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We investigate impacts of long-wavelength gravitational waves (GWs) on nonlinear structure formation
by utilizing the tidal separate universe simulations. Based on the equivalence of a long-wavelength GW to a
uniform tidal field in a local frame, we provide a way to incorporate a long-wavelength GW into the tidal
separate universe simulation as an effective anisotropic expansion. This methodology enables us to study
effects of GWs on large-scale structure efficiently. We measure the anisotropic imprint in the local power
spectrum from the tidal separate universe simulations with GWs, which corresponds to the scalar-scalar-
tensor bispectrum in squeezed limit or the so-called power spectrum response to GWs. We also detect the
halo tidal bias induced by GWs from the response of the halo-matter cross-power spectrum to GWs, as well
as the linear shape bias (or the linear alignment coefficient) induced by GWs from the one-point function of
the halo ellipticity. In contrast to the case of the tidal field induced by scalar perturbations, we discover that
the wave number dependence of the temporal evolution of GWs naturally causes these biases to be scale-
dependent. We also find that this scale dependence is well approximated by the second-order density
induced by the coupling between scalar and tensor perturbation. This highlights that the structure
formation, especially the process to determine the halo shape, is nonlocal in time. Our findings lay the
foundation for predicting the impact of GWs on large-scale structure.
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I. INTRODUCTION

Gravitational waves (GWs) serve as vital means to
observe the universe. In particular, since long-wavelength
GWs in the Gpc-Mpc range are unlikely to originate from
astrophysical events, they are thought to have a cosmo-
logical origin (e.g., inflation [1–5]), making them an
important probe in cosmology. In spite of the various
experiments trying to detect the primordial B-mode signal
in the polarization of the cosmic microwave background
(CMB) [6–10], which is one of the most powerful methods
to hunt for long-wavelength cosmological GWs [11,12],
such GWs have not been observed yet.
Compared to the numerous studies for the effect of GWs

on the perturbations of the CMB, that on large-scale
structure (LSS) of the universe has not received as much
attention. As large-scale structure is dominantly sourced by

scalar perturbations, there is a long history for the study on
how the scalar perturbations have shaped LSS, including
the linear and nonlinear perturbation theory [13–17] and the
N-body simulation [18–21]. On the other hand, there are
fewer studies of the effect of the tensor perturbations (GWs)
on nonlinear structure formation, as we list below.
There are two types of effects of GWs on LSS observ-

ables: the dynamical effect and the projection effect. The
former refers to the effect of GWs on nonlinear structure
formation itself, whereas the latter refers to the effect of
GWs on the light path emitted from distant galaxies to us.
In other words, the dynamical effect would be observed by
a comoving observer in a local frame, while the projection
effect comes from the mapping of observables from the
galaxy’s local frame to our local frame (at the earth), which
includes the Sachs-Wolfe effect and the gravitational
lensing effect caused by GWs. Both effects have been
studied by means of the perturbation theory; Refs. [22–27]
formulated the projection effect on the galaxy clustering*kakitsu@ias.edu
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and the galaxy shape (shear) by GWs, while Ref [26]
pointed out that long-wavelength GWs can also contribute
the intrinsic alignments of galaxy shapes and Refs. [28–30]
computed the second order matter density contrast induced
by the coupling between scalar perturbations and long-
wavelength tensor perturbations (GWs). For the projection
effect the perturbative treatment would be adequate. For the
dynamical effect, however, the perturbation theory breaks
down in nonlinear scales and thus the nonlinear nature of
LSS requires N-body simulations with GWs to capture the
fully nonlinear impact of GWs on structure formation.
Furthermore, given that the biased tracers of LSS such as
halos are themselves nonlinear objects, such simulations
are necessary to understand their biases to GWs even in the
linear regime.
An N-body simulation with GWs is generally challeng-

ing because the usual N-body simulations are based on
Newtonian gravitational dynamics in an expanding back-
ground whereas GWs are a purely general-relativistic
effect. The most straightforward way to introduce GWs
into N-body simulations is to develop a general-relativistic
cosmological simulation [31–33], though Refs. [32,33]
only considered the second-order (induced) tensor pertur-
bations by scalar perturbations.1 Also, since GWs are
much smaller than scalar perturbations, it is difficult to
single out the effect of GWs on structure formation from
that of the scalar perturbations in this sort of simulations.
In this paper, we utilize a separate universe approach to

circumvent this issue on N-body simulations with GWs. In
the separate universe approach, the influence of a long-
wavelength perturbation is absorbed into the cosmic expan-
sion observed in the local frame, thereby the local expansion
becomes different from the global one. Accordingly, non-
linear structure formation in the local region responds to this
difference in the background expansions. Using this tech-
nique, the response to the long-wavelength perturbation can
be accurately measured in N-body simulations [35–42].
Recently, the anisotropic extension of the separate universe
simulation was developed in Refs. [43–45]. They consid-
ered a long-wavelength tidal perturbation sourced by the
long-wavelength scalar tides ∝ ð∂i∂j − 1

3
δKijÞΦ [46–51], and

the perturbation was absorbed into the local background,
making the local cosmic expansion anisotropic.
Taking advantage of the equivalence of a long-

wavelength GW to a long-wavelength tidal field in a local
region, we apply this tidal separate universe simulation to
measure the impact of GWs on structure formation. In
contrast to the scalar case, the time evolution of GWs is
scale-dependent (or wave number-dependent). As a result,
when mimicking the long-wavelength GW as the local

anisotropic expansion, the anisotropic expansion rate would
be different depending on the wave number of GWs, and so
is the response of large-scale structure, as considered for
isotropic scale-dependent long-wavelength perturbation in
Refs. [52–54]. The purpose of this paper is to generalize the
tidal separate universe simulation for GWs in order to study
the scale-dependent responses for long-wavelength GWs of
different wavelengths.
The remainder of this paper provides a way to implement

long-wavelength GWs into the tidal separate universe
simulation and presents imprints of GWs on large-scale
structure measured from newly developed simulations. After
giving a brief review about the local coordinates in the
presence of GWs and perturbative results in Sec. II, we
construct the tidal separate universe with GWs in Sec. III. In
Sec. IV, we measure the power spectrum responses for
matter auto-, halo-matter cross-, and halo autopower spectra,
which is related to the scalar-scalar-tensor bispectrum in
squeezed limit. Sections V and VI are devoted to the
measurements of the halo tidal bias and linear alignment
coefficient (or the linear shape bias) from GWs, respectively.
We discuss possible observables in large-scale structure to
probe GWs in Sec. VII. In Appendix A we present explicit
formulas on the coordinate transformation. In Appendix B
we summarize the results obtained from the tidal separate
universe simulation with the scalar tides. Appendix C
discusses a necessary modification of the drift operator in
the N-body code. Throughout this paper we adopt cosmo-
logical parameters consistent with Planck result: Ωr0 ¼
4.1577 × 10−5, Ωm0 ¼ 0.3089, ΩΛ0 ¼ 0.6911, and H0 ¼
67.74 [55].

II. LOCAL FRAME AND THE PERTURBATIVE
RESULTS

Here we first introduce the local coordinates in the
presence of long-wavelength GWs. We then briefly sum-
marize the derivation of the second-order density pertur-
bations induced by the coupling between scalar and tensor
perturbations (GWs), following Ref. [30]. We employ the
Lagrangian perturbation formalism, which can be straight-
forwardly used to construct the tidal separate universe in
the next section.

A. Long-wavelength gravitational waves
in the conformal Fermi coordinates

In the cosmological context, GWs are defined as
the trace-free transverse components in the perturbed
FLRW metric,

ds2 ¼ a2½−dη2 þ ðδKij þ hijÞdxidxj�; ð1Þ

where a is the scale factor, η is the conformal time, δKij is
Kronecker’s delta, and hij is GWs satisfying hii ¼ 0 and
∂
ihij ¼ 0. We use kL to denote the wave number of GWs in

1Technically the induced tensor perturbations computed in
Refs. [32,33] involve non-GWs contributions, which are tensor
modes but not propagating waves. See, e.g., Ref. [34] for detailed
discussion on this issue.
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what follows since we focus on the long-wavelength GWs
in this paper. We introduce the transfer function of GWs,
T ðη; kLÞ, through

hijðη;kLÞ ¼ T ðη; kLÞhiniij ðkLÞ; ð2Þ

where hiniij ðkLÞ denotes the primordial value of GWs, i.e.,
hiniij ðkLÞ ¼ hijð0; kLÞ. The transfer function T ðη; kLÞ obeys

T 00ðη; kLÞ þ 2HT 0ðη; kLÞ þ k2LT ðη; kLÞ ¼ 0; ð3Þ

with 0 ¼ d=dη, and H ¼ aH being the conformal Hubble
parameter. The top-left panel of Fig. 1 shows T ðη; kLÞ as a
function of the scale factor for various wave numbers of
GWs. Similarly, the top-right panel shows that as a function
of the wave numbers of GWs at various redshifts. For any
kL, T ðη; kLÞ remains unity when kLη ≪ 1, which means
that GWs are frozen before they enter the horizon.
For later convenience, we expand GWs by the helicity

basis:

hijðη;kLÞ ¼
X
λ¼�2

hðλÞðη;kLÞeðλÞij ðk̂LÞ; ð4Þ

where eð�2Þ
ij ≡ eð�Þ

i eð�Þ
j and eð�Þ ≡ ðe1 ∓ ie2Þ=

ffiffiffi
2

p
with

fkL; e1; e2g being an orthonormal set. The helicity basis

satisfies eðλÞij e
ij
ð−λÞ ¼ 1, eðλÞij e

ij
ðλÞ ¼ 0, and hðλÞ ¼ eijð−λÞhij. The

power spectrum of GWs for each helicity mode is defined as

hhðλÞðkL; ηÞh�ðλÞðk0
L; η

0Þi
¼ ð2πÞ3δð3ÞD ðkL − k0

LÞPhðλÞ ðkL; η; η0Þ; ð5Þ

which is related to the primordial power spectrum PhðλÞ ðkLÞ
through

PhðλÞ ðkL; η; η0Þ ¼ T ðη; kLÞT ðη0; kLÞPhðλÞ ðkLÞ: ð6Þ

For unpolarized GWs, the two power spectra has equal
power, i.e., Phðþ2Þ ðkÞ ¼ Phð−2Þ ðkÞ≡ PhðkÞ=2 with PhðkÞ
being the total power spectrum of GWs. For chiral GWs,
the chiral parameter χðkÞ defined as

χðkÞ≡ Pðþ2ÞðkÞ − Pð−2ÞðkÞ
PhðkÞ

; ð7Þ

FIG. 1. Left panels from top to bottom: transfer function of GWs T ða; kLÞ, growth coefficient αða; kLÞ and dilation coefficient
βða; kLÞ in Eq. (29) as a function of scale factor a for various wave numbers kL. Right panels from top to bottom: Same as the left panels
but as a function of wave number of GWs, kL, at various redshifts. Note that the functional shape of βða; kLÞ is equivalent to that of
T ða; kLÞ because βða; kLÞ ¼ − 1

2
½T ða; kLÞ − 1�.
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measures the degree of the parity-breaking in GWs. The
total power spectrum of GWs is often characterized via

k3PhðkÞ
2π2

≡ rAs

�
k
k�

�
nT ð8Þ

with r being the scalar-tensor ratio, As being the amplitude
for the primordial curvature perturbations at the pivot scale
k�, and nT being the tensor tilt.
To investigate the physical effects of long-wavelength

GWs on scalar perturbations at smaller scales, consider a
local region centered at the timelike geodesic of a comov-
ing observer. In this local patch we can construct the so-
called conformal Fermi coordinates (CFC), which is an
extension of the Fermi normal coordinates [56], developed
in Refs. [30,57]. The metric of this coordinates, gFμν, takes
the form of the FLRW metric along the central geodesic
with leading-order corrections of Oðx2FÞ. We are interested
in the interaction between long-wavelength GWs and
nonrelativistic matter. In this case gF00 encodes all the
relevant impact from the long-wavelength perturbations
because the dynamics of nonrelativistic matter is solely
determined by the usual Newtonian potential in gF00. One
can show that given the global coordinates Eq. (1), gF00 is
computed as

gF00 ¼ −a2½1þ τijxiFx
j
F�; ð9Þ

with

τijðη; kLÞ ¼ −
1

2

�
a−1ðah0ijÞ0

�
¼ −

1

2
ðh00ij þHh0ijÞ

≡ Tðη; kLÞhiniij ð10Þ

representing the effective tidal field induced by the long-
wavelength GWs in the local region. The derivation is
summarized in Appendix A. It is worth noting that τij takes
effect only after GWs cross the horizon as implied by the
time derivative on hij. Note that xiF corresponds to the
comoving distance, unlike the physical (proper) distance in
the Fermi normal coordinates. In what follows, we work in
this frame and drop the subscript F in xiF, namely, denote
xi as xiF.

B. Second order density induced by the interaction
between GWs and scalar perturbations

The equation of motion of a matter particle in the local
frame is2

d2ri
dt2

¼ 1

a2

�
d2

dη2
−H

d
dη

�
ri ¼ −

∂

∂ri
ðΦiso þ ϕÞ; ð11Þ

where ri ¼ axi and we split the gravitational potential into
a background potential Φiso and a peculiar potential ϕ. The
subscript “iso” inΦ stands for the potential sourced only by
the usual isotropic background,

Φiso ≡ 2

3
πGρ̄mr2 −

Λ
6
r2; ð12Þ

where ρ̄m is the mean density of matter. The peculiar
potential ϕ includes the potential sourced by local inho-
mogeneities ϕs as well as the effective tidal field sourced by
the long-wave gravitational wave, ϕ ¼ ϕs þ 1

2
τijxixj. In

the next sections, the effective tidal potential is absorbed
into the back ground potential, Φ ¼ Φiso þ 1

2
τijxixj (see

Eq. (33) below). The potential sourced by local inhomo-
geneities, ϕs, satisfies the Poisson equation

∇2
rϕs ¼ 4πGρ̄mδ ¼

3

2

ΩmðηÞH2

a2
δ; ð13Þ

where δ ¼ ρ=ρ̄m − 1 denotes the overdensity field. We can
also decompose the left-hand side of Eq. (11) into the
background and peculiar parts, resulting in

H0xi ¼ −
∂

∂xi
Φiso; ð14Þ

x00i þHx0i ¼ −
∂

∂xi

�
ϕs þ

1

2
τlmxlxm

�
: ð15Þ

One can verify that Eq. (14) with Eq. (12) gives the usual
Friedmann equation. Equation (15) can be regarded as the
evolution equation for the displacement field Ψi, which
relates Lagrangian position qi to Eulerian position xi via
xi ¼ qi þ Ψi. Before shell-crossing the Jacobian determi-
nant of this mapping gives the overdensity as

δ ¼
���� ∂xi
∂qj

����−1 − 1 ¼
����δKij þ ∂Ψi

∂qj

����−1 − 1: ð16Þ

At linear order this reduces to δð1Þ ¼ −∂Ψð1Þ
i =∂qi. We split

the linear displacement into the one sourced by pure scalar
contributions and that sourced by τij, each of which
satisfies

Ψð1Þ00
s;i þHΨð1Þ0

s;i ¼ −
3

2
ΩmðηÞH2

∂
i
q

∂
2
q
δð1Þ; ð17Þ

Ψð1Þ00
t;i þHΨð1Þ0

t;i ¼ −
1

2
∂
i
q½τklqkql�; ð18Þ2Strictly speaking, this is justified by considering the geodesic

equation in the local frame.

KAZUYUKI AKITSU, YIN LI, and TEPPEI OKUMURA PHYS. REV. D 107, 063531 (2023)

063531-4



where Ψð1Þ
s;i and Ψð1Þ

t;i denote the linear displacement caused
by the scalar and tensor perturbations, respectively, and
we have used Eq. (13) and the fact that xi can be replaced

by qi at linear order. The nondecaying solutions for Ψð1Þ
s;i

and Ψð1Þ
t;i are

Ψð1Þ
s;i ðηÞ ¼ −

DðηÞ
Dðη0Þ

∂
i
q

∂
2
q
δð1Þðη0Þ; ð19Þ

Ψð1Þ
t;i ðη; kLÞ ¼

1

2
½T ðη; kLÞ − 1�hiniij ðkLÞqj

≡ −βðη; kLÞhiniij ðkLÞqj; ð20Þ

where we have used the boundary condition limη→0

T ðη; kLÞ ¼ 1 and have introduced the quantity βðη; kLÞ
to characterize the linear displacement due to the tensor
perturbations, and DðηÞ represents the linear growth
function, which follows

D00ðηÞ þHD0ðηÞ − 3

2
ΩmðηÞH2DðηÞ ¼ 0: ð21Þ

From this result one can confirm that GWs do not induce the

linear density: δð1Þt ¼ −∂Ψð1Þ
t;i =∂qi ∝ hii ¼ 0, as expected.

At second order, however, GWs do affect the density
field as well as the displacement field. Expanding Eq. (16)
up to second order leads to

δð1ÞðxðqÞÞþ δð2Þst ðxðqÞÞ ¼ δð1ÞðqÞ− ∂Ψð2Þ
st;i

∂qi

����
q
þ ∂Ψð1Þ

s;i

∂qj

∂Ψð1Þ
t;j

∂qi

����
q

¼ δð1ÞðxÞ−Ψð1Þ
t;i ðxÞ∂ixδð1ÞðxÞ

−
∂Ψð2Þ

st;i

∂qi

����
q¼x

þ ∂Ψð1Þ
s;i

∂qj

∂Ψð1Þ
t;j

∂qi

����
q¼x

;

ð22Þ

where we focus on the second-order density arising from

the coupling between the scalar and tensor modes, and δð2Þst;i

and Ψð2Þ
st;i respectively denote the second-order density and

displacement induced by the coupling. Namely, we omit
the second-order contributions from the autocoupling
between scalars (irrelevant) or tensors (subdominant). In
deriving the first equality above, we have used the fact that

Ψð1Þ
t;i is divergence free. Taking the divergence of Eq. (15)

with respect to q we obtain

ψ ð2Þ00
st þHψ ð2Þ0

st ¼ −∇2
xϕs −

∂Ψð1Þ
t;j

∂qi

∂
2ϕs

∂xi∂xj
−
∂Ψð1Þ

s;j

∂qi
τij; ð23Þ

where we have defined ψ ð2Þ
st ≡ ∂Ψð2Þ

st;i=∂qi and used

∂
i
q ¼ ∂

i
x þ ∂

i
qΨj∂

j
q ≃ ∂

i
x þ ∂

i
qΨj∂

j
x. Rewriting ϕs in terms

of δ by using Eq. (13) and using Eq. (22) yield

ψ ð2Þ00
st þHψ ð2Þ0

st ¼ 3

2
ΩmH2

"
−
∂Ψð2Þ

st;i

∂qi
þ ∂Ψð1Þ

s;i

∂qj

∂Ψð1Þ
t;j

∂qi

#

−
3

2
ΩmH2

∂Ψð1Þ
t;j

∂qi

∂Ψð1Þ
s;i

∂qj
−
∂Ψð1Þ

s;j

∂qi
τij: ð24Þ

Finally the equation for ψ ð2Þ
st is found to be

ψ ð2Þ00
st þHψ ð2Þ0

st −
3

2
ΩmH2ψ ð2Þ

st ¼
�
∂
i
q∂

j
q

∂
2
q

δð1ÞðηÞ
�
τij: ð25Þ

We can write the solution as

ψ ð2Þ
st ðq; η; kLÞ ¼ Dð2Þ

st ðη; kLÞ
�
∂
i
q∂

j
q

∂
2
q

δð1Þðq; η0Þ
�
hiniij ðkLÞ;

ð26Þ

where the time-dependent part of ψ ð2Þ
st ðq; η; kLÞ, which we

write Dð2Þ
st ðη; kLÞ, satisfies

Dð2Þ00
st ðη; kLÞ þHDð2Þ0

st ðη; kLÞ −
3

2
ΩmðηÞH2Dð2Þ

st ðη; kLÞ

¼ DðηÞ
Dðη0Þ

·

�
−

1

2a
ðaT 0ðη; kLÞÞ0

�
: ð27Þ

We can solve this equation numerically given the cosmo-
logical parameters but here we derive the analytic solution
assuming the matter domination for the later convenience.
In the matter-dominated era where we have Ωm ¼ 1, H ¼
2=η and DðηÞ ∝ a ∝ η2, we can write the solution using
Green’s function:

Dð2Þ
st ðη; kLÞ ¼

1

Dðη0Þ
Z

η

0

dη̃
1

5

�
η2

η̃
−
η̃4

η3

�

×Dðη̃Þ
�
−

1

2a
½aT 0ðη̃; kLÞ�0

�

¼ 1

5

DðηÞ
Dðη0Þ

�
βðηÞ þ 4

Z
η

0

dη̃

�
η̃

η

�
5

β0ðη̃; kLÞ
�
:

ð28Þ

Finally we find the second order density induced by the
interaction between the scalar and tensor perturbation as
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δð2Þst ðx; η; kLÞ ¼ hiniij

�
βðη; kLÞxj∂ixδð1Þðx; ηÞ −Dð2Þ

st ðη; kLÞ
�
∂
i
x∂

j
x

∂
2
x
δð1Þðx; η0Þ

�
þ βðη; kLÞ

�
∂
i
x∂

j
x

∂
2
x
δð1Þðx; ηÞ

��

¼ hiniij

�
αðη; kLÞ

∂
i
x∂

j
x

∂
2
x

þ βðη; kLÞxj∂ix
�
δð1Þðx; ηÞ; ð29Þ

where β is defined in Eq. (20) and α is defined as

αðη; kLÞ≡ −
Dðη0Þ
DðηÞ Dð2Þ

st ðη; kLÞ þ βðη; kLÞ

¼ 4

5

�
βðη; kLÞ −

Z
η

0

dη̃

�
η̃

η

�
5

β0ðη̃; kLÞ
�
: ð30Þ

Equation (29) holds not only during the matter domination
but also the entire history of the universe as long as we
solve Eq. (27) numerically, whereas the second equality of
Eq. (30) holds only for the matter domination. The first
term in the last line (∝ α) represents the changes in the
short-mode amplitude, called the growth effect, by the
coupling between the scalar tidal field and long-wavelength
GWs. The second term in the last line (∝ β) represents the
coordinate shift induced by the long-wavelength GWs,
known as the dilation effect. The power spectrum of the
density field in the presence of the long-wavelength GWs
then becomes

PmmðkS;ηjhijðkLÞÞ ¼ PlinðkSÞ
�
1þ k̂iSk̂

j
Sh

ini
ij ðkLÞ

�
2αðη;kLÞ

− βðη;kLÞ
∂ lnPlinðkS;ηÞ

∂ lnkS

��
: ð31Þ

We show T ðkL; ηÞ, αðkL; ηÞ and βðkL; ηÞ as a function of
the scale factor for various wave numbers of GWs (the left
panels) and as a function of the wave number of GWs at
various redshifts at the right and left panels of Fig. 1,
respectively. To plot these functions, we numerically
integrated Eqs. (3) and (27) without assuming the matter
domination. In the limit of kLη → 0, it is obvious that there
is no physical effect from GWs, i.e., αðη; kLÞ → 0 and
βðη; kLÞ → 0, since GWs are frozen on the super-horizon
scales. On the other hand, taking the limit kLη ≫ 1 is more
interesting because in this limit T ðη; kLÞ → 0 but αðη; kLÞ
and βðη; kLÞ do not vanish. In other words, even long after
GWs have decayed away, their impact on the growth and
displacement remains, which is sometimes called the
“fossil” effect [28].

III. TIDAL SEPARATE UNIVERSE
WITH GRAVITATIONAL WAVES

In this section, we describe how to incorporate long-
wavelength GWs into the simulation background with the
help of the tidal separate universe simulation technique
developed in Ref. [45] (see also Refs. [43,44]). We focus on

differences arising from GWs and refer the readers to
Ref. [45] about the details of the implementation. In this
section we do not employ Einstein’s summation convention
to avoid confusions.

A. Anisotropic background

In the tidal separate universe simulation we introduce
anisotropic scale factors by absorbing the long-wavelength
tidal perturbations into the background. In general, reflect-
ing that the tidal perturbations are expressed by the 3 × 3
symmetric matrix τij the anisotropic scale factors are also
written by the 3 × 3 symmetric matrix aij, which relates the
physical coordinate ri to the comoving coordinate xi as
ri ¼

P
j aijxj. However, we can always rotate the simu-

lation coordinates to align with the eigenvectors of τij,
leaving only the diagonal components nonzero so that τij ¼
τiδ

K
ij and aij ¼ aiδKij. Now we have different scale factors

for each axis and characterize these differences by Δi
defined via

ai ¼ að1þ ΔiÞ; ð32Þ

with a being the global scale factor. While the equation of
motion remains the same as in Sec. II B, now we want to
absorb the long-wavelength effective tidal potential
induced by GWs into the background potential so that

Φ¼Φisoþ
1

2

X
i

τix2i ¼
2

3
πGρ̄mr2−

Λ
6
r2þ 1

2

X
i

τix2i : ð33Þ

The background and peculiar equations in an anisotropic
background become

1

a2
½a00i −Ha0i�xi ¼ −

1

ai

∂

∂xi
Φ; ð34Þ

1

a2
½aix00i þ 2a0ix

0
i −Haixi� ¼ −

1

ai

∂

∂xi
ϕs: ð35Þ

Subtracting the isotropic background, which is determined
by Eq. (14), from Eq. (34) and linearizing it in Δi we find

Δ00
i ðη; kLÞ þHΔ0

iðη; kLÞ ¼
1

2
a−1ðηÞ½aðηÞh0iðη; kLÞ�0: ð36Þ

Note that anisotropic scale factors depend on the wave
number of GWs as a consequence of the wave number
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dependence of the transfer function of GWs, T ðη; kLÞ,
while they do not for the case of scalar large-scale tidal field
where the linear growth of scalar perturbations is indepen-
dent of their wave numbers, as characterized by DðηÞ. Note
also that the source term for the anisotropic scale factors on
the right-hand side is nonzero only when h0iðη; kLÞ does not
vanish; in other words long-wavelength GWs induces the
anisotropic scale factors only after GWs enters the horizon
as expected. In fact, integrating Eq. (36) twice yields

Δiðη; kLÞ ¼
hinii ðkLÞ

2
½T ðη; kLÞ − 1� ¼ −hinii ðkLÞβðη; kLÞ;

ð37Þ

which goes to zero when η → 0 because limη→0

T ðη; kLÞ ¼ 1.
The appearance of the function βðη; kLÞ defined in

Eq. (20) is expected and this result can be understood in
a more intuitive way. What is specifically done in the
separate universe construction is to absorb the displacement
caused by the long-wavelength perturbation into the back-
ground expansion while keeping the physical distance
unchanged. In other words, we introduce the local scale
factor ai to satisfy

aixi ¼ aðxi þ Ψlong
i Þ; ð38Þ

which implies Δixi ¼ Ψlong
i . Given the displacement

caused by long-wavelength GWs in Eq. (20), this immedi-
ately leads to Δiðη; kLÞ ¼ −hinii ðkLÞβðη; kLÞ.
We note that this matching only works for the non-

relativistic matter. In other words, the effect of long-wave-
length GWs can be captured by the anisotropic expansion
only when we focus on nonrelativistic particles that do not
care about g0i and gij components in the metric. For
example, the method presented here is not useful in order
to study the impact of long-wavelentgh GWs on the
radiation perturbations. However, this treatment is sufficient
to study the influence on dark matter particles that we
are interested in and consistent with the usual Newtonian
N-body method.

B. Initial conditions

The background anisotropy induces a correction to the
2LPT solution in the isotropic background as discussed in
Ref. [45]. The correction depends on ΔiðηÞ, which is
different for the scalar tidal field and GWs. Here we derive
this correction induced by the background anisotropy
governed by long-wavelength GWs.
The equation for the displacement in the anisotropic

background can be obtained by combining Eq. (35) with
Eq. (13) as

X
ij

���� ∂x
∂q

����½δij þ Ψi;j�−1½Ψ00
i;j þ ðHþ 2Δ0

iÞΨ0
i;j�

¼ 3

2
ΩmH2

����� ∂x
∂q

���� − 1

�
; ð39Þ

where we adopt the notation Ψi;j ≡ ∂
j
qΨi in this subsection.

Taking Δi ¼ 0 results in the usual master equation for the

LPT. We introduce the correction ϵð1Þi of order Oðδð1ÞΔiÞ
with δð1Þ being short-wavelength modes in the simulations:

Ψi ¼ Ψð1Þ
i þ Ψð2Þ

i þ ϵð1Þi ; ð40Þ

where Ψð1Þ
i þ Ψð2Þ

i is the usual 2LPT solution in the
isotropic background. In the following we also introduce

the potentials such that Ψð1Þ
i ¼ −ψ ð1Þ

;i and ϵð1Þi ¼ −ϵð1Þ;i for
the convenience. The equation for ϵð1Þ can be found as

X
i

ϵð1Þ00;ii þH
X
i

ϵð1Þ0;ii −
3

2
ΩmH2

X
i

ϵð1Þ;ii ¼ −2
X
i

Δ0
iψ

ð1Þ0
;ii :

ð41Þ

Going to Fourier space and decomposing ϵð1ÞðkÞ as

ϵð1ÞðkÞ ¼ P
i k̂

2
i ε

ð1Þ
i ðkÞ, this equation can be rewritten as

εð1Þ00i þHεð1Þ0i −
3

2
ΩmH2εð1Þi ¼ −2Δ0

iψ
ð1Þ0: ð42Þ

Notice that εð1Þi is different from ϵð1Þi . We can derive the

matter-dominated solution for εð1Þi for initial-condition
generation. Since Green’s function for this equation is
the same as Eq. (27) the solution is

εð1Þi ðηÞ ¼
Z

η

0

dη̃
1

5

�
η2

η̃
−
η̃4

η3

�
·

�
−2Δ0

iðη̃Þψ ð1Þ0ðη̃Þ
�

¼ −
2

5

ψ ð1ÞðηÞ
DðηÞ

ΔiðηÞ
βðηÞ

Z
η

0

dη̃

�
η2

η̃
−
η̃4

η3

�
·D0ðη̃Þβ0ðη̃Þ

¼ −
4

5
ψ ð1ÞðηÞhinii

�
βðηÞ −

Z
η

0

dη̃

�
η̃

η

�
5

β0ðη̃Þ
�

¼ ψ ð1ÞðηÞhinii αðηÞ; ð43Þ

where we have used DðηÞ ∝ η2 and ΔiðηÞ ¼ hinii βðηÞ and
αðηÞ is introduced in Eq. (29). Thus

ϵð1ÞðηÞ ¼ ψ ð1ÞðηÞαðηÞ
X
i

hinii k̂2i : ð44Þ

This implies that the linear growth function has a direction-
dependent modulation:
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Dðη;kÞ ¼ DðηÞ
�
1þ αðη; kLÞ

X
i

hinii k̂2i

�
; ð45Þ

which is consistent with Eq. (29). Using Eq. (44), the
correction to the velocity can be computed as

ϵð1Þ0i ¼ ðfα þ f1ÞHϵð1Þi ; ð46Þ

with fα ≡ d ln α=d ln a and f1 ≡ d lnD=d ln a. We imple-
ment these modifications in 2LPTIC [58] and generate the
initial conditions at zi ¼ 99.

C. Simulations

We performN-body simulations in the tidal backgrounds
with 10243 particles in 500 Mpc=h boxes. The details of
modifications of the N-body code based on GADGET-2 [18]
in the tidal background is described in Ref. [45]. One
important additional modification to the code was made in
the drift operator, which is discussed in Appendix C.
After rotating τij to align its eigenvectors with the

simulation axis, the remaining degrees of freedom can
be completely characterized by two parameters, which we
can parametrize as τe ≡ −ðτ1 − τ2Þ=2 and τp ¼ −τ3þ
ðτ1 þ τ2Þ=2. Taking into account the transverse condition
of GWs, we cannot consider τp-type tides for the tidal
separate universe with GWs unlike the case of the scalar tidal
field in Ref. [45].3 Hence in this paper we only consider τe-
type tides for the background anisotropy. In other words, we
consider GWs propagating along z direction with þ mode
polarization:

hiniij ¼

0
B@

�ϵ 0 0

0 ∓ ϵ 0

0 0 0

1
CA; ð47Þ

where we choose ϵ ¼ 0.1. Since we aim to measure the
response of large-scale structure to the long-wavelength
GWs, the results should not be dependent on the choice of
the direction of the propagation and the polarization basis.
We estimate the responses to the GWs by evaluating the
numerical differences between the�ϵ cases in the following
sections. The convergence against different choice of ϵ is
investigated in, e.g., Ref. [44] for the scalar tides case, and
for ϵ ¼ 0.1 a possible error on the response can start only at
ϵ3 order, i.e., at subpercent level.
In order to investigate effects of GWs over a wide range

of wave numbers, we run tidal separate universe simula-
tions with various wave numbers of GWs:

kL ¼ f0.0001; 0.0002; 0.0005; 0.001; 0.002; 0.005;
0.01; 0.02; 0.05; 0.1; 0.2g ½h=Mpc�: ð48Þ

These different wave numbers of GWs give rise to the
different time evolution of the local anisotropic scale factors,
through which long-wavelength GWs affect the simulated
small-scale structure formation. Some examples of the time
evolution of Δx are shown in Fig. 2. Given the box size of
500 Mpc=h, some wave numbers are larger than the
fundamental mode in the simulation: kF ¼ 0.013 h=Mpc.
For such larger wave numbers, we cannot neglect the
curvature of the long-wavelength modes and treat GW as
a uniform tidal field over the whole simulation box and the
approximation is violated. Still, these GWs are longer-mode
than the halo formation scale so GW can be seen as a
uniform tide in that local region. Therefore we can study the
impact of GWs on halos, in particular, the response of the
halo shape as discussed in Sec. VI, where we come back to
this issue again.

FIG. 2. Fractional anisotropic scale factor in the x-axis Δxða; kLÞ ¼ axða; kLÞ=a − 1 for various wave numbers of GWs kL as a
function of the scale factor a in the case of hiniij ¼ diagð0.1;−0.1; 0Þ. The vertical dashed line represents the starting redshift zini ¼ 99.

3For the τp-type tides, hiniij should take a form of
diagð�ϵ=2;�ϵ=2;∓ ϵÞ. However, there is no wave vector of
GWs that satisfies the transverse condition of GWs,P

i k
i
Lh

ini
ij ¼ 0.
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For references, we also run fiducial simulations with the
isotropic background, and tidal separate universe simula-
tions induced by the scalar τe-type tidal field. These
reference simulations share the same parameters (including
random seeds) as those used in the GW tidal separate
universe simulations. For each type of simulations (fiducial
and tidal separate universe with GWs and scalar tides), we
run four realizations, amounting to 100 simulations in total.
We use the AHF code [59] to identify dark matter halos

in the simulations by spherical overdensity (SO) regions
200 times as dense as the mean matter density. We need to
identify SO halos in the global coordinates on the isotropic
background, i.e., aixi=a, while AHF by default uses the
local simulation coordinates xi on the anisotropic back-
ground. To this end, we modify the AHF code to rescale the
coordinate correspondingly in distance computations.

IV. ANISOTROPIC POWER SPECTRUM
RESPONSE: TENSOR FOSSILS

IN NONLINEAR REGIME

In this section, as a first example of imprints of GWs on
large-scale structure, we present the anisotropic impact on
the matter auto-, matter-halo cross-, and halo autopower
spectra by long-wavelength GWs measured from our
N-body simulations.

A. Growth-dilation decomposition

As we derived in Sec. II B, long-wavelength GWs leave
the anisotropic imprint in the matter power spectrum in a
given realization of GWs through the nonlinear interaction
of tidal fields. This tidal response consists of two different
contributions as in Eq. (31); the term proportional to α that
modulates the amplitude of the power spectrum and the term
proportional to β that modulates the scales. In terms of the
tidal separate universe introduced in Sec. III A, the former
known as the growth effect describes the changes in the
amplitude of short-mode fluctuations measured in the local
anisotropic background, while the latter known as the
dilation effect stems from the anisotropic expansion of
the local background with respect to the global one.
Specifically, the response of the power spectrum to long-
wavelength GWs can be decomposed as

d lnPG

dhiniij

����
kG

¼ dlnPL

dhiniij

����
kG

¼ ∂ lnPL

∂hiniij

����
kL

þ ∂ lnPL

∂ lnkL;i0

����
hiniij

dlnkL;i0

∂hiniij

����
kG

≡ k̂ik̂j½RGW
growthðk;kLÞþRGW

dilationðk;kLÞ�; ð49Þ

where in the first line the power spectra defined with
respect to the global isotropic background and the local
anisotropic background are denoted by PG and PL,
respectively, and correspondingly the wave numbers by
kG and kL. The physical scale should be unchanged in
these two coordinates, aixL;i ¼ axG;i, which implies

kL;i ¼ kG;ið1þ ΔiÞ. In the first equality we have used
that the variances must be conserved in the coordinate
transformation: PGd3kG ¼ PLd3kL, together with
jd3kL=d3kGj ¼

Q
3
i¼1ð1þ ΔiÞ ¼ 1 at leading order. In

the second line, We relabel both kG and kL as k, since
the responses RGW

growth and RGW
dilation are already first order in

hiniij (orΔi) and hence here we do not need to distinguish kG
and kL. Notice that we distinguish kL from kL; the former
represents the wave number of GWs. Notice also that we
have defined the response with respect to the hini, not
hðzÞ ¼ T ðzÞhini, which allows for simple computations of
observables in terms of the primordial tensor mode
amplitude. Namely the cosmology dependence other than
the initial amplitude of GWs factorizes out in the response
function.
The power spectrum of biased tracers in the presence of

long-wavelength GWs then has a generic form,

PXYðkjhijðkLÞÞ¼PXYðkÞ
�
1þ k̂ik̂jhiniij ðkLÞðRGW

growth;XYðk;kLÞ

þRGW
dilation;XYðk;kLÞÞ

�
; ð50Þ

where X and Y represent tracers being considered. For the
matter autopower spectrum (X ¼ Y ¼ m), this corresponds
to the nonlinear extension of Eq. (31). Wewill also consider
the matter-halo cross-power spectrum (X ¼ m and Y ¼ h)
and the halo autopower spectrum (X ¼ Y ¼ h) below.
Moreover, using these GW power spectrum responses,
we can write down the X-Y-GWs (scalar-scalar-tensor)
bispectrum in squeezed limit as

lim
kL→0

BXYhðλÞ ðk;k0; kLÞ ¼ k̂ik̂jeðλÞij ½RGW
growth;XYðk;kLÞ

þRGW
dilation;XYðk;kLÞ�PXYðkÞPhðλÞ ðkLÞ;

ð51Þ

where we have defined the X − Y-GW bispectrum

via hXðkÞYðk0ÞhðλÞðkLÞi ¼ ð2πÞ3δð3ÞD ðkþ k0 þ kLÞBXYhðλÞ
ðk; k0; kLÞ and neglected the primordial contribution.4

Making use of the growth-dilation decomposition, we
can go a little further than the perturbative result. Because
the dilation effect purely captures the coordinate trans-
formation, using Eq. (37), we can obtain the nonperturba-
tive result as

RGW
dilation;XYðk; kLÞ ¼ βðkLÞ

∂ lnPXYðkÞ
∂ ln k

: ð52Þ

4Although here we have neglected the primordial scalar-scalar-
tensor bispectrum, its contribution to the local observables
appears only at the order of OðkL=kÞ2 and thus is subdominant
for the single-field inflation (see Ref. [60]).
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Eqs. (31) and (52) are different because former perturbative
result involves the linear power spectrum while the latter
involves the nonlinear power spectrum and can be applied
to a nonlinear regime. This means that we can compute the
dilation piece without running simulations even in the
nonlinear regime given the slope of the nonlinear power
spectrum. On the other hand, the growth piece comes from
the dynamical effect where we cannot extend the pertur-
bative result in the nonlinear regime. We thus need to rely
on simulations in order to calibrate the growth response in
the nonlinear regime. Hence, in this paper we focus on
measuring the growth term from the tidal separate universe
simulations with GWs. By comparing the measurement of
the growth term of the matter autopower spectrum in
simulations with the perturbation theory prediction at
quasinonlinear scales, we can validate our methodology
using the relation:

lim
k≪kNL

RGW
growth;mmðk; kLÞ ¼ 2αðkLÞ: ð53Þ

Note that since we assume GWs are long-wavelength
modes compared with scalar perturbations the perturbative
result is valid only for the range of kL ≪ k ≪ kNL.

B. Growth response of the matter autopower spectrum
from simulations

In the presence of GWs of τe-type configuration
[Eq. (47)], the matter autopower spectrum takes a form of

PmmðkjheðkLÞÞ ¼ PmmðkÞ
�
1þ 2

3
RGW
growth;mmðk; kLÞðL2ðk̂1Þ

− L2ðk̂2ÞÞhinie

�
; ð54Þ

where PmmðkÞ is the nonlinear matter power spectrum in
the isotropic background, L2ðxÞ is Legendre polynomial of
order two, k̂1 and k̂2 represent the x and y components of k̂
respectively, and hinie ≡ −ðhini11 − hini22Þ=2 ¼ �ϵ. We can
estimate the growth response by taking the quadrupoles
of the power spectrum along both x and y axes:

Ple¼2
mm ðkjheðkLÞÞ≡ Plx¼2

mm ðkÞ − P
ly¼2
mm ðkÞ ð55Þ

¼ 2PmmðkÞRGW
growth;mmðk; kLÞhinie ; ð56Þ

where Pli¼2
mm ðkÞ (i ¼ fx; yg) are defined as

Plx¼2
XY ðkÞ≡ 5

Z
d2k̂
4π

PXYðkÞL2ðk̂1Þ; ð57Þ

P
ly¼2

XY ðkÞ≡ 5

Z
d2k̂
4π

PXYðkÞL2ðk̂2Þ: ð58Þ

This leads to the estimator for Rgrowth;mmðk; kLÞ as

RGW
growth;mmðk; kLÞ

¼ Ple¼2
mm ðkjhinie ¼ þϵÞ − Ple¼2

mm ðkjhinie ¼ −ϵÞ
4ϵPmmðkÞ

: ð59Þ

Wemeasure the growth response of the matter autopower
spectrum to GWs, RGW

growth;mmðk; kLÞ, from the simulations
which share the same initial random phase to reduce the
sample variance. Since RGW

growth;mm depends on the wave
numbers of the shote-mode, k, and of GWs, kL, as well as
redshift z, it is hard to show all the dependences in one
figure. Thus, let us start by showing the measured growth
response as a function of k for various kL at z ¼ 0.5 and
z ¼ 2 in the upper- and lower-left panels of Fig. 3,
respectively. We then show it for kL ¼ 0.0002 h=Mpc
and kL ¼ 0.001 h=Mpc at various redshifts in the upper-
and lower-right panels, respectively. In each panel, the
corresponding perturbation theory predictions, Eq. (53), are
shown in the dashed lines. First, one can see the excellent
agreement between the measured and predicted growth
responses on large scales for all kL, which verifies that our
methodology to incorporate GWs in simulations works
correctly. Second, the measured response deviates from the
perturbation prediction on nonlinear scales, in particular for
larger kL. Although the way it deviates depends on kL, the
overall trend is similar among different kL values; (i) at the
smallest scales (k≳ 2 h=Mpc) the growth response
decreases for all kL and redshifts. (ii) At earlier redshift,
the growth response is slightly enhanced compared to the
perturbation theory while at lower redshift it is largely
suppressed. Third, the redshift dependence of the growth
response is clearer as shown in the right panels. The
agreement between the perturbation theory and the simu-
lation becomes worse at lower redshifts. At z ¼ 2 these two
are in good agreement up to k ∼ 0.2 h=Mpc, while at z ¼ 0
the simulation results start to differ from the perturbation
theory around k ∼ 0.04 h=Mpc.
These tendencies we found for the tensor mode above are

actually very similar to those for the case of the scalar tidal
field which had been extensively studied (see Appendix B
and Refs. [43–45] for details). Given the similarity of the
behavior of the growth response on nonlinear scales
between the scalar and tensor cases, it is natural to ask
how similar are these two quantitatively. Let us finish this
subsection by answering this question. For this purpose, we
consider a “rescaled growth response” to the scalar tides,
7
4
αðη; kLÞRscalar

growth;mmðkÞ, where the scalar tidal response

Rscalar
growth;mmðkÞ is introduced in Eq. (B6) in Appendix B.

Since Rscalar
growth;mmðkÞ approaches 8=7 at the large-scale limit

[see Eq. (B5)], this scalar tidal response matches the tensor
tidal response in the large scale limit [Eq. (53)],
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lim
k→0

7

4
αðη; kLÞRscalar

growth;mmðkÞ ¼ 2αðη; kLÞ: ð60Þ

In Fig. 4 we compare this “rescaled growth response” to
the scalar tides with the measured tensor tidal response on
nonlinear scales as a function of kL for various redshifts.
The upper and lower panels show the results for
k ¼ 0.376 h=Mpc and k ¼ 0.881 h=Mpc, respectively.
Overall, the rescaled response to the scalar tides captures
the general feature of the growth response to GWs on
nonlinear scales. Such agreement can be seen for both the
two wave numbers at all the redshifts when kL ≲ 10−3

h=Mpc. On the other hand, for kL ≳ 10−3 h=Mpc the
response to GWs has greater values than the rescaled
response, except for some kL at z ¼ 0. This difference gets
larger at higher redshifts and larger k. These can be attributed
to the different time evolution of the anisotropic scale factors
in the scalar tide and GWs cases. The anisotropic scalar
factor induced by the scalar tidal field grows monotonically
in time, following the linear growth rate DðηÞ at leading
order, Δscalar

i ðηÞ ∝ DðηÞ [Eq. (B4)], whereas that induced by
GWs has the time dependence described by βðη; kLÞ, which
is generally monotonous in time for kL ≲ 10−3 h=Mpc
while not so for kL ≳ 10−3 h=Mpc (see Fig. 2). Specifi-
cally, for kL ≳ 10−3 h=Mpc the anisotropic scale factors
from GWs reach their asymptotic value at early redshift,

when the anisotropic scale factors from scalar tides are still
tiny, which causes the tidal response to be stronger in
these kL.

C. Growth responses of the halo-matter cross- and halo
autopower spectra from simulations

The halo-matter cross- and halo autopower spectra in a
local region are also affected by GWs. The growth
responses of these power spectra to GWs can be estimated
from the simulations in the same way as the matter
autopower spectrum,

RGW
growth;XYðk;kLÞ¼

Ple¼2
XY ðkjhinie ¼þϵÞ−Ple¼2

XY ðkjhinie ¼−ϵÞ
4ϵPXYðkÞ

;

ð61Þ
with XY ∈ fhm; hhg.
In Fig. 5 we show the growth response of the halo-matter

cross-power spectrum to GWs as a function of the wave
number of the short modes. The left and middle panels focus
on the fixed halo mass (1012M⊙=h < Mvir < 1012.5M⊙=h),
and compares the growth responses for various wave
numbers of GWs at z ¼ 0.5 in the left panel and various
redshifts at kL ¼ 0.001 h=Mpc in the middle panel. As
for the kL-dependence, the response tends to be greater
for larger kL, similar to the case of the matter auto response.

FIG. 3. Growth response of matter autopower spectrum to GWs, RGW
growthðkL; kÞ, as a function of the short-wave number k at various

wave numbers of GWs (left) and various redshifts (right), measured from the simulations. The top-left and bottom-left panels show the
responses at z ¼ 0.5 z ¼ 2, respectively. The top-right and bottom-right panels show the responses at kL ¼ 0.0002 h=Mpc and
kL ¼ 0.001 h=Mpc, respectively. The dashed lines with each different color represent the predictions from the perturbation theory at
each wave number and redshift.
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On the other hand, the redshift dependence is slightly
different from the matter auto case. For the halo-matter
cross-power spectrum, the growth response at late redshifts
(z ¼ 0 and z ¼ 0.5) gets slightly enhanced compared to
the linear regime and persists up to k≲ 1 h=Mpc, whereas
the matter auto response starts to decrease around
k ≃ 0.1 h=Mpc. This can be clearly seen in the right panel
of Fig. 5, which directly compares the growth response
of the matter auto power-spectrum to that of the halo-
matter cross-power spectrum with various halo masses at
z ¼ 0.5 and kL ¼ 0.001 h=Mpc. First, it turns out that the

scale-dependence (k-dependence) of the growth response
varies with the halo mass. The enhancement of the growth
response around k ≃ 1 h=Mpc is greater for less massive
halos. This is mainly due to the normalization. Here we
define the response with respect to the halo-matter cross-
power spectrum in the fiducial simulation. However if we
define the response with respect to the matter autopower
spectrum, the response of more massive halos gets more
amplified in the nonlinear regime. Second, the difference of
the responses between the matter auto and halo-matter cross
cases stems from the halo biases. In particular at largest

FIG. 5. Growth response of the halo-matter cross-power spectrum to GWs, RGW;hm
growth ðkL; kÞ, as a function of k for various kL (left),

various redshifts (center), and various halo masses (right), measured from the simulations. The blue dotted line in the right panel shows
the growth response of the matter autopower spectrum.

FIG. 4. Growth response of matter autopower spectrum to GWs, RGW
growthðkL; kÞ, as a function of the wave number of GWs kL at z ¼ 2,

1, 0.5, and 0 (from the left to the right), measured from the simulations. The upper and lower rows show the results for different k,
k ¼ 0.376 h=Mpc and k ¼ 0.881 h=Mpc, respectively. The orange line depicts the “rescaled growth response” to the scalar tides,
7
4
αðkLÞRscalar

growthðkÞ with Rscalar
growthðkÞ measured from the tidal separate universe simulations with the scalar tides.
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scales it should be explained by the halo tidal bias induced
by GWs, which we investigate in the next section.
Next, let us focus on the growth response of the halo

autopower spectrum. To obtain it, for the denominator of
Eq. (61) we use measurements of the halo autopower
spectrum with and without the shot noise contribution. For
the latter, the shot noise contribution is subtracted assuming
the Poisson distribution, 1=n̄h. The upper and lower rows of
Fig. 6 show the resulting response of the halo autopower
spectrum as a function of k with and without the shot noise,
respectively. As with Fig. 5, the left and middle columns
show the responses with the fixed mass range 1012M⊙=h <
Mvir < 1012.5M⊙=h for various wave number of GWs at
z ¼ 0.5 and for kL ¼ 0.001 h=Mpc at various redshifts,
respectively, while the right columns show the result with
various halo masses for kL ¼ 0.001 h=Mpc at z ¼ 0.5.
Overall, the kL, redshift, and halo mass dependencies of the
responses for the halo auto spectra both with and without
the shot noise are similar to that for the halo-matter cross
spectrum. In the upper set of Fig. 6, the responses approach
zero on small scales where the halo autopower spectra are
dominated by shot noises. On the contrary, the peaky
features around k ∼ 2 h=Mpc in the lower set reflects the
non-Poissonian behavior of the halo shot noise due to,
e.g., the exclusion effect [61–63]. Therefore, the simple
Poissonian shot-noise removal leads to zero-crossing or
negative, unphysical halo autopower spectrum on small

scales, making the responses peaky. Nonetheless, up to
k ∼ 0.5 h=Mpc, where the shot noise contribution is still
small, the responses are not suppressed unlike the matter
auto case. These trends seen in the response of the halo-
matter cross- and halo autopower spectra are the same as
those in the scalar tidal field case (see Appendix B).

V. HALO TIDAL BIAS INDUCED BY GWs

As discussed in the previous section, the long-wavelength
GWs can affect the halo density field. In the perturbative
regime, this effect should be characterized in terms of the
halo bias. When only scalar perturbations are considered,
which is the standard setup, the halo density field can be
expanded up to the second order as

δh ¼ b1δþ
1

2
b2δ2 þ bs2s

2; ð62Þ

where s2 ¼ sijsij with sij ≡ ð∂i∂j=∂2 − δKij=3Þδ. Here bs2 is
called the tidal bias that captures the effect of the tidal fields
on the halo density field. Since long-wavelength GWs are
locally indistinguishable from tidal fields induced by the
scalar perturbations, it is natural to expect that there is a tidal
bias induced by GWs as well. Then, at the linear order of
GWs, the halo density field should acquire the following
contribution from GWs,

FIG. 6. Similar to Fig. 5 but the growth response of the halo autopower spectrum to GWs, RGW;hh
growth ðkL; kÞ as a function of k for various

kL (left), various redshifts (center), and various halo masses (right), measured from the simulations. The upper and lower sets show the
results normalized by the halo autopower spectrum with and without a shot noise, respectively. For the latter, the shot noise contribution
is subtracted assuming the Poisson distribution. In the lower-right panel, we do not show the result for the mass bin, 1014M⊙=h <
Mvir < 1014.5M⊙=h because it is too noisy.
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δð2Þh ðηÞ ⊃ bGW
s2

ðη; kLÞsijðηÞhiniij ðkLÞ; ð63Þ

where bGW
s2

is the tidal bias coefficient induced by the
coupling between tidal fields induced by GWs and scalar
density perturbations. Note that we define bGW

s2
with respect

to the GWs at the initial epoch instead of the same time,
unlike the biases defined with respect to the scalar pertur-
bations. Because the GWs are additional degrees of freedom
to the scalar adiabatic perturbations, we expect the tidal bias
to depend on the wave number of GWs. Collecting the
second order pieces in the matter density field and halo
density field, we find the tree-level halo-matter-GWs
bispectrum in the squeezed limit as

lim
kL→0

BhmhðλÞ ðk;k0;kLÞ¼ k̂ik̂jeðλÞij ½2b1αðη;kLÞ

þ2bGWs2 ðη;kLÞ�PlinðkÞPhðλÞ ðkLÞ; ð64Þ

where we have omitted the dilation piece. This implies that
the local halo-matter power spectrum in the presence of
long-wavelength GWs is

PhmðkjhijðkLÞÞ ¼ ½b1 þ ½2b1αðη; kLÞ þ 2bGW
s2

ðη; kLÞ�
× kikjhiniij �PlinðkÞ: ð65Þ

Thus, we can estimate bGW
s2

from the growth response of the
halo-matter power spectrum to GWs, which is presented in
the previous section. Although there are several ways to
estimate bGWs2 from the growth response of the halo-matter
power spectrum, we use the following way to reduce the
uncertainty of b1 and the sample variance. We first define
the local linear bias estimator as a ratio of the halo-matter
and matter autopower spectra including the quadrupoles
measured in the simulations with GWs,

b̂
lx;y
1 ðk;�ϵÞ≡ Pl¼0

hm ðk;�ϵÞ þ P
lx;y¼2

hm ðk;�ϵÞ
Pl¼0
mm ðk;�ϵÞ þ P

lx;y¼2
mm ðk;�ϵÞ

¼ b1 � ð2b1αðη; kLÞ þ 2bGW
s2

Þϵ
1� 2αðη; kLÞϵ

≃ b̃1ðkÞ � 2b̃GWs2 ðkÞϵ; ð66Þ

Therefore using this local linear bias, the estimator for bGW
s2

is now

b̃GWs2 ðkÞ ¼ 1

2

�
b̂lx1 ðk;þϵÞ − b̂lx1 ðk;−ϵÞ

4ϵ

þ b̂
ly
1 ðk;þϵÞ − b̂

ly

1 ðk;−ϵÞ
4ϵ

�
: ð67Þ

We estimate bGW
s2

utilizing the χ2 statistic, defined as

χ2 ¼ Pkmax
k¼kmin

½bGW
s2

− b̃GWs2 ðkÞ�2=σ2bGW
s2
ðkÞ, where σ2bGW

s2
ðkÞ is

the variance of b̃GWs2 ðkÞ at each k-bin measured from
simulations. Adopting kmax ¼ 0.08 h=Mpc, we obtain the
best-fitting value of bGW

s2
and its uncertainty by minimizing

χ2. We restrict the measurement of bGW
s2

to a range of kL ≤
0.002 h=Mpc because we rely on the perturbative results,
which are valid only when kL ≪ k. The resultant reduced χ2

values range from 1.05 to 1.36 depending on kL, halo
masses, and redshifts, implying that the fitting is robust.
Figure 7 shows the tidal bias from GWs determined in

this way as a function of halo mass. In the left panel we plot
the result for various wave numbers of GWs at z ¼ 0.5, and
in the right panel we plot the result for various redshifts at
kL ¼ 0.001 h=Mpc. Regardless of the wave number of
GWs and redshift, more massive halos have greater
absolute values of bGWs2 , which has the same trend as the
usual tidal bias induced by the scalar tidal fields. In addition
to the mass dependence, the redshift dependence is also
similar to the scalar tidal bias case; the absolute value of the
tidal bias is larger at higher redshift. On the other hand, in

FIG. 7. Halo tidal bias induced by GWs as a function of halo mass for various wave number of GWs at z ¼ 0.5 (the left panel) and at
various redshifts for kL ¼ 0.001 h=Mpc (the right panel).
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contrast to the case of the scalar tidal bias, the tidal bias
from GWs has a particular wave number dependence as
shown in the left panel of Fig. 7. This wave number-
dependence (or scale-dependence) inherits from the wave
number-dependent transfer function of GWs while the
growth function for the scalar density fluctuations is
independent of the wave number [Eq. (21)]. To look at
this scale dependence in more detail, Fig. 8 displays bGW

s2
as

a function of kL for several redshifts and halo masses. We
compare the measurements with the following ansatz:

bGW
s2

ðη; kLÞ ¼
7

4
αðη; kLÞbscalars2 ðηÞ; ð68Þ

where bscalars2 is the tidal bias induced by the scalar tides,
introduced in Eq. (62) (see also Appendix B). This ansatz is
motivated by the fact that (i) the tidal bias term stems from
the coupling of tidal fields, which is given by sijðzÞsijðzÞ
for the scalar tide case (bscalars2 ) while sijðzÞhiniij for the tensor
tide case (bGW

s2
), and (ii) the second-order matter density

induced by tidal fields is 4
7
sijðzÞsijðzÞ for the scalar tides

case while αðz; kLÞsijðzÞhiniij ðkLÞ for the tensor tides case.
Despite the large error bars, overall the measurements are
well approximated by this ansatz. This result implies that
we may not need to introduce a new free bias parameter for

GWs at leading order once bscalars2 is known, though we note
that further investigation is needed to verify this ansatz.

VI. INTRINSIC ALIGNMENTS INDUCED BY GWs

As we discussed so far, the tidal fields contribute to the
density field only at the second order because tidal fields are
a tensor while density fields are a scalar. Conversely, the tidal
fields should contribute to tensor quantities at linear order.
One well-known observable of tensor quantities in large-
scale structure is the intrinsic alignments of halo (or galaxy)
shapes [64,65]. The deviation of the halo intrinsic shape
from sphere is characterized by ellipticity at the lowest order.
In other words, the halo shape can be described by the trace-
free rank-2 tensor in three-dimensional space, γij.
The linear alignment model of the intrinsic alignment

relates the halo shape with the tidal field as follows:

γijðηÞ ¼ bscalarK ðηÞsijðηÞ; ð69Þ

where bscalarK is the linear alignment coefficient or the linear
shape bias, which captures the sensitivity or the response of
halo or galaxy shape to the tidal field. Because long-
wavelength GWs are locally equivalent to the tidal field, we
naturally expect that the halo shapes are also aligned by
GWs, namely

FIG. 8. Upper panels: halo tidal bias induced by GWs as a function of wave number of GWs with halo mass of
1013M⊙=h < Mvir < 1013.5M⊙=h. Lower panels: same as upper panels but with halo mass of 1014M⊙=h < Mvir < 1014.5M⊙=h.
From the left to right, we show the results at z ¼ 1, 0.5, and 0. The blue points with error bars are the measurement from the simulations.
The orange line represents the ansatz bGW

s2
ðkL;MÞ ¼ 7

4
bscalars2 ðMÞαðkLÞ with the shaded region being the error coming from bscalars2 ðMÞ.
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γijðη; kLÞ ¼ bGWK ðη; kLÞhiniij ðkLÞ; ð70Þ

where we have introduced the linear shape bias bGWK for
GWs, in analogy with the tidal bias, bscalarK . While bscalarK is
defined as a response of the halo shape with respect to the
scalar tidal field at the same time, bscalarK is defined as that
with respect to GWs at the initial time when the GWs are
frozen, as in the tidal bias case.
The linear shape bias introduced above can be efficiently

measured in the tidal separate universe simulation [43,45],
as the linear halo bias can be obtained precisely in the
isotropic separate universe simulation [40–42]. In this
paper, we define the halo shape by its reduced inertia
tensor,5

Jij ¼
XNp

n¼1

xn;ixn;j
x2n

; ð71Þ

where Np is the number of particles in the halo and xn;i is
the ith component of the particle location with respect to
the halo center. Note that here x represents the distance
measured in the isotropic background, i.e., the physical
coordinates. As γij is regarded as the trace-free part of Jij,
the linear alignment model states that this halo shape can be
written as

Jij ¼ J0

�
1

3
δKij þ γij

�
¼ J0

�
1

3
δKij þ bKKij

�
; ð72Þ

where J0 is the normalization, for which we use the
trace part of Jij: J0 ¼ Tr½Jij�, and Kij is the tidal field of
either sij or hiniij . Therefore, we can measure bK as a
response of the one-point function of the ellipticity to
the tidal field. Specifically, given that we consider
τe-type tides, Kij ∝ diagð�ϵ;∓ ϵ; 0Þ, Eq. (72) reduces
to Jij ¼ J0½diagð1; 1; 1Þ=3þ bKdiagð�ϵ;∓ ϵ; 0Þ�. Hence,
introducing the following quantity

Je ≡ J11 − J22
2

; ð73Þ

bK can be obtained as

bKðM; zÞ ¼ JeðM; zjKini
e ¼ þϵÞ − JeðM; zjKini

e ¼ −ϵÞ
2ϵJ0ðM; zÞ ;

ð74Þ

where Kini
e ¼ hinie ¼ ðhini11 − hini22Þ=2 for the tensor tides and

Kini
e ¼ ðs11ðzÞ − s22ðzÞÞ=2 for the scalar tides.
Fig. 9 shows bGWK as a function of halo mass for various

wave numbers of GWs at z ¼ 0.5 (the left panel) and for
kL ¼ 0.001 h=Mpc at various redshifts (the right panel).
First, we find that GWs influence the halo shape, implying
that indeed intrinsic alignments can be induced by GWs.
Compared with the measurement of bGW

s2
, the measurement

of bGWK has much greater signal-to-noise ratio as we use the
one-point function to measure bGWK while bGWs2 is measured
from the large-scale limit of the power spectrum responses.
Second, the halo-mass and redshift dependences of bGWK are
similar to those of bscalarK ; that is, massive halos tend to more
strongly align with GWs and the strength of the alignment
at fixed halo mass decreases as the redshift gets smaller

FIG. 9. Linear shape bias induced by GWs as a function of halo mass. The left and right panels show bGWK for various wave number of
GWs at z ¼ 0.5 and for various redshifts at kL ¼ 0.001 h=Mpc, respectively.

5We studied the dependence of bK on the different choice of
the halo shape definition (in particular, for the nonreduced inertia
tensor where Jij ≡PNp

n¼1 xn;ixn;j) in Ref. [45] for the scalar tidal
field case. We found that although the values of bK are dependent
on the shape definition, its qualitative features, such as the mass
and redshift dependence and the environmental dependence,
remain the same. In addition, the different shape definition
results in the different shape noise as well, implying that the
S=N is only weakly dependent on the shape definitions. Thus we
expect the different shape definition leads to the similar results for
the GWs case as well.
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(see Fig. 16 and Ref. [45] for details).6 Third, the unique
feature in the case of GWs is that bGWK is wave number-
dependent (or scale-dependent), as in the cases with the
power spectrum response and the halo tidal bias. Figure 10
plots bGWK as a function of the wave number of GWs for the
halos with 1013.5M⊙=h < Mvir < 1014M⊙=h at z ¼ 2, 1,
0.5, 0 to directly demonstrate this scale dependence. The
scale dependence is clearly seen because of the high S=N.
In Fig. 10 we compare the measurements with the

following ansatz for the intrinsic alignment from GWs [30],7

bGWK ðη; kLÞ ¼
7

4
αðη; kLÞbscalarK ðηÞ: ð75Þ

It is natural to assume that the halo shape is determined by
the local tidal environment around the halo, which is
affected by long-wavelength tidal field via nonlinear
mode-coupling. The influence of the long-wavelength tides
on the small-scalar tides is captured by the response
function that is discussed in Sec. IV. In particular, in
Fig. 4 we examine the relation between the response
function to the scalar tides and GWs and find that
RGW
growth;mmðk; kLÞ ¼ 7

4
αðη; kLÞRscalar

growth;mmðkÞ is a good appro-
ximation even in the nonlinear regime. As these responses
serve as the amplitude of the small-scale tides induced by
the large-scale tides, we expect that γscalarij ∝ Rscalar

growth;mmsij

and γGWij ∝ RGW
growth;mmh

ini
ij , leading to the above ansatz. The

ansatz of Eq. (75) is shown by the orange lines in Fig. 10.
Remarkably, the measurements are well explained by this
prediction for all the redshifts. Figure 11 investigates if this
agreement holds for all halo mass by displaying the ratio of
the linear shape biases, bGWK =bscalarK , which is equal to 7

4
α in

the ansatz regardless of halo mass. It turns out that the trend
seen in Fig. 10 remains the same for all halo masses. One
important point that follows from this agreement is that the
process to determine the halo shape is not local in time.
For, if the halo shape responds to the tidal field locally in
time, meaning that the halo shape is related to the instanta-
neous tides: γscalarij ðηÞ ∝ sijðηÞ and γGWij ðηÞ ∝ τijðηÞ, we
expect bGWK ðηÞ ¼ bscalarK ðηÞTðη; kLÞ=aðηÞ with T defined
in Eq. (10); however this is not the case.
Let us finish this section by considering possible reasons

that cause the difference between the measurements
and the ansatz. First, the deviation is also observed around
kL ∼ 10−3 h=Mpc at z ¼ 0. This might be inherited from
the large difference in the response functions to the scalar
and tensor tides shown in the upper row of Fig. 4, which
implies that relatively large-scale tides are more respon-
sible for halo shapes than halo-scale tides. Second, the
deviation of the measurements from the ansatz gets larger
as kL increases. This trend is also consistent with the
responses of the matter power spectrum in Fig. 4. At the
same time, this could be partly because the approximation
we employ in this paper is no longer valid for these large
kL. In other words, GWs with larger-kL cannot be seen as a
uniform tidal field even in the halo formation region, given
that the Lagrangian halo radius RM ¼ ð4πρ̄m=3MvirÞ1=3 is
close to the wavelength of GWs. Specifically, ignoring the
curvature of GWs can leads the corrections to bGWK , which
scales as Oðk2LR2

MÞ. In the case ofMvir ¼ 1.0 × 1013M⊙=h
and kL ¼ 0.1 h=Mpc, for example, the correction is about
ð0.1 · 3Þ2 ∼ 0.1, which cannot be negligible. In order to
accurately study the impact of such GWs, a different
technique is necessary.

FIG. 10. Linear shape bias induced by GWs as a function of the wave number of GWs for the halos with 1013.5M⊙=h < Mvir <
1014M⊙=h. From the left to the right panels we show the results at z ¼ 2, 1, 0.5, and 0, respectively. The orange line depicts the ansatz
introduced in Eq. (75), bGWK ðkL;M; zÞ ¼ 7

4
αðkL; zÞbscalarK ðM; zÞ, and is not a fitting. The orange dashed region corresponds to the 1-σ error

of bscalarK .

6Note, however, that for the tensor case bGWK ðzÞ is defined with
respect to the initial amplitude of GWs and it thus represents the
strength of the alignment with respect to hiniij , while for the scalar
tides case, bscalarK ðzÞ represents the strength of the alignment with
respect to sijðzÞ. Taking this difference into account, however,
does not change the trend of the redshift dependence though,
since sij ∝ D that increases monotonically with time.

7The original ansatz considered in Ref. [30] is bGWK ðη; kLÞ ¼
7
2
αðη; kLÞbscalarK ðηÞ [see their Eq. (74)]. However, the prefactor

should be 7=4 given the factor of two that comes from
exchanging long-mode and short-mode in the second-order
coupling (δð2Þ ¼ 2

7
sijsij → δð2Þ ¼ 4

7
slongij sshortij ).
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We also note that the results for high-kL GWs can be
verified by analyzing the standard N-body simulation with
staring an anisotropic initial power spectrum because the
effect of high-kL GWs is almost encoded in the initial
conditions. As shown in Fig. 2, the anisotropic scale factors
induced by high-kL GWs (kL ≳ 10−2 h=Mpc) reach their
asymptote already at zini and thus their effect in the late time
can be absorbed into the overall time-independent rescaling
of scale factors, implying that it does not have a physical
effect on structure formation. In other words, for high-kL
GWs halos are formed in absence of a large-scale tidal field
but with anisotropic small-scale modes, while for low-kL
GWs halos are formed in an evolving tidal field, in analogy
to the difference in b1 (the response to the large-scale
density field) and bϕ (the response to the change of σ8) in
the density case [37,66]. This study is beyond our paper and
we leave it for future work.

VII. DISCUSSION

In this paper, we have quantified the impact of GWs on
large-scale structure by means of the tidal separate universe
simulation. To the best of our knowledge, this is the first
study for the effect of GWs on nonlinear structure formation
using N-body simulations. We found that GWs indeed
influence nonlinear structure formation in both the cluster-
ing statistics and the intrinsic alignment of halo shapes. Our
main finding is that the impact of GWs on large-scale
structure can be well described by combining the impact of
the scalar tides with the perturbation theory. Specifically, the
halo tidal bias and linear shape bias induced by GWs, bGW

s2

and bGWK respectively, can be approximated by bGWX ðkLÞ ¼
7
4
αðkLÞbscalarX where X ¼ fs2; Kg.
Let us discuss possible observables that could be used to

probe GWs from LSS. As GWs affect halo shapes at linear
order shown in Sec. VI, the simplest probe would be the
shape correlation, namely the intrinsic alignment from
GWs [26,30,67]. Although the shape correlation is pri-
marily affected by the scalar perturbations, we can use the

E=B-decomposition to distinguish the GWs contribution
from the scalar contribution at linear order. Under the flat-
sky approximation and assuming the line-of-sight direc-
tion, n̂, is parallel to the z-axis, we can define E-mode and
B-mode via

Eðk; n̂Þ � iBðk; n̂Þ≡ �2γðk; n̂Þe∓2iϕk ; ð76Þ

where

�2γðk; n̂Þ≡mi∓ðn̂Þmj∓ðn̂ÞγijðkÞ; ð77Þ

with m� ≡ ð1;∓ i; 0Þ= ffiffiffi
2

p
. At linear order, the

scalar perturbations only induce E-mode with vanishing
B-mode [65]. On the other hand, GWs generate both
E-mode and B-mode as

EðkL; n̂Þ ¼ bGWK ðkLÞ
1

8
ð1þ μ2LÞ

X
λ

hðλÞðkLÞ; ð78Þ

BðkL; n̂Þ ¼ −bGWK ðkLÞ
i
2
μL

X
λ

λ

2
hðλÞðkLÞ; ð79Þ

where we have used Eq. (70) and μL ≡ k̂L · n̂. Note that
here we project the halo shapes onto two-dimensional
plane but do not project their position; we can combine
photometric and spectroscopic surveys to get the projected
shapes and their three-dimensional positions [68–71].
Defining the power spectra for E- and B-modes via

hXðkÞY�ðk0Þi≡ ð2πÞ3δð3ÞD ðk − k0ÞPXYðkÞ; ð80Þ

we obtain

FIG. 11. Ratio of the linear shape bias induced by GWs to the one induced by scalar tidal fields as a function of the wave number of
GWs for various halo masses. From the left to the right, we show the results at z ¼ 2, 1, 0.5, 0, respectively. The orange line depicts the
ansatz introduced in Eq. (75), bGWK ðkL;M; zÞ=bscalarK ðM; zÞ ¼ 7

4
αðkL; zÞ, and is not a fitting.
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PEEðkL;μL;zÞ¼
1

64
ð1þμ2LÞ2ðbGWK ðzÞÞ2PhðkLÞ

≃
49

1024
ð1þμ2LÞ2α2ðkL;zÞðbscalarK ðzÞÞ2PhðkLÞ;

ð81Þ

PBBðkL; μL; zÞ ¼
1

4
μ2LðbGWK ðzÞÞ2PhðkLÞ

≃
49

64
μ2Lα

2ðkL; zÞðbscalarK ðzÞÞ2PhðkLÞ; ð82Þ

and PEB ¼ 0 for unpolarized GWs, where we have used
Eq. (75). Considering the chiral GWs, there appears a
nonvanishing EB correlation as

PEBðkL; μ; zÞ ¼
i
16

μLð1þ μ2LÞðbGWK ðzÞÞ2χðkLÞPhðkLÞ

≃ i
49

256
μLð1þ μ2LÞα2ðkL; zÞðbscalarK ðzÞÞ2

× χðkLÞPhðkLÞ; ð83Þ

where χ is defined in Eq. (7). Notice that PhðkLÞ is the
primordial power spectrum of the tensor mode.
In Fig. 12, we plot the lowest order moment of the

multipoles of these spectra at z ¼ 1, i.e., the monopole of the
EE and BB spectra and the dipole of the EB spectrum,
assuming bscalarK ¼ 0.1, r ¼ 0.1, and χðkÞ ¼ 1 as a demon-
stration. On large scales, the suppression comes from the
behavior of αðkLÞ while on small scales the shape obeys a
power-law with PðkLÞ ∝ k−3L because αðkLÞ does not
change much. We also display the shape noise as the dashed
line, assuming σ2γ ¼ 0.2 and n̄g ¼ 5.0 × 10−4 ðh=MpcÞ3.
As is evident, for all cases the shape noise contribution is
much greater than the expected signals, meaning that the

detection of GWs using these spectra is very challenging.
There should also be the contributions of the scalar-mode
both in EE (at linear order) and BB (at one-loop order),
though they are absent in the EB spectrum [67].8 Still, this
sort of probes allows us to put the upper limit on the
amplitude of GWs that are generated after the recombination
or the reionization, which is not constrained by the CMB.
Specifically, we could obtain the 1-σ error on r of order
σðrÞ ∼ 103 at k ∼ 10−3 h=Mpc, implying the total energy
spectrum of GWs, ΩGWðkÞ, could be constrained as
ΩGWðkÞ≲ 10−8 at k ∼ 10−3 h=Mpc from the current galaxy
surveys.
The density-density-shape bispectrum also involves the

GWs contribution. For instance, the tree-level bispectrum
of δh − δh − B in squeezed limit (kL → 0) is found to be

lim
kL→0

iBgrav
hhB ðk; kL; zÞ ¼

1

2
b1ðzÞbGWK ðkL; zÞ

��
2b1ðzÞαðkL; zÞ þ 2bGW

s2
ðkL; zÞ þ b1ðzÞβðkL; zÞ

∂

∂ ln k

�
Plinðk; zÞ

�

× μLk̂
ik̂j

X
λ

λ

2
eðλÞij ðk̂LÞPhðλÞ ðkLÞ ð84Þ

≃
7

8
b1ðzÞbscalarK ðzÞαðkL; zÞ

��
2

�
b1ðzÞ þ

7

4
bscalars2 ðzÞ

�
αðkL; zÞ þ b1ðzÞβðkL; zÞ

∂

∂ ln k

�
Plinðk; zÞ

�

× μLk̂
ik̂j

X
λ

λ

2
eðλÞij ðk̂LÞPhðλÞ ðkLÞ; ð85Þ

where we neglect the contributions from the projection effect [72] and the redshift-space distortion [73]. Notice again that
here PhðλÞ ðkLÞ is the primordial power spectrum and all the redshift dependence is encoded in the bias coefficients

FIG. 12. Shape autopower spectra from GWs at z ¼ 1 assum-
ing r ¼ 0.1. The blue, orange, and green lines show the monopole
of the E-mode auto, the monopole of the B-mode auto, and the
dipole of the EB cross-power spectra, respectively. For the EB
cross power spectrum we also assume a maximally parity-
violating case, i.e., χðkÞ ¼ 1. The blue dashed line depicts the
shape noise.

8Reference [67] argued that the shape noise is absent in the EB power spectrum, making it a cleaner probe of the chiral GWs.
Although this is true at the signal level, the covariance of the EB spectrum includes the EE and BB spectra with the shape noise. Thus
even for the EB power spectrum the detectability is limited by the shape noise.
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[bGWK ðkL; zÞ and bGW
s2

ðkL; zÞ], αðkL; zÞ, and βðkL; zÞ. The
superscript “grav.” emphasizes that this bispectrum is
induced by the gravitational interaction in the late time
universe. In other words, there could be an additional
contribution from the primordial universe, e.g., the scalar-
scalar-tensor non-Gaussianity [74,75]. In principle we can
directly observe the scalar-scalar-tensor non-Gaussianity
by looking at this density-density-shape bispectrum.
Another promising observable to probe GWs from

LSS is the quadrupolar anisotropic imprint in the local
density power spectrum discussed in Secs. IV and V.
One can construct the optimal quadratic estimator for
GWs by using the anisotropic imprint in the local power
spectrum [28,29,76–78]. Our result can be used to increase
kmax of the estimator in this method, allowing for the
improved detectability. As we demonstrated for the first
time how GWs affect the biased tracer, a more realistic
estimator for the biased tracer can be available. Taking the
cross correlation with the CMB would also be valuable to
improve the detectability [79–82]. We leave the detailed
investigations on these possibilities for future work.
Let us conclude by mentioning one potentially signifi-

cant effect of GWs on LSS observables. In this paper, we
focused on the effect of GWs on the cold dark matter
(CDM) perturbations and ignored the effect on the photon-
baryon fluid in the early universe. However, given that the
biased tracers such as galaxies and halos trace the CDM-
baryon perturbation, this could leave a distinctive signature
in LSS observables as well. We will investigate it in
future work.
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APPENDIX A: FROM GLOBAL FLRW
COORDINATES TO LOCAL CFC COORDINATES

Here we outline the mapping from the global perturbed
FLRW metric to the local CFC coordinates. More detailed

discussion can be found in Refs. [30,57,60]. We start from
the perturbed FLRW metric,

ds2 ¼ a2ðηÞ½−ð1þh00ðη;xÞÞdη2þðδKijþhijðη;xÞÞdxidxj�;
ðA1Þ

where we neglect h0i component. The coordinate trans-
formation is given by

x0 ¼ x0F þ 1

2

Z
x0F

0

h00ðη̃Þdη̃þ vixiF −
1

4
h0ijx

i
Fx

j
F; ðA2Þ

xi ¼ xiF þviðx0F − ηFÞ−
1

2
hijx

j
F −

1

4

�
hij;kþhik;j −h;ijk

�
xjFx

k
F;

ðA3Þ

where vi is the coordinate velocity of the central geodesic
and hμν is evaluated along the central geodesics. The CFC
metric can be obtained by using the transformation law of
the metric, gFμνðηF;xFÞ ¼ gαβðη;xÞð∂xα=∂xμFÞð∂xβ=∂xνFÞ,
yielding

gF00 ¼ −a2FðηFÞ
�
1 −

1

2
ðh00;ij þHh0ij þ h00ijÞxiFxjF

�
; ðA4Þ

aFðx0FÞ ¼ a

�
η ¼ ηF þ 1

2

Z
ηF

0

h00ðη̃Þdη̃
�
: ðA5Þ

In Eq. (A4), setting h00 ¼ 0 coincides to the main text
[Eqs. (9)–(10)]. On the other hand, the case where h00 ¼
−2ΦL and hij ¼ 0 corresponds to the usual tidal separate
universe simulation picture (see Appendix B).

APPENDIX B: THE TIDAL RESPONSES
TO THE SCALAR TIDES FROM TIDAL
SEPARATE UNIVERSE SIMULATIONS

In this Appendix, we summarize the tidal responses to
the scalar tidal field. These include not only the tidal
response of the matter autopower spectrum and the linear
shape bias, which are already presented in Refs. [43,45],
but also the tidal responses of halo-matter and halo auto-
power spectra and the halo tidal bias.
First, we sketch the construction of the tidal separate

universe in the scalar tides case, focusing on the difference to
the GWs case, although we refer the reader to Ref. [45] for
details. The difference between the GWs case and scalar-
tides case in the induced tidal field in the local region, τij,
results in the different initial conditions and anisotropic scale
factors. In the scalar-tides case, the induced tides become

τijðηÞ ¼ −
1

2
h00;ij ¼ ΦL;ij ðB1Þ

¼ 1

2
ΩmðηÞH2δLðηÞδKij þ

3

2
ΩmðηÞH2sL;ijðηÞ; ðB2Þ
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where we have used Poisson equation and decomposed into
the trace (large-scale overdensity, δL) and the traceless
(large-scale pure tidal field, sL;ij). The construction of the
tidal separate universe with the scalar tides corresponds to
replacing Eq. (10) with Eq. (B2) and repeating the analysis
in Secs. II B, III A, and III B. Focusing on the pure tidal
mode (sL;ij), the equation that governs the evolution of the
anisotropic scale factors, Δi, is now

Δ00
i ðηÞ þHΔ0

iðηÞ ¼ −
3

2
ΩmðηÞH2sL;iðηÞ; ðB3Þ

whose solution is given by

FIG. 13. Growth response of matter autopower spectrum to the
scalar tides, Rscalar;mm

growth ðkÞ for various redshifts, measured from the
simulations. The blue dashed line corresponds to the perturbation
theory prediction, Rscalar

growth;mm ¼ 8=7 [47].

FIG. 14. Growth responses involving the halo density field as a function of k. In the left panels the responses for various redshifts are
plotted while in the right panels the responses for various halo masses are plotted. The top panels show the response of the halo-matter
cross-power spectrum, Rscalar

hm;growthðkÞ, The middle panels show the response of the halo autopower spectrum, Rscalar
hh;growthðkÞ, normalized by

the halo autopower spectrum with the shot noise, and the bottom panels show the response of the halo autopower spectrum, Rscalar
hh;growthðkÞ,

normalized by the halo autopower spectrum without the shot noise.

GRAVITATIONAL WAVE FOSSILS IN NONLINEAR REGIME: … PHYS. REV. D 107, 063531 (2023)

063531-21



ΔiðηÞ ¼ −sL;iðη0Þ
DðηÞ
Dðη0Þ

: ðB4Þ

The perturbative prediction of the growth response is

lim
k→0

Rscalar
mm;growthðkÞ ¼

8

7
; ðB5Þ

where the response with respect to the scalar tides is defined
through

dlnPG

dsL;ij

����
kG

¼ dlnPL

dsL;ij

����
kG

¼ ∂ lnPL

∂sL;ij

����
kL

þ ∂ lnPL

∂ lnkL;l

����
sL;ij

dlnkL;l
∂sL;ij

����
kG

≡ k̂ik̂j½Rscalar
growthðkÞþRscalar

dilationðkÞ�; ðB6Þ

which is analog to Eq. (49). One important difference of
Eq. (B6) from Eq. (49) is that in Eq. (B6) we define the
response with respect to the scalar tides at the same epoch
rather than the initial epoch. As a result, the perturbative
prediction remains the same for all redshifts. Also note that
these results are independent of the wave number of
long-modes.
Fig. 13 shows the tidal response of the matter autopower

spectrum to the scalar tidal field as a function of k for various
redshifts, measured from tidal separate universe simulation
with the scalar tides. This should be contrasted with Fig. 3 in
the main text. In Fig. 14 we show the tidal responses of the
halo-matter cross-power spectrum (the top panels), the halo
autopower spectrum with and without the short noise (the
middle and the bottom panels respectively) for various
redshifts (the left panels) and for various halo masses (the
right panels). This is analog to Figs. 5–6 in the main text.
The differences of the responses for various redshifts and
halo masses on large scales should be explained by the halo
biases [the combination of b1ðz;MÞ and bscalars2 ðz;MÞ]. The

peaky feature appeared in the halo auto response normalized
by the halo autopower without the shot noise is due to the
non-Poissonian feature of the shot noise term and thus not
physical (see the discussion in the last paragraph in
Sec. IV C).
We measure the halo tidal bias bscalars2 in the same way as

Eqs. (66) and (67) in the main text. The result is presented
in Fig. 15 where the left panel shows bscalars2 at z ¼ 0.5 for
various halo masses and the right panel shows bscalars2 as a
function of b1. We compare the result with the Lagrangian
local-in-matter-density (LLIMD) prediction [66]: bscalars2 ¼
− 2

7
ðb1 − 1Þ, which is plotted as the black-dashed line. In

general the LLIMD prediction fails to capture the behavior
of bscalars2 , in particular at high-mass end, which is con-
sistent with Refs. [83,84].
In Fig. 16 we show the linear shape bias (or the linear

alignment coefficient) induced by the scalar tides, bscalarK ,
[introduced in Eq. (69)] as a function of halo mass for
various redshifts. The estimator for bscalarK used here is the
same as Eq. (74). Figure 16 is a counterpart of Fig. 9.

FIG. 15. Halo tidal bias measured from the halo-matter power spectrum response. Left: the tidal bias as a function of halo mass at
z ¼ 0.5. Right: the tidal bias as a function of the linear bias b1 from various redshifts and halo masses. The black dashed line displays the
Lagrangian local-in-matter-density (LLIMD) prediction: bscalars2 ¼ − 2

7
ðb1 − 1Þ.

FIG. 16. Linear shape bias induced by the scalar tides as a
function of halo mass for various redshifts.
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APPENDIX C: THE MODIFICATION
IN THE DRIFT OPERATOR

In the tidal separate universe simulation, the drift
operator changes from the usual N-body simulation as

xi;nþ1 ¼ xi;n þ
Pi

m

Z
anþ1

an

da
a2iH

≡ xi;n þ
Pi

m
Dexact

i;n ; ðC1Þ

where Pi is the conjugate momenta of xi, i ¼ x, y, z, and n
represents the time step. In the original GADGET-2 code [18],
instead of computing the drift integral in Eq. (C1) at each
time step, first it prepares the following table

Di½j�≡
Z

a½j�

aini

da
a2iH

; ðC2Þ

where 1 ≤ j ≤ Ndrift with Ndrift being the length of the table.
a½j� is the jth scale factor that is sampled equally spaced in
logarithm from aini to a ¼ 1, regardless of the actual time
step. The actual drift integral at each time step is then
evaluated by linearly interpolating this drift table as

Dapprox
i;n ¼

Z
anþ1

aini

da
a2iH

−
Z

an

aini

da
a2iH

≃Di½jþ1�þðanþ1−a½jþ1�ÞðDi½jþ2�−Di½jþ1�Þ
−Di½j�− ðan−a½j�ÞðDi½jþ1�−Di½j�Þ ðC3Þ

with j ¼ bnc.
This prescription works well for a monotonic integrand,

which is the case for the usual cosmological simulation. We
found, however, that this approximation for the drift
operator breaks down for the tidal separate universe
simulation with GWs where the integrand oscillates.
Figure 17 compares the drift factor evaluated by the above
procedure and the direct calculation of the integral in
Eq. (C1). Although the default length of the drift table is
1000 we increased it to Ndrift ¼ 200 000. Even with this
large table, the approximated drift factor fails to capture the
exact result. Therefore we modified the drift operator so
that at each step the drift integral is directly evaluated
without using the drift table or interpolation. This modi-
fication is particularly important for kL ≳ 0.02 h=Mpc
when zini ¼ 99. In fact, without this modification the
results suffers from the artifact.
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