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We baseline with current cosmological observations to forecast the power of the Dark Energy
Spectroscopic Instrument (DESI) in two ways: (1) the gain in constraining power of parameter
combinations in the standard ΛCDM model, and (2) the reconstruction of quintessence models of dark
energy. For the former task we use a recently developed formalism to extract the leading parameter
combinations constrained by different combinations of cosmological survey data. For the latter, we perform
a nonparametric reconstruction of quintessence using the effective field theory of dark energy. Using mock
DESI observations of the Hubble parameter, angular diameter distance, and growth rate, we find that DESI
will provide significant improvements over current datasets on ΛCDM and quintessence constraints.
Including DESI mocks in our ΛCDM analysis improves constraints on Ωm, H0, and σ8 by a factor of two,
where the improvement results almost entirely from the angular diameter distance and growth of structure
measurements. Our quintessence reconstruction suggests that DESI will considerably improve constraints
on a range of quintessence properties, such as the reconstructed potential, scalar field excursion, and the
dark energy equation of state. The angular diameter distance measurements are particularly constraining in
the presence of a non-ΛCDM signal in which the potential cannot be accounted for by shifts inH0 and Ωm.
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I. INTRODUCTION

Observations of the late time accelerated expansion of
the Universe [1,2] have motivated the introduction of a
novel dark energy component to our Universe. A myriad of
theories have been proposed to explain the nature of dark
energy, with a cosmological constant providing the sim-
plest and thus far observationally sound explanation.
Nevertheless, the precise value of the cosmological con-
stant appears to be heavily fine-tuned and is significantly
smaller than expectations from particle physics [3,4]. These
challenges motivate the exploration of alternative dark
energy models, the simplest of which introduce new scalar
degrees of freedom to our Universe.
Quintessence is a dark energy model in which accel-

erated expansion is sourced by a slowly varying canonical

scalar field. Certain quintessence models can avoid the
fine-tuning issues of the cosmological constant via the
existence of tracking solutions [5,6], although many of the
models that possess such tracking solutions are inconsistent
with observations [7]. Recent studies have used a range of
cosmological datasets to place constraints on quintessence
[8–10]; however, on going and upcoming wide-field galaxy
surveys such as the Dark Energy Spectroscopic Instrument
(DESI) [11], the Legacy Survey of Space and Time (LSST)
from the Vera Rubin Observatory [12], Euclid [13], and the
Nancy Grace Roman Space Telescope [14] have the
potential to improve these constraints considerably. One
of the main goals of this work is to forecast this improve-
ment for DESI.
DESI is a Stage IV spectroscopic galaxy and quasar

survey designed to study the nature of dark energy. DESI
will measure the redshifts of approximately 35 million
galaxies and quasars and constrain the expansion rate via
the baryon acoustic oscillations (BAO) and the growth of
structure from the redshift-space distortions (RSD) with an
unprecedented level of precision and redshift coverage [11].
These observables are especially sensitive to the background
evolution and structure growth of the Universe and hence
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DESI is an opportune experiment to test dark energy theories
such as quintessence.
In this work we investigate how DESI observations of

the Hubble parameter, angular diameter distance, and linear
growth rate will improve constraints on ΛCDM and
quintessence. For the former, we utilize recently developed
linear methods [15] to extract the leading parameter
combinations constrained by different combinations of
cosmological survey data. For the latter, we follow the
approach of Park et al. [8] and perform a nonparametric
effective field theory based reconstruction of quintessence
models using a combination of cosmic microwave back-
ground (CMB), large scale structure (LSS), supernova
(SN), and mock DESI datasets. We find that including
mock DESI measurements, particularly of the angular
diameter distance and growth rate, considerably improves
constraints on ΛCDM and quintessence cosmologies rel-
ative to current CMB, LSS, and SN datasets.
This paper is organized as follows. In Sec. II we review

quintessence and its mapping in the effective field theory of
dark energy. In Sec. III we discuss the EFT reconstruction,
model fitting, and analysis methods. In Sec. IV we discuss
our dataset choice and mock DESI observables. We present
our results in Sec. V and conclusions in Sec. VI.

II. QUINTESSENCE RECONSTRUCTION

Quintessence is a dynamical dark energy model con-
sisting of a canonical scalar field with potential energy
VðϕÞ that is minimally coupled to gravity. The quintes-
sence contribution to the action is given by

Sϕ ≡
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
∇μϕ∇μϕ − VðϕÞ

�
: ð1Þ

Combined with the Einstein-Hilbert action and the action
for matter, we can derive the two Friedmann equations for
quintessence, which fully describe the background evolu-
tion of a Friedmann-Lemaître-Robertson-Walker (FLRW)
universe:

3M2
PH

2 ¼
_ϕ2

2
þ VðϕÞa2 þ ρma2;

6M2
P
_H ¼ −2 _ϕ2 þ 2VðϕÞa2 − ðρm þ 3PmÞa2; ð2Þ

whereH ¼ d ln a=dτ; the overdot is derivative with respect
to conformal time; terms with a subscript m are summed
over matter species; and Planck mass is denoted by
M2

P ¼ 1=ð8πGNÞ. The equation of motion for ϕ is given
by the Klein-Gordon equation:

ϕ̈þ 2H _ϕþ a2
∂V
∂ϕ

¼ 0 ð3Þ

which can be derived from Eqs. (2).

Given the properties of matter species and the shape of
VðϕÞ, the history of the background evolution of the
Universe is fully fixed by the boundary conditions of ϕ
and _ϕ. Notice that VðϕÞ with initial conditions ðϕ0; _ϕ0Þ
produces the same evolution history as Vðϕ − δϕÞ with
initial conditions ðϕ0 þ δϕ; _ϕ0Þ. That is, shifting the
potential is degenerate with shifting the initial condition
ϕ0. This symmetry makes it impossible to fully reconstruct
VðϕÞ from a given evolution history.
The effective field theory of dark energy (EFTofDE)

enables us to reconstruct the effects of quintessence on the
background while remaining independent of the specific
shape of VðϕÞ [16–18]. In full generality, the EFTofDE
encapsulates all possible deviations from the ΛCDM back-
ground assuming isotropy and homogeneity of the Universe.
Quintessence is fully described in this framework by two free
functions of time Λ and c, whose Lagrangian is given by:

SΛ;c ≡
Z

d4x
ffiffiffiffiffiffi
−g

p ½ΛðτÞ − cðτÞa2δg00�: ð4Þ

The Friedmann equations of this action are then given by:

3M2
PH

2 ¼ 2ca2 − Λa2 þ ρma2;

6M2
P
_H ¼ −2ðcþ ΛÞa2 − ðρm þ 3PmÞa2; ð5Þ

where cðτÞ can be eliminated from the equations to obtain a
differential equation forH as a function ofΛðzÞ only. This is
consistent with the Lagrangian in Eq. (1) which has only one
nonconstrained free function. Note though that we can
always compute cðzÞ from these equations, should we need
it. Since there is a fiducial constant value for Λ given the
standard ΛCDM cosmology, it is convenient for later
comparisons to consider the free function Λ in terms of
the relative difference to that fiducial constant at any given
moment. That is, we define

ΔΛ
Λ

≡ Λ
3ð1 −ΩmÞM2

PH
2
0

− 1 ð6Þ

for our numerical algorithms and illustrative plots.
One can see in both the action and the Friedmann

equations that in a FLRW background Eqs. (1) and (4)
are equivalent given the mapping:

Λ ¼ 1

2a2
_ϕ2 − VðϕÞ;

c ¼ 1

2a2
_ϕ2: ð7Þ

This means that we can describe the physics of quintes-
sence purely in terms of the EFTofDE. First, the equation of
state for quintessence dark energy is given by:

wDE ≡ PDE

ρDE
≡

1
2a2

_ϕ2 − V
1
2a2

_ϕ2 þ V
¼ Λ

2c − Λ
: ð8Þ
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Since 1
2a2

_ϕ2 > 0, quintessencemodelsmust havewDE ≥ −1.
This is equivalent to saying that c > 0 [19–22].
From wDE and its time derivative, quintessence can be

said to be “thawing” and “freezing” [23–26]. Here the
useful time derivative of wDE is dwDE=d ln a. Thawing is a
scenario where initially ϕ is kept stationary on a potential
slope by the Hubble friction of the early universe. Then in
the late universe the friction decreases and ϕ rolls toward
the minimum, lifting wDE above −1. Freezing is where
initially ϕ is rolling toward the minimum, and the potential
and Hubble friction slow it down near the minimum. wDE
moves toward −1 as time goes in this scenario.
Recently it has been conjectured that dark energy must

be a non-negligibly dynamic scalar field given that a
cosmological constant is yet to be realized with string
theory [27–29]. Quantitatively, these swampland conjec-
tures place restrictions on properties of the potential and
evolution of ϕ such that dark energy is sufficiently distinct
from a cosmological constant. In Planck units, these
bounds for a single field quintessence are

j∇ϕVj=V ≳Oð1Þ or −∇2
ϕV=V ≳Oð1Þ

jΔϕj ≲Oð1Þ: ð9Þ
Roughly, for a positive VðaÞ, the first conjecture says
that the potential must be sufficiently steep or the second
derivative of the potential must be sufficiently negative at
any given time. This rules out a positive cosmological
constant. The second conjecture says that the field excursion
(jΔϕj) must be limited to a radius of around one Planckmass.
See e.g. [30–32] for further discussion. The first step in
computing the quantities relevant to the swampland con-
jectures is determining the value of the potential energy as a
function of time and _ϕ:

VðaÞ ¼ c − Λ; _ϕðaÞ ¼ a
ffiffiffiffiffi
2c

p
: ð10Þ

We assume that in the period of interest, ϕ evolved
monotonically with time. With Λ as a function of
N ¼ lna, we can compute H as a function of N, from
which we can compute c and _ϕ. Note the identity:

dϕ
dN

¼
�
dN
dτ

�
−1 dϕ

dτ
¼

ffiffiffiffiffiffiffiffiffiffi
2ca2

p

H
: ð11Þ

We can then compute the quantities appearing in Eq. (9)

∇ϕV

V
¼ 1

V
dV=dN
dϕ=dN

¼ d lnV
dN

ffiffiffiffiffiffiffiffiffiffi
H2

2ca2

s
;

∇2
ϕV

V
¼ 1

V

�
∂
2
NV

ð∂NϕÞ2
−
ð∂NVÞð∂2NϕÞ

ð∂NϕÞ3
�
;

Δϕ ¼
Z

dϕ ¼
Z

N

0

ffiffiffiffiffiffiffiffiffiffi
2ca2

p

H
dN; ð12Þ

where we chose to defineΔϕwith respect to the present day
(N ¼ 0) since we have full freedom to shift ϕ (and therefore
the freedom to chose an “origin” for ϕ).

III. METHODOLOGY

A. EFT reconstruction

In order to constrain the time-evolution of ΔΛ=Λ with
minimal assumptions about its functional form we follow
the methodology outlined in [33,34] in which one recon-
structs a function of time by imposing a correlation prior on
its temporal variations. The correlation prior enforces the
smoothness of the EFT function and acts as a low pass filter
in order to avoid over fitting noise or systematics.
We reconstruct ΔΛ=Λ in the range a ∈ ½0.1; 1.0� with a

correlation length of Δa ¼ 0.3 following [34]. For a fixed
reconstruction interval and prior correlation length, the
EFT function is represented by a piece-wise quintic spline
passing through a sufficient number of nodes per correla-
tion length. Our reconstruction range consists of three
correlation lengths and we pick 15 spline nodes linearly
spaced between a ¼ 0.1 and a ¼ 1.0, which provides five
spline nodes per correlation length. Adding more spline
nodes would not change our results as the correlation prior
restricts sub-correlation length variations in the recon-
structed function.
Since the correlation prior derived in [34] is only valid for

late times, we restrict our reconstruction such that it recovers
ΛCDM behavior at early times by imposing ΔΛða ¼ 0.1Þ=
Λ ¼ 0. This restriction affects the reconstruction throughout
the first correlation length (a ¼ 0.4), hence we only report
results for later times, i.e. redshift z < 1.5.

B. Model fitting

We analyze our datasets with respect to both ΛCDM and
quintessence cosmologies. In the ΛCDM analysis we vary
the six cosmological parameters of the ΛCDM model
(Ωbh2, Ωch2, As, ns, τ, θs) assuming priors from [35].
We also include all of the recommended nuisance param-
eters and priors to account for systematic effects in the
datasets we consider. We fix the sum of neutrino masses to
the minimal value of 0.06 eV. In the quintessence analysis
we include all parameters from the ΛCDM analysis, as well
as 14 parameters consisting of values ofΔΛ=Λ at the spline
nodes described in Sec. III A with prior given by the
correlation prior.
We use the EFTCAMB and EFTCosmoMC codes to

sample the parameter posterior distributions [18,36].
EFTCAMB and EFTCosmoMC are publicly available
modifications of the Einstein-Boltzmann code CAMB and
Markov Chain Monte Carlo (MCMC) code CosmoMC
that incorporate the EFTofDE. We assess convergence
using the Gelman-Rubin statistic [37] with a tolerance
of R − 1 < 0.02.
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C. Covariant principal component analysis

We use covariant principal component analysis (CPCA)
to quantify the information gain and improvement on
parameter constraints with the addition of mock DESI
data. In this section, we provide an overview of CPCA. For
a more detailed treatment see [15].
We first establish some notation. Consider a model M

with parameters θ, and a measured dataset D. The key
distribution of interest is the posterior, PðθÞ≡ PðθjD;MÞ,
which is defined as the probability distribution of param-
eters given the data and the model. By Bayes theorem the
posterior is given by

PðθjD;MÞ ¼ LðθÞΠðθÞ
E

; ð13Þ

where ΠðθÞ≡ PðθjMÞ is the prior distribution, LðθÞ≡
PðDjθ;MÞ is the likelihood, and E ≡ PðDjMÞ ¼R
LðθÞΠðθÞdθ is the evidence. We let CΠ denote the prior

covariance, CD denote the data covariance, and CpD
denote

the posterior covariance associated with D.
Since we are interested in studying the improvement in

the parameter constraints for a particular model resulting
from adding new datasets, in what follows we consider a
fixed model M, prior Π, and datasets A, B, and their
combination Aþ B. We wish to quantify the improvement
in our constraining power from the addition of dataset B.
This can be phrased as a generalized eigenvalue problem of
the posterior covariances:

C−1pAþB
Ψ ¼ C−1pA

ΨΛ; ð14Þ
where Ψ are the CPCA modes and Λ are the CPCA
eigenvalues. The CPCA modes are the most improved
linear combination of parameters after including dataset B.
The CPCA eigenvalues can be written as λi ¼ σ2pA;i

=
σ2pAþB;i

− 1 and hence quantify the improvement in the
posterior covariance of the ith CPCA mode after including
dataset B. There exists a unique solution to Eq. (14) up to
permutations given the constraints:

ΨTC−1pA
Ψ ¼ I; ð15Þ

ΨTC−1pAþB
Ψ ¼ Λ: ð16Þ

The first constraint indicates that the posterior covariance
conditioned on dataset A establishes the units of our
analysis. The second shows that Λ quantifies the improve-
ment in the posterior covariance after including dataset B.
Note that CPCA modes are consistent across invertible

affine transformations of parameters unlike traditional
principal component analyses (PCA) of covariance matri-
ces. To illustrate, first consider the PCA as an eigenvalue
problem:

C−1Ψ ¼ ΨΛ: ð17Þ

Where C is a covariance matrix and Ψ are the principal
modes. Under affine transformations of parameters θ ↦ Aθ,
covariance matrices transform as C ↦ C0 ≡ ACAT . So, the
eigenvalue problem transform as:

C0−1Φ ¼ ΦΛ; ð18Þ
CA−1Φ ¼ ATΦΛ; ð19Þ

whose solution Φ isn’t necessarily AΨ (unless A is ortho-
normal). That is, affine transformation θ ↦ Aθ does
not transform PCA modes according to the same affine
transformation.
However, Eq. (14) transforms as:

C0−1pAþB
Φ ¼ C0−1pA

ΦΛ; ð20Þ

C−1pAþB
A−1Φ ¼ C−1pA

A−1ΦΛ: ð21Þ

Since A is nonsingular, A−1Φ ¼ Ψ, showing that the CPCA
modes transform affinely with the parameters themselves.
That is, CPCA modes represent the directions in parameter
space with the most improvements in constraint, with no
reference to a particular parameter basis (up to linear
transforms).
We can define the relative contribution of parameter j to

the variance of mode i by

Tij ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CpAþB
Ψ

p Þ2ij
λi

; ð22Þ

where λi ≡ Λii is the ith eigenvalue of the CPCA mode. Tij

has the property that the sum along any row or any column
sums to unity. We refer to this quantity as the improvement
matrix.
To measure the number of constrained CPCA modes

constrained after adding dataset B we compute the number
of effective modes (Neff ) [38] given by

Neff ¼ Nmodes − TrðC−1pA
CpAþB

Þ ¼
XNmodes

i¼1

1 − λ−1i ; ð23Þ

where Nmodes is the total number of CPCA modes. Eq. (23)
shows that larger values of λi correspond to better con-
strained CPCA modes.
We perform the CPCA analysis and all associated

calculations using the TENSIOMETER package.1

D. Kullback-Leibler divergence

We use the Kullback-Leibler (KL) divergence [39] to
measure the improvement in constraints of a specific
parameter as a result of adding a new dataset. The KL
divergence DKL quantifies the degree of similarity between

1Available at https://github.com/mraveri/tensiometer.
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two probability distributions. For posteriors PA and PAþB,
DKL is given by

DKLðPAþBjPAÞ ¼
Z

PAþBðθÞ log
�
PAþBðθÞ
PAθÞ

�
dθ: ð24Þ

Larger values of DKLðPAþBjPAÞ imply greater discrep-
ancy between PAþB and PA. Since we expect that adding to
the dataset could not decrease the constraining power on
parameters of the same model, any differences between the
two posteriors can be understood to be increases in the
constraining power or shifts in the posterior. In particular,
when the two distributions share the same mean, DKL
measures the information gain in going from PA to PAþB.

IV. DATASETS AND MOCKS

A. DESI observables and covariance

We generate mock observations of BAO length scales
along and transverse to the line of sight with respect to rs
(the sound horizon at last scattering), and the growth of
structure. The length scale along the line of sight is
characterized by HðzÞrs and the transverse case is given
by DAðzÞ=rs where the angular diameter distance is

DAðzÞ ¼
c

1þ z

Zz
0

dz0

Hðz0Þ : ð25Þ

The growth of structure is characterized by fσ8ðzÞ where
f ¼ d lnD=dN is the linear growth rate and σ8ðzÞ ¼
σ8DðzÞ is the amplitude of linear matter overdensity
fluctuations on the 8h−1 Mpc scale at redshift z, where
we adopt the convention that σ8 ≡ σ8ðz ¼ 0Þ, hence

fσ8ðzÞ ¼
d lnD
dN

σ8D ¼ σ8
dD
dN

; ð26Þ

and D is the solution to

d2D
dN2

þ
�
2þ 1

H
dH
dN

�
dD
dN

¼ 3Ωm;0

2a3

�
H0

H

�
2

D: ð27Þ

We compute these observables for a fixed set of ΛCDM
parameters and values of ΔΛ=Λ. First we solve for HðzÞ
using Eqs. (7) and (5). We then determine the angular
diameter distance using Eq. (25). Finally, we integrate
Eq. (27) to determine the growth rate, D, and compute the
RSD observable fσ8ðzÞ using Eq. (26). Although BAO and
RSD measurements typically require a fiducial cosmology
[40], we do not include potential biases associated with
assuming an incorrect fiducial cosmology in our forecasts
since we expect such effects to be small for quintessence
models, which only impact the background dynamics.
Should DESI detect signatures of dynamical dark energy,
then a dedicated analysis should be run with measurements
recomputed at the best-fit cosmology.

We calculate HðzÞrs, DAðzÞ=rs, and fσ8ðzÞ in the 18
redshift bins between 0.05 and 1.85 listed in Table 2.3
(baseline survey) and Table 2.5 (Bright Galaxy Survey) of
[11]. We also include the Lyman-α BAO distance mea-
surements of HðzÞrs and DAðzÞ=rs using the 11 redshift
bins between 1.96 and 3.55 listed in Table 2.7 (Ly-α QSO
survey) of [11].
We estimate the covariance of HðzÞrs, DAðzÞ=rs, and

fσ8ðzÞ using the Fisher formalism assuming 14,000 sq.
deg. survey and nonlinear modeling up to maximum wave
number kmax ¼ 0.2h Mpc−1. We verified that our forecast
for the variances is consistent with Tables 2.3–2.8 of [11]
for the same survey parameters. We account for correlations
between HðzÞrs, DAðzÞ=rs and fσ8ðzÞ at fixed redshift
using the method outlined in [41]. Correlations between
HðzÞrs and DAðzÞ=rs are between 40% and 42% across all
redshifts. fσ8ðzÞ has a slight (< 10%) negative correlation
with HðzÞrs and DAðzÞ=rs.

B. Baseline dataset

We perform a baseline analysis of ΛCDM and quintes-
sence using a combination of CMB, BAO, SN, and galaxy
clustering/lensing measurements. The dataset we call the
“baseline dataset” consists of the Planck 2018measurements
of CMB temperature and polarization at small (Planck 18
TTTEEE) and large angular scales (lowlþ lowE) [35,42]
and the CMB lensing potential power spectrum in the
multipole range 40 ≤ l ≤ 400 [43], BAO measurements
from BOSS DR12 [44], SDSS Main Galaxy Sample [45],
and 6dFGS [46], the Pantheon Supernova (SN) sample [47]
consisting of relative distance measurements in the redshift
range z ∈ ½0.01; 2.26�, and the Dark Energy Survey (DES)
Year 1 [48] measurement of large scale galaxy clustering,
lensing, and their cross correlation (3 × 2). This dataset is
chosen in agreement with the “fiducial” dataset analyzed in
[8] and we have verified that our fits to this dataset yield the
same results as [8].
In addition to the baseline dataset, we generate mock

five-year DESI observations of the expansion rate (HðzÞrs),
angular diameter distance (DAðzÞ=rs), and linear growth of
structure (fσ8ðzÞ). As described in Sec. IVA we compute
these observables for the DESI baseline survey, Bright
Galaxy Survey, and Lyman-α forest quasar survey assum-
ing 14 000 sq. deg. of sky coverage and nonlinear modeling
up to kmax ¼ 0.2h Mpc−1. We generate one set of mocks
for a ΛCDM cosmology and one set for a quintessence
cosmology.

C. LCDM mocks

To generate ΛCDM mock DESI observables that are
consistent with the baseline dataset we calculate the DESI
observables as described in Sec. IVA assuming ΔΛ ¼ 0
and with ΛCDM parameters equal to their mean values
obtained from fitting the baseline dataset with ΛCDM. We
list these parameters in Table I. As a check, we computed
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the mocks for the best-fit ΛCDM parameters and found that
they agree with the mocks generated from the mean, as is
expected given the ΛCDM parameter posteriors are well
described by a Gaussian distribution.

D. Quintessence mocks

In order to create mock DESI observables for a
quintessence cosmology we must specify the ΛCDM
parameters and a nonzero ΔΛ=Λ. We assume the same
ΛCDM parameters as those used to generate the ΛCDM
mocks. We select values of ΔΛ=Λ using the EFT
reconstruction of the baseline dataset. We find all samples
in the baseline dataset EFT reconstruction MCMC chain
for which 2 ≤ Δχ2 ≤ 3 (based on the correlation prior)
away from ΔΛ=Λ ¼ 0 corresponding to ΛCDM and
choose a ΔΛ=Λ from this set. Figure 1 shows our
selected ΔΛ=Λ alongside the baseline constraints on
ΔΛ=Λ. Our choice displays slow variation with time
and local minimum, a feature of interest corresponding to
a local minimum in the potential. We compute the
quintessence mock DESI observables as described in
Sec. IVA. By creating our quintessence mock in this
manner, we do not account for potential correlations
between the EFT and ΛCDM parameters, as well as
model dependent biases that can arise in the ΛCDM
parameters when assuming quintessence cosmology. We
discuss these subtleties in Sec. V.

E. Dataset summary and conventions

Our final datasets consist of combinations of the baseline
dataset with our mock DESI observables. We define a
fiducial ΛCDM (Quint.) dataset consisting of the baseline
dataset plus all three ΛCDM (Quint.) DESI observables.
In order to assess the impact of each DESI observable

TABLE I. Mean ΛCDM parameters from the ΛCDM analysis
of the baseline dataset.

Ωbh2 Ωch2 θ τ lnð1010AsÞ ns rs

0.0224 0.1191 1.041 0.0582 3.051 0.9673 147.25

FIG. 1. Selected ΔΛðzÞ=Λ used to generate the quintessence
mock compared with the baseline dataset constraints. The white
line denotes the mean from the baseline reconstruction and the
shaded regions indicate the 68%, 95%, and 99.7% confidence
regions, respectively. The red line indicates the value of ΔΛ=Λ
used to generate the quintessence mocks.

FIG. 2. Mock DESI observations of the expansion rate, angular diameter distance, and redshift space distortions. The black points are
generated assuming ΛCDM cosmology with mean cosmological parameters derived from fitting the baseline dataset. The blue points
are generated assuming a quintessence cosmology with the same ΛCDM parameters as the ΛCDM mock and a nonzero EFT function
ΔΛ=Λ as detailed in Sec. IV D. The horizontal offset between the black and blue points are purely for clarity as the redshift bins are the
same for the two mocks. For reference we also include the BOSS DR12 measurements from [44] in gray. The bottom panel shows
residuals with respect to the ΛCDM cosmology.
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on our cosmological constraints, we also perform our
analysis on datasets of the form baselineþ XΛCDM and
baselineþ XQuint. where X ∈ fHrs;DA=rs; fσ8g. This
results in a total of nine dataset combinations that we
list below:

(i) Baseline ¼ Planck18TTTEEE þ lowlþ lowE þ
CMB lensingþ BOSSDR12BAOþ SDSS MGS BAOþ
6dFGSBAOþ Pantheon SNþ DESY1 3 × 2.
(ii) Fiducial ΛCDM¼BaselineþðHþDAþfσ8ÞΛCDM.
(iii) Fiducial Quint ¼ Baselineþ ðH þDA þ fσ8ÞQuint.
(iv) Baselineþ XΛCDM;X ∈ fH;DA; fσ8g.
(v) Baselineþ XQuint:;X ∈ fH;DA; fσ8g.
We note that the actual DESI observations will not be

completely independent of the BOSS DR12 measurements,
hence including both sets of measurements in an analysis
would not be appropriate. Nevertheless, since we are
interested in quantifying the information gain resulting
from adding DESI data, our datasets include both BOSS
DR12 measurements and DESI mocks.
In Fig. 2 we show our ΛCDM and quintessence mock

DESI observables alongside the BOSS DR12 measure-
ments from the full shape analysis [44]. The bottom panel
shows the residuals of the quintessence mock and BOSS
DR12 results relative to the cosmology used to generate the
ΛCDM mocks. The residuals show that DESI will measure
fσ8ðzÞ with significantly higher precision than BOSS,
hence we expect serious gain in constraints when consid-
ering the fσ8ðzÞ mocks.

V. RESULTS

A. LCDM improvement

In this section we use the methods from Secs. III C and
III D to investigate how the addition of DESI measurements
of the expansion history and linear growth rate improve
constraints on ΛCDM parameters.
In Fig. 3 we show the marginalized posteriors of the six

standard ΛCDM parameters for the baseline dataset, as
well as combinations of the baseline dataset with the mock
DESI ΛCDM datasets. The lower triangle compares the
baseline parameter constraints with the fiducial ΛCDM
dataset in which we include all DESI observables. We find
that including all DESI observables yields significant
improvements in constraints on H0, Ωm, σ8, and τ. We
also note that there is no shift in the posterior mean after
adding our DESI mocks, as is to be expected since the
mocks were generated from the posterior means of the
baseline ΛCDM analysis.
We use the upper triangle to show the marginalized

posteriors from the dataset combinations that include each
DESI observable individually. Including only HðzÞrs
provides very little improvement in our overall parameter
constraints, indicating that our baseline dataset constrains
the Hubble parameter within the forecasted errors of DESI.
On the other hand, adding DAðzÞ=rs improves constraints

on H0 and Ωm and including fσ8ðzÞ improves constraints
on σ8 and τ.
In Fig. 4 we show the fractional improvements in the

posterior after including our mock DESI observations as
defined in Eq. (22). We only show modes for whichffiffiffiffiffiffiffiffiffiffi
λ − 1

p
> 1 which corresponds to an improvement of at

least a factor of two and can be distinguished from noise
induced by estimating the covariance from the MCMC
samples. This cutoff choice is in agreement with the
number of constrained modes, Neff , which is 0.31, 0.84,
1.12, and 1.62 for HðzÞrs, DAðzÞ=rs, fσ8ðzÞ, and fiducial
dataset, respectively. For the fiducial ΛCDM dataset, the
most improved modes are combinations of the parameters
H0 and σ8. The most improved mode of the DESI angular
diameter distance is dominated by H0, as is expected as
DAðzÞ is an integral of HðzÞ. This also suggests that the
improved constraints on Ωm with the addition of DAðzÞ=rs
in Fig. 3 is largely a consequence of the existing degen-
eracy between H0 and Ωm. The best constrained mode of
the fσ8ðzÞ dataset is a combination of σ8 and τ.
We can further understand the relationship between these

modes and the cosmological parameters by projecting the
parameter samples along each CPCA mode and measuring
the correlation coefficient between each projected mode
and the full set of sampled and derived parameters included
in the EFTCosmoMC analysis. In doing so we find that
the first mode of the full DESI analysis is most correlated
with S8 (r ¼ 0.99). The best constrained modes for the
baselineþHðzÞrs, baselineþDAðzÞ=rs, and baselineþ
fσ8ðzÞ analyses are most correlated with H0 (r ¼ −0.9),
hrdrag (r ¼ −0.99), and σ8 (r ¼ 0.99), respectively.
In Fig. 5 we show the KL divergence (DKL) as defined in

Sec. III C for different DESI ΛCDM datasets relative to the
baseline analysis. We compute the KL divergence for each
parameter using their marginalized 1D posteriors, as well as
for all parameters using the full posterior of the six ΛCDM
parameters marginalized over the nuisance parameters.
Note that by construction the ΛCDM mocks agree with
the baseline posterior means; therefore, the KL divergences
measure the improvement in parameter constraints after
adding DESI data.
The top row of Fig. 5 shows that adding HðzÞrs

measurements yields essentially no improvement in our
ΛCDM parameter constraints relative to the baseline data-
set. From the second and third rows we again find that
DESI mock observations of DAðzÞ=rs significantly
improves constraints on H0 and Ωm and adding mocks
of fσ8ðzÞ improves constraints on σ8 and τ. Including RSD
measurements leads to the greatest overall improvement in
ΛCDM parameter constraints, as quantified by both DKL
and Neff . The bottom row of Fig. 5 shows that combining
DESI measurements not only leads to improved constraints
due to the sensitivity of each observable to different ΛCDM
parameters, but also due to the improved constraints on
specific parameters resulting from combining datasets.
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That is, even though HðzÞrs and fσ8ðzÞ provide little
improvement on constraints of H0 and Ωm, the fiducial
dataset yields better constraints on H0 and Ωm than
considering DAðzÞ=rs alone.
Our ΛCDM analysis reveals several details about how

DESI BAO distance scale and growth of structure mea-
surements will build on the cosmological constraints from
previous datasets. First, there is little benefit including
HðzÞrs measurements in our analysis since this is already
well constrained by our baseline dataset. On the contrary,
DESI measurements of DAðzÞ=rs and fσ8ðzÞ lead to
significant improvements over the baseline dataset in
constraints on the ΛCDM parameters, with the most
noticeable gain coming from fσ8ðzÞ. This is a consequence
of the fact that the linear growth rate is relatively uncon-
strained by our baseline dataset and shows the promise of

using structure formation to constrain cosmology with
upcoming galaxy surveys. Finally, we find significant
improvement in cosmological constraints when combining
HðzÞrs, DAðzÞ=rs, and fσ8ðzÞ.

B. Quintessence constraints

We now look into how DESI observations that are
consistent with a ΛCDM cosmology will impact our
EFT-based reconstruction of quintessence. To this end,
we analyze the quintessence reconstruction of combina-
tions of the baseline and mock DESI datasets generated for
a ΛCDM cosmology.
First we consider how including DESI data impacts the

ΛCDM parameter constraints when assuming quintessence
cosmology. In Fig. 6 we show the marginalized posteriors

FIG. 3. Constraints on the six ΛCDM parameters for the ΛCDM analysis for combinations of the baseline and DESI ΛCDM datasets.
The lower triangle shows the results for the baseline and fiducial DESI datasets. The upper triangle shows the results for each of the three
elements of the DESI datasets. Dashed lines indicate the mean parameter values from the baseline dataset, which are also the values used
to generate the DESI ΛCDM datasets.
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of the six ΛCDM parameters inferred from the EFT
reconstruction of the baseline dataset and baselineþ
DESI ΛCDM datasets. Since the dashed lines represent
the mean parameter values from the ΛCDM analysis of
the baseline dataset, any deviations between the black lines
and the baseline dataset constraints from the EFT recon-
struction (light gray) are a result of the assumed cosmology.

Our baseline analysis suggests that assuming quintessence
cosmology leads to lower values of H0 and σ8 and higher
values of Ωm than those found when assuming ΛCDM.
These findings are in agreement with existing literature
showing that uncoupled quintessence cosmologies prefer
lower values of H0 and σ8 than ΛCDM [49–51].
Including DESI mocks draws the posterior means closer

to the values used to generate the mocks, and hence toward
the dashed lines in Fig. 6. Since the cosmological param-
eters are related to the EFT function and the quintessence
potential, constraints on ΛCDM parameters will be inform-
ative when analyzing the constraints on the reconstructed
quintessence properties.
In Fig. 7 we show the constraints on the reconstructed

EFT function ΔΛ=Λ and the reconstructed quintessence
potential VðϕðzÞÞ from the baseline dataset and combina-
tions of the baseline dataset with mock DESI measure-
ments. The left panels compare the constraints from the
baseline and fiducial datasets. Including mock DESI data
significantly reduces the errors on ΔΛ=Λ and brings the
mean value of the EFT function closer to zero, the ΛCDM
limit. The bottom panel shows that the inclusion of DESI
data consistent with a ΛCDM cosmology significantly
improves constraints on the potential. The reconstructed
potential of the fiducial analysis is flatter than that of the
baseline analysis as is consistent with the ΛCDM limit of
quintessence.
The right panels of Fig. 7 shows the constraints on

ΔΛ=Λ and VðϕðzÞÞ after considering each DESI observ-
able individually. Whereas measurements of HðzÞrs and
DAðzÞ=rs provide little improvement on the constraints on
the EFT function, including fσ8ðzÞ significantly constrains
ΔΛ=Λ. On the other hand, constraints on VDE come from
both angular diameter distance and growth rate measure-
ments. Furthermore, the addition of DAðzÞ=rs measure-
ments increases the amplitude of the quintessence potential.
This is a consequence of the fact that the posterior of H0

increases after adding ourDAðzÞ=rs measurements, and the
amplitude of the potential is sensitive to H0. To make
quantitative statements about how DESI measurements will
constrain the EFT function and reconstructed potential we
perform a CPCA analysis of these quantities.
In Fig. 8 we plot the sorted CPCA eigenvalues, as

defined in Sec. III C for the EFT function (left) and
reconstructed quintessence potential (right) for different
combinations of the DESI ΛCDM analyses relative to the
baseline analysis. The CPCA analyses of the EFT function
ΔΛ=Λ and reconstructed potential VðϕðzÞÞ are performed
using the posterior covariances as estimated from the
MCMC samples of the 14 ΔΛ=Λ and VðϕðzÞÞ values,
respectively. The CPCA analysis of ΔΛ=Λ again shows
that including HðzÞrs measurements provides essentially
no improvement on our constraints of ΔΛ=Λ relative to the
baseline dataset. Adding measurements of the angular
diameter distance results in slightly better constraints on

FIG. 4. Fractional contribution of each cosmological parameter
to the variance of the labeled CPCAmode for combinations of the
baseline dataset with DESI ΛCDM mocks. The value in paren-
thesis on the x-axis indicates the improvement of the posterior
when including the DESI observations with respect to the
posterior of the baseline analysis for each mode. We only show
modes for which

ffiffiffiffiffiffiffiffiffiffi
λ − 1

p
> 1.

FIG. 5. Kullback-Leibler divergence of the posterior covariance
of the baselineþ DESI datasets relative to the baseline dataset for
the ΛCDM analysis. DKL is shown for each parameter using their
marginalized posteriors, as well as for all parameters using the
full covariance of the six ΛCDM parameters after marginalizing
over all nuisance parameters.
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ΔΛ=Λ; however, the most significant improvement results
from adding measurements of the growth rate. The extent
of the improvement can be quantified via the number of
constrained modes ðNeffÞ relative to the baseline dataset as
introduced in Sec. III C. Including all elements in the mock
DESI dataset increases the number of constrained modes by
3.3, where the majority of the improvement comes from the
growth rate measurements which constrain 2.7 modes on
their own.
In the right panel of Fig. 8 we show the eigenvalues of

the CPCA analysis of the reconstructed quintessence
potential. Unlike the CPCA analysis of ΔΛ=Λ in which
fσ8ðzÞ was the most significant source of improvement
across all modes, the first mode of the reconstructed
potential is most improved by the addition of the angular
diameter distance measurements. Similarly, there is an

uptick in the first eigenvalue of the Hubble parameter
analysis; therefore, the HðzÞrs measurements inform the
constrains on one mode of the potential. The Neff values for
the reconstructed potential are also larger than those of the
EFT function for all dataset combinations, indicating that
our DESI mocks better constrain the potential than the EFT
function. In order to understand the source of the
differences between constraints on ΔΛ=Λ and VðϕðzÞÞ,
it is useful to plot the CPCA modes.
Fig. 9 shows the three most significant CPCA modes for

the reconstructed EFT function (top) and the reconstructed
quintessence potential (bottom) using the DESI ΛCDM
datasets. From the top panels we see that the best con-
strained mode of the fiducial DESI dataset is nearly
identical to the best constrained mode of the fσ8ðzÞ dataset.
Furthermore, the second best constrained mode of the

FIG. 6. Constraints on the six ΛCDM parameters for the EFT reconstruction of the baseline and DESI ΛCDM datasets. The lower
triangle shows the results for the baseline and fiducial DESI datasets. The upper triangle shows the results for each of the three elements
of the DESI datasets. Dashed lines indicate the mean parameter values from the ΛCDM analysis of the baseline dataset, which are also
the values used to generate the mock DESI ΛCDM datasets.
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FIG. 7. 68% confidence interval of the reconstructed EFT function ΔΛ=Λ (top) and reconstructed potential VDEðϕðzÞÞ (bottom) for
the baseline dataset and combinations of the baseline data with DESI ΛCDM mocks. Left: comparison between the baseline constraints
and constraints including all DESI observables. Right: comparison of constraints considering each DESI observable individually.

FIG. 8. Sorted CPCA eigenvalues computed from the posterior covariance of the DESI ΛCDM analyses relative to that of the baseline
analysis for the EFT function ΔΛ=Λ (left) and reconstructed quintessence potential VðϕÞðzÞ (right). The effective number of constrained
modes Neff for each dataset and reconstructed function is shown in the legend.
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growth rate analysis is similar to the third best constrained
mode of the combined analysis. This supports our con-
clusion that the improvement in constraints on the
EFT function in the combined analysis of the DESI
ΛCDM mocks stems predominately from the fσ8ðzÞ
measurements.
The bottom panels of Fig. 9 shows the three best

constrained CPCA modes of the reconstructed potential.
The best constrained mode is flat for all dataset combina-
tions except the fσ8ðzÞmeasurements. This reflects the fact
that the amplitude of the potential is related to H0 and Ωm
which is best constrained by the inclusion of the BAO
measurements. On the other hand, fσ8ðzÞ is relatively
insensitive to the amplitude of the potential, and hence the
best constrained mode from the growth rate measurements
is not constant across scale factors.
To verify that the constant mode is a result of improved

constraints on Ωm and H0, we compute the correlation
coefficient between the CPCA modes and the ΛCDM
parameters and find that the best constrained modes of
the HðzÞrs, DAðzÞ=rs, and fiducial analyses are correlated
with H0 and Ωm by more than 80%. For the fσ8ðzÞ
analysis, all correlations between the CPCA modes and
H0 and Ωm are below 30%. Moreover, the correlations
between the top four constrained modes of the fσ8ðzÞ
dataset and the ΛCDM parameters are all below 50%,
hence the constraints on the potential resulting from the
growth rate measurements cannot be accounted for by
improvements in the ΛCDM parameter constraints. Finally,

we note that the best constrained mode of the fσ8ðzÞ
analysis is the same as the second best constrained mode in
the combined analysis. This is consistent with the ordering
of the eigenvalues in Fig. 8.
Having performed the CPCA analyses of the recon-

structed EFT function and the potential, we return to the
question of why the ΛCDM angular diameter distance
measurements do not improve constraints on the EFT
function, ΔΛ=Λ? From Eq. (7) we expect Λ ≈ −VðϕðaÞÞ
for a potential energy dominated field; therefore, we
expect comparable constraints on the EFT function and
the reconstructed potential. However, recall that the
EFT function we reconstruct is computed relative to its
ΛCDM value as defined in Eq. (6). In effect, the rescaled
EFT function has an explicit, nontrivial dependence
on H0 and Ωm. The relative EFT function ΔΛ=Λ is then
largely insensitive to the ΛCDM BAO measurements
because their impact can be fully absorbed in the con-
straints on Ωm and H0. This also explains the high
correlation between the first CPCA mode of the recon-
structed potential and H0 and Ωm when including BAO
measurements. To check this, we performed a CPCA
analysis of the full EFT function Λ, which has an explicit
dependence on ΔΛ=Λ;Ωm, and H0, and found the results
were consistent with those of the quintessence potential.
These conclusions no longer apply when analyzing a
mock for which constraints on the potential cannot be
fully accounted for by shifts in theΛCDM parameters as is
described in Sec. V C.

FIG. 9. Top: the three best constrained CPCA modes of the reconstructed EFT function for combinations of the baseline dataset with
DESI ΛCDM mocks. Bottom: the three best constrained CPCA modes of the quintessence potential for combinations of the DESI
ΛCDM datasets. The corresponding CPCA eigenvalues are shown in the legend.
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In Fig. 10 we show the 68% C.L. of the reconstructed
dark energy equation for the baseline and DESI ΛCDM
datasets we consider. We find that the addition of DESI
observations consistent with ΛCDM significantly tightens
constraints on wDE, with the constraining power coming
almost entirely from the fσ8ðzÞ mocks. Our finding that
wDE is particularly sensitive to growth of structure mea-
surements from DESI is in agreement with the results
of [52] and is indicative of the power of using structure
information to constrain dynamical dark energy models,
even if such models do not have significant perturbations.
Using the results of the EFT reconstruction, we can

reconstruct the trajectories in the ðwDE; dwDE=dNÞ phase

space. The ðwDE; dwDE=dNÞ phase space is useful for
distinguishing between freezing and thawing models of
quintessence [21]. Park et al. [8] showed that the
ðwDE; dwDE=dNÞ trajectories for the baseline dataset
reconstruction follow neither freezing nor thawing scenar-
ios, but instead oscillate about the boundary at wDE ¼ −1.
In Fig. 11 we show the phase space distribution of
trajectories in the wDE − dwDE=dN plane for elements of
the mock ΛCDM DESI dataset. The arrows indicate the
average velocity at each point in the phase space for the
baseline dataset and the contours show the 68% confidence
intervals. We find that DESI will significantly improve
constraints on the distribution of trajectories in the
ðwDE; dwDE=dNÞ phase space. This improvement comes
almost entirely from the growth rate measurements, which
provide our tightest constraints on both the dark energy
equation of state and its time dependence. Improved
constraints on the ðwDE; dwDE=dNÞ phase space will
restrict the extent to which observationally viable models
of quintessence can possess dynamical behavior, and hence
deviate from a ΛCDM cosmology.
Finally, we investigate how DESI will improve con-

straints on the swampland conjectures for quintessence
models. We found that adding DESI data consistent with a
ΛCDM cosmology provides little improvement on con-
straints of Vϕ=V and ∇2

ϕV=V, hence it is unlikely that we
will be able to place tighter bounds on jVϕ=Vj and
−∇2

ϕV=V with DESI using the EFT reconstruction. This
is to be expected given that [8] found no evidence for lower
bounds on j∇ϕVj=V and −∇2

ϕV=V and the mock data used
in this analysis violates swampland as it was generated for a
ΛCDM cosmology.
In addition to placing boundaries on the derivatives

of the scalar field potential, the swampland conjectures

FIG. 10. 68% C.L. on the dark energy equation of state wDEðzÞ
as a function of redshift from the baseline dataset and combi-
nations of the baseline data with DESI ΛCDM mocks.

FIG. 11. Reconstructed trajectories in the of wDE; dwDE=dN phase space at the 68% C.L. for different DESI dataset combinations. The
arrows show the average velocity at a given point in phase space for the baseline dataset reconstruction.
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impose restrictions on the magnitude of the scalar field
excursion jΔϕj, where ΔϕðzÞ≡ ϕðzÞ − ϕðz ¼ 0Þ. In
Fig. 12 we show the 68% C.L. on the scalar field excursion
as a function of redshift for the baseline dataset, as well as
combinations of the baseline dataset with DESI ΛCDM
datasets. We only show the individual dataset results for the
fσ8ðzÞ analysis since including HðzÞrs or DAðzÞ=rs mea-
surements do not improve our constraints on ΔϕðzÞ. If
DESI observes a Universe consistent with ΛCDM cosmol-
ogy, then the method used in this work will constrain
jΔϕj≲ 0.12 and 0.15 for z < 1.5 at the 68% and 95% C.L.,
respectively.
Ultimately, the EFT reconstruction of the ΛCDM data-

sets suggests that a DESI observation consistent with
ΛCDM cosmology will significantly constrain the space
of viable quintessence models. Our results agree with the
findings of [53] which used Bayesian model selection
techniques to address the extent to which DESI observa-
tions from a ΛCDM cosmology can rule out various
quintessence and phantom dark energy models.

C. Quintessence detection

Having analyzed how DESI will impact constraints on
quintessence if it observes a Universe consistent with
ΛCDM, we now explore how mock DESI observations
generated from a quintessence cosmology will impact the
results of the EFT reconstruction. Since there is a priori no
well motivated choice for the quintessence cosmology from
which we compute the mocks, we emphasize that the
results in this section are heavily dependent on the choice
of the quintessence cosmology. Furthermore, the choice of
the quintessence mock is complicated by the fact that the
EFT reconstruction and ΛCDM analyses prefer different

cosmological parameters as discussed in Sec. V B and
the reconstructed EFT function can be degenerate with
these parameters. This can lead to mocks that are in tension
with the baseline dataset, and hence unrealistically tight
parameter constraints. In light of these concerns, we use the
quintessencemocks analyzed in this section to studywhether
or not we can identify any interesting features present in the
mocks and leave the discussion of overall improvement in
parameter constraints to Secs. VA and VB.
In Fig. 13 we show the constraints on the reconstructed

EFT function ΔΛ=Λ and the reconstructed quintessence
potential VðϕðzÞÞ from the baseline dataset and combina-
tions of the baseline dataset with DESI observables
generated for a quintessence cosmology. The red lines
are used to indicate the value of ΔΛ=Λ and VðϕðzÞÞ used to
generate the DESI mocks. Although the constraints on
ΔΛ=Λ tighten after adding the DESI datasets, the posterior
of the reconstructed potential does not shift toward the
value used to generate the DESI mocks. Nevertheless, the
reconstructed EFT function does not shift as close to zero as
it did for the ΛCDM mocks. The angular diameter distance
measurements from the quintessence mock constrain the
reconstructed EFT function significantly more than the
ΛCDM mock datasets.
In the bottom panel of Fig. 13 we show the constraints on

the quintessence potential. We immediately see that the
amplitude of the quintessence mock is much larger than of
theΛCDMmock. This is due to the fact that the value ofH0

used to generate the quintessence mock is the mean from
the baseline ΛCDM constraints, and hence larger than the
H0 value preferred by the EFT reconstruction of the
baseline dataset. Although this choice places our quintes-
sence mock in tension with the baseline constraints, after
including all DESI measurements we are able to recover the
amplitude of the potential and significantly reduce the error
on the reconstructed potential. We note that some of this
reduction in error is sourced by the underlying tension
between the baseline and mock DESI datasets.
In Fig. 14 we plot the sorted CPCA eigenvalues, as

defined in Sec. III C, for the EFT function (left) and
reconstructed quintessence potential (right) for different
combinations of the DESI quintessence analyses relative to
the baseline analysis. The CPCA analyses of the EFT
function ΔΛ=Λ and reconstructed potential VðϕðzÞÞ are
performed using the posterior covariances as estimated
from the MCMC samples of the 14 ΔΛ=Λ and VðϕðzÞÞ
values, respectively. The results of the left panel suggest
that the angular diameter distance measurements are
significantly more constraining for the EFT function of
the quintessence mocks than they were for the ΛCDM
mocks. The quintessence DAðzÞ=rs measurements con-
strain approximately the same number of modes of the
EFT functions as the quintessence fσ8ðzÞ measurements.
The right panel of Fig. 14 shows the CPCA eigenvalues

of the reconstructed quintessence potential for the DESI

FIG. 12. 68% C.L. of the scalar field excursion from the
baseline dataset and combinations of the baseline data with
DESI ΛCDM mocks.
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FIG. 13. 68% confidence interval of the reconstructed EFT function ΔΛ=Λ (top) and reconstructed potential VDEðϕðzÞÞ (bottom) for
the baseline dataset and combinations of the baseline data with DESI quintessence mocks. Left: comparison between the baseline
constraints and constraints including all DESI observables. Right: comparison of constraints considering each DESI observable
individually. The red line indicates the values of ΔΛ=Λ and VðϕðzÞÞ used to generate the quintessence mock datasets.

FIG. 14. Sorted CPCA eigenvalues computed from the posterior covariance of the DESI quintessence analyses relative to that of the
baseline analysis for the EFT function ΔΛ=Λ (left) and reconstructed quintessence potential VðϕÞðzÞ (right). The effective number of
constrained modes Neff for each dataset is shown in the legend.
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quintessence mocks. As was the case with the ΛCDM
datasets, we find that the first mode of the potential is
predominately constrained by the angular diameter distance
measurements; however, unlike in the analysis of the
ΛCDM mocks, the angular diameter distance measure-
ments for the quintessence mocks provide significant
constraining power beyond just the first mode. We can
determine the source of these constraints by plotting the
CPCA modes.
In Fig. 15 we plot the three most constrained CPCA

modes for the DESI quintessence analyses of the recon-
structed EFT function (top) and reconstructed potential
(bottom). We first focus on the results of the reconstructed
potential. Recall that for the EFT reconstruction of the
DESI ΛCDM mock datasets, the best constrained mode of
the reconstructed potential for datasets that included mock
DESI BAO measurements was constant and highly corre-
lated with H0 and Ωm. This mode resulted from improved
constraints on H0 and Ωm after including measurements of
HðzÞrs and DAðzÞ=rs. For the quintessence mocks, the two
best constrained modes of the analyses including BAO data
are constant modes. We again find that the first mode is
highly correlated (70%–80%) with H0 and Ωm, hence it
corresponds to the same rescaling of the amplitude induced
by improved constraints on H0 and Ωm. On the other hand,
the second constant mode is largely uncorrelated (< 20%)
with all ΛCDM parameters. In effect, the second mode
corresponds to a rescaling of the amplitude that cannot
be explained by simply shifting the ΛCDM parameters.

This mode arises because the baseline dataset is in tension
with the quintessence mock that we generated, hence we
must realize a nonzero EFT function to appropriately
account for this tension. This also explains why the angular
diameter distance measurements constrain ΔΛ=Λ for the
quintessence analysis, but not for the ΛCDM analysis.
For the ΛCDM mock datasets, the information added by
the angular diameter distance could be fully described by
shifting the ΛCDM parameters, but this is not the case for
the quintessence mock. The angular diameter distance
measurements also have a more significant contribution
to the CPCA modes of ΔΛ=Λ for the full quintessence
analysis than they did for the ΛCDM datasets. Moreover,
the best constrained mode of the angular diameter distance
measurements corresponds to the best constrained mode of
the fiducial analysis. The ability to distinguish between the
sources of these constraints demonstrates the usefulness of
CPCA in revealing details about what a dataset is actually
constraining.
Whereas including DESI data leads to significant

improvements in the constraints on the amplitude of the
quintessence potential, the overall shape remains relatively
unconstrained. As a test, we search for the existence of a
local minima within one correlation length of the mocks
actual local minimum (z ∈ ½0.2; 1.1�) and find that the
fraction of samples possessing a minimum in this interval
does not increase after adding the DESI mocks. This is not
surprising given that our EFT reconstruction technique
explicitly smooths out features on subcorrelation length

FIG. 15. Top: the three best constrained CPCA modes of the reconstructed EFT function for combinations of the baseline dataset with
DESI quintessence mocks. Bottom: the three best constrained CPCA modes of the quintessence potential for combinations of the DESI
quintessence datasets. The corresponding CPCA eigenvalues are shown in the legend.
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scales in order to avoid overfitting the data. Using alter-
native methods to constrain quintessence, such as those that
require an explicit functional form for the quintessence
potential, will likely be able to better detect localized
features in the potential.
Analysis of further quintessence properties such as the

dark energy equation of state and swampland related
observables provides the same conclusions as those reached
in Sec. V B, hence we do not analyze those results here.

VI. CONCLUSIONS

In this work we present forecasted constraints on ΛCDM
and single field quintessence models for a five year DESI
survey. Using current CMB, LSS, and SN datasets as a
baseline, we find that including mock DESI measurements
of the Hubble parameter, angular diameter distance, and
linear growth rate will significantly improve constraints on
ΛCDM and quintessence cosmologies. We list our main
findings below:

(i) Combined analysis ofHðzÞrs,DAðzÞ=rs, and fσ8ðzÞ
improves constraints on H0, Ωm, and σ8 by a factor
of two with the best constrained linear combination
of parameters corresponding to a combination of H0

and σ8. Constraints on σ8 come entirely from fσ8ðzÞ
and constraints on H0 and Ωm come primarily from
DAðzÞ=rs. Including only the Hubble parameter in
our ΛCDM analysis does not improve our con-
straints on ΛCDM parameters.

(ii) Our quintessence reconstruction favors lower values
of H0 and σ8 and higher values of Ωm than our
ΛCDM analyses. These differences indicate the
importance of viewing constraints on cosmological
parameters within the context of the assumed cos-
mology.

(iii) BAO (HðzÞrs and DAðzÞ=rs) and RSD measure-
ments [fσ8ðzÞ] are sensitive to different aspects of
the quintessence potential. In particular, BAO mea-
surements predominately constrain the amplitude of
the potential by constraining H0 and Ωm. On the
other hand, the growth of structure constraints on the
potential are largely independent of the constraints
on the ΛCDM parameters, and instead arise from
improved constraints on the EFT function ΔΛ=Λ. In
the presence of a quintessence signal which cannot
be accounted for by shifting of the cosmological
parameters, the BAO measurements can constrain
the amplitude of the potential viaH0 andΩm, as well
as by constraining the reconstructed EFT function.

(iv) Constraints on the dark energy equation of state and
its time evolution improve significantly after includ-
ing mock DESI measurements of fσ8ðzÞ. Should
DESI observe a Universe consistent with ΛCDM,
then the improved constraints on wDE and its phase
space will significantly restrict the late time dynami-
cal behavior of viable quintessence models.

(v) Including DESI mocks does not improve constraints
on j∇ϕVj=V and −∇2

ϕV=V, hence it is unlikely that
we will be able to test the swampland conjectures
with more precision than the baseline analysis [8]
using the EFT reconstruction on DESI data. Never-
theless, including DESI data, particularly fσ8ðzÞ,
leads to significant improvements on constraints of
the scalar field excursion.

(vi) Our EFT reconstruction of mock DESI datasets is
unable to identify localized features in the potential
due to the length of the correlation prior. Identifying
such features for quintessence cosmologies will likely
require alternative modeling techniques that allow for
more rapid variations in the field’s evolution.

(vii) Analyses of each DESI observable individually
suggest that most of our constraints come from
DAðzÞ=rs and fσ8ðzÞ. Since the precision of growth
rate measurements depends heavily on our nonlinear
modeling capabilities, these results emphasize the
importance of developing robust techniques to
model nonlinear RSD for biased tracers in order
to extract optimal cosmological constraints from
Stage-IV galaxy surveys [54,55].

The goal of this work was not only to forecast constraints
on ΛCDM and quintessence cosmologies for DESI, but
also to demonstrate the usefulness of the CPCA metrics in
interpreting cosmological constraints. The analyses con-
sidered here, particularly the EFT reconstruction of quintes-
sence cosmologies, relied heavily on the CPCA techniques
to answer the question of what do our datasets actually
measure? In decomposing the posterior covariances into
their CPCA modes and eigenvalues we are able to
determine which parameter constraints are associated with
a given dataset and, perhaps more importantly, which
parameter constraints are a consequence of constraints
on alternative, often degenerate parameters.
We emphasize that our results are specific to the EFT

reconstruction technique and summary statistics used in
this work. More advanced modeling techniques such as
incorporating the full shape of the power spectrum, non-
Gaussian statistics, and including more small scale infor-
mation could provide better constraints on ΛCDM and
modified gravity/dark energy models as discussed in [56].
Nevertheless, we still find significant improvements in both
ΛCDM and quintessence constraints when considering only
BAO distance scale and linear growth rate measurements.
The most immediate follow up to this project would be to

perform the analysis using actual DESI observations once
those become available. Additionally one could use the
methods presented here to forecast constraints on more
general theories ofmodified gravity and dark energy, beyond
single field, minimally coupled quintessence. Finally, a
comparison between the forecasts of this work with those
using more advanced modeling techniques could help reveal
details in how to optimally extract information from large
volume galaxy surveys.
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