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Quai E. Ansermet 24, 1211 Genéve 4, Switzerland
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In this paper we describe a new idea which may be relevant to the formation of galaxies via the infall of
baryonic matter (BM) and dark matter (DM) onto a preexisting overdensity. While BM can under certain
circumstances be captured by thermal processes, DM particles fly through a static overdensity without
being captured. We propose a simple model for DM capture: if during the passage through it, the mass of
the overdensity increases, then slow DM particles are captured by it, further increasing its mass, while faster
particles slow down, transferring part of their energy to the galaxy. We estimate the minimum initial
velocity of a particle required for a passage without capture through the center of the galaxy and derive a
nonlinear equation describing the rate of galaxy mass increase. An analysis carried out using the ideas of
catastrophes theory shows that if the increase in the mass of baryonic matter exceeds a certain threshold
value, this can lead to a very intensive capture of dark matter. We speculate that this process may be
associated on the one hand with the accretion of matter during the early stages of galaxy formation and, on
the other hand, also later with the merger of galaxies. For the studied process to take place, the density of
intergalactic DM must exceed some threshold value. Then the rate of increase in the mass of DM can be
much higher than the one of baryonic matter. The capture sharply decreases after the DM density drops
below the threshold value, e.g., due to the expansion of the Universe.
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I. INTRODUCTION

It is well established that every galaxy is surrounded by a
dark halo. This halo consists of dark matter (DM) and its
size is much larger than the visible size of the galaxy. The
mass of the DM halo is the dominant contribution to the
total mass of the galaxy. We assume that DM consists of
some still unknown particles that are not affected by strong
and electromagnetic interactions. They interact between
themselves and with baryonic matter (BM) only gravita-
tionally. In the present paper we neglect a possible very
weak nongravitational interaction of dark matter with
baryonic matter or with itself.
The formation of galaxies or more generally the large

scale structure of the Universe (LSS) is a very important
problem in cosmology. The basic picture is that galaxies
have grown out of small initial fluctuations from inflation
by gravitational instability. This idea is in good agreement
with the small fluctuations observed in the temperature of
the cosmic microwave background [1,2]. As long as
perturbations are small, they can be studied with linear
or higher order perturbation theory. But for the formation of

galaxies, such an approach is not suitable for two reasons.
First of all, the over densities of galaxies, ρgal=ρm ≳ 105,
are much larger than 1 so that perturbation theory cannot be
expected to converge. Furthermore, we assume DM par-
ticles to be collisionless. In this case they should be
described by Vlasov’s equation in phase space. While this
leads to a similar Jeans scale as the fluid approach, just
replacing the sound speed by the velocity dispersion [3,4],
nonlinear aspects are very different as soon a shell crossing
becomes relevant which leads to singularities in the fluid
approach.
For this reason, the nonlinear regime of cosmological

structure formation is usually treated either via N-body
simulations, which have, at present, achieved an impressive
amount of detail [5–8] or by simple analytical models, e.g.,
spherical collapse or secondary infall models [9–13].
Even though these works are very important and have

provided a rather clear picture of the formation of cosmo-
logical LSS, they have their intrinsic limitations: the best
N-body simulations have a resolution of 10−11M⊙, (see [13])
to 1012M⊙, depending on the size of the region they want to
simulate and on computational resources. Even 10−11M⊙ is
much larger than themass of darkmatter particleswhich have
typically masses of elementary particles, m ∼ 100 Gev≃
10−45M⊙. This is not quite true in the case of primordial
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black holes which have a window of possible masses
between10−16M⊙ < m < 10−11M⊙, but can also beheavier,
see [14] for a review. InRef. [13], the authors have shown that
the halo density profiles are universal over the entire mass
range and arewell described by simple two-parameter fitting
formulas. Nevertheless, at small scales they zoom in on
regions with moderate over densities of at most 17 which is
much less than the density of a typical galaxy. Furthermore,
these simulations do not include baryonic physics which is
crucial for the effect discussed in the present work.
Even though the above results are very important and

promising, it is still not entirely clear that mass resolution is
irrelevant. Naively, the process needed for the collapse of
collisionless particles, dynamical friction, has a cross
section which is proportional to m2. The energy loss of
a particle with mass m moving with the velocity v through
the media with matter density ρ is given by [15]

dE
dt

¼ −
4πG2m2ρ

v
ln

�
bmax

bmin

�
; ð1Þ

where G is the gravitational constant and b is the impact
parameter of the collision. Taking into account that
E ¼ ðmv2Þ=2, we find that dv=dt ∝ m. Might it be that
due to the much smaller effect from dynamical friction,
elementary particles might behave significantly different
from “chunks of phase space” with a mass of 106M⊙ ?
What concerns the analytical models, the problem is that

assuming spherical symmetry one can “circumvent”
Liouville’s theorem which states that phase space volume
is conserved under Hamiltonian evolution. In a spherically
symmetric situation the phase space volume vanishes
already in the initial condition since velocities have only
1 nonzero component. More physically: since all particles
move radially, the total angular momentum vanishes and its
conservation does not constrain the infall.
In this paper we consider secondary infall into a spheri-

cally symmetric overdensity. This problem has been
addressed before, e.g., in Refs. [11,12], but only for radially
infalling particles. Here, even though we assume a spheri-
cally symmetric gravitational potential, particles may fall in
with arbitrary, nonzero impact parameter. Note, also that we
assume DM and BM to interact only gravitationally. There
are of course also models where DM and baryons interact
with nongravitational forces, see [16] for arguments to
favor this possibility, but we neglect such interactions in the
present study.
If the gravitational potential remains constant, the

particles will gain velocity during infall and will lose it
again when climbing out of the potential, but they will not
be captured. However, if the potential is growing during the
infall, some particles with sufficiently low initial velocities
can get captured.
In this paper we show an interesting new phenomenon: if

the growth rate of the gravitational potential is sufficient,

a catastrophe (in the mathematical sense [17]) happens,
enhancing very significantly the capture rate. This may lead
to the formation of heavily DM dominated objects like
some dwarf galaxies or low surface brightness galaxies.
The astrophysical significance of this new effect for galaxy
formation still requires a more detailed study. In this paper
we just derive and explain the effect of catastrophic DM
capture and we illustrate it with some numerical examples.
Even though this effect may in principle be inside N-body

simulations, we present here an entirely new and semi-
analytic understanding of very enhanced dark matter capture
as it can occur if there is significant baryonic accretion.
Initially, N-body simulations of cold dark matter do not
includevelocity dispersion.However, once shell crossing has
occurred, significant velocity dispersion is generated and our
process can take place. For warm and hot dark matter, where
velocity dispersion is relevant from the beginning, our
process can occur as soon a baryons are accreted at a
significant rate. For fuzzy dark matter however, which can
be considered as a Bose-Einstein condensate, see, e.g., [18],
our description of DM accretion is not adequate.
Independent numerical studies will be necessary to

investigate the mechanism outlined here in more detail,
in order to decide about its relevance for cosmological
structure formation. Such simulations will need to capture
the quite complicated baryonic physics to determine the
accretion rate of baryonic matter. Here we study the total
mass accretion as a function of the baryonic matter
accretion which we treat as unknown external parameter.
The reminder of the paper is structured as follows: In the

next section we discuss the basics of DM capture in a
gravitational potential. In Sec. III, the main section of this
article, we show that under certain conditions a fold
catastrophe can build up leading to a jump in the dark
matter capture rate. In Sec. IV we give some quantitative
estimates which show that this may happen during galaxy
formation and in Sec. V we summarize our findings and
conclude.

II. CAPTURE OF DM PARTICLES

A. The capture velocity of DC particles

The velocities of DM particles increase as they enter
from intergalactic space into the halo of a galaxy and
decrease as they leave it. If during the flight the mass of the
galaxy is increasing, then slow DM particles are captured
by the galaxy further increasing its mass, while faster
particles slow down, transferring some of their kinetic
energy to the galaxy, reducing its gravitational binding
energy. Let us consider this mechanism using a simple
model that allows us to draw a number of qualitative
conclusions.
We consider a spherically symmetric matter overdensity

which we call “a galaxy.” It may represent a dark halo with
a visible galaxy inside. The first consists mainly of DM
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while the second consists mainly of BM. We assume that
the total matter density ρ depends only on the radius, ρðrÞ.
This greatly simplifies the model, but contradicts the results
of N-body simulations described, e.g., in Sec. 9.3.3 in [4].
Spherical symmetry does certainly not apply to BM in
spiral galaxies. However, it is reasonable to assume that this
simplification does not qualitatively change the behavior
we now discuss. Within this approximation, a particle
moving radially cannot be deflected in any direction. It is
clear that the halo does not have a sharp boundary. This
does not prevent us from using a reasonable estimate for its
radius R. We neglect the DM density ρðrÞ at r > R. This
radius which we assume to be constant is not a value like
r200, which changes as galactic halos form (see Chapter 9 of
[4]). We choose R slightly larger than the maximum size of
the halo at all stages of the evolution of the galaxy, at which
it can be called a galaxy. Taking into account the ambigu-
ous definition of this quantity, we will use various possible
values of the halo radius R in numerical estimates, from
underestimated to overestimated.
We assume DM particles to be nonrelativistic, so that we

can use Newtonian mechanics. Naturally, nothing prevents
us from taking into account the effects of special relativity,
but this does not change the qualitative results of our
model. We include Hubble expansion to account for the
change in the density of dark matter particles in interga-
lactic space.
Let us consider a DM particle that approaches the

overdensity with an initial speed v0 at r ≫ R. Then at
the boundary of the halo the particle velocity is equal to
vðRÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v20 þ u2

p
with u2 ¼ 2GM=R and inside halo at a

distance r from the center it is equal to

vðrÞ ¼
�
v20 þ u2 þ 8πG

Z
R

r

dx
x2

Z
x

0

y2ρðyÞdy
�

1=2
: ð2Þ

The total mass of the overdensity is

M ¼ 4π

Z
R

0

y2ρðyÞdy: ð3Þ

At the very center the particle velocity reaches a maximum
value equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v20 þ αu2

p
. The factor α is equal 1.5 for a

constant density of matter inside the galaxy. It is easy to
calculate it for any given density distribution, e.g., for
Navarro-Frenk-White profile [19]. However, for a reason-
able density distribution in which the density decreases
with distance from the center, the value of α is not much
larger than 1.5 and, for a rough estimate, we may set α ≃ 1
and vðrÞ ≃ vðRÞ at r < R.
If the gravitational field is static, the particle will leave

the halo again with speed vðRÞ. Far away from the galaxy it
will move again with speed v0. There is no particle capture.
However, capture is possible if the mass of the galaxy
increases during the passage of the particle. Indeed,

galaxies continue to grow also after their formation. This
can happen by the accretion of the surrounding BM, by the
capture of DM particles, and also by merging with other
galaxies. As a result, the gravitational potential well formed
by the galaxy becomes deeper, and the potential barrier
surrounding it becomes higher. The DM particle may not
have sufficient kinetic energy to leave the potential well and
it can be captured.
We denote by M the total mass of the galaxy at the

moment the DM particle enters (jxpj ¼ R), and by τ the
time of flight of the particle through the galaxy. Then, at
the time the particle leaves the galaxy, the mass of the
galaxy will be equal to M þ _Mτ, where _M is the average
rate of mass increase of the galaxy. The particle capture
condition takes the form

v0 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2G _Mτ

R

s
: ð4Þ

It is reasonable to expect that the mass increase _Mτ does not
exceed the massM. Therefore, the maximal initial speed of
captured particles is less than u and we can estimate vðRÞ ≃
u so that

τ ≃
l
u

ð5Þ

for the time of flight of particles with a minimum initial
velocity at which they are not captured by the galaxy. Here
l is the length of the path traveled inside the halo.
It may seem that these approximations are too crude, but

they are not. We demonstrate this with an example. As is
well known, the rotation curves of galaxies are perfectly flat
if the density decreases like ρðrÞ ¼ M=ð4πRr2Þ at r < R.
In this extreme case, the density diverges at the center, and
this density profile is usually modified at small radius to
avoid this divergence. Let us, however, consider the
unmodified profile. In the framework of classical mechan-
ics, the velocity of a particle passing through the center is

then equal to vðrÞ ¼ u
ffiffiffiffiffiffiffi
ln R

r

q
at r < R if v0 ≪ u. (The

factor α introduced below Eq. (3) is infinite in this case.)
But we are interested in the time of flight, which is equal to
τ ¼ 2CR=u with C ¼ e

ffiffiffi
π

p
erfcð1Þ ≃ 0.76. So, the estimate

(5) deviates from the exact value of τ only by 25% even for
this extreme density profile.
Let us denote the minimal initial velocity of a DM

particle which is able to fly through the galaxy and escape
from it by vp (the subscript p indicates passage). For v0 <
vp the particle is captured by galaxy. If a particle flies
through the center we denote its minimal initial velocity by
vpc (the subscript pc indicates passage through the center).
Within the above approximations we obtain the estimates
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vp ¼
ffiffiffiffiffiffiffiffiffiffiffi
G _Ml
Ru

s
¼

�
G _M2l2

2RM

�1=4

; ð6Þ

vpc ¼
ffiffiffiffiffiffiffiffiffiffiffi
2G _M
u

s
¼

�
2G _M2R

M

�1=4

: ð7Þ

We can use the simplest estimate _M ≃M=T, where T is
the age of the galaxy and find with (7)

vpc ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMτ

RT

r
¼ u

ffiffiffiffi
τ

T

r
: ð8Þ

B. Evolution of the DM particle velocity

If a particle escapes from the galaxy, its velocity far from
it, v1, is smaller than the initial velocity v0 due to the
growth of the galaxy mass,

v21 ¼ v20 −
2G _Mτ

R
: ð9Þ

Each particle reduces its speed as it passes through a
growing galaxy, transferring the released kinetic energy to
the DM and BM inside the galaxies. This deceleration
mechanism is similar to the integrated Sachs–Wolfe effect.
It works more efficiently in galaxy clusters and poorly in
voids, simply because of the difference in the number of
galaxies that a particle passes through in the same amount
of time. Therefore, we expect the mean kinetic energy of
DM particles to be higher in voids than in superclusters.
For fast particles with v0 ≫ u we can set vðRÞ ≃ v0. If

such particles fly a path of length l inside the galaxy, then
τ ≃ l=v0 and

v1 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v20 −

2G _Ml
Rv0

s
≃ v0 −

G _Ml
Rv20

: ð10Þ

The faster the particle, the less is the loss of speed.
Therefore, the initial velocity distribution of particles not
only shifts in the direction of decreasing velocities, but this
shifts depends on v0, changing its velocity spectrum.
Let us estimate the rate of energy loss for a DM particle

with mass m. During the time τ of passage through the
galaxy, it transfers the energy Gm _Mτ

R to it. In this case, the
distance traveled is l ≃ vðRÞτ. The rate of energy loss per
unit time and per unit path are

_E ¼ Gm _M
R

;
dE
dl

≃
Gm _M
RvðRÞ : ð11Þ

The trapped particles transfer all their kinetic energy and
their mass to the galaxy. The fact that the motion of the
particles in the nonstationary field of the contracting matter

is an efficient mechanism for the dissipation their energy
has also been mentioned in the past in connection with
other problems. Consider, for example, Ref. [20].

III. CATASTROPHIC DM CAPTURE

A. The rate of increase in the galaxy mass

We have already mentioned various mechanisms for
increasing the mass of galaxies. Let us denote the rate of
galaxy mass increase due to DM particle capture by _MDM,
the total rate of galaxy mass increase due to all effects by
_M, and the rate of mass increase due to accretion of
baryonic matter by _Mb. Obviously

_M ¼ _MDM þ _Mb: ð12Þ

We consider _Mb as a given, external quantity that can
change with time and is determined in part by nongravita-
tional processes of cooling which we do not investigate
here. Even though a part of the baryonic matter, e.g. stars,
does behave like collisionless particles, we assume that
some baryonic matter, like e.g. gas, is accreted via colli-
sional processes and by emitting radiation. We do not want
to study this in any detail but consider the baryon accretion
rate as an external parameter _Mb. We now study _M as a
function of the baryon accretion rate, _Mb.
We consider particles in extragalactic space far from

galaxies. We assume that their velocities are distributed
isotropically in the reference frame of the galaxy, and the
number of particles with velocities in the range from v0 to
v0 þ dv0 in a unit volume is equal to dN ¼ fðv0Þdv0. The
total density of DM particles in extragalactic space is
N ¼ R

∞
0 fðv0Þdv0. Then the number of particles flying in

extragalactic space through an area dS into a solid angle dΩ
in a timedtwith velocities in the range from v0 to v0 þ dv0 is

dn ¼ v0
4π

cosðϕÞfðv0Þdv0dSdΩdt; ð13Þ

where ϕ is the angle between the particle velocity direction
and the normal to the area.
Consider a sphere of radius R1 ≫ R, surrounding the

galaxy and concentric to it. Its surface area is 4πR2
1. The

number of particles passing through it in a time dt with
velocities in the range from v0 to v0 þ dv is given by
Eq. (13). The halo is reached by particles emitted into a
solid angle Ω ≃ πR2=R2

1 ≪ 1. Let us define the function
kðv0;ϕÞ which is equal to 1 if a particle with angle ϕ and
velocity v0 is trapped and 0 if it is not trapped.
With this we obtain for the rate of increase in the mass of

the galaxy by DM particles capture
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_MDM ≃ 2πR2
1m

Z
dv0

Z
dϕ sin ϕ cos ϕfðv0Þv0kðv0;ϕÞ:

ð14Þ

Let us evaluate this integral. Considering that our model is
rather a toy-model, not very accurate estimates are appli-
cable. In order for a particle to be captured by a galaxy, it
must enter it. This happens if 0 ≤ ϕ ≤ arcsinðβÞ with
β ¼ R=R1 ≪ 1. We therefore can set sinϕ ≃ ϕ and
cosϕ ≃ 1. Let us also introduce the variable ξ ¼ ϕ=β. If
we neglect the curvature of the particle trajectory inside the
galaxy (this does not significantly affect the path length for
particles flying through), then the path length inside the
galaxy is about

l ¼ 2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ2=β2

q
¼ 2R

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
: ð15Þ

Capture occurs and k ¼ 1 if the condition (4) is met,
that is, if

1 − ξ2 >
v40ðv20 þ u2Þ
4ðG _MÞ2 ≃

v40u
2

4ðG _MÞ2 ¼
�
v0
vpc

�
4

: ð16Þ

(Remember that the initial velocity of captured particles,
v0, is much smaller than the escape velocity u). The particle
is captured if the variable ξ, which is proportional to the
angle of deviation of the particle velocity from the center of
the halo ϕ, does not exceed the value

ξ20ðv0Þ ≃max
�
0; 1 −

�
v0
vpc

�
4
�
: ð17Þ

A particle flying through the very center of the halo is
captured if its initial velocity is less than vpc given in (7). In
an off-center passage, the particle is captured if

v0 ≤ vp ¼ vpcð1 − ξ2Þ1=4: ð18Þ

If this inequality is not satisfied, then there is no capture and
k ¼ 0. With this we can write

_MDM ≃ 2π R2m
Z

∞

0

fðv0Þv0dv0
Z

ξ0

0

kðv0; ξÞξdξ

¼ πR2m
Z

∞

0

ξ20fðv0Þv0dv0

¼ πR2m
Z

vpc

0

�
1 −

v40
v4pc

�
fðv0Þv0dv0: ð19Þ

The integral on the right hand side depends on _M via vpc,
and this dependence is highly nonlinear. The combination
of (12) and (19) determines _M for a given _Mb and a given
velocity distribution fðv0Þ. At _Mb ¼ 0 there is a trivial
solution _M ¼ 0.

Assuming the form of the function f, we can obtain the
dependence of _MDM on _M. For example, if f is a simple
Maxwell-Boltzmann distribution,

fðvÞ ¼ 4Nv2ffiffiffi
π

p
v3max

exp
�
−
�

v
vmax

�
2
�
;

vmax ¼
ffiffiffiffiffiffiffiffiffi
2kΘ
m

r
ð20Þ

with temperature Θ and maximum at v ¼ vmax, then from
(19) one obtains

_MDM ¼ 2
ffiffiffi
π

p
R2mNvmaxPðv2pc=v2maxÞ; ð21Þ

where the function P is given by

PðxÞ ¼ 1 − 6x−2 þ 2e−xð1þ 3x−1 þ 3x−2Þ: ð22Þ

Of course, we cannot really assume that DM particles
obey a thermal distribution. However, interesting qualita-
tive conclusions can be drawn from general considerations
without detailed assumptions about the velocity distribu-
tion of the DM particles (more precisely, their phase space
number density f or mass densitymf). We just assume that
the function fðv0Þ ≥ 0, that is it continuous, that it vanishes
at v0 ¼ 0, reaches a maximum at some value v0 ¼ vmax,
and quickly decreases at high velocities, most likely
exponentially in v20. This function is proportional to the
particle density N.
We consider the expansion of f in a Taylor series. It

includes only even powers of v0. As for the Maxwell
distribution, the expansion starts with a quadratic term due
to the three independent Cartesian velocity components:

fðv0Þ ¼
X∞
i¼1

aiv2i0 ¼ N
X∞
i¼1

ãiv2i0 : ð23Þ

The quantities ãi ¼ ai=N do not depend on N. So that

_MDM ≃ πmR2

Z
vpc

0

�
1 −

v40
v4pc

�X∞
i¼1

aiv
2iþ1
0 dv0

¼ πmR2
X∞
i¼1

ai
ð1þ iÞð3þ iÞ v

2iþ2
pc

¼ _M
X∞
i¼1

bi _M
i ¼ _MN

X∞
i¼1

b̃i _M
i with ð24Þ

bi ¼ πmR2

�
2GR
M

�ðiþ1Þ=2 ai
ð1þ iÞð3þ iÞ : ð25Þ

Also here we have introduced b̃i ¼ bi=N. These quantities
help to explicitly extract the dependence on the particle
density N, which varies significantly over the lifetime of
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galaxies. If DM particles are not formed and do not decay,
then NðzÞ ¼ Nð0Þð1þ zÞ3 and during the existence of a
galaxy formed at z ¼ 10, the density decreases by a factor
1000 due to the expansion of the Universe. However, due to
the considered capture of DM particles, their number
density in intergalactic space, N is reduced even further.
The quantities ãi change with time due to changes in the

velocity distribution, in particular, because of the processes
under consideration. However, most likely, the most
significant contribution to the time dependence of the
parameters ai is associated to the evolution of N. The
same can be expected for the coefficients bi, although in
this case the (weak) dependence of b̃i on time gets
additional contributions from the evolution of M.
Positivity of f for small velocities requires that b1 > 0.

We assume that b2 < 0 like for the Maxwell-Boltzmann
distribution.
Let us try to draw some conclusions based on these basic

properties of the distribution function. We start with the
case when captured DM particles have initial velocities
much smaller than their mean velocity. So that they are
described by the first term of the expansion of fðv0Þ,

fðv0Þ ≃ a1v20: ð26Þ

Let us also assume that the considered galaxy is not very
large and the time of passage of particles through it is much
less than its age and than the age of the Universe. Then we
can approximately set a1 ¼ const: and M ¼ const: during
the time of flight. In this case

_M − _Mb ¼ _MDM ≃ b1 _M
2 ¼ πa1R3mG

4M
_M2;

_Mb ¼ _M − b1 _M
2 ¼ 1

4b1
− b1

�
1

2b1
− _M

�
2

: ð27Þ

Note that a1 has the dimensions ½ðl2=tÞ−3� so that b1 has the
dimensions ½t=m� and b1 _M is dimensionless. For _Mb ¼ 0
this gives us the equation

_M

�
1 −

π

4
a1R3mG

_M
M

�
¼ 0: ð28Þ

Only the trivial solution, _M ¼ 0 is physical. Requiring that
the second factor vanishes gives us a rough estimate of
characteristic time of mass accretion, T ¼ M= _M, as T ≃
πNã1GR3m=4 in (8). This is clearly an unphysical solution
with T ∝ N. So that, T tends to 0 with N ¼ 0, or, in other
words, _MDM grows indefinite when N tends to 0, i.e., when
DM becomes less and less abundant, which is meaningless
and is a consequence of our approximation which breaks
down when _M becomes large.

B. A jump in the particle capture rate

In order to understand this situation, we apply the
methods of catastrophe theory. For this it is important to
note that we consider _Mb as an external parameter which is
determined by accretion and baryonic cooling processes
which we do not describe in our model. We want to study
the increasing of total mass for a given _Mb.
Figure 1(a) shows the dependence _M on _Mb according to

Eq. (27). This fold consists of two parts. The lower half of
the parabola AB (in solid) corresponds to a stable solution.
With an increase in the baryon mass growth rate _Mb, the
DM particle capture rate _MDM increases. It is described by
(27) The upper half of the parabola BC (dashed) with a
negative slope corresponds to an unstable solution. Two
points A and C of intersection of the curve with the y-axis
correspond to the two solutions of the equation (28). Of
these, only the solution _M ¼ 0 is stable.
At a nonzero matter accretion rate _Mb, particle capture

begins. However, the rate of increase in the mass of the dark
halo _MDM is less than the rate of increase in baryonic matter

(a) (b)

(c) (d)

FIG. 1. Plots of _Mð _MbÞ for various functions f and DM
densities. Solid curves show stable branches, dashed curves
show unstable ones, vertical dotted arrows show jumps in the
state of the system. The four panels correspond to the following
cases. Panel (a) depicts approximation (26) for low particle
velocities. Panels (b) and (c) show two possibilities for density
above threshold. Both are s-shaped. They differ in the position of
the left boundary of the upper stable branch at point C. Panel
(d) shows the case when the baryon accretion rate is below the
threshold _Mbc defined in Eq. (29) and the function becomes
monotonically increasing.
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_Mb. They become equal only at the top of the parabola. At
point B we have

_Mb ¼ _MDM ¼ 1=ð4b1Þ≡ _Mbc: ð29Þ

From this, two conclusions can be drawn. First, within the
approximations made in our model, the capture of dark
matter requires the accretion of ordinary matter. There is no
DM capture without the baryonic matter accretion.
Secondly, at the ratio of the mass growth of baryonic
and dark matter described by the curve in Fig. 1(a), it is not
possible to form a galaxy containing 85% dark matter.
The system (27) does not have a solution for _Mb > 1=

ð4b1Þ. With a further _Mb increase, the state of the system
reaches the top of the parabola, after which a sudden regime
change begins. and the rate ofmass growth _M andvpc rapidly
increases. Therefore, we cannot consider the particle
velocities to be small and use the approximation (26).
Equation (27) ceases to adequately describe the process.
The accretion rate _Mb ¼ 1=ð4Nb̃1Þ, which is required to lose
stability in point B, can be quite small at the time of galaxy
formation, when N is very large.
To consider larger accretion rates we take into account

the next term in the expansion (24) which leads to the
equation

_MDM ¼ _M − _Mb ≃ b1 _M
2 þ b2 _M

3; b2 < 0: ð30Þ

Figures 1(b) and 1(c) show the curves ABCDE which
can be obtained in this case. They have a characteristic
s-shaped form, typical for the fold catastrophe which is well
known in catastrophe theory, see, e.g., [17]. It consists of
three parts, two of which have a positive slope (AB and
CDE) and are stable. BC with a negative slope is unstable.
When the end of the stable part is reached, a jump from B to
D to the second, upper stable branch occurs. The upper
stable solution can lead to very significant DM accretion,
since for it the ratio of the mass growth rates of DM and
baryonic matter can be quite large. We call this branch the
regime of catastrophic DM capture. In order to enter this
regime, the baryon accretion rate must exceed the threshold
value _Mbc ≃ 1=ð4Nb̃1Þ corresponding to a jump in the
capture rate _MDM.
Note also that a kind of a hysteresis loop can occur in the

situation shown in Fig. 1(c): if _Mb is decreasing during the
regime of catastrophic DM capture (upper branch), the state
of the system on the graph shifts to the left along the upper
stable branch.When it reaches the edgeof the stable branch at
point C, it jumps back to the lower branch at point F and
leaves the regime of catastrophic DM capture.With a certain
ratio of the coefficients b1 and b2 this formally happens at a
negative value of _Mb as is the case in panel 1(b). It is easy to
calculate, that point C corresponds to a negative value

of _Mb if N > −4b̃2b̃−21 and a positive value of _Mb for
N < −4b̃2b̃−21 .
Thus, depending on the evolution of fðv0Þ, the value of

_MDM can remain in the catastrophic DM capture regime if
in the past the galaxy had a value of _Mb larger than the
critical value and there was a jump, even if later _Mb
decreases or vanishes. As the particle density N decreases,
the left boundary of the upper stable branch, i.e., the point
C, crosses the y-axis and the system can return to the lower
stable branch via the CF transition.
It is clear that we cannot in general restrict ourselves to a

finite number of expansion terms in (24). Therefore we now
study the qualitative form of the dependence of _M on _Mb
without using the series expansion. We introduce the new
variable η ¼ v0=vpc. With (19) we obtain

_MDM ≃ πR2mv2pcF; ð31Þ

F ¼
Z

1

0

ð1 − η4ÞfðηvpcÞηdη

¼
Z

1

0

ð1 − η4Þf
�
η

η0
vmax

�
ηdη; ð32Þ

η0 ¼
vmax

vpc
: ð33Þ

The integral F goes over a fixed interval. The integrand is
the product of the function ηð1 − η4Þ that vanishes at both
ends of the interval and an unknown function f whose
properties we discussed above. The function f reaches its
maximum at v0 ¼ vmax, i.e., at η ¼ η0. For small vpc we
have η0 ≫ 1. The maximum of f lies outside the region of
integration and the integral is proportional to η−20 ∝ v2pc. As
a result, we can approximate f by (26). At large vpc we
have η0 ≪ 1 and the maximum of f shifts to the lower
boundary of the interval. The integral is approximately
proportional to η20 ∝ v−2pc , which is compensated by the
prefactor v2pc. Note that here “large” and “small” vpc is
considered with respect to vmax. Hence the colder the DM,
i.e., the smaller vmax, the less baryonic matter accretion is
required to be in the large vpc regime.
A more accurate estimate for the large vpc regime can be

obtained directly from the expression (19), in which the
upper limit of integration is replaced by infinity, which
gives a negligible error in this case. As a result, we obtain
the asymptotic expression

_MDM ≃ πR2

Z
∞

0

�
1 −

v40
v4pc

�
mfðv0Þv0dv0

≃ C1 − C2v−4pc ¼ C1 − C3
_M−2; ð34Þ

C1 ¼ πmR2

Z
∞

0

fðv0Þv0dv0 > 0; ð35Þ
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C1 ∝ N;

C2 ¼ πmR2

Z
∞

0

fðv0Þv50dv0 > 0; ð36Þ

C2 ∝ N; ð37Þ

C3 ¼
M
2GR

C2: ð38Þ

Approximating C2 ∼ C1v4max, we find that at high accretion
rate, vpc ≫ vmax we may neglect the second term in (34)
and the DM capture rate is saturated. The dependence
acquires the asymptotic form _M → C1 þ _Mb. In Figs. 1(b)
and 1(c), the slopes of the curves in the upper right corner
are not drawn to scale.
Let us also consider the behavior of the function for

intermediate values of η0. The integral F in (32) is a
function of the variable vpc, that decreases at large and
small values of the argument. Therefore, it reaches a
maximum at a certain value of vpc which we call vpcm.
We have ∂F

∂vpc
¼ 0 for vpcm. The value of F is proportional to

fðvpcmÞ, which, in turn, is proportional to the density of
particles in intergalactic space N. The integral F is
multiplied by the factor v2pc ∝ _M. Therefore, for vpc ¼
vpcm we obtain a dependence of the form

_MDM ≃QðM;RÞmN _M ð39Þ

where the function QðM;RÞ does not depend on _M. On the
other hand, _Mb ¼ _M − _MDM. For small _M we have (27)
with positive slope. For large _M we have (34) also with
positive slope. At the maximum of F we have (39) with the
slope 1 −QðM;RÞmN, which is negative if the DM
particle density N exceeds some critical value. If this
happens, we obtain an s-shaped curve _Mð _MbÞ like in
Fig. 1(b) and 1(c). We apply the theory of catastrophes and
find that with a continuous increase of _Mb, a jump in _M
occurs and something like a hysteresis loop can appear.
This shows that the appearance of the fold catastrophe is
quite generic.
It is clear that the catastrophic capture regime must lie

above the point with a negative derivative with respect to
_Mb, which is attained at vpcm for which F is maximal. Let
us evaluate this maximum. The integrand in F is the
product of two functions, each of which has a maximum.
The function f reaches its maximum at v0 ¼ vmax, i.e., at
η ¼ η0. The maximum of the function ηð1 − η4Þ achieved at
η ¼ η1 ≈ 0.7. The integral is maximal if these two maxima
roughly agree, hence η0 ≈ η1. In this case, the speed vpc for
the upper stable branch is about vpcm ≃ 1.4vmax. A DM
particle with an initial velocity v0 ¼ vmax is then captured
by the galaxy if its trajectory passes at a distance less than

0.85R from the center. This means that a significant fraction
of the DM particles is captured as they pass through the
galaxy.
The ratio of the influx rates of dark and baryonic matter

can be quite large. But the jump into the catastrophic
capture regime is not possible if the rate of accretion of
baryonic matter did not exceed some threshold value in the
past or present.
The jump also requires the presence of DM with a

density N exceeding a certain threshold value. Taking into
account that N decreases with time both due to Hubble
expansion and because of the capture of particles as
discussed in this paper, it can be assumed that eventually
the s-shaped curve has turned or will turn into the
monotonic dependence shown in Fig. 1(d), where no
catastrophe exists and the capture process is significantly
weaker. This moment may lay in the past or in the future
depending on the parameters of a given galaxy. With _M
also vpc decreases significantly.
Let us also determine the positions of the points B and C

in Figs. 1(b) and 1(c) which determine the baryon accretion
rate at the entry into and the exit from the catastrophic
DM capture regime. They are given by the condition
d _Mb=d _M ¼ 0. Taking into account (12) this yields
d _MDM=d _M ¼ 1. With (19) we can write this condition as

HðvpcÞ ≔ N−1v−6pc

Z
vpc

0

v50fðv0Þdv0

¼ 1

2πR2mN

�
M
2GR

�
1=2

: ð40Þ

The function HðvpcÞ tends to zero as vpc → 0 and as
vpc → ∞. This means that it has a maximum at a certain
vpc ¼ v1. It can be estimated that v1 ≈ vmax. We denote

N1 ¼
1

2πR2mHðv1Þ
�

M
2GR

�
1=2

: ð41Þ

At N < N1 we have no solution and the inflection points B
and C do not exist. The value N ¼ N1 corresponds to the
transition from s-shaped curve to the monotonic one.
Assuming the generic shape of monotonic increase and
decay for HðvpcÞ, at N > N1 we have two solutions of
Eq. (40). The solution with smaller vpc corresponds to
point B, one with larger vpc to point C. For small vpc we
can use the approximation (26) and obtain the same
estimate for coordinates of point B.

_Mb ¼ _Mbc ≃
1

4Nb̃1
¼ M

πNR3mGã1
: ð42Þ

Using the function H, we can show that more complex
scenarios are possible in which the transition to the state of
intense capture and/or exit from it can occur in two stages.
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This is possible, e.g., in the case of the existence of two
different types of DM particles or a bimodal velocity
distribution fðvÞ [21].
The point C corresponds to _Mb ¼ 0 [crossing over to

Fig. 1(b)], when, in addition to (40), the condition

v−2pc

Z
vpc

0

v0fðv0Þdv0 ¼
3

2πR2m

�
M
2GR

�
1=2

ð43Þ

is satisfied. We can determine the values of N and _M in this
case by solving the system of equations (40) and (43).
Let us roughly estimate the ratio of the rates of increase

in the mass of DM and BM immediately after the jump
from B to D. At point B, these rates are approximately
equal and, according to (42), they are inversely propor-
tional to the DM mass density Nm. At point D, lying on the
upper branch, the value of _Mb is the same as at point B. The
ratio _MDM to _Mb at point D is approximately equal to the
ratio of _MDM at points D and B, which is clearly greater
than 1. We can use (34) and set _MDM ≃ C1 ∝ Nm. So, the
ratio of the rates of increase in the mass of DM and BM at
point D is proportional to N2 and can be very large at the
early stages of galaxy evolution.
Let us confirm these arguments with the example of the

Maxwell-Boltzmann distribution and use Eq. (21). Since
we are interested in the ratio of mass gain rates, we
introduce the dimensionless variables

x ¼ γ _Mb; y ¼ γ _M; γ ¼
ffiffiffiffiffiffiffiffiffiffi
2GR
M

r
v−2max: ð44Þ

From (21) and (12) we obtain

x ¼ y − μPðyÞ ð45Þ

μ¼ 2R2mN
vmax

ffiffiffiffiffiffiffiffiffiffiffiffi
2πGR
M

r

≃ 0.01
mN

0.3ρc0=h2
100 km=s

vmax

�
R

0.3 Mpc

�
5=2

�
1012M⊙

M

�
1=2

ð46Þ

where the function PðyÞ is given in (22). In (45) the
parameter dependence has been reduced to the single
dimensionless parameter μ, which decreases with time,
mainly due to the decrease inN. Figure 2 shows four curves
corresponding to the values of this parameter equal
(from left to right) 10, 7, 5, and 4. They are shown not
schematically, as in Fig. 1, but accurately to scale.
At μ ¼ 4 the curve is monotonic like in Fig. 1(d) and this

value is slightly below the critical value for the transition to
the s-shaped curve. For μ ¼ 5 we have a curve similar to
that shown in Fig. 1(c) and this value is slightly below the
value of μ at which the left edge of the top branch intersects

the y-axis. These two special values of μ are rather close,
they differ only by a factor 1.25. For larger μ the curve has
the form shown in Fig. 1(b). The ratio of the rates of mass
gain of DM and BM after the jump to upper branch is
approximately 11 at μ ¼ 5, 55 at μ ¼ 7, and 85 at μ ¼ 10. It
increases rapidly with increasing μ ∝ N. As a result, the
galaxy at the stage of intense capture accumulates a lot of
dark matter.

C. Qualitative description of catastrophic DM capture

After analyzing the conclusions obtained from Eqs. (12)
and (19) within the framework of our model, we can
describe the process of accumulation of dark matter inside
the halo of the galaxy.
As a result of the growth of small density fluctuations,

regions of increased density emerge, in which galaxies can
form. The surrounding matter, both baryonic and dark,
begins to fall into them. The infalling BM cools and is
captured. In the absence of accretion of baryonic matter, DM
particles fly through protogalaxies and are not captured.
The situation changes with an increase in the mass of

the baryonic component of the galaxy due to accretion,
mergers of galaxies and other processes. A fraction of the
DM particles flying into the galaxy at sufficiently low
speeds is being captured. In Fig. 1(b), this is described by
the section AB on the lower stable branch of the s-shaped
curve. The mass of dark matter inside the galaxy begins to

-3 -2 -1 0 1 2 3 4 5 6 7 8
x

1

2

3

4

5

6

7

8

9

10

y

FIG. 2. Dependence of the quantities (44) proportional to the
rates of increase in the total and baryonic masses of the galaxy for
the case of the Maxwell distribution of DM particle velocities.
The curves from left to right correspond to the different values of
the parameter μ from (46) equal to 10, 7, 5, and 4.
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grow, but the rate of its increase is smaller than the rate of
increase in the mass of BM.
If the rate of increase in the mass of the BM exceeds a

certain threshold value, _Mbc, something similar to a phase
transition occurs with a change in the state of the system. In
Fig. 1(b), this corresponds to a sharp jump from B to D after
reaching the right boundary of the bottom stable branch at
point B. The simple estimate (42) determines the depend-
ence of the relative critical growth rate of baryonic matter
_Mbc=M on the size of the galaxy R and on the mass density
of dark matter in the intergalactic space Nm (during the
formation of galaxies, this is simply the density of dark
matter). The value of N decreases rapidly due to the
expansion of the Universe, hence if the jump did not occur
during the formation of the galaxy, then it will not occur at
later times. The only exception might be the process of
merging of galaxies, which can provide a transition to the
upper branch due to a sharp temporary increase in the rate
of baryonic mass growth, _Mb.
The critical baryonic mass growth rate required for the

jump is smaller for objects with large R (galaxies and their
clusters) than for objects with smallR (stars, etc.). Therefore,
dark halos form around galaxies, but not around stars.
After a jump to the upper stable branch, the state of the

system corresponds to point D or its vicinity. Let us
consider the case where the density N is high enough
such that −4b2=b21 < 1 and the _Mð _MbÞ curve has the shape
1(b). If _Mb increases, the system shifts to the right, say, to
point E. If _Mb decreases, the system shifts to the left along
the curve DG. On this curves, _MDM ≫ _Mb. During this
phase, galaxies can become DM dominated. Note that in
case 1(b) the capture of DM particles continues even if the
accretion of baryonic matter ceases at point G.
However, not only the value of _Mb, but also the curve

itself changes with time. The dynamics of the change in the
curve is associated primarily with the decrease of N. The
change in the shape of the distribution of the velocities of
one DM particle, say, the coefficients b̃i, has a much
weaker time dependence.
When the threshold value of the intergalactic DM density

N ¼ −4b2=b21 is reached, the left boundary of the upper
stable branch crosses the y-axis. The curve takes the form
shown in Fig. 1(c). At point C, the system can jump to point
F on the lower branch. In this case, the mass of the dark
halo practically stops growing.
Without knowledge of the DM velocity distribution, we

cannot determine the density at which the BD jump
occurred, so we do not know whether the curve is described
by graph 1(b) or 1(c) at a given time. But the transition from
curve 1b to curve 1c is inevitable. In the above description,
we assume that it happened later than the jump from B to D.
If the state of the system has not descended to the lower

branch and intensive capture of DM particles continues due
to the high rate of accretion of baryonic matter _Mb, then

with a further decrease in N, the _Mð _MbÞ curve becomes
monotonic as shown in Fig. 1(d) and represents a single
stable branch at densities N below the next threshold value
N1 given in Eq. (41). This can be considered the end of the
stage of intensive capture of DM particles. It is obvious that
this transformation occurs later than the crossing of point C
through the y-axis.

IV. SOME QUANTITATIVE ESTIMATES

For an estimation we use the parameters of our Galaxy.
The Milky Way cannot be considered typical as there are
many more dwarf galaxies in the Universe, but it is a good
example of a large galaxy. We set M ≈ 1012M⊙ ≈ 2 ×
1042 kg and R ≈ 106 ly ≈ 1022 m. The last estimate is
based on the value R ¼ 292� 61 kpc [22] and is a rather
large value. It is of the order of the average distance
between galaxies and slightly less than half the distance to
the Andromeda galaxy, M31. For this values the time of
flight through the center of the Galaxy exceeds 2 million
years even for an ultrarelativistic particle. But we are more
interested in slow particles captured by the Galaxy. As
mentioned above, their initial speed is less than
u ¼ ð2GM=RÞ1=2, and the speed of passage of the halo
is approximately equal to u ¼ 170 km=s. This gives an
upper bound on the time-of-flight of a galaxy τ for the
noncapture case as τ ≤ 4.5 × 109 years.
There are alternative estimation of R. Some of them one

can find in the review article by [23] and in papers by [24,25].
If we choose the value R ¼ 200 kpc ≈ 6.5 × 105 ly ≈ 6.2 ×
1021 mwith the same estimate ofM, we find u ≈ 210 km=s,
τ ≤ 109 years. If we choose a lower estimate R ¼ 100 kpc,
then u ≈ 300 km=s and τ ≤ 3.3 × 108 years.
These τ values are less or much less than the ages of the

Universe and of the Galaxy for all estimates of R. This
confirms the assumption underlying the model that during
the passage of a particle that is not captured by the galaxy,
the mass of the latter increases, but not by very much. It is
clear that this is also true for dwarf galaxies with signifi-
cantly smaller halo sizes.
We can estimate vpc from (8), setting _M ¼ M=T with

T ≃ 1.3 × 1010 years, which corresponds to galaxy forma-
tion at z ≃ 5 to 20. For the Milky Way we obtain vpc ≈
100 km=s forR¼ 300 kpc, vpc≈60 km=s forR ¼ 200 kpc,
and vpc ≈ 50 km=s for R ¼ 100 kpc.
We are more interested in estimating the rate of halo

mass increase due to DM capture. Let us assume that the
Milky Way has not left the stage of intense capture and
apply the formula (34), more precisely, its limit for large _M.
Using the (35) with

R
∞
0 fðv0Þv0dv0 ≈ Nvmax, we find

_MDM≈C1 ≈ πR2ρDMvmax

≈ 0.08ϰh2
�

R
200 kpc

�
2 vmax

100 km=s
M⊙ peryear: ð47Þ
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Here we have denoted the DM mass density in the
intergalactic space as ρDM. In our estimation, we took into
account that Nm ¼ ρDM ¼ 0.25ϰρc. It is less than the
average density of dark matter in the Universe, which should
be approximately 25% of the critical density ρc, determined
by the Hubble constant H0 ¼ h100 km=s=Mpc. The coef-
ficient ϰ < 1 is introduced to account for this difference,
which caused by the fact that part of the dark matter is
accumulated in the halos of galaxies.
The product _MDM times the age of the galaxy is much

smaller than the DM mass in our Galaxy. The reason for
this is that the rate of mass increase was significantly higher
in the early stages of the capture of dark matter particles
by the Galaxy. Let us estimate the mass of dark matter
MDMðz0Þ captured from the time corresponding to the
redshift z0 to today. We assume that all this time there was
an intense capture of particles and the mass gain is
described by the Eq. (47). The mean density of dark matter
in the Universe is proportional to ð1þ zÞ3. We can set ϰ ≃ 1
for the early stages of galaxy evolution which account for
most of the captured DM.
Let us assume that the galaxy from the beginning of the

considered period formed a gravitationally bound system
and its dimensions did not increase due to Hubble expan-
sion. It is difficult to estimate by how much vmax changes
with the expansion of the Universe. On the one hand, the
speed of a particle flying far from galaxies and not
interacting with other particles remains almost unchanged.
On the other hand, an analogy can be drawn with the
cooling of an ideal gas during its adiabatic expansion.
However, it is doubtful that DM particles would be in a
state of thermal equilibrium.
Therefore, and for simplicity, we estimate MDMðz0Þ,

assuming that the values R and vmax to be approximately
constant during the period under consideration and the
change in the capture rate is to be determined mainly by the
change in the DM density.
Let us denote the current capture rate as _MDMð0Þ and

apply the flat ΛCDM model. We obtain

MDMðz0Þ ¼
Z

_MDMð0Þð1þ zÞ3dt

¼ Wðz0Þ _MDMð0ÞH−1
0 ð48Þ

with

Wðz0Þ ¼
Z

z0

0

ð1þ zÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩmð1þ zÞ3

p dz: ð49Þ

Here ΩΛ ≈ 0.7 and Ωm ≈ 0.3 are density parameters for the
cosmological constant and matter. Thus, the mass of dark
matter captured by the Galaxy from the moment z ¼ z0
corresponds to that which it would have captured during the
timeWðz0ÞH−1

0 ¼ Wðz0Þ × 1010=h years if the current rate

of capture was maintained. We can calculate Wð19Þ ≈ 114,
Wð24Þ ≈ 161, Wð32.3Þ ≈ 250. We see that, according to
our rough estimate, the dark matter that forms the dark halo
of the Galaxy can be captured if the process of intense
capture begins at z ≃ 20 or z ≃ 30.
In order to avoid misunderstanding, we emphasize once

again that we do not assert that at the present time the
Galaxy continues to actively capture DM particles and its
state should be on the upper branch. Almost all DM was
captured at the earliest stage of this process. It can be
assumed that the process of moving to the lower branch (the
fall from C to F in Fig. 1(c)) has already occurred. We do
not know if active capture resumed temporarily during the
capture of a single dwarf galaxy (see [26]). It may also be
that some (or most) galaxies never had significant baryonic
accretion and never underwent catastrophic DM capture
and maintained their ratio of baryonic to dark matter from
the initial time of formation.
There are galaxies in the Universe more massive than the

Milky Way. When evaluating (47), we assumed that the
capture rate is maximal. Differences in the mass of dark
matter in galaxies can be related to the sizes of galaxies and
the moment of the beginning and end of intense capture,
i.e., the time of the jump to the upper branch and fall back
to the lower branch.
The rate of matter capture is proportional to R2. From the

estimate (42) we can assume that for a larger proto-galaxy
the jump to the upper stable branch occurred earlier than for
a smaller one. The system can descend to the lower branch
not before the point C crosses the y-axis and the curve takes
the form shown in Fig. 1(c). But a significant accretion rate
of BM allows it to remain on the upper branch for some
time after that and to continue to accumulate dark matter at
a significant rate. The accretion rate is clearly larger in a big
massive galaxy, all other parameters being fixed. We know
galaxies with estimates of R more than 300–400 kpc. This
are, e.g., NGC 4889, NGC 4874, ESO 306-17 and others.
It can be assumed that their large masses are associated,
among other things, with a particularly effective capture of
dark matter.
Another possibility is associated with the merger of two

galaxies of comparable mass, continuous merging of
galaxies in the cluster potential (“galactic cannibalism”),
or early merging during cluster formation. An example of
such a merger is the giant interacting elliptical galaxy ESO
146-5 (ESO 146-IG 005) in the center of the cluster Abell
3827. Its total mass is ð2.7� 0.4Þ × 1013M⊙ within
37h−1 kpc according to [27]. This estimate was obtained
from strong gravitational lensing. The total halo mass of
ESO 146-5 is larger. It is perhaps the most massive galaxy
in the nearby universe.
In conclusion, if a galaxy or a galaxy cluster is formed

from a strong density perturbation and has a larger than
average size and a high initial rate of baryonic mass
increase _Mb, it will accumulate more DM.
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V. CONCLUSIONS

We studied the capture of DM particles passing through a
galaxy. It is associated with an increase in the mass of the
galaxy, primarily its dark halo. The kinetic energy of a
particle, which increases as it enters the halo and decreases
while it leaves it again, may become insufficient for the
particle to leave the halo if the galaxy mass increases
sufficiently during the passage. This requires the combined
action of two factors. One is an increase in the mass of the
baryonic component of the galaxy, and the other is
determined by the particle flux. Both have to be sufficiently
large for significant capture of DM particles. Furthermore,
both change in time, leading to quick changes in the DM
capture rate. A capture occurs precisely by objects of the
size of galaxies, but not by much smaller astronomical
objects like stars.
As a result, the particle is captured and begins to move

inside the gravitational potential well of the galaxy. The
capture process can be described by catastrophe theory. DM
accretion can jump from a moderate capture rate of order the
baryonicmass growth to amuch largevaluewhichwe denote
catastrophicDMcapture. Its startmay even be as early as the
nonlinear growth of primordial density fluctuations during
the Dark Ages. The ratio of the influx rates of dark and
baryonic matter can be very significant during catastrophic
DM capture which may explain the large observed DM to
BM ratio in certain galaxies.
The growth rate of the mass of baryonic matter inside a

galaxy, for example due to accretion and cooling or due to
galaxy cannibalism, must exceed a certain threshold value
to enter the catastrophic capture regime. Also, the density
of DM particles in intergalactic space must exceed a certain
threshold value in the catastrophic DM capture mode.
Taking into account that the matter density decreases with
time both due to the Hubble expansion and because of the
capture of particles as discussed in this paper, it can be
assumed that the capture process has either weakened
significantly in the past, or will do so in the future.
Particles with sufficiently high initial velocity can fly

through the galaxy, leaving it with a reduced speed due to
the action of the mechanism under consideration. The
higher the initial velocity, the smaller the loss of both
velocity and energy of the particle. As a result, a general
decrease in energy and a change in the velocity distribution
of the particles occur. This process is more efficient if the
galaxy is in a cluster rather than in a void.
A qualitative description of the formation of a dark halo

around galaxies is given in Sec. III C. The process includes
several transformations and changes in the state of the
system. Particularly strong fluctuations lead to the appear-
ance of large galaxies, often in clusters. Their size and high
mass accretion rates ensure the capture of almost all DM

particles that enter inside. Some quantitative estimates of
the considered process in the Milky Way galaxy are
presented in Sec. IV.
We believe that the approach proposed in this work, in

particular the idea of a sharp transition to a regime of
intense DM particle capture, can supplement our under-
standing of the formation of the dark halos of galaxies.
Note also, that the velocity dispersion of DM is neglected in
the initial conditions of N-body simulations where it is
assumed that DM particle velocities are fixed exactly by the
peculiar velocity field. Even if DM is expected to be cold so
that velocity dispersion is probably small, our effect might
help to lead to earlier galaxy formation and explain the
surprising data of the JWST [28,29].
The work presented here is preliminary as we just show

the main features studying a toy model. Within this toy
model we can demonstrate the existence of a mode of
intense DM particles capture with a catastrophic transition
to this mode and back, focusing on the physical aspects of
the process. On the other hand, the picture described in the
article is certainly simplified. For simplicity we assume
spherical symmetry of the halo and we neglect peculiar
motion in a reference frame in which the distribution of DM
particle velocities is isotropic. In addition we implicitly
consider the capture of particles by an already sufficiently
formed galaxy. However, during the formation of a galaxy
from the initial overdensity, the density contrast and the
DM accretion rate increase from small, linear initial con-
ditions. For a more adequate treatment, a more detailed
model will be needed, which considers the capture of dark
matter during the growth of density fluctuation at its different
stages, including nonlinear growth. A more realistic N-body
simulation, including hydrodynamical effects of baryons is
needed to show that catastrophic DM capture may be truly
relevant for cosmological structure formation. Another
possible continuation of this work is related to the statistical
behavior of a system which is not in thermodynamic
equilibrium. DM particles after passing through a growing
galaxy are slowed down, lose part of their speed. It would be
interesting to investigate the influence of this process on the
particle velocity distribution by writing a Boltzmann trans-
port equation for this process.
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