18)
L1O. Py vp)(it) = Og + it - vy, + Ay, (19)
where @ is the photon temperature monopole,
d*
%E/L—mm (20)

and the symmetric trace-free tensor Il,, is a linear
combination of the photon quadrupole moment and the
angle-averaged polarization tensor:

2,\
Hab = /Ci—” |: (3nanb - 5ab)®(ﬁ) +%Pab(ﬁ) . (21)

To close the Boltzmann-Einstein differential system, the
evolution equations for baryons, cold dark matter, neutri-
nos, and photon polarization are needed [21], but we do not
explicitly list them here.

B. Standard solution

We now briefly review the standard solution obtained
with scalar initial conditions and for linear evolution, and

given the standard, homogeneous free-electron fraction

xEP). The notation and expressions derived here will be

useful in the following section dealing with the perturbation
to CMB anisotropies induced by modified recombination.
We denote all standard variables by a superscript (0),

e.g., ®0 and w(©. For short, we also denote C(*) =
C[e, Pg,?, vﬁf’) ], and similarly for £(©)

The Boltzmann equation (17) is most easily solved in
terms of the variable ®.; = © + v, and in Fourier space.
For the standard case, it takes the form

S (0) o oAm(0) - 0 .
®£f2 + ik - ”®§>ff) + T(O)®§:ff) = #0150, (22)
1
SO =LO0+yO + 5 +¢"). (23)
T

The solution at an arbitrary conformal time is given by the
line-of-sight solution [15]

®£?f) (”’kv ﬁ) = exp </’70 dnll i_(()) (I’[”))
n

. / " dif g() SO (o ke, )T (24)
0

where 7, is the conformal time today and g(n) is the
standard visibility function,

o) = 0 ) exp - " ar 0. e

In particular, the line-of-sight solution today, and at the
spatial origin x = 0, is given by [15]

@cff(no,x—O ) /Dk/ dng(n)

O (n.k, ) e~ (26)

where from here on we denote y =5y — 7.
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Under scalar adiabatic initial conditions, the baryon
velocity is purely longitudinal, i.e., in Fourier space,

véo) (k) = —ike(bo) /k*. Moreover, we have ﬁaﬁbl'[g;) (k) =
—Op, (k- ), where M = (Fpo+Gyy+Gp)/8 is a

combination of the photon temperature quadrupole and
polarization monopole and quadrupole moments (here we
used the notation of Ref. [21]). We thus have

1 .
SOk, 1) = OF +y© + o (® + §)
T
Lm0 — Py (k- A)IO 27
= (k- 2)6," = Py(k- )1, (27)

where the dependence of ®E) ), v§, >, etc., on k is implicit.

To simplify this expressmn note that —ik - he~ kW =
o e—:kn)(, where 0;(1— % 5 In Eq. (26) we may then

conveniently substitute S(® by an angle-independent
differential operator acting on the geometric exponential
term,

1
SO (k.7) = 83 (k) =05+ +— () + )
A
o 3, 1
+70,%+H<0> % +5) (28
Using this substitution, and from the Rayleigh formula,

omikiy ;(4)‘”(2{ +1)jo(ky)Po(i - k) (29)

= 4712

‘m

]f(k)( Yfm( )Y;m(]})’ (30)

where j, are the spherical Bessel functions, we may
directly read off the harmonic multipoles (for £ > 0) of
the standard temperature anisotropy from Eq. (26):

o) =an(-i [ kv, () [" dngtn) 5§ i),
a1

(0)

where the operator S;” now acts on the Bessel function.

Last, we denote by S'(()U) (k, ) the transfer function of S(()()),

defined such that

S (k.n) = 3 (k. )¢ (k). (32)

where {(k) is the primordial curvature perturbation. We
thus obtain

06 = 4n(=i)’ [ DkY, (AKEK).  (33)

A(k) = / " dngn) 30 (kn)je().  (34)

Assuming the primordial curvature perturbation is
Gaussian, with power spectrum P (k), i.e., such that

(C)(K')) = (27)°6p (k + k') P (k)
= §(k + K')P(k), (35)

the canonical temperature anisotropy angular power spec-
trum, (@;(,)zl@*< )> = éﬁrémmrcy, is then given by

'm'
CO — 4z / DAL (KPP (k). (36)

The A, (k) are the temperature fluctuation multipole trans-
fer functions that can be extracted from cosmological codes
such as CLASS [22]. In practice, since we will need to
compute similar integrals later on, we compute the con-
formal time integral in Eq. (34) ourselves, using only the
source term transfer functions in Eq. (28) from cLASS. We
also compute the k-integral in Eq. (36) ourselves, and we
checked that our results match those of CLASS to high
accuracy. We discuss our numerical resolution and con-
vergence tests in Appendix B.

C. Temperature anisotropy due
to perturbed recombination

We now suppose the free-electron fraction is perturbed,

X, = xﬁo)(l +68,). Importantly, we make no assumption
about the spatial dependence of §,, which in general has
both a homogeneous and an inhomogeneous piece.
As a result of the modified Thomson scattering rate
=101 46,) =% 4 (1 all matter and metric fields
also get altered: ® = @) + @)y = () + () etc. For
short, we again denote C(") = C[@1), ng,vg) |, and sim-
ilarly for £(1)

In general, matter and metric fields depend nonlinearly
on J,; however, in the limit of small ,, we may solve them
with a perturbative expansion in o, < 1. The zeroth-order
equation is the canonical Boltzmann-Einstein system dis-
cussed in Sec. III B. At first order in 6, < 1, the photon
temperature Boltzmann equation is

0 +4.veW) +4.Vy) _ég(l) =70 4z (37)

It is convenient to rewrite these equations in terms of the
variable G)( ) =@ )+, as follows:

O +4-vel) ++#0e) = 05, (38)

where the source term S(!) will be discussed shortly. Again,
Eq. (38) can easily be solved in Fourier space, with the
familiar line-of-sight solution. In particular, the order-one
photon temperature perturbation at present time 7, and at
the spatial origin, takes the form
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®£ff) (10, =0,7)

/Dk/ dn g(n

The first-order source term S!) contains two pieces:

ek (39)

s = g 4 g(f (40)

SWd =5, %CO), (41)
1
Sf = £<>+y/<>+7(>( Vo). (42)

The first piece S(V9, we coin as the “direct” term, as it
depends directly on the perturbed free-electron fraction §,,
and otherwise on zeroth-order terms through C<°), which
can thus be extracted in a relatively straightforward fashion
from cLASS. Note that 8, * C°) denotes a multiplication in
real space, or a convolution in Fourier space. The second
piece S (Df we dub the feedback term, as it depends on first-
order terms; it thus requires solving explicitly for the
infinite Boltzmann hierarchy similar to that solved at zeroth
order, but with an additional source term, containing wave-
mode mixing due to convolutions in Fourier space [16].

As in previous studies [8,9], we will not solve for the
feedback term in this work. However, we now quantify its
magnitude for the first time, in the limit of homogeneous
perturbations to recombination.

D. Magnitude of the feedback term for homogeneous 6,

We consider the limiting case where 8, (n,x) = 8, (1) is
homogeneous. Our perturbative expansion in &, applies just
as well in this case, as long as 56 < 1. We shall include
only the “direct” source term, and then explicitly check our
results against the exact output from cLASS, which can
handle arbitrary homogeneous perturbations to the recom-
bination history, thus effectively accounting for both direct
and feedback sources (although the calculation is not split
this way in CLASS).

Let us rewrite the direct source term as

S _ 5,000 =5,(£0 +y©)-5,09,  (43)

where the subscript “hom” is there to remind the reader that
we are considering a homogeneous free-electron fraction in
this section.

The contribution of the second term to the innermost
integral of Eq. (39) can be rewritten in the form

o 3 S\ =ik
/ dn g(n) 3, (7O} (n.k. ) e~

0

- / " dng(n) Do (n)SO (n. k. A)e . (44)
0

where

() = / " i £ ()5, (). (45)

n

To obtain this result, we inserted the arbitrary-time line-of-
sight solution (24) for ®<ff> and switched the order of
integration. We therefore arrive at the following expression
for the direct contribution to the first-order temperature
perturbation in the homogeneous case:

L

hom

(no,x =0, 1)

/Dk/ dn g(n

x [8,(m)(LY) +w®) = D, () Je*,  (46)

(k. 1) is the operator obtained from L
(0)

in the same fashion as S,
[cf. Eq. (28)].

Using the same steps as in Sec. III B, we thus arrive at the
following expression for the spherlcal -harmonic compo-
nents of the direct-only part of ol .

hom*

where EE,O) O (k,n, )
(

is obtained from S©

e

Zm.,hom

p— / DkYs, (AN (k). (47)

3, (ky), (48)

where Zf,o) (k,n7) and %) (k, ) are the transfer functions of

0
£ (k.7 and y© (k. 7).

We may now compute the perturbation to the angu-
lar power spectrum. To linear order in §, << 1, we have

c,=c¥+ C,(f ) where we defined 2(@50,,)1 hom@’;ffjj,)z
00O C(fl.})wm. We find that the direct contribution to

C g%om is then

Clthn =8 [ DEPLAALS, 0. (49)

We computed C;lj)‘im using the homogeneous part of the

free-electron perturbation sourced by accreting PBHs, as

calculated in AK17. We compare this result against the

exact ngom obtained from cLAsS in Fig. 4. We see that

neglecting the feedback term S}(]L)nfl leads to an order ~10%

relative error on Ciﬂll)mm for relevant black hole masses,

indicating that the term is subdominant. While there is no
guarantee that this subdominance carries over in general at
higher-order statistics, it still gives us some confidence that
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FIG. 4. Fractional change to the temperature anisotropy power
spectrum from the homogeneous perturbation to the free-electron
fraction, 5_6(;7) for various PBH masses and abundances. We
compare the exact nonperturbative effect extracted from CLASS to
the perturbative solution including only the direct source term
discussed in Sec. IIID. Our approximation of neglecting the
feedback term is reasonably accurate, and we assume this carries
over for the inhomogeneous free-electron fraction case.

neglecting S(Vf is a reasonable approximation, at least as a
first step, and especially considering the large theoretical
uncertainty in the PBH accretion model.

In what follows, we will therefore approximate S() ~
§Md =5, % C and no longer indicate that we use the
direct term only by a label “d.”

E. Alternative calculation of Cg fom

Before moving to the full calculation of ®(), includ-
ing ionization fraction inhomogeneities, we present an
alternative calculation of Ag}):)m(k), required for the cross-

power spectrum C %om. This approach relies on intermediate

quantities also used for the trispectrum calculation, and
provides a useful cross-check of our numerical methods.

For any quantity X(k,7-k), we define its Legendre
multipole moments X,(k) as usual through

i‘ 1
X0 =5 [aupoxten. (50
such that
kok-) = (=) (2€ + D)X, (k)Py(i - k) (51)
4
= 4”2 DX (K)Y g (k)Y (). (52)

We denote by 8(0>(11,k,f<-f1) the transfer function of
CO(n,k, i) (ie., such that C© = ©)¢), and we define
T k.- k) = e 2 CO (k. k - ).

Substituting ~ SU (k, 5, A)e~* = 5,7 (n, k, i - k)¢ (k)
and inserting the spherical-harmonic expansion of 7 into
Eq. (39), we then arrive again at Eq. (47), with

AR (k) = / dn g, (T k). (53)

Using the plane-wave expansion (30) and the Legendre
expansion of the product of two Legendre polynomials, we
may relate the coefficients [, to the Legendre coefficients

of C¥ as follows:

T (k) = sz C(gp, ) e, (k2)CE) (0. K).

2f +1
(54)

where gy ., 1s proportional to a three-J symbol and is
defined in Eq. (C2). Since this coefficient is nonvanishing
only if £, + ¢, + £ is even, we may substitute i* =172 =
(=1)(=01=02)/2 = (_1)(¢+34143%)/2 The Legendre coeffi-
cients of the collision operator are given explicitly by

2, 1 1~ -
C;O) - = ~(0)5f] + 71—[(0)55;2 - @;0)

3Uby 5 (1 =840 =6a). (55)

The sums over £ and ¢, in Eq. (54) are formally infinite
and must be truncated in practice. Since the higher £,-
modes from the collision term are induced after the peak of
the visibility function, we choose to truncate the £, sum at
some finite .. This automatically renders the double sum
finite, since for a given ¢, £; is bounded by the triangle
condition, | <6, <0+ 0.

We compute Agl)lim as given by Eq. (53) and use it to
obtain C S)d

hom 1rom Eq. (49). We show the results in Fig. 5,
for various Z_,, and compare them to the result obtained
with the line-of-sight commutation method described in
Sec. III D. We see that the former converges to the latter as
? . 18 increased, as it should, giving us confidence in the
robustness of our numerical methods and results.

IV. PERTURBED TEMPERATURE
ANISOTROPY STATISTICS DUE TO
INHOMOGENEOUSLY-ACCRETING PBHs

A. Temperature anisotropy transfer functions

1. Definitions

Neglecting lensing and other nonlinearities, the standard
temperature perturbation is linearly related to the primor-
dial curvature perturbation, through [cf. Eq (31)]

e = / DkTY (k)¢ (k). (56)
TS (k) = 4n(=i) Do (k)Y (K). (57)
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FIG. 5. Fractional change to the temperature anisotropy power

spectrum from the homogeneous perturbation to the free-electron
fraction, &, (17), due to 100M , accreting PBHs, computed with the
“commutation” method, using Eq. (48), or with the “direct
summation method,” using Eq. (53), where [J, is given by the
sum (54), truncated at £, < £.,. We see that the direct summa-
tion result converges to the commutation result as £, is
increased, as it should.

Approximating the free-electron fraction perturbation
due to accreting PBHs as quadratic in the initial conditions
[cf. Eq. (7)], the corresponding temperature anisotropy
perturbation due to accreting PBHs is cubic in the initial
curvature perturbation. The goal of this section is to derive
an explicit expression for the cubic transfer function

T;ln)l (ky,k,,k3), defined through

L”mmh fpbh/D<k1k2k3>Tz(flw)L(k1?k27k3)
x (k) (k)¢ (ks3), (58)

where the label “inh” indicates that here we focus on the

inhomogeneous-6, contribution to oW, recalling that it also

fm)m due to the homogeneous 36, which we

computed in Sec. III D, so that the total @(!) @hom + @fnh
In addition, we shall derive the harmonic coefficients of
this cubic transfer function, defined as

(4”)3 Z (_l')f’1+fz+f3

£\t

has a piece ©

T(ferz(klskaIQ) =

2 : mlmzm3m
X Tf \Elail kl,kz,k3)

mymyms

X Yflml(£1)Yf21n2(]}2)yf3m3(]%3>' (59)

2. Calculation

Neglecting the feedback term, the source term for the
line-of-sight solution of G)( 1)1 is the convolution between the
collision term and 1nhomogeneous part of the free-electron
fraction, S(") = &, i * C(*). Using Eqs. (7) and (15), we
can write explicitly

W(n. k. n) = fpbh/D(k1k2k3)¢7<k1 +ky + k3 —k)

X (/Aﬁ ‘]Acz)Ae(ﬂ, ki)A.(n, k)
x CO(n, ks, ks - )¢ (ky )¢ (ko) (K3),  (60)

where again C(n, k. k-#) is the transfer function of
©)(n,k, 7). Taking the harmonic transform of the line-
of—51ght solution for ®), Eq. (39), we then find

Mo
Tk = ["angtn) [ @i, i)
x (ky - ka) Ao (0. k)AL (0, Ka)
x CO(n, ky, by - R) e~ tathaths) — (6])

Note that this function is symmetric under the exchange of

k, and k,. Let us recall, also, that the expression above only
holds for k; + k, # 0, and that T\ (k,, —k;.k3) = 0, since
we are only considering the inhomogeneous part (with zero

mean) of the free-electron fraction perturbatlon
To obtain the harmonic coefficients of T

o> WeE first
rewrite (denoting y = yi)

(k, .kz)e—l'}('(k1+k2) = _[Vxe_ix'kl] . [Vxe—ixkz]
= —0,(e7k1)g, (e7ih2)

1 . )
- — [Vie k] . [k, (62)

where V, is the gradient with respect to y, which we have
split into its radial part 720, and its angular part)l(V;,. Using
the plane-wave expansion (30), we thus have

(];1 ./}2) —iyi-(ki+k;)
4ﬂ>22 1+f2 Zyt’lml ]% )Yf')mz (k2)
2123 mym,

[Jf (k) 1o, G Y (R)Y 5 ()

+ij (ki) je, rka)

\ -V, Y3 )| . 63
)(kl )(kZ flm]( ) n fzmz(n) ( )

Combining this result with the Legendre expansion of
etk CO) (n ki ky - ) [Eq. (54)], we are now in the
position to compute T';"7"%" defined in Eq. (59):

(k17k2ak3) Af ‘s, fz<kl’k2’k3)Qr;l;Z2fT}m
+ Bflfz,fS (k] ’ k21 k3)Qr;|l;Z?fT;ma

(64)

mynyms;m
Tflfzfszf
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where the rotationally invariant coefficients A, ¢, », and
By ¢, ¢, are given by

g (koo ey) = = / dngn)s (k) A, Ky)

X jyp, Gtk2) Ao (0, k2) T ¢, (0. k3),  (65)
e (rk
By g, r, (ki ko ky) = — /dﬂg(’?)ﬁlﬁ; I)Ae(ﬂ,kl)
e (xk
AL 5 ko) k). (60
XR2

and the purely geometric terms Q52" and Qy /2™

are integrals of the product of four spherical harmonics or
their gradients:

lemzm3m4
162058,

= [ @AY (DY (DY ()2 ). (67

Ny N3Ny
Qflfz,f3f4

= [ PRV, ()T (07, () ) (68)

Note that we have separated the groups of indices on
which the functions depend fully symmetrically:
A pye (ki ko ks) and By g, 4. (ky, ko, ky) are symmetric
under the exchange of (£, k;) with (£5,k,), Q772" is

symmetric under the exchange of any two (¢, m) pairs, and
Q;’llg 2t is symmetric under the exchange of (£, m,)
with (£,,m;), as well as under the exchange of (¢, m3)
with (&4, my).

B. Perturbed temperature angular power spectrum

We have derived all the required transfer functions and
are now equipped to compute statistical properties of ®1(n}>1
Because the perturbed temperature anisotropy is cubic in
the primordial curvature perturbation, it has a nonvanishing
cross-correlation with the standard temperature anisotropy.
Using Egs. (31) and (58), we have

<®(fln)1,1nh fim /> fpbh/D(k kyoksk') fm(klak27k3)

f’ O (e )E (RS (s ) (K)). (69)

Using Wick’s theorem, and recalling that T(flni(kl,—kl,

k;) = 0 and that T;l")l is symmetric in its first two arguments,
we get

<®(flrr>z,inh®;§31)’> = 2fpbh/D(kkl)T(fln)l(k/’_ka k)

T3 (k)P (K)P(K), (70)
From Eq. (61), we have

A ~ Mo
TV (K .~k k) = —(K - k) A dn g(n)A.(n, k')A (n, k)

/dzn v, (A)CO(n, k, k - i)~ ¥

(71)
Averaging over the direction k, we then obtain
k)
—T, (K,—k,k
A7 )f’m( )
[0 / (0)
=i dn g A (n. k')A, (n. k)Cy™ (n. k)
« / Prys () - R)e-ii, (72)
where C\*) (. k) = i1 [1, duP,(u)C (. k. ) is the order-1

Legendre coefficient of C, which is proportional to the
baryon-photon relative velocity (or baryon-photon slip):

- 1.
CY (0. k) = 3 8 (n.), (73)

where we defined v, (k) = (v, —v,)(k) = —il}bby(k)é(k).
Using the plane-wave expansion Eq. (30), this expres-
sion further simplifies to

=== [ dnglon . )80k

X D (1. K)o (K 7)Y 2 (K- (74)
Finally inserting Egs. (57) and (74) into Eq. (70), we arrive
at the following simple result:

1 #(0 1 1
<®§”n>1,inh®t’gm)’> = §5ff’5mm’cgﬂ.i)nh’ (75)

where the cross-power spectrum is given by the conformal
time integral

16z

Clh = =5 o [ dnglrctn). (76

where we have defined
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yn) = / Dk P (A (n. K)iy, (0. k). (77)

uoln) = / Dk P (KA (. KA (K)jL (ky).  (78)

We see that the factorization of the free-electron pertur-
bation transfer function has allowed us to obtain a very
simple expression for C I(fl,i)nh: it only requires precomputing
tables of u,.(n) and y(n), and then computing a one-
dimensional integral. It can equivalently be rewritten in
the same form as Eq. (49):

Claw =87 [ DEPAOAAOAL @, (79

AL (0 == Fyn [ dngtra ki), (80

Equation (76), or the equivalent form (79), constitutes one
of the main results of this work.

We computed C(fl’i)nh from Eq. (76) and checked that
Eq. (79) gives the same result. We show the result in Fig. 6,
where we compare this term to its counterpart C(fl’gom
sourced by the homogeneous part of the free-electron
fraction perturbation, for 100M accreting PBHs. Even
though these two contributions should in principle be

comparable, given that (52)!/2 ~ 5, (see Paper I), we find

that C(fl’i)nh is suppressed by a factor ~10-100, depending on

scale, relative to C;l_fmm for all black hole masses. This turns

out to be due to both a poor correlation between G)l(nl,i and

MBH=100 Mo, fyon = 1

0.000 R T

—0.002
. 0.004
i\" ' == on-the-spot
=)
G -0.006

—0.008] — inhomogeneous

—— total
_0.0101 —— homogeneous
10! 10 103

)

0, and a suppression of the characteristic amplitude of
@l(r:]z itself. We expound on this point in Appendix E.

C. Temperature trispectrum

We now compute the connected four-point correlation
function of temperature anisotropy,

(0,0,0;0,),. = (0,0,0;0,) - (0,0,)(0;0,)

—(0,0;)(0,0,) — (0,0,)(0,0;), (81)

where the numbered subscripts index both ¢ and m,
0, =0, ,,, and c denotes subtracting out the unconnected

parts of the trispectrum. Recalling that ® = @(©) 4 @l(ll) +

om

®$})1 and that ©© and ©|!) are both linear in the initial

hom
Gaussian curvature perturbation, to lowest order in electron

density perturbations, the trispectrum is given by

(0,0,0;0,), = <®(1%i)nh®§0>®g())®4(10)>c
0) (1) 2 (0) (0

+ <@5 )®g,i)nh®g )94(1 )>c
0) ~(0) (1) (0

+ <®(1 )G)é )Gg,i)nh®4(l )>c

0) 2(0) 2 (0) (1
+ (076,00, (82)

We may now compute each term using Eq. (58) for G)g,i’inh.

For instance, the last term is

MBH=100 Mo, fopn =1

0.050

0.025

0.000

—0.0251

—0.050

(1) (1)
Cl, inh/CZ, hom

—0.0751

—0.100

\
== on-the-spot A S
—0.125+ . . .
10t 10? 103
£

FIG. 6. Fractional change to the temperature anisotropy power spectrum due to accreting PBHs of 100M comprising all the dark
matter. Left: Comparison of the contribution due to the inhomogeneous part of the ionization fraction perturbations, C ,(,;{i)nh, calculated for
the first time in this work, with the one arising from the homogeneous part of the free-electron fraction, C ;{&()m, previously computed in
AK17; we also overlay the total change to the temperature power spectrum from both. Right: The ratio between C(f]}nh and Cg})mm.

Although one would expect C;lifnh to be of the same order of magnitude as Cl(/,l.)om a priori, we find in practice that the former is ~10-100

times smaller than the latter. In both cases, dashed curves correspond to the spatial on-the-spot approximation, which neglects the spatial
smearing of energy deposition due to the finite propagation of injected photons.
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(016,700} = fyon / DK KT (k. k. K")

x [(CR)E (K (K")O)!
— (L) (kB (@) -

where we used the explicit definition of the connected four-
point function, Eq. (81). Using Wick’s theorem to compute
the six-point and four-point functions of Gaussian fields
appearing in the integrand above, simplifying, and renam-
ing dummy integration variables, we arrive at

<®§0)®go)®go) 4mh> fpbh/D(kk'k")

x (¢ (k)0 (¢ (kB (¢ (k")e )
X [Til)(k k' k") +5perms|, (84)

where the five permutations involve all other possible
permutations of k, k', k”. The relevant two-point functions
are easily computed with the line-of-sight expression for

0" Eq. (33), and we obtain

(CWOF) = da(=i) ¥, (A (K)P(K).  (85)
Integrating over the wave numbers’ directions, and using

the harmonic decomposition of 7)) given in Eq. (59), we
thus arrive at

Cymy " Camy " C3my  £4my,inh/ ¢

= (4”)3fpbh/D(k1k2k3)

X Pr(ky)Pe(ky)Pe(k3) Ay (ki) Az, (ko) Ap, (k)
X [T?l‘;:}?;ij:"“(kl, ko, k3) + 5 perms], (86)

where the five permutations involve all other possible
permutations of k;, k,, k3 simultaneously with the corre-
sponding permutation of the indices ;, m;,i = 1, 2, 3, i.e.,
such that the position of the index #;, m; always corre-
sponds to the position of k;.

We now take advantage of the factorized form of
T?‘;’;}’:’}T(k, , ko, k3), given in Egs. (64)—(66). In addition
to the function p,(y) defined in Eq. (78), we define the
following functions of time and multipole:

vl = [ DEPANA G AL (87)

Io(n) = / Dk PA(K)AA(K)T (1. K). (88)

Yelel) - )k ) kel e el
Cmcw)cEey e, (83)

We then define the following one-dimensional integrals:

Aflfg,f3 = —2(4”)3/d’79(71)ﬂf1 ('7)/%(’7)/%(’7), (89)

By srv, = ~2(4n)’ / dng)we, (e, ie (). (90)

which are symmetric in their first two arguments. We then
find, using the symmetry of 7(!) in its first two arguments
and the symmetries of the Q and Q symbols defined in
Egs. (67) and (68),

L0 o0 o0 o0
E <®f]m1 ®f2mz®f3m3 ®f4m4,inh>c

_ mymy Mz Ny NIy M3y
7A(flf2f3)Qf1bﬂzf3bﬂ4 +B’f;lf2-f3Qf1f2~f3f4
o 3,1 My 31y My Ny
+ Bryrye, Qryeoonts + BeereyQri inty » (91)

2
where

Aerty) = Aviere, + Avyes e, + Aver e, (92)

Finally, summing over the four permutations in Eq. (82),
we arrive at the main result of this work, which is the
temperature trispectrum sourced by accreting PBHs,

<®f1 m G)z,’zmz ®f3 ms ®f4m4 > c = fpbh (prh);’;llngzn;:’u s (93)

(Tobn)z trpnt
= A(flfzfzfzt)Q’;ll;;zf’?;:u + Bf] fzw(fzfzt)Q’;ll;Z;:;:M
+ Be ey (6264) Q?'Z?’:;:M + Bf,m,(fzf})Q?l';Z}TZn}
+ By, (e164) Q?Z}f}m}f” + szm,(f,f})Q';;;Z‘_‘,}T};n“

m3Niy,my Ny
+Brisieren Qi (94)
where we have defined the symmetrized coefficients

‘A(flfzfs) + A(f2f3f4)
+‘A(f3bp4f1) +A(f4f1f2)’ (95)

‘A(flbﬂzfzﬁ) =

*Note that we do not use the standard symmetrization notation,
i.e., do not divide by the number of terms, in order to avoid the
proliferation of numerical prefactors.
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Be oy ese0) = Betyey + Beyey e, (96)

V. TRISPECTRUM CONSTRAINTS
AND SENSITIVITY FORECASTS

In this section we compute and present trispectrum
constraints and sensitivity forecasts on the fraction of dark
matter made of PBHs, fp,. A full trispectrum analysis of
the Planck satellite temperature data would be very
challenging and is well beyond the scope of this work.
Instead, we compute the overlap of the PBH-induced
trispectrum  with the local-type primordial non-
Gaussianity (PNG) trispectrum template, in order to extract
an indirect limit on the PBH abundance, given Planck’s
limits on gl"C [14]. In addition, we forecast Planck’s
sensitivity to the trispectrum induced by accreting PBHs.
For the scope of this paper, we ignore biases that may arise
due to lensing or other nonlinear effects, but they should, of
course, be accounted for in a full data analysis.

A. General equations

Given that the trispectrum induced by accreting PBHs is
approximately linear in f,, as given by Eq. (93), one can
build an optimal quartic estimator j‘pbh for fopn [17,23]. Its
precise expression will not be needed here and is given in
Eq. (24) of Ref. [17]. The inverse variance of this estimator
is given by Eq. (25) in Ref. [17]. Approximating the noise
covariance matrix as diagonal in Z, the variance of the
estimator is given by
= <prh : prh>_la (97)

2
Oy “obh

where for any two trispectra 7 4 and 7 5, we define their
inverse-noise weighted dot product as

fsk 1
(Ta-Tp)="—" BN

2 : mymymsmy mymymsmy
x TA f1f2f3f4 (TB)f1f2f3f4 ’ (98)
s

where C, = C, + N, is the total variance of the observed
CMB temperature, including both the cosmological signal
C, and instrumental noise N, fy is the fraction of the sky
covered by the experiment, and the sums carry over all four
indices.

Primordial non-Gaussianity also generates a CMB tem-
perature trispectrum, proportional to a non-Gaussianity
parameter gny.:

<®f]m1®f2m2®f3m3®f4m4>c = gNL(Tpng ;1]1;;';1;:"4' (99)
One can build an optimal estimator gy; for gyp in the
same way as fpu. The non-Gaussianity sourced by

inhomogeneously accreting PBHs would lead to a system-
atic bias in this estimator, even in the absence of primordial
non-Gaussianity. This bias is linear in fppp:

(AGNL)pon = Spon R (100)

R = gNL<Tth T ong)» (101)

where of;NL is the variance of the quadratic estimator gy,
given by

G = (Tong - Tpng) ™" (102)

Constraints on the amplitude gy of primordial non-
Gaussianity therefore directly translate into bounds on
the PBH abundance f;,. In what follows we will specifi-
cally consider the local-type primordial trispectrum, which
is most tightly constrained by CMB anisotropy observa-
tions, and whose shape is given in [17],

(Towe)r oo™ = Ciprrenen) Qi i, (103)
Cietrtsts) = Cryeyey e, + 3 perm, (104)

Corvirov, =6 / Pdr By, (Mo, (Do (Daz (1), (105)

where Q!;%">"* is given by Eq. (67) and we used the
standard notation of Refs. [17,24]:

W[ W

(47) / DEA(K)j k), (106)

ay(r) =

| W

Bulr) =2 (4n) / Dk A, (8)jo (k) P, (k). (107)

B. Sums over m’s

Before proceeding with the numerical evaluation of
Egs. (97) and (100), we first simplify the sums over m’s,
which involve purely geometric quantities. Specifically, we
define

2 — mynym3my N2
(Q )f,fzf_;&, = Z(Qfllf;ﬁ%; ! ’ (108)
m's
~ _ mymymsmy 1My, msm.
(QQ>f|fzf3f4 = Z *fllfzof3;4 ) flllf’z?f3';4 g (109)
m's
2 _ AN Mo M3\ D
(D) prtrne, = D QP (110)
m's
~ AT _ T M My M3 My Y3 g L T
(QQN)riryiie, =D QR0 O, (111)

m's
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> mymy,nymy
163,000

AN RN
C162.053¢

m's

(Q Qs)fl,f2f3f4 = (112)

where “T” stands for transpose and “S” for “scrambled.” The
same symmetry rules apply where each set of indices divided
|

fsk 1
2 -1 __ y
(Gfpbh) - ZC/ C/ C/ C/

by or surrounded by commas are symmetric. We simplify
these quantities in Appendix D, where we reduce them to a
single sum of products of 3 symbols.

Inserting Eq. (94) into Eq. (97), carrying out the sums
over m’s, and simplifying, the inverse variance of the
estimator f‘pbh becomes

x [(A(flf2f3f4)) (Qz)flfgfgﬁ + 12"4(/1f2f3f4)6f|fz~(f3f4)(QQ)flfz,f3f4 + 6(Bf|fz-(f3f4))2(Q2)f1f2f3f4

+ 65’/[fz,(f3f4)6f3f4,(f|f2)(QQT)flfz,f3f4 + 246/,fz,(f3f4)Bf,f3,(fzf4)(QQS)fl,f2f3,f4]'

Similarly, the bias on local-type non-Gaussianity due to
accreting PBHs simplifies to

. fsky Ciertrtsty)
<A91§f>pbh fpbh O-zlocz , / : 7 4 /
!

e Ce,

X [A(flfzf3f4)(92)t’lf2f3f4

+ 6B7,¢,.(4,04) (QQ)flfz,f3f4]’ (114)

where the inverse variance of gio¢ is given by
2 —l fgky ff2f3f4 2 115
( -‘J%\?E Z ! (Q )f 123" ( )

-/ f,%f’;ﬁ

C. Application to Planck data
We now apply the above results to the Planck experi-
ment [14,25,26]. The relevant fraction of sky coverage is
Sy = 0.78 [14], and the instrumental noise N is obtained

from combining the noises of the 100, 143, and 217 GHz
frequency channels,

Ny = [ZNZIC} _1’

(116)

where, for each channel ¢, the noise is modeled as a
Gaussian with variance per pixel 62 and beam size Opwp

0,
Ny = <0c F]\}(’)HM,C) exp[ (

where Ty = 2.73 K is the CMB monopole. The respective
parameters for each channel are’

)6 wim.c
8In2 - 1)

3https://wiki.cosmos.esa.int/planckpla/index.php/l\/lain_Page.

(113)
[
Ve 9FWHM,C O¢
100 GHz 9.66' 10.77 pK
143 GHz 7.27 6.40 pK
217 GHz 5.0l 12.48 pK

The Planck 2018 limits on g\ are given by [14]

g% = (=5.8+£6.5) x 10* (68% confidence) (118)
Egﬁ’fiag}\?i. (119)

As a cross-check of our numerical code, we compared the
standard deviation of the local-type trispectrum estimator
that we obtain from Eq. (115) to the one reported by the
Planck collaboration, and given above. We find that they
agree within 5%.

To derive an indirect bound on f,;, from the Planck
constraint on gi%, we proceed as follows. Using Bayes’
theorem, and assuming the estimator for gi¢ has a Gaussian
distribution, the unnormalized posterior probablhty distri-
bution for f, is given by

(RS o — %)
( pbh2 NL) (120)

P(fpbn) x exp (=3

2 H(fpbh),

loc
INL

where in this context H(x) designates the Heaviside
function, enforcing a positive prior on f . The (1 —e€)-
confidence upper limit on fpy, is then obtained from
solving the implicit equation

[Tarpry=e [Tarpe). o

S pbh
D. Results and discussion

We are now fully equipped to compute upper limits on f
indirectly from the Planck constraint on gi5¢, and to forecast
Planck’s sensitivity to fp, from the temperature trispectrum.
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We shall compare these limits and forecasts to Planck power-
spectra limits on fp,,. We obtain the latter with exactly the
same procedure as in AK17, but using Planck 2018 data [25]
(instead of 2015). Specifically, we use the foreground-
marginalized Plik-lite log-likelihood for C,’s at £ > 30,
which we Taylor expand near the Planck best-fit cosmology,
and account approximately for the low-£ data by imposing a
Gaussian prior on the optical depth to reionization. For the
joint TT, TE, EE limits, we use the modified versions of
HYREC and CLASS as implemented by AK17; in particular, we
use their approximate homogeneous injection-to-deposition
Green’s function. In addition to the joint 77, TE, EE limits,
we also compute a T7T-only upper limit on f,,—we still
retain the optical depth prior, however, so our “7TT-only”
limits are technically temperature + low-£ polarization lim-
its. For a fair comparison with our 777TT trispectrum limits
and forecasts, for the 77T limit we compute the effect of
accreting PBHs at first order in fp, including the direct term
only, and using our more accurate injection-to-ionization
Green’s function. We also include the effect of inhomo-
geneous ionization perturbations on the temperature power
spectrum for completeness, but this makes a negligible
difference on the results.

We find that the indirect limit on f;, obtained from
Planck’s bounds on gl is systematically 1 order of
magnitude weaker than the 77T-only power-spectrum limit,
for all PBH masses. This is due to the weak overlap of the
trispectrum induced by primordial non-Gaussianity with
the one induced by accreting PBHs: we find that the
correlation coefficient of the two shapes is less than 10%
across all black hole masses [using the dot product defined
in Eq. (98)]. We therefore do not show this limit in our final
figure.

We show our forecasted 1-o sensitivity of Planck to the
trispectrum of accreting PBHs in Fig. 7, alongside current
Planck power-spectra upper limits on f . The upper set of
curves correspond to the conservative collisional ionization
limit of AK17, while the lower set of curves correspond to
the photoionization limit (see AK17 for details). In both
cases the qualitative results are the same: we see that the
temperature-only trispectrum is not as sensitive as we had
expected it to be a priori, as its sensitivity is comparable to
current 77 upper limits (rather than an order of magnitude
better than joint temperature and polarization limits).
Nevertheless, the temperature trispectrum is still more
sensitive than temperature-only power-spectrum con-
straints  for M, < 10°M. In particular, the tempera-
ture-only trispectrum has the potential to probe PBHs
lighter by a factor of ~2 than the current reach of temper-
ature-only power-spectrum limits.

Interestingly, the mass dependence of the trispectrum
sensitivity forecast is shallower than that of the power-
spectrum constraints. Moreover, we find that making the
spatial on-the-spot approximation (as described in Sec. II C)
affects trispectrum forecasts by no more than 20%. Both of

10° <<

10714

10—2 4
<
8
N

10—3 ]

—4 | == TT-only
10 == TTTT forecast
= TT,TE,EE
10-3 " .
10! 102 103 10*

Mpbh (Me)

FIG. 7. Planck 2018 CMB power-spectra constraints (solid
lines) and temperature trispectrum forecasted sensitivity (dashed
red line) to the fraction of dark matter in PBHs, as a function of
PBH mass. Our forecasted sensitivity from the temperature
trispectrum is better than TT-only constraints for My, <
103M, for both the collisional ionization (thick lines) and
photoionization (thin lines) limits (see AK17 for details about
these different regimes).

these features can be explained qualitatively by the different
redshift dependence of the trispectrum and power-spectrum
signals, which we explore in Appendix F.

Figure 7 also shows the updated Planck joint temperature
and polarization power-spectrum constraints (77, TE, EE).
We see that these constraints are tighter than the 77-only
constrains by about an order of magnitude. This stems from
the relatively larger effect of recombination perturbations
on the polarization signal (see, e.g., Fig. 13 of AK17),
indicating a stronger cross-correlation of the perturbed
CMB polarization with the unperturbed field. This provides
a strong motivation to extend our work to all temperature
and E-mode polarization trispectra, TTTE, TTEE, TEEE,
EEEE, which may be significantly more sensitive to
accreting PBHs than the temperature-only trispectrum. In
addition, the inhomogeneity in the free-electron fraction
ought to induce B-mode polarization of magnitude com-
parable with the corresponding E-mode polarization,
Bg})} ~ El(;g This means that, to linear order in f,
trispectra involving one B mode (TTTB, TTEB, TEEB,
EEEB) ought to carry a comparable signal to the corre-
sponding four-point functions involving temperature and
E-modes only. Importantly, absent primordial tensor modes
or accreting PBHs, the primary (unlensed) CMB B-mode
polarization vanishes. Therefore, after delensing, one can
effectively eliminate cosmic variance in the B-mode meas-
urement. We thus expect these B-mode trispectra to have a
significantly enhanced signal-to-noise ratio relative to their
E-mode counterparts [27]. We defer to a future publication
for the extension of this work to polarization trispectra.

VI. CONCLUSIONS

This work is the second part of a series of three papers
studying the imprints of inhomogeneously-accreting PBHs
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on CMB anisotropies, in particular their higher-order
statistics. The first part, Ref. [10], inspected in detail
how inhomogeneous energy injection from nonuniformly
accreting PBHs perturbs recombination. In the present
analysis, we compute the perturbed temperature anisotropy
and its two-point and four-point functions. In the upcoming
third paper of this series, we will extend this work to
polarization.

Our main results can be summarized as follows:

(i) The inhomogeneous part of the free-electron per-
turbation leads to a sub-10% effect on the perturba-
tion to the CMB temperature power spectrum. In
other words, it is sufficient to only account for the
average perturbation to the free-electron fraction
when computing the effect of accreting PBHs on the
CMB temperature power spectrum. This subdomi-
nant contribution was not expected a priori and is
due to the poor correlation of the perturbed CMB
temperature field with the standard temperature
anisotropy. It is not guaranteed that the same holds
true for CMB polarization power spectra.

(i) We set new constraints on the PBH abundance,
obtained indirectly from Planck’s upper limits on
local-type primordial non-Gaussianity. Indeed, the
shape of PBH-induced trispectrum overlaps with
that of primordial non-Gaussianities, although
weakly. This weak correlation implies that our
new constraints are not competitive with existing
CMB temperature power-spectrum constraints. Still,
they provide a qualitatively different probe of PBH
abundance, complementary to the usual two-point
function limits.

(iii) We forecast the sensitivity of Planck to the temper-
ature trispectrum induced by inhomogeneously ac-
creting PBHs. Although our numerical results show
a weaker sensitivity than what could have been
expected from simple order-of-magnitude estimates,
still we find that the temperature trispectrum would
be sensitive to PBH abundances lower than current
bounds from the CMB temperature-only two-point
function, for My, < 103°M. This is our most
important result, which demonstrates that the
CMB trispectrum is, indeed, a useful probe of PBHs.

The calculation of higher-order CMB statistics is quite

involved, and we necessarily had to make several approx-
imations to keep it tractable. First, following previous
studies of perturbed recombination, we only accounted
for the direct piece of the source term for the perturbation to
CMB anisotropies, and neglected the feedback piece.
Unlike previous studies, however, we explicitly quantified
this approximation in the limiting case of homogeneous
ionization perturbations, and we showed that it is accurate
to better than ~20% in that case. Still, a rigorous and
definitive calculation of the trispectrum should eventually
include the feedback term self-consistently. Second, we

made several approximations in order to derive a factorized
quadratic transfer function for the free-electron fraction
perturbation. In particular, we conservatively approximated
the injection-to-ionization Green’s function by a factorized
form that bounds it from below. This approximation was
needed to get a factorized trispectrum, much more man-
ageable computationally than the exact trispectrum would
be. To quantify the error induced by this approximation, we
also considered the limit of spatially on-the-spot energy
deposition, which bounds the injection-to-ionization
Green’s function from above. We found that all our results
are nearly unchanged when considering this limit, thus
giving us confidence in their robustness. Third, in our
analysis of the primordial non-Gaussianity bias and our
trispectrum  sensitivity forecast, we neglected non-
Gaussianities induced by CMB lensing. An actual analysis
of CMB data should, of course, correct for the lensing bias.

The most uncertain part of our calculation remains the
physics of accretion and radiation. All our numerical results
rely on the semianalytic model of AK17 [5], with a simple
prescription for the effect of relative velocities. While, of
course, the quantitative results would change with different
assumptions about the accretion geometry and radiative
efficiency, it seems unavoidable that the PBH accretion
luminosity should be strongly modulated by large-scale
supersonic relative velocities. We also neglected entirely
the effects of nonlinear clustering post-recombination [28].
We expect relative velocities would also modulate the
baryon content of the first halos, hence the accretion rate
in these environments. Hence, our results should still be
robust qualitatively, regardless of the details of the accre-
tion model, or of the relevance of accretion in nonlinear
halos. Moreover, the formalism we develop is quite general
and could be applied to arbitrary perturbations of recombi-
nation spatially modulated by relative velocities, or even
more generally quadratic in initial conditions.

Even if the temperature trispectrum is not quite as
sensitive to PBHs as we had anticipated from the simple
order of magnitude presented in the Introduction, our
results are still very significant and promising. Indeed,
we uncovered a completely new CMB observable to probe
PBHs, with a sensitivity comparable to, and in some cases
better than, current CMB temperature power-spectrum
constraints. Importantly, while several energy injection
processes could in principle mimic the effect of accreting
PBHs in CMB power spectra, to our knowledge the
trispectrum signature studied in this work is unique to
them. These considerations provide strong motivation to
extend this work and study the polarization signal of
inhomogeneously accreting PBHs. In addition to trispectra
involving E-mode polarization (TTTE, TTEE, TEEE,
EEEE), wez also expect B-mode non-Gaussianity, in the
form of TTTB, TTEB, TEEB, EEEB trispectra at leading
order in PBH abundance. These B-mode trispectra ought to
have amplitudes comparable to their E-mode counterparts,
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but much lower noise. We defer the computation of these
promising observables to the third and last installment of
this series of publications.
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APPENDIX A: CORRELATION FUNCTIONS
INVOLVING A FUNCTION
OF RELATIVE VELOCITY

In what follows we denote v = vy, the relative velocity of
baryons and dark matter. We need to compute (N + 1)-
point functions of the form

<F(k)51(k1) o '5N(kN)> = PN(kakh --'ka)
x (22)383) (k+ky + -+ +ky),
(A1)

where F depends on position only through the magnitude v
of the relative velocity field, i.e., F(x) = F(v(x)), and has
zero mean, (F) =0, and &y, ...,8y are scalars also with
zero mean linearly related to the primordial curvature
perturbation. This (N + 1)-point function is nonzero only
if N is even, given that F is an even function of relative
velocity. The (N + 1)-spectrum Py is the Fourier transform
of the (N + 1)-point correlation function

xy) = (F(v(0))5,(x;) - Sy (xy))-

The goal of this appendix is to derive an approximate
expression for &y, from which one can also approxi-
mate Py.

In full generality, provided v,dy, ..
distributed, we have

Enl(xy, ... (A2)

.,0y are Gaussian-

fN(xl,...,xN)z/d3vd51-~~d5NF(1J)51---5N

1 1
X~ eX]p [——XT .C! -X] ,
27 det(C) 2
(A3)
where
XTE(TJ,ST)E<L,£,.-.,6—N>, (Ad)
014 Os, Osy

with o, = (v%)/3 and 63 = (5?). Cis the (N +3) by (N + 3)

normalized covariance matrix of #(0), 5, (x,), 5;(xN)
Explicitly, this matrix is given by C = C + A, with

13x3 03xN
C, = , A5
: (OM Cg) (A5)

=T
=

_ 03,3 g7
A= - (A6)

3 |0NXN

where Cj is the N x N normalized covariance matrix of the

o0’s,and E;,i = 1,2, 3, are the N-dimensional column vectors

(9;(0)8;(x1))
; : . (A7)

[}
I

(9;(0)oy(xy))

In words, the matrix C, includes all correlations except
for the velocity-d correlations, which are included in A.

So far, these expressions are exact. We expect that, in
general, A is small for any separation. Indeed, this is always
true in the large-separation limit. Moreover, statistical
isotropy implies that (v(0)5(x)) — 0 when x — 0, since
there is no non-null isotropic rank-1 tensor. This can be
seen in Fig. 8 where we correlate v; with the canonical
monopoles of the @) line-of-sight source transfer func-
tions of S [cf. the first line of Eq. (27)] for example.

We may therefore expand C~! around Cj! to compute
Ey. We'll see that it is required to include terms at second
order in A,

— z=300 — z= 900
0.31 — 2z=450 — z= 1050
— z= 600 z= 1200
0.2 - z= 1350
ﬂ .
=
S 0.1
0.0 1 r _
10° 10t 102 103
r (Mpc)
FIG. 8. Correlation function of the monopole terms of the line-

of-sight source for ®) near recombination with the relative
velocity between CDM and baryons at various redshifts. Namely
we plot the variance normalized correlation function ¢,, where
(v(z)Sf)O) (z7 =1100)) = ¢,(r, z)7 and the subscript implies the
monopole terms only. Even at intermediate scales it is less than
unity and justifies expanding the covariance matrix discussed in
Appendix A.
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C'=C;'-Cy'ACy! +C5'AC;'AC +O(A?),  (AB)
from which we get, at second order in A,
| |
exp _EXC X| =Axexp _EX Gy X|,
lero 1 orion
A=1 +§X AX—l—g(X AX)
1. -
— EXTAC(;' AX, (A9)

with X = Cy'X. With this approximation, we thus have

det(CO)
R~ F(v)6)---onA
9% det(C)< (v)8, N Ao
~ (F(0)6) -+ 6yA)o, (A10)
where the average (---), is over the “unperturbed”

(N +3)-D Gaussian distribution with covariance matrix
Cy, which is the product of two uncorrelated Gaussian
distributions: an isotropic Gaussian distribution for v(0)
and a N-dimensional Gaussian for (§;(x), ...,y (xy)),
with covariance matrix Cy. The second equality is valid to
lowest order in A.

Upon integrating over velocities, the contribution of the
first term in A (i.e., 1) vanishes, since (F(v)) = 0. Let us
now compute the other terms. First, let us compute

XA = (6TC 18,,6"C5'E,,67C5! _3,%5,?), (A11)
014
where the first three terms are scalars, and the last term

contains an implicit sum over i, and is a N-dimensional
vector. We therefore have

20;
04 1

A =XTAX = ’6TCgl:, (A12)
d
The second term A; is therefore linear in v;. Therefore
(F(v)8, -+ - 6yA1)o = 0 since (v;F(v)) = 0, by isotropy.
We thus need to include only the third and last terms in
A, quadratic in A.
Let us start with the third term, proportional to A}. From
our previous results, we have

4
A} = —v;0;E]C;'66"C}'E;, (A13)
olq
where repeated indices are summed over. Using
(F(v)vvj)g = %8;;(v*F(v)),, we thus find
2 4
(F(0)61-+-8xAT)o =5 (v°F (v))
Ola
xEJC;1(5,---6y667),C5'E;.  (Al4)

On the other hand, we have

A, =XTAC;'AX

_ UiY E1C;'E; + terms independ f Al
=—"E| pendent of v.  (A15)
014
This implies
v’F(v - -
(FW, o= D s, -5)2C515,. (1o
Olq
Therefore, combining terms, we obtain
1 2
En(xy, ... xy) “§<F(”)51 - OyAT)o
1
—§<F(”)51 - OyAg)g
= (V®F(v))S(x,....xp5), (A17)
where we have defined
| G e
SE664 :?C61< 5N(66T—C§)>C61=ni. (Alg)
1d

We see that in this approximation, the shape of the N-point
correlation is entirely determined by S(x, ..., xy), regard-
less of the function F(v). The latter only affects the overall
amplitude of the correlation function, and only through its
moment (v2F(v)).

Therefore, to compute the N-point correlation function,
one may substitute F(v) with a simpler function F(v), as
long as (v?F(v)) = (v>F(v)). The simplest such function
is F(v) = bp(ﬁ— 1). It is such that

(v®F(v)) = 2bpo?,. (A19)
Hence, we may use F(v) instead of F(v) provided the
parameter by is given by

1

2
br = 57 (PFO))

(A20)

This result was proven in configuration space but also
holds in the Fourier domain, where it is most useful: we
have proven that, for any N-point function involving N
scalar functions (provided the dv; correlations are suffi-

ciently small at all separations), we may use F(v)=

bp(%— 1) in order to compute N-point functions.

Importantly, this means that the shape we derive for the
trispectrum should be relatively insensitive to the details of
accretion physics—the shape still has some dependence on
it, as in practice the bias parameter b is redshift dependent,
in a way that depends on the details of accretion.
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APPENDIX B: NUMERICAL RESOLUTION
AND CONVERGENCE

In this appendix we describe our sampling of #, k, and Z
integrals and sums.

Because each conformal-time integral relevant to the
PBH-induced trispectrum includes the visibility function
g(n), we sample n more finely during recombination.
Starting from z,,,x = 1400, we sample # with logarithmic
step size Alny = 1073 until z,,, = 900, after which we
increase the step size to Alny =2 x 1072 until z,, = 10,
and then finally we sample linearly in # until z = 0 with
step size Ay = 50 Mpc.

For k integrals, we compute quantities on a grid from
kuin = 107 Mpc~! up to a maximum wave number k,,,, =
50005 with a step size Ak = min(ek, k), where € =
0.006 and x, = 10~* Mpc~!; i.e., we use logarithm spacing
for low-k to linear spacing at high-k.

Finally, our ¢ sampling consists of the floors of an array
of real £ values spaced logarithmically in 2 < Z < 400 with
AlnZ = 0.0225, and linearly in 400 < 7 < &« = 3000
with AZ = 19.5. Note that these values were chosen to
produce an # sampling similar to the standard output of
CLASS, with almost double the resolution.

We reproduce the standard CMB temperature angular
power spectrum, Eq. (36), and compare to the output of
CLASS [22]. We find a subpercent fractional difference for
all £ < .- We also recompute all results with increased
resolution prescribed via

(A 111’77 A}’], kmax’ €, KO)

2 2 3 2 2
d (3Alnﬂ,3A7’],2kmaX,3€,3K0). (Bl)

We find, for both the power spectrum and trispectrum
calculations, there is a fractional change in the results only
at the subpercent level, far below the theoretical uncertainty
of the problem at hand.

Last, the trispectrum results depend on the intermediate
quantity J,, given in Eq. (54) as an infinite double sum.
We truncate this sum at a maximum ¢, = £, (which
automatically truncates the ¢; sum due to the triangle
inequality). We find that our trispectrum results are con-
verged within 0.1% by £, = 50.

APPENDIX C: SPIN-WEIGHTED
SPHERICAL HARMONICS

Spin-weighted spherical harmonics are related to Wigner
D-matrices. They become regular spherical harmonics
when their spin is zero, (,Y,,,) = Y, and inherit similar
orthogonal and completeness relations. They have the
familiar property (,Y,,,)* = (=1)"™"(_;Y,_,,), as well as
a product rule similar to the Gaunt relation involving
Wigner 3; symbols [29],

> g

53,033

ty O s . s
x < >.V3Yf3m3(n)’

mp  mp Mz

51 Yflml (ﬁ)sz Yfzmz (ﬁ) =

(C1)

where the g symbols are defined by

_\/<2f1+1><2f2+1><2f3+1><f1 ‘) &)

0165t
n 4n Sp Sz 53

9e,6,65 = gg?(}zf.%’ (Cz)

For shorthand we also define the Gaunt coefficient,

flrty 2y &t
mymyms = gf|f2f3 .
my mp ms

(C3)

For the Wigner 3 symbols to be nonzero, the £’s in the
first row must be positive and obey the triangle inequality.
Likewise, the sum of the bottom row of azimuthal modes
(my, m,, mz) must equate to zero, and each must satisfy
—Z; <m; <£¢;. The Wigner 3j symbols also have an
orthogonality condition that we utilize,

Z(fl 2] fa)(ﬁ 2 fé)
o \my my  ms my  m, mj

6f3 Z, 6m3m’

3
= 4
2f3 1 {Lﬂlf2f3}’ (C )

where {£,£,¢5} is 1 if the three ¢’s satisfy the triangle
inequality and O otherwise.

When summing over the azimuthal modes of the product
of spin-weighted spherical harmonics, we have

20+ 1
4

Z(A‘Yt’m(ﬁ))(s’yt’m(ﬁ/))* = (_1)

m

dig(w).  (C5)

where we have introduced the Wigner small d-functions and
u=n-a"[17].If s = s’ = 0, then the d-functions reduce to
normal Legendre polynomials. These d-functions them-

selves satisfy the orthogonality condition

Cdud ) d ) = s (C6)
1 Hag\H)dso(H 27+ 1 ‘1t
and are equipped with the identity
A oy (W) = di(u) = (=1)"dl,(w).  (CT)
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They also have the property that their product can be
expanded via [29]

dily, ()d2, ()

ty 1 Uy
1 2 1 2

de, .
~ <1 5 ) ”(”)<sa s, >

—sz+

APPENDIX D: SUMS OF PRODUCTS
OF 0 AND Q0 SYMBOLS

Computing the multipoles of the nonlinear perturbation
of temperature anisotropy introduces integrals of products
of four (spin-weighted) spherical harmonics, denoted as the
Q symbols in Egs. (67) and (68). In this appendix we lay
out the math to simplify the sums and products of these Q
symbols necessary for the first-order trispectrum calcula-
tions. We borrow the tools introduced in Appendix C.

Let us start with (Q?), , /. defined in Eq. (108). Given

the definitions of Q?I‘;’Z}';’;:"“

QN trtrts = Z/dzfl/dzﬁ/HYf,-m,»(ﬁ)YZm[(ﬁ’)-

(D1)

, it is given by

Let us now use Eq. (C5), which reduces to Legendre
polynomials in this case:

ny,-m,- (ﬁ)Y;imi (ﬁ/)
m;

where y=n-7'. We may carry out one of the angular
integrals and get

:(4;)2;1__[(2/#1)

x / du Py, (4)Py, (4)Py. (4)Py, (). (D3)

Now, recall the product rule for Wigner d-functions (or
Legendre polynomials in this case), Eq (C8),

=yeeen( o) e @
4

= QL VPG (DY)

(Qz)flf2f3f4

Py Py,

Therefore, using the orthogonality relation Eq. (C6), we
obtain

(Qz)f1f2f3f4 =

(471T)2H(2"ﬂi +1)) (2+1)
i 14

O 6 EN2IE b5 £)\2
X(o 0 0> (o 0 0>

=25

4

gf 4 (gff;ﬂ )2, (DS)

with a result that should be independent of the grouping of
the two pairs of £’s.

To generalize this to sums involving Q is relatively
straightforward, but requires general Wigner small
d-functions. We note that the angular derivatives present
in Q can be expressed in terms of spin-1 spin-weighted
spherical harmonics [17]. That is,

Vi¥Yem - Vi¥em, = \/51 (&1 + 1)5(62 + 1)
X ZsYzf’lm]—sYt’zmz’ (D6)
s==+1
such that
Q?II;Z??ZMZ_—\/fl 1+ 1)E5(6 + 1)
/dzn Yo (W)=Y 5, ()
s=+1
x Yy, (A)Y; , (7). (D7)
For short we define
gflfzf = Zg;rézof’ (D8)

s==+1

which is symmetric in its first two indices. Using the
properties of d-functions outlined in Appendix C, we
obtain for Eq. (108)—(112)

1
(QQ)s,y006, = ) Ve + 1)t +1)

1 ~
x ;mgflfzfgf,fz,f(gfgﬁf)z, (D9)
F 1
(Qz)flfzaﬁﬂ = Zl’ﬂl<fl + 1>l/ﬂ2(f2 + 1)

1 -
X ;m (gf,fz,f)z(gff3f4)zv (D10)

~ 1
Qs z, it :Z\/fl(fl +1)£5 (45 +1)
X\ C3(C3+1)04(C4+1)

1 N -
X ;T—H (gflfzfgflfz.f)(gf3f4f9f3f4.f)’

(D11)
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1

(Q Qs)f,,f2f3,f4 = —Zfl(fl +

X Z Zzbﬂ_’_ lgf1f2£9ffl 5’2

s==%1

D&+ 1)E5(¢65+1)

X 9;,23:f49ff3f4- (D12)

APPENDIX E: PERTURBED TEMPERATURE
ANISOTROPY AUTOPOWER SPECTRUM

In this paper we found that the temperature-only trispec-
trum induced by accreting PBHs was not as sensitive as
we expected a priori. Additionally, the amplitude of the
power-spectrum perturbation sourced by inhomogeneities

in the free-electron fraction, Cg) l)nh = 2(@;2,,! mh@gg,)f), isup
to 2 orders of magnitude smaller than its counterpart

C;lgom = 2(@;”)1 hom@gf), as revealed in Fig. 6. In this
appendix, we show this is due to a combination of a poor
correlation between @1(;})1 and the standard CMB temperature
anisotropy ©(), and a suppression of the characteristic

amplitude of G)l(ng1 itself, relative to its counterpart @ﬁo)m

We do so by computing and comparing the autopower
D and @

hom inh*

spectra of 0| The results are shown in Fig 9.

(1)

hom

From Eq. (47), the autopower spectrum of ©
trivially

MBH=100 Mo, fooh =1

1074
—— homogeneous o

S _5 | = inhomogeneous
O 10
=
2. 10-61
G 10

1077
S,
2o
@)

—-0.51

== on-the-spot

—1.0+

10? 102 103
{

FIG. 9. Top: Autopower spectrum of the perturbed temperature
anisotropy due to accreting PBHs defined as (@}me;ﬂ}» =

5”/6mme< ), normalized by the standard angular power spec-
trum. Bottom: Correlation coefficients between ®!) and ®. In
both cases we assume 100M, PBHs comprising all the dark
matter, but the qualitative trends are general for all PBH masses.
The suppressed amplitude in the autopower spectrum of @mh

(purple curves) compared to @hom (red curves) and the poor
correlation explains the large difference in amplitude for the
computed power spectra in Sec. IV B.

11 1)d 2
Clio =47 [ DEPARIALS (O], (ED

where <®(flﬂ)[ hom®;gr]n>’ hom> = 5{1:”’5mm Cz(fl}]u))m

The autopower SpeCt(Il'l)lm of (tge 1nh0m0gene0us( 1())n1za—
tion counterpart, (@, 1O, . ) = 5ﬁ/6mm/Cf ohe 18

much more involved. In what follows, we denote the
integral operator,

/ D(kikoks) P (ky )P (k) Po(ks) = / P (E2)

We begin similarly as we did for the trispectrum calculation
in Sec. IV C. Starting with Eq. (58), using Wick’s theorem

and exploiting the fact that T;ln)l (ky,—ky,k3) =0 and T;ln)l
is symmetric in its first two k arguments, we find

<®(fln>1 inh®;£)1n>’ inh’>
[ | DPP 4Tfm(k1,k2, k) TV (hey Ky, —ke3)
+ 270 (ky by By T (e Ky Ky )
4T k1 o ) T ks e ) - (E3)

The first term can be solved with the same method as for the
inhomogeneous power spectrum in Sec. IV B. That is,

/Daprm(k,,kz,—kz)Tf,m,(kl,k3,—k3)
16z [0 1o
= 5/5’5mm’7 L dn A dan’ 9(’7)9(’7/)

x As(n, 1 )y(m)y(n'), (E4)

where y(5) is defined in Eq. (77) and

A(norf) = / DEP (k) A, (1. &), (k) A (1K) 1 (k).
(ES)

The remaining two terms are not as simple. Using
Eq. (59) and integrating over all three k’s (but restoring
them for notational convenience by absorbing factors of
47), the second term can be written as

/ D3P T) (ky ky b3 T (ke Ky, Ky

— @y [

m;t;

3 1y My M3 3 ki M s sm’
D PTffzz:”zf Tfff3zf” ’

(E6)

. mymyms;imy
where we have suppressed the k dependence in T /. ™,

defined in Eq. (64), and the sum is over ¢; and m;, with
i =1, 2, 3. Without having to expand the terms with
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spherical harmonics, we can exploit the fact that the
Universe is statistically isotropic and instead compute

> o 5ff'6mm’ < (1)

1 *(1 x(1
<®1(/’rr)t,inh®f§m)’,inh - 2f+1 ®If’m”,inh®f(m’)’.inh>‘ (E7)

This enables us to use the machinery we derived in
Appendix D and write the second term as

/ DPT) (k. Jeo ks ) T3 (ky Ky K )

_ (4 5ff’ 5mm

7] /D P{AG 4 o (k1 ko k3)(Q2) 4,10

m;,t;
+2ABy, 4, ¢,(k1 . k2.k3)(QQ)s 4, .
+B . 4 (ki vk21k3)(Q2)flf2.f3f}'

We apply the same logic to the third term. We then take
advantage of the factorized forms of Egs. (64)—(66) to write
a computationally manageable final solution as

1
C(f,m)h = fobh [42[f + Z (2Bs,¢,.000 T4Cs 1,00¢) |
)

(E8)

where

/ dn / " it g(n) g(n') A (n.n)BBGT),  (E9)
4 3
%flfzfg;fzz(f? l/dn/dn’g(n)g(n’)
X {Af, (1.1 Ae,(0.10) 2, (0.1) (D) 1,11
+ 2Ky, (0.1 ) o, (n. 1) 2, (1, W/)(QQ)flfz.f3f

+ By, (1.1 B, (1.1') ] ¢,(n. 1) (Qz)flt’zfgf}7
(E10)

Orlatrit
X {;‘f, (’7”1');15’2 (77/”7>-'4f3 (nv”/)(gz)flf2f3f
+2A4,, (77777/)1Cf2(n’n/)Bfg(n/’n)(QQ)ﬁfz 0
By, (0.0) B, ) B, (1. (Q2%),, o -
(EL1)
with

B = [ D@L I8 (107 X a0,
Kelr) = [ DWPARLLAA 00 LD 2, 1.8),
To(nn') = /D(k)PC(k)jf(’?vk)jt’m/’k)»

Aetn)= [ DRI GRIA KT 0 1),

A, (1.k)T (0. k). (E12)

B = [ D@22
xk

We plot the results, Eq. (E8) and Eq. (El), in Fig. 9. We
see there is ultimately an order of magnitude difference
between the amplitudes of the inhomogeneous and homo-
geneous temperature perturbation autopower spectrum. We
also see that the correlation between our newly computed
inhomogeneous temperature perturbation and the standard
CMB temperature anisotropy is very poor. Both these facts
are likely the culprits behind both the unexpected sensi-
tivity from the forecast on the trispectrum and the 2 orders
of magnitude difference in the power-spectra amplitudes
we observe in Fig. 6. Additionally, it can be seen that, if it
were not for the very small correlation at large Z, the scale
suppression due to photon propagation would have a much
bigger effect in both the inhomogeneous power-spectrum
and trispectrum results.

APPENDIX F: REDSHIFT DEPENDENCE OF THE
TEMPERATURE TRISPECTRUM INDUCED
BY ACCRETING PBHs

In this appendix we inspect the redshift dependence of
the temperature trispectrum from accreting PBHs, by
reproducing the forecast analysis of Sec. V, but artificially
imposing that the free-electron fraction perturbation van-
ishes outside of redshift bins of size Az = 50. In a given
redshift bin, we compute the signal-to-noise, S/N, assum-
ing a Planck-like experiment for both the temperature-only
trispectrum and power spectrum. That is, for the trispec-
trum we compute (S/N)y; =1/ =~ from Eq. (113). For
the power spectrum we compute the similar forecasted
quantity,

(S/N)ps [fbkyzfzf+ (CC()>]1/2, (F1)

¢

where C( ) = C(f l)lom + C(f 1)nh is the total (cf. Fig. 6) per-
turbed TT power spectrum due to accreting PBHs (con-
sidering only the direct term discussed in Sec. III D). Note
that a rigorous treatment would properly account for
correlations between different redshift bins and involve a
principal component analysis. Still, the simple estimation
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of S/N should give us a reasonable qualitative under-
standing of the redshift dependence of the signal.

We compare the two S/N as a function of redshift in
Fig. 10 for 100M, PBHs. We see that the temperature
trispectrum S/N is rather sharply peaked around
7~900-1000, in contrast with the temperature power-
spectrum signal, which receives comparable contributions
from a broad range of redshifts 200 < z < 1200.

This is consistent with the following observations. First,
by inspecting the on-the-spot energy deposition limit dis-
cussed in Sec. IIC, we found that the trispectrum is
negligibly affected by photon propagation that is more
suppressive at late times. Namely the strongest spatial
fluctuations for the accreting PBHs due to relative velocities
occur at afew 10’s of Mpc scales as shown in Fig. 13 of Paper
I, but this is not noticeably suppressed until z ~ 800 when
inspecting Fig. 2. Second, we find that the trispectrum
constraints converge much more quickly than compared to
the power spectrum when varying the max multipole on the
zeroth-order collision term present in the line-of-sight
source. Namely, the trispectrum is unaffected by higher-
order multipoles of zeroth-order temperature anisotropy
which are induced at later times. Third and more subtly,
the fopn-Mppn power-law dependence is weaker for the
trispectrum constraints than it is for the power-spectrum
constraints. As found in AK17, the luminosity of a spheri-
cally accreting PBH is proportional to M at all times when
excluding their radiative efficiency. The radiative efficiency,

Mpbh =100, fpbh =1

| —— TT7T (this work)
| =—e— TT-only (this work)

Normalized

0 200 400 600 800 1000 1200

z

FIG. 10. Forecasted Planck signal-to-noise ratio for the 77-
only power spectrum and 7777 trispectrum induced by accreting
PBHs. For ease of comparison we normalize the curves such that
they integrate to unity over redshift. Each point is computed
assuming the perturbed free-electron fraction is only nonzero in
redshift bins of size Az = 50.

however, turns out to have an inverse dependence on black
hole mass whose power depends on redshift. This power
converges to zero at late times, and implies that the mass
dependence on [y, constraints is weaker if the signal
receives support from earlier redshifts. This can be seen
directly in Fig. 8 of AKI17 where they plot the mean
luminosity as a function of redshift for various M ..
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