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The next generation of galaxy surveys will provide highly accurate measurements of the large-scale
structure of the Universe, allowing for more stringent tests of gravity on cosmological scales. Higher-order
statistics are a valuable tool to study the non-Gaussianities in the matter field and to break degeneracies
between modified gravity and other physical or nuisance parameters. However, understanding from first
principles the behavior of these correlations is essential to characterize deviations from General Relativity
(GR), and the purpose of this work. This work uses contemporary ideas of standard perturbation theory on
biased tracers to characterize the three-point correlation function at tree level for modified gravity models
with a scale-dependent gravitational strength, and applies the theory to two specific models [fðRÞ and
DGP] that are representative for Chameleon and Vainshtein screening mechanisms. Additionally, we use a
multipole decomposition, which apart from speeding up the algorithm to extract the signal from data, also
helps to visualize and characterize GR deviations.
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I. INTRODUCTION

One of the main goals in cosmology is to understand the
nature of the gravitational interactions, which among other
physical phenomena, are heavily responsible of the
Universe’s large-scale structure (LSS) distribution and
evolution. Although the consistency of recent observations
may point to physical tensions in the ΛCDMmodel [1] and
suggest deviations from the standard picture, the model
based on General Relativity (GR) and a perturbative
expansion about a homogeneous and isotropic background
has proven extremely successful. However, the expansion
history of ΛCDM may be easily reproduced by many
modified gravity (MG) models, while it remains a chal-
lenge to mimic the growth of structure to all orders in
perturbation theory. In this copycat approach of GR, some
MG models may present an evolution of linear modes
consistent with ΛCDM and present-day observations.
Therefore, estimators that naturally test the nonlinear
behavior of perturbations may test gravity more efficiently.
One of these estimators is the three-point correlation
function (3PCF) or its Fourier space counterpart, the
bispectrum, which encodes the shape of three-leg-inter-
actions within the gravitational sector. Two-point statistics
are also sensitive to the nonlinear gravitational evolution of

perturbations, and in particular to three-leg interactions.
However, their contribution is integrated over momentum
loops so that a feature produced by a nonlinear gravitational
interaction at a particular scale may also be achieved by
other physical phenomena. In contrast, three-point statistics
could break these degeneracies because, at leading order in
perturbation theory, the operator is free on the momentum
variable that is otherwise integrated in the two-point
statistics. As a result of this functional freedom, which
leads to different triangular shapes, one has a richer
structure worth studying.
One can measure the three-point statistics of density

perturbations using a number of different physical observ-
ables. In particular, looking at matter tracers in the LSS may
be a promising route to test gravity, due to the large number
of modes and the high precision that near-future experi-
ments, such as the Dark Energy Spectroscopic Instrument
(DESI) [2–4], Euclid [5], or the Vera Rubin Observatory
[6], will achieve. In this paper, instead of focusing on
baryonic tracers like galaxies, clusters or the Lyman-alpha
forest, we take one step back and study halos of two distinct
but representative MG models. Although, our biasing
scheme is general and our analytical results can be used
for any kind of tracers.
The theory space spanned by all possible extensions to

GR is infinite. However, due to Lovelock’s theorem [7,8]
one can categorise such extensions based on which of the
theorem’s assumption is not fulfilled. In particular, one
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assumption of the theorem is that gravity is mediated only
by a helicity two field. Regarding this assumption, a
popular choice to construct MG models is to consider
additional gravitational mediators to the metric. In here, we
focus on using an extra scalar degree of freedom in the
gravitational sector. Fifth force experiments on Earth and in
the Solar System strongly restrict the nature of such
additional fields (see for example [9]), so in order to obtain
strong departures from GR on cosmological scales, one
could impose a physical mechanism that screens the
contribution of the extra degrees of freedom within the
Solar System. There are three popular families of screening
mechanisms (see [10]): Chameleon [11], Symmetron [12],
and Vainshtein [13]. The models presented in this work are
examples of the Chameleon and the Vainshtein mecha-
nisms. In the Chameleon case, the mass of the scalar
gravitational mediator depends on the local matter density,
and representative models are the fðRÞ theories (see [14]
for an overview). Here, we focus on one particular
realization called the Hu-Sawicky fðRÞ model [15], with
different strengths of the modification. For the Vainshtein
mechanism, the screening of the scalar field around matter
sources is due to modified kinetic terms, and a canonical
example, that we use in this work, is the DGP model [16].
Although these models can resemble the expansion history
of ΛCDM, the growth of structure would be modified, as
have been studied for two-point correlations. However, our
purpose is to exhibit the rich structure of the three-point
statistics in the distribution of galaxies for these models.
Moreover, differences between GR and these models in the
3PCF structure are not that degenerate among models or
other physical contributions (such as the DM-galaxy bias
parameters), supporting the idea of using this estimator to
probe gravitational deviations from ΛCDM.
Calculating the 3PCF is a difficult task, given that it

scales naively as N3, where N is the number of galaxies in
the catalog. Using k-dimensional trees or other common
algorithms may reduce the computational time, but further
developments are needed to obtain the 3PCF of millions of
objects and on large scales. One recent approach to over-
take this computational bottleneck is to use a multipole
decomposition, reducing the algorithm to a roughly N2

scaling, as shown by Slepian and Eisenstein [17] (see also
[18,19]). This approach has been applied to obtain a 4.5σ
detection of baryon acoustic oscillations (BAO) in the
3PCF [20] as well as the tightest current constraint on the
way in which large-scale baryon-dark matter relative
velocities couple to galaxy formation [21]. Both of these
works used the CMASS sample of 777,202 Luminous Red
Galaxies (LRGs) within the Sloan Digital Sky Survey
(SDSS) Baryon Oscillation Spectroscopic Survey (BOSS).
One can not only use this multipole expansion as a fast

algorithm to extract the three-point statistics signal from
data, but also as a tool to visualize and classify differences
between GR and the MG models. These differences in the

3PCFs manifest as a complex structure, which can be
studied with two different approaches. On one hand, one
could measure the 3PCF using the Slepian and Eisenstein
code on synthetic catalogues of modified gravity and GR.
This approach has been carried on in [22] over HOD
catalogues obtained from the N-body set of simulations
ELEPHANT [23] and using the same cosmological back-
ground for GR and MG. The HOD count-in-cell method
was that of [24], while the evolution used the ECOSMOG

[25,26] and the ECOSMOG-V [27,28] codes. On the other
hand, there is a complementary approach to running 3PCF
codes on synthetic data based on a theoretical description,
which can explain from first principles the complex 3PCF
structure found in [22]. We devote this work to this
theoretical approach, with particular attention to the multi-
pole expansion of the 3PCF of modified gravity models,
and employing standard perturbation theory (SPT) at
tree level.
Before constructing the theory in detail, it is worth

mentioning the efforts to describe MG models using
perturbation theory. Most studies are dedicated to detail
the nonlinear matter power spectrum supplemented by
diverse methods, such as the closure equations [29],
spherical collapse [30], the multipoint propagator expan-
sion [31], a peak-background split [32], semiphenomeno-
logical treatments [33], Lagrangian perturbation theory
[34], effective field theory (EFT) methods [35,36], or the
halo model [37]; and also extending the modeling to
include redshift distortions [36,38,39] or biased tracers
[40]. Some of these perturbation theory (PT) prescriptions
have been compared to N-body simulations to assess how
well the theory captures the large and small scale clustering
of biased tracers (see for example [41]).
Although most studies of the matter clustering in MG

focus on two-point statistics, there are studies which
describe the matter bispectrum [42–44]. However, and to
our knowledge, there is not any work on three-point
statistics in configuration space. Even less when consid-
ering the multipole basis expansion, which as discussed
before allows for efficient 3PCF codes, that may be
required to extract the 3PCF signal from the large datasets
of the upcoming stage-IV galaxy surveys. In this context,
we revisit the PT framework of [45], and include the
required ingredients to describe gravitational models
beyond the standard one. The main ingredients are the
inclusion of a new scale, introduced by theMGmodels, and
the consideration of additional biasing operators, namely
higher-order biases, that are needed for theoretical con-
sistency in MG (see e.g., [46]).
In summary and to describe the structure of the paper, we

entrust ourselves to obtain a model of the 3PCF in a
Legendre mulipolar basis for biased tracers. The route we
take to this end is to Fourier transform the multipoles of the
bispectrum; which is done in Sec. V. However, before
presenting the final results, in Sec. II we review the
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representative modified gravity models. In Sec. III, we
review SPT on these MG models, following the ideas of
Refs. [29,34] up to second order in PT and with a biasing
model, to finally construct the tree-level bispectrum for
galaxies in Sec. V. Finally, we include some conclusions in
Sec. VI. Detailed derivations are delegated to appendixes.

II. MODIFIED GRAVITY THEORIES WITH
SCREENING MECHANISMS

To study departures from General Relativity one has to
choose a theoretical framework to characterise such devia-
tions. Among the theories that violate the requirement of a
metric as the gravity mediator in Lovelock’s theorem [47],
it is a popular choice to add an extra scalar gravitational
degree of freedom. If one restricts to second-order differ-
ential equations and a minimally coupled matter sector, the
Horndeski Lagrangian [48] is the most general scalar-
tensor theory of gravity.1 Solar System constraints restrict
the functional form of the unknown functions that define
Horndeski’s model, leaving a subset of options which
contain screening mechanisms. A simple picture of screen-
ing mechanisms is achieved by looking at a conformally
coupled scalar field to nonrelativistic matter. As shown in
[51], consider linear perturbations φ of the scalar field
around a background value φ, which in turn, is set by the
local density of matter. Around a pointlike mass source
(ρ ¼ Mδ3ðrÞ), the governing equation for the linear per-
turbation φ can be schematically written as [51]

Kðφ0Þ½φ̈þ c2sðφ0Þ∇2φ� þm2ðφ0Þφ ¼ gðφ0ÞMδ3ðrÞ: ð1Þ

For K ∼ g ∼ cs ∼ 1 and m ∼ 0, the additional gravitational
force scales as 1=r2, violating all fifth-force local con-
straints. However, by allowingm, g, andK to depend on the
environment, one may suppress the scalar interaction with
matter altogether. The Chameleon family [11] succeeds by
providing a large mass to φ, leading to a rapidly decaying
Yukawa effective potential, whereas the symmetron models
[12] decouple matter from the scalar degree of freedom via
a weak coupling (g ≪ 1). A third alternative to suppress the
scalar interactions is to modify the kinetic term accordingly,
through the function K. This mechanism, named after
Vainshtein [13], can be constructed using either first- (e.g.,
the K-mouflage [52]) or second-order derivatives (e.g., the
Galileons [53]) in the Lagrangian. For the present work, we
focus on two representative cases of the Chameleon and
Vainshtein families; the Hu-Sawicki fðRÞ [15] and nDGP
[16] models, respectively. However, it is important to stress
that the formalism presented here is more general than these
two particular working examples. To set a common
framework to discuss these MG models, we assume the

same background expansion history for all models, gov-
erned by Friedmann’s constraint H2 ¼ H2

0ðΩma−3 þ ΩΛÞ,
where a is the scale factor, H ¼ _a=a the Hubble
growth rate, and Ωm and ΩΛ are today’s matter and dark
energy abundances, respectively. Dots refer to time deriv-
atives and a zero subscript to quantities evaluated today
[e.g., a0 ¼ aðt0Þ ¼ 1].

A. Hu-Sawicki f ðRÞ model

The Hu-Sawicki (HS) model [15] is an fðRÞ theory,
where the ΛCDM Lagrangian, Rþ fðRÞ ¼ R − 6H2

0ΩΛ,
is replaced in the high-curvature regime by the
function fðRÞ ¼ −6H2

0ΩΛ þ jfR0jnðR2
0=RÞn, where R0 ¼

3H2
0ðΩm þ 4ΩΛÞ is today’s Ricci scalar and fR0 is the

present day value of the additional scalar field gravitational
mediator (φ ∼ fR ≡ ∂f=∂R). For n ¼ 1, the weak-
field equations in the quasi-static limit for the
Newtonian potential, Φ, and the scalar-field perturbation,
φ, read [29]

1

a2
∇2ΦðxÞ ¼ 4πGρ̄δðxÞ − 1

2a2
∇2φðxÞ; ð2Þ

1

2β2a2
∇2φðxÞ ¼ −8πGρ̄δðxÞ þ Iðφ;∇φ;∇∇φ;…Þ; ð3Þ

where the interaction term I is expanded in Fourier
space as

IðkÞ ¼ M1φðkÞ þ
1

2

Z
d3k1d3k2

ð2πÞ3 δDðk − k1 − k2Þ

×M2ðk1;k2Þφðk1Þφðk2Þ þ � � � : ð4Þ

As long as the interaction depends only on the field φ and
not in its derivatives, the kernelsMn are scale independent.
This is the case of fðRÞ theories, where

Mn ≡ dnRðφÞ
dφn

����
φ¼fR0

; ð5Þ

which are obtained by inverting R as a function of fR.
Further, β2 ¼ 1=3 in these theories. Introducing the con-
stant β at this level is only for convenience, but will be
relevant for the DGP model where it is a function of time.
Notice that the associated mass in the previous Klein-
Gordon equation for the additional scalar field depends on
time, and it is given by [29]

mðaÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β2M1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MHS

1 ðaÞ
3

r
∝ jfR0j−1=2; ð6Þ

with

1Allowing for higher-order equations of motion without
introducing new degrees of freedom leads to the so-called
DHOST theories [49,50].
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MHS
1 ðaÞ ¼ 3H2

0ðΩma−3 þ 4ΩΛÞ3
2jfR0jðΩm þ 4ΩΛÞ2

; ð7Þ

while the first autointeraction is mediated by the dynamical
coupling [29]

MHS
2 ðaÞ ¼ 9H2

0ðΩma−3 þ 4ΩΛÞ5
4jfR0j2ðΩm þ 4ΩΛÞ4

: ð8Þ

Therefore, the theory results in a Yukawa-like interaction at
leading order for the fifth force, with further corrections due
to the nonlinear interactions. The associated Compton scale
to the Yukawa-like force ism−1 ∝ jfR0j1=2, which for larger
values of jfR0j results in larger deviations from GR. In the
present work and to exemplify our modeling numerically,
we assume two possible strengths of fR0: F4 ∼ 10−4

and F6 ∼ 10−6.

B. nDGP model

The Dvali, Gabadadze, and Porrati (DGP) model is based
on a four-dimensional braneworld which contains the
matter fields, embedded in a five dimensional spacetime.
There is a crossover scale, rc, so that below it the model is
effectively 4d GR plus a scalar field which captures the
flexing or bending of the brane. In this r < rc regime, the
Poisson and Klein-Gordon (KG) equations in the quasi-
static limit can be cast in the same way as for the fðRÞ
model, namely Eqs. (2)–(3), but with the interaction I
depending on the field second derivatives as

I ¼ r2c
a2

½ð∇2φÞ2 − ð∇i∇jφÞ2�; ð9Þ

and hence the only surviving kernel Mn is

MDGP
2 ðk1;k2Þ ¼

2r2c
a4

½k21k22 − ðk1 · k2Þ2�: ð10Þ

The time-dependent coupling β is

β2ðtÞ ¼ 1

6

�
1þ 2Hrc

�
1þ

_H
3H2

��−1
: ð11Þ

Notice, in the DGP literature it is common to find a
different definition for β, where β2 in this work is
ð6βÞ−1 in other works. Models with rc ¼ X=H0, with X
a positive number are denoted as NX. In this work we will
focus on the N1 and N5 normal branch DGP models.
So far, we have introduced all the needed basics of the

HS and DGP representative MG models in order to
understand how to get the tree-level bispectrum using
SPT, which is described in the next section.

III. STANDARD PERTURBATION THEORY IN
MODIFIED GRAVITY

The MG theories from the previous section belong to a
class of theories where the linear growth function Dþ is the
fastest-growing solution of the differential equation2

h
T̂ − Aðk; tÞ

i
Dþðk; tÞ ¼ 0; ð12Þ

with the linear differential operator T̂ ¼ ∂
2=∂t2 þ

2Hð∂=∂tÞ [54], and a scale-dependent gravitational strength
defined as

Aðk; tÞ ¼ 3

2
ΩmH2

�
1þ 2β2k2

k2 þm2a2

�
: ð13Þ

The quantities mðaÞ and βðaÞ are model dependent
functions, that respectively quantify the range and the
strength of the fifth force; mðaÞ is typically the associated
effective mass of the new scalar gravitational degree of
freedom, and β its coupling to the other matter fields, which
is assumed universal. As long as m is different from zero,
the linear growth function Dþ is scale dependent and the
theories reduce to GR at large scales k ≪ ma; this is the
case of chameleons, as the Hu-Sawicky fðRÞ model
previously discussed; see Eq. (7).
In contrast, other theories such as DGP and cubic

Galileons have zero mass, since for these M1 ¼ 0; thus
the linear growth depends only on time. These models do
not reduce to GR at large scales, implying they are tightly
constrained by the background evolution. However, one
can always add a smooth dark energy component to mimic
as much as desired the ΛCDM expansion history [55].
This is usually done in N-body simulations in order to
isolate the effects of the growth of perturbations due to an
extra force component from those effects due to a different
overall background expansion history of the Universe.
Nevertheless, in such theories, additional scale depend-
encies enter beyond linear order through derivative
couplings in their associated Klein-Gordon equations,
as can be seen from Eq. (3) with the lowest-order
correction set by M2 of Eq. (10). This term will become
relevant at second order in perturbation theory as we will
discuss later.
The choice of Eq. (13) may be seen as too restrictive for

the HS or DGP (or cubic Galileon) models; however, in
[39] it is shown that a large subset of the Horndeski sector
can be written in this form at linear order, while non-
linearities are correctly modeled by the Miðk; aÞ functions.
Furthermore, theories posed in the Einstein frame, such as
symmetrons [12,56,57], can be easily recast in this form as

2Notice at linear order Eqs. (2), (3), and (4) imply
ðk2=a2ÞΦ ¼ −AðkÞδ; see also Appendix B.
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well, by using field redefinitions [58], which are not
conformal transformations of the metric tensor.3

The linear matter overdensity at time t is δð1Þðk; tÞ ¼
½Dþðk; tÞ=Dþðk; t0Þ�δð1Þðk; t0Þ, with t0 an arbitrary
time, usually chosen to be the present time. When

possible, it is convenient to normalize the linear growth
function to Einstein-de Sitter (EdS) evolution,Dþðk; tiniÞ ¼
DEdSþ ðtiniÞ ∝ aðtiniÞ, for some early initial time tini where the
linear growth evolution is indistinguishable to that in an
EdS universe. This is possible for the majority of MG
theories studied in the cosmological literature, where one
can construct the linear power spectrum (PS) in terms of the
ΛCDM linear PS as

PLðk; tÞ ¼
�

Dþðk; tÞ
DΛCDMþ ðk; t0Þ

�
2

PΛCDM
L ðk; t0Þ: ð14Þ

An alternative is to obtain the linear PS directly from an
Einstein-Boltzmann code, such as MGCAMB [59,60] or
HI_CLASS [61,62].
To include higher-order corrections in the correlation

function, one may solve the hydrodynamic equations
iteratively. To second order in the matter fluctuation one
finds

δð2Þðk; tÞ ¼
Z

d3k1d3k2
ð2πÞ3 δDðk − k1 − k2ÞF2ðk1;k2; tÞ

× δð1Þðk1; tÞδð1Þðk2; tÞ; ð15Þ

where the second-order SPT kernel F2 is given by (see
Appendix B for a derivation)

F2ðk1;k2; tÞ ¼
1

2
þ 3

14
Aðk1;k2; tÞ þ

x
2

�
k1
k2

þ k2
k1

�

þ x2
�
1

2
−

3

14
Bðk1;k2; tÞ

�
; ð16Þ

with

x ¼ k̂1 · k̂2 ð17Þ

being the angle between the two interacting density fields
with wave vectors k1 and k2. The scale- and time-
dependent functions A and B are set by

Aðk1;k2; tÞ ¼
7Dð2Þ

A ðk1;k2; tÞ
3Dþðk1; tÞDþðk2; tÞ

;

Bðk1;k2; tÞ ¼
7Dð2Þ

B ðk1;k2; tÞ
3Dþðk1; tÞDþðk2; tÞ

; ð18Þ

where we have defined a second-order growth functions

Dð2Þ
A;B, which are solutions of the Green’s problem [34]

Dð2Þ
A ¼ ðT̂ − AðkÞÞ−1

�
AðkÞ þ ðAðkÞ − Aðk1ÞÞ

k1 · k2

k22

þ ðAðkÞ − Aðk2ÞÞ
k1 · k2

k21

− S2ðk1;k2Þ
�
Dþðk1ÞDþðk2Þ; ð19Þ

Dð2Þ
B ¼ ðT̂ − AðkÞÞ−1

h
Aðk1Þ þ Aðk2Þ − AðkÞ

i

×Dþðk1ÞDþðk2Þ: ð20Þ

In the previous expressions, thewave numberk ¼ k1 þ k2,
which follows from momentum conservation, mathemati-
cally expressed by the Dirac delta function in Eq. (15). An
EdS background evolution results in AEdS ¼ BEdS ¼ 1;
whereas for theΛCDMmodel,AðtÞ ¼ BðtÞ are onlyweakly
dependent on time and close to one. Actually, for standard
cosmologies one finds that nowadays AΛCDMðt0Þ ≃ 1.01.
However, in more general cases on which additional scales
enter the theory, as in MG or massive neutrinos, the
functions A and B are unequal and scale dependent.
Hereafter, we omit to write the time dependencies of these
and other related functions to simplify the expressions.
The source S2ðk1;k2Þ in Eq. (19) comes from the

nonlinearities of the Klein-Gordon equation (3) and is
responsible for the screening mechanism to second order in
perturbation theory. One finds, explicitly, that S2 for the HS
fðRÞ model is

SHS2 ðk1;k2Þ¼
36Ω2

mH4β6a4M2ðk1;k2Þk2
ðk2þm2a2Þðk21þm2a2Þðk22þm2a2Þ; ð21Þ

where a more detailed derivation can be found in
Appendix B. If one focuses on the DGP model, the leading
correction comes from MDGP

2 , because as discussed before
this model has a vanishing mass. An immediate conse-
quence of the explicit form of MDGP

2 is that the screening
source term depends only on the angle x defined in Eq. (17).
To appreciate this result, observe that Eqs. (B15) and (10)
reduce to

SDGP2 ðxÞ ¼ ZðtÞð1 − x2Þ; ð22Þ
with

3For the purposes of late-time LSS formation, the main
difference is that in Einstein frame theories the new scalar degree
of freedom does not couple to the Poisson equation, as in Eq. (2),
but to the geodesic equation since particles follow the geodesics
of a conformally transformed metric.
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ZðtÞ ¼ 72Ω2
mH4β6r2c: ð23Þ

A direct consequence of this result is that the second-order

growth function Dð2Þ
DGPðk1;k2Þ depends on the form of the

triangle formed by the wave vectors k ¼ k1 þ k2, k1, and
k2, but not on its size. Notice that this scaleless dependence
comes only from the screening terms, as discussed in an
extended manner in [58]. At higher than second order this is
no longer true, because in Eq. (4) we are expanding δI in
terms of (nonlinear) fields φ, which in turn should be
expanded into linear densities, and when properly done,
Eq. (4) receives contributions at all orders in PTregardless of
MDGP

n>2 ¼ 0. However, these appear for the first time at
1-loop level, and at leading order congruent triangles have
identical screenings.
For the present work purpose, it is sufficient to consider

up to second order in the density fields in order to obtain the
matter tree-level bispectrum, whose computation follows
the usual expression

Bðk1;k2;k3Þ ¼ 2F2ðk1;k2ÞPLðk1ÞPLðk2Þ þ cyclic; ð24Þ
where the last term represents the cyclic permutations of the
wave vectors k1, k2, and k3.

IV. TREE-LEVEL BISPECTRUM OF GALAXIES

We are interested in the statistics of galaxies as biased
tracers of the underlying dark matter distribution. The
standard biasing approach consists on constructing all the
relevant operators consistent with symmetries up to the
desired order in PT [63,64]. In ΛCDM with initially
Gaussian-distributed matter fields, it is sufficient to consider
the local4 operators δ and δ2, and the tidal field s2 for the
leading-order bispectrum. However, the completeness of this
set of operators relies on the fact that the linear growth
functions are scale independent, such that all modes grow at
the same pace, which is not true for MG models in general.
In fact, it is well known that even the linear local bias
is scale dependent in MG, scaling as b1ðk; tÞ ¼
1þDþðk; t�Þ=Dþðk; tÞðb1ðk; t�Þ − 1Þ [65,66], hence
becoming nonmultiplicative in configuration space, unless
Dþ is separable in k and t and depends on time only at some
sufficiently early time.Wenote, however, that for larger scales
than the scalar field fifth-force range (∼1=m), we can expand
the gravitational strength AðkÞ in powers of ðk=amÞ2, and by
consideringoperators∇2δ,∇4δ, and soon (commonly named
higher-derivative or curvature operators) we deal effectively
with the effects of MG at sufficiently large scales. This
approach was taken in [36,40], following the discussion of
Sec. 8. 3 in Ref. [46]. Moreover, curvature bias is also well
motivated inΛCDMby the formationof halos in peaks theory
[67–70]. Further, it is often used to remove subleading

dependencies on the smoothing scale R of the matter over-
density δR (that we simply write here as δ for compactness)
[63,71,72]. Hence, our biasing model use the tracers density
fluctuation expanded as

δgðxÞ ¼ b0 þ b1δðxÞ þ b∇2δ∇2δðxÞ

þ b2
2
δ2ðxÞ þ bs2s

2ðxÞ þ � � � ; ð25Þ

where s2 ¼ sijsij is the tidal-bias operator and

sijðxÞ ¼
�
∂i∂j

∇2
−
1

3
δij

�
δðxÞ; ð26Þ

the shear tensor. The parameter b0 contains all term necessary
for canceling out zero-lag correlators; that is, b0 ¼
− b2

2
hδ2i − b2shs2i up to second order in PT and bias expan-

sion.5 Bias operators δ∇2δ, ∇δ ·∇δ and ð∇2δÞ2 can also be
considered at second order, but they yield very small con-
tributions at large scales, thus we neglect them in this work.
Additionally to the biasing expansion, we use the PT

formal expansion of the galaxy density field δgðxÞ ¼
δð1Þg ðxÞ þ δð2Þg ðxÞ þ � � �. The double expansion in fluctua-
tions and biases in Fourier space results in the first- and
second-order galaxy fields

δð1Þg ðkÞ ¼ ðb1 − b∇2δk
2Þδð1ÞðkÞ; ð27Þ

δð2Þg ðkÞ ¼
Z

d3k1d3k2
ð2πÞ3 δDðk − k1 − k2Þ

×

�
ðb1 − b∇2δk

2ÞF2ðk1;k2Þ þ
b2
2

þ bs2
�
ðk̂1 · k̂2Þ2 −

1

3

��
δð1Þðk1Þδð1Þðk2Þ; ð28Þ

with the second-order SPT kernel F2 given by Eq. (16).
Our main object of study is the galaxy-galaxy-galaxy

bispectrum, B, that at tree-level is defined through

hδð1Þg ðk1Þδð1Þg ðk2Þδð2Þg ðk3Þi
¼ð2πÞ3δDðk1þk2þk3ÞBðk1;k2;k3Þþcyclic; ð29Þ

which after some manipulations becomes

4By local we mean local-in-matter-density, as it is used in the
more recent literature; see e.g., [46].

5In Ref. [45], the authors use the notation bt ¼ 2bs2 for the
tidal bias. Also, the second-order local bias in that work is related
to ours by 2b½that work�2 ¼ b½here�2 . However, for the definitions of γ
and γ0, introduced below, both notations coincide.
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Bðk1;k2;k3Þ ¼ b31ð1þ γ�k21Þð1þ γ�k22ÞPLðk1ÞPLðk2Þ

×

�
2F2ðk1;k2Þð1þ γ�k23Þ þ γ

þ 2γ0
�
ðk̂1 · k̂2Þ2 −

1

3

��
þ cyclic; ð30Þ

where we have introduced the rescaled bias parameters

γ ¼ b2
b1

; γ0 ¼ bs2
b1

; γ� ¼ −
b∇2δ

b1
: ð31Þ

In writing Eq. (30) we have neglected stochastic contri-
butions which lead to zero-lag correlations in configuration
space, as well as the stochastic noise.

A. Effective field theory

An important theoretical ingredient on top of perturba-
tion theory is the effective field theory for large structure
formation [73]. In the standard approach, it arises since the
cutoff scale in loop integral regularization requires to be
removed by adding counterterms with the appropriate
functional form. This prescription effectively models the
backreaction of small scales over large scales, with con-
sequences that are of utmost importance for modeling the
observed power spectrum and other statistics. However, a
different and less discussed approach to introduce the EFT
new contributions is to look up directly at the evolution
equations and smooth them over some arbitrary scale. By
doing so one ends with a theory in which the mass elements
act as having internal structure sourcing the Poisson
equation with a multipole expansion (see for example
[74–76]). In the Lagrangian approach to EFT, this scheme
induces a correction to the Lagrangian displacement field
of the form α∇δ [76]. Hence, a recipe to add EFT
corrections in tree-level statistics is to make the substitution
δg → δg þ αðk=kNLÞ2δg, with the counterterm αðtÞ consid-
ered a free parameter of the theory. However, despite the
scales kNL and amðaÞ are not the same and evolve differ-
ently with time, the time dependence of α is unknown and
hence this EFT counterterm and curvature bias seems to be
indistinguishable and degenerate. For this reason, and
because at tree-level is more common, we will still use
the language of curvature bias when referring to these
additions.
Finally, we further mention that EFT counterterms in the

tree-level bispectrum are also included to model the non-
linear relation between real- and redshift-space coordinate
systems along mainly the line-of-sight where the Fingers-
Of-God dominate [77,78].6

V. MULTIPOLE DECOMPOSITION

The three wave vectors entering the bispectrum, k1, k2,
and k3, are constrained to form triangles by statistical
homogeneity; and because of isotropy, the orientation of
these triangles is irrelevant for three-point statistics if
redshift-space distortions are not considered, as we do in
the rest of the paper.7 Therefore, we can characterize these
triangles with three numbers, that we choose to be the
lengths of two of their sides, k1, k2, and the cosine of the
angle between them x. Hence we can write the bispectrum
as Bðk1; k2; xÞ and expand the internal angle in a Legendre
polynomials LlðxÞ basis,

Bðk1; k2; xÞ ¼
X
l

Blðk1; k2ÞLlðxÞ ð32Þ

with

Blðk1; k2Þ ¼
2lþ 1

2

Z
1

−1
dxLlðxÞBðk1; k2; xÞ: ð33Þ

The 3PCF is obtained by taking the inverse Fourier trans-
form of Eq. (32), yielding [83]

ζðr1; r2; r̂1 · r̂2Þ ¼
X
l

ζlðr1; r2ÞLlðr̂1 · r̂2Þ; ð34Þ

where

ζlðr1; r2Þ ¼ ð−1Þl
Z

k21k
2
2dk1dk2
ð2π2Þ2 Blðk1; k2Þ

× jlðk1r1Þjlðk2r2Þ: ð35Þ
Notice that the spherical Bessel functions appear when per-
forming the angular piece of the Fourier transform integrals.
The four bias parameters in Eq. (25) combine to give ten

different contributions to the Legendre multipoles of the
3PCF in Eq. (35). These are b31, b

3
1γ, b

3
1γ

0, b31γ�, b
3
1γ�γ,

b31γ�γ
0, b31γ

2�, b31γ
2�γ, b31γ

2�γ0, and b31γ
3�. We can reduce this

number by noting that we are assuming that only one
curvature bias (∇2δ) is sufficient to effectively model the
MG biases scale dependence, meaning that γ� is expected
to be small. Moreover, in Ref. [40] it is shown that in MG
models the contributions of curvature bias to the correlation
function of tracers is much smaller than those coming from
linear- and second-order local biases. Comparisons to
N-body simulations [41,84] give good fits at large scales,
in agreement with the vanishing of higher-order biases.
Although this fact is trivial in ΛCDM, in MG we have
introduced the curvature bias in order to effectively
account for the scale dependence in the linear local bias;
thus, in principle curvature bias can yield considerable

6Redshift space distortions were first described in the context
of EFT in Refs. [79,80].

7For homogeneous but nonisotropic fields, one applies these
methods to the direction-averaged statistical fields; see e.g., [17,20],
and [81,82] for more general N-point correlation functions.

GALAXY THREE-POINT CORRELATION FUNCTION IN … PHYS. REV. D 107, 063525 (2023)

063525-7



contributions at large scales, which are of the same
magnitude as the second-order local bias. However, we
notice that as MG N-body simulations became more
precise one would be able to measure a nonzero curvature
bias. Given this discussion, in the following we will
consider terms up to linear order in γ�, neglecting quadratic
and cubic contributions. In Appendix A, for completeness
of the model, we reintroduce the contributions coming from
γ2� and γ3�.

A. Precyclic bispectrum

In this section we find the multipoles of the bispectrum
performing the cyclic permutations. That is, our goal is to
compute

Bpc;lðk1; k2Þ ¼
2lþ 1

2

Z
1

−1
dxBpcðk1; k2; xÞLlðxÞ; ð36Þ

with Bpc;lðk1; k2Þ the precyclic (pc) multipoles of the
bispectrum, which are obtained from Eq. (33) without
considering the cyclic permutations in Eq. (30). As dis-
cussed in the previous section, we are only considering
terms up to linear order in γ�. Hence we split the precyclic
bispectrum as

1

b31
Bpcðk1; k2; xÞ ¼ B

b3
1

pc þ γBγ
pc þ γ0Bγ0

pc þ γ�B
γ�
pc

þ γ�γB
γ�γ
pc þ γ�γ0B

γ�γ0
pc ; ð37Þ

with each bias combination contribution to the precyclic
bispectrum, Bbias type

pc ðk1; k2; xÞ, given by

B
b3
1

pc ¼ 2F2ðk1; k2; xÞPLðk1ÞPLðk2Þ; ð38Þ

Bγ
pc ¼ PLðk1ÞPLðk2Þ; ð39Þ

Bγ0
pc ¼ 2

3
L2ðxÞPLðk1ÞPLðk2Þ; ð40Þ

Bγ�
pc ¼ ðk21 þ k22 þ k23Þ2F2ðk1; k2; xÞPLðk1ÞPLðk2Þ; ð41Þ

Bγ�γ
pc ¼ ðk21 þ k22ÞPLðk1ÞPLðk2Þ; ð42Þ

Bγ�γ0
pc ¼ 2

3
L2ðxÞðk21 þ k22ÞPLðk1ÞPLðk2Þ: ð43Þ

To compute Eq. (36) for each of the above terms, first, we
note that the factors depending only on k1 and k2 in
Eqs. (38)–(43) can be pulled out of the integrals in Eq. (36).
Therefore, for the computation of the multipoles of the
precyclic bispectrum one has to obtain (1) the multipoles of
the second-order linear bias, which trivially gives γ
for the monopole and zero for the rest of multipoles,
(2) the tidal contribution, giving 4γ0=3 for the quadrupole

and zero otherwise, and (3) the multipoles of the
F2ðk1; k2; xÞ and k23F2ðk1; k2; xÞ kernels. The latter
becomes equivalent to compute the multipoles of
xF2ðk1; k2; xÞ since the angle cosine x enters through the
constriction k23 ¼ k21 þ k22 þ 2k1k2x. For convenience we
express the functions F2 and xF2 as

F2ðk1; k2; xÞ ¼
�
2

3
þ 3A − B

14

�
L0ðxÞ þ

1

2
Gðk1; k2ÞL1ðxÞ

þ
�
1

3
−
1

7
B
�
L2ðxÞ; ð44Þ

xF2ðk1; k2; xÞ ¼
1

6
Gðk1; k2ÞL0ðxÞ þ

�
4

5
þ 3

14

�
A −

3

5
B
��

× L1ðxÞ þ
1

3
Gðk1; k2ÞL2ðxÞ

þ
�
1

5
−

3

35
B
�
L3ðxÞ; ð45Þ

where we have introduced the gradient contribution
Gðk1; k2Þ≡ k1=k2 þ k2=k1, which arises from transporting
large-scale matter bulks along Lagrangian displacement
directions. Notice that Eqs. (44) and (45) are not Legendre
multipolar expansions because A and B depend on x. The
exception is the ΛCDM model for which A and B are only
time dependent. Henceforth, in ΛCDM, the Legendre
multipoles that survive in the precyclic bispectrum are
l ¼ 0, 1, 2, 3 because of the orthogonal conditions

Z
1

−1
dxLmðxÞLnðxÞ ¼

2

2nþ 1
δmn: ð46Þ

In MG, instead, all multipoles contribute to the multipolar
expansion. However, those with l > 3 are small since
functions A and B depend weakly on x for fixed wave
numbers k1 and k2. Thus, it is natural to split the multipoles
of F2 and xF2 as

Fl
2ðk1; k2Þ ¼ Fl

2;LSðk1; k2Þ þ ΔFl
2ðk1; k2Þ; ð47Þ

½xF2�lðk1;k2Þ¼ ½xF2;LS�lðk1;k2Þþ½ΔxF2�lðk1;k2Þ: ð48Þ

The labels “LS” mean that we take the large-scale limit
of a quantity. In models with nonzero mass we have
F2;LS ¼ F2;ΛCDM, as follows from Eqs. (13), (19), and
(20); this is, for example, the case of the fðRÞ gravity. Up to
the gradient function Gðk1; k2Þ, the multipoles Fl

2;LS are
only time-dependent functions of order unity, while multi-
poles ΔFl

2 are also k1 and k2 dependent. In Fig. 1 we show
contour plots for the multipoles ΔFl

2ðk1; k2Þ for the model
F4 at redshift z ¼ 0.5, showing they are small compared to
unity, and hence smaller to the multipoles Fl

2;LS, with
the largest contribution coming from ΔFl¼0

2 ðk1; k2Þ <
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0.05Fl¼0
2;LS. It is important to note that the overall size of

ΔFl
2 decays quickly with the multipole number l which

allows us to keep a small number of these terms, in the
following we shall consider up to ΔFl¼8

2 .
In models with nonvanishing mass, such as in fðRÞ

theories, the computation of multipoles Fl
2;LS can be

performed by letting k1 and k2 go to zero in Fl
2ðk1; k2Þ,

as stated above. These are given by

Fl¼0
2;LS ¼

14þ 3ALS

21
; Fl¼1

2;LS ¼
1

2
Gðk1; k2Þ; ð49Þ

Fl¼2
2;LS ¼

7 − 3ALS

21
; Fl>2

2;LS ¼ 0: ð50Þ

The standard, well-knownvalues computed with EdS kernels
(see e.g., [45]), Fl¼0

2;EdS ¼ 17=21 and Fl¼2
2;EdS ¼ 4=21, are

recovered by setting ALS ¼ 1. Equivalently, the multipoles
of xF2;LS are

½xF2;LS�l¼0 ¼ 1

6
Gðk1; k2Þ; ½xF2;LS�l¼1 ¼ 28þ 3ALS

35
;

ð51Þ

½xF2;LS�l¼2 ¼ 1

3
Gðk1; k2Þ; ½xF2;LS�l¼3 ¼ 7 − 3ALS

35
;

ð52Þ

½xF2;LS�l>3 ¼ 0: ð53Þ

Meanwhile, the multipoles of ΔF2ðk1; k2; xÞ are

½ΔF2�lðk1; k2Þ ¼
3

14
½A − Bx2�l −ALS

7
ðδl0 − δl2Þ; ð54Þ

½ΔðxF2Þ�lðk1; k2Þ ¼
3

14
½Ax − Bx3�l − 3ALS

35
ðδl1 − δl3Þ;

ð55Þ

which should be computed numerically.
For the DGP models, the scale dependencies come from

the Vainshtein screening which affects only the monopole
and quadrupole of the bispectrum in virtue of Eq. (22).
For notational consistency, and only in the DGP model
case, we will refer as ALS to the function AðtÞ obtained
without considering the screening source S2 in Eq. (19),
and ΔF2 ¼ F2jS2≠0 − F2jS2¼0. In this way we can still use
the splitting F2 ¼ F2;LS þ ΔF2, but in DGP the first term
refers to the kernel in the absence of screenings, while the
second term are the screening contributions. The screening
source for DGP [Eq. (22)] can be written as S2ðx; tÞ ¼
2
3
ZðtÞðL0ðxÞ − L2ðxÞÞ and therefore,

ΔFl
2 ¼ fðtÞð−δl0 þ δl2Þ ð56Þ

with the time dependent function fðtÞ obtained by solving

fðtÞ ¼ 1

3
D−2þ ðtÞðT̂ − AðtÞÞ−1½ZðtÞD2þðtÞ�: ð57Þ

FIG. 1. ΔFl
2ðk1; k2Þ for F4 model at redshift z ¼ 0.5. All functions we alternate sign according to the multipole number l because this

how they appear in the precyclic 3PCF of Eq. (60).
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In such a way we can use all of the above formulae also in
the case of DGP. In particular, for N5 and N1 function f
takes values fðt0Þ ≃ 0.002 and fðt0Þ ≃ 0.005, respectively,
for a background cosmology Ωm0 ≃ 0.3 and h ¼ 0.7.
Hence, similar plots than those in Fig. 1 but for DGP, will
show nonzero values only for multipoles l ¼ 0 and l ¼ 2,
and these are simply constants in the k1 − k2 space.
With these partial results, we find the following bispec-

trum multipole components

B
b3
1

pc;lðk1; k2Þ ¼ 2PLðk1ÞPLðk2ÞðFl
2;LS þ ½ΔF2�lÞ;

Bγ
pc;lðk1; k2Þ ¼ PLðk1ÞPLðk2Þδl0;

Bγ0
pc;lðk1; k2Þ ¼

4

3
PLðk1ÞPLðk2Þδl2: ð58Þ

The multipoles for the remaining three components con-
sidered in this work, Bγ� , Bγ�γ, and Bγ�γ0 , whose expressions
are cumbersome, are given in Appendix A.
Before continuing with the computation of the 3PCF, it is

worth discussing the differences in behavior in different
cosmological models. For the EdS case, the function
A ¼ ALS is equal to unity while the kernel ΔF2 is zero.
Hence Fl¼0

2 and Fl¼2
2 , which correspond to the evolution

of spherical collapse dynamics and the effect of tidal
gravitational fields, respectively, remain constant. On the
other hand, for ΛCDM ΔF2 is still vanishing, and one has
ALS > AEdS, which makes the monopole larger than its
EdS value, but also a smaller quadrupole. This implies that,
even for ΛCDM, the different multipoles of the bispectrum,
and consequently of the 3PCF, grow at different rates,
contrary to the EdS case in which all multipoles grow
simply asD4þðtÞ.8 For fðRÞ theories, this effect is enhanced
since we have to sum both contributions ΔFl¼0

2 and
ΔFl¼2

2 , which are positive (as can be read from Fig. 1),
but notice the monopole term is about two times larger than
the quadrupole. This is consistent with earlier finding
that the spherical collapse and the formation of halos is
much more efficient in fðRÞ than in ΛCDM [85,86].
Furthermore, we have a contribution forΔFl¼1

2 , not present
in ΛCDM or DGP. This dipole comes from linear displace-
ments of fluid positions, and hence is affected in massive
theories, for which the standard Lagrangian displacement-
overdensity relation receives additional scale dependencies
through the linear growth function Dþðk; tÞ. The relation is

Ψiðk; tÞ ¼ i
ki
k2

Dþðk; tÞδðk; tÞ; ð59Þ

with Ψi the Lagrangian displacement field to first order
in PT.

In DGP the situation is rather different, here
BDGP ¼ ADGP

LS > AΛCDM, and hence Fl¼0
2;DGP > Fl¼0

2;ΛCDM
and Fl¼2

2;DGP < Fl¼0
2;ΛCDM. But, as we have seen above, the

contributions of ΔF2 are negative for the monopole and
positive for the quadrupole, driving the whole F2 kernel to
that of ΛCDM. This is a consequence of the new scale
dependencies in DGP enter only through nonlinearities of
the Klein-Gordon equation, and as a result, the ΔFl

2 are
pure screening contributions in DGP.

B. Precyclic 3PCF

With the Bl;pc pieces at hand, we can Fourier transform
them to obtain the precyclic 3PCF multipoles ζpc;l. That is,
we aim to compute

ζpc;lðr1; r2Þ≡ ð−1Þl
Z

k21k
2
2dk1dk2
ð2π2Þ2 Bpc;lðk1; k2Þ

× jlðk1r1Þjlðk2r2Þ: ð60Þ

If the precyclic Bl are separable in k1 and k2 dependent
factors, the integrals of the precyclic 3PCF multipoles
in Eq. (60) reduce to the multiplication of two
1-dimensional integrals. This is the case of ΛCDM in
real space [45,87]. For MG, however, the only pieces of
Bl that are separable are those with γ and γ0 biasing
factors. However, the splitting of F2 and xF2 in Eqs. (47)
and (48) allow for the pieces containing multipoles of
F2;LS and xF2;LS to also be separable, since these are scale
independent.
To obtain the multipoles of the 3PCF using Eq. (60), it is

convenient to introduce different definitions. To begin, we
use the new notation

ξ½n;m�ðrÞ ¼
Z

k2dk
2π2

kmPLðkÞjnðkrÞ; ð61Þ

ξ½n�ðrÞ ¼ ξ½n;0�ðrÞ: ð62Þ

Note that ξ½0�ðrÞ ¼ ξLðrÞ is simply the linear correlation
function. We further introduce the functions

X0ðr1; r2Þ ¼ ξ½0�ðr1Þξ½0�ðr2Þ; ð63Þ

X1ðr1; r2Þ ¼ ξ½1;1�ðr1Þξ½1;−1�ðr2Þ þ ξ½1;−1�ðr1Þξ½1;1�ðr2Þ;
ð64Þ

X2ðr1; r2Þ ¼ ξ½2�ðr1Þξ½2�ðr2Þ; ð65Þ

that show up after the multipoles Fl¼0;1;2
2;LS are integrated, as

can be checked straightforwardly. We finally define

Y0ðr1; r2Þ ¼ ξ½0;2�ðr1Þξ½0�ðr2Þ þ ξ½0�ðr1Þξ½0;2�ðr2Þ; ð66Þ
8This is the common approach in PT, which uses EdS kernels,

but the precise linear growing functions in ΛCDM.

ALEJANDRO AVILES and GUSTAVO NIZ PHYS. REV. D 107, 063525 (2023)

063525-10



Y1ðr1;r2Þ¼ ξ½1;1�ðr1Þξ½1;1�ðr2Þþ
35

98þ3ALS

×

�
ξ½1;3�ðr1Þξ½1;−1�ðr2Þþξ½1;−1�ðr1Þξ½1;3�ðr2Þ

�
;

ð67Þ

Y2ðr1; r2Þ ¼ ξ½2;2�ðr1Þξ½2�ðr2Þ þ ξ½2�ðr1Þξ½2;2�ðr2Þ; ð68Þ

Y3ðr1; r2Þ ¼ ξ½3;1�ðr1Þξ½3;1�ðr2Þ; ð69Þ

that will enter when integrating the multipoles
½xF2;LS�l¼0;1;2;3. These Y functions correspond to curvature
biasing terms.
Inserting the bispectrum biasing components [Eqs. (58)

and Eqs. (A2)–(A5), (A10), and (A12) of Appendix A] into
Eq. (60), and using the definitions of Xl and Yl functions,
we obtain the precyclic 3PCF multipoles, namely

ζpc;lðr1; r2Þ ¼ b31

�
xl þ γδl0 þ

4

3
γ0δl2

�
Xlðr1; r2Þ

þ b31Δζlðr1; r2Þ þ
b31γ�
a2m2

�
yl þ γδl0

þ 4

3
γ0δl2

�
Ylðr1; r2Þ; ð70Þ

with xlðtÞ and ylðtÞ functions depending weakly on time
and given by

x0¼
28þ6ALS

21
; x1¼−1; x2¼

14−6ALS

21
; ð71Þ

y0 ¼
70þ 12ALS

21
; y1 ¼ −

392þ 12ALS

35
; ð72Þ

y2 ¼
56 − 12ALS

21
; y3 ¼ −

28 − 12ALS

35
; ð73Þ

while xl>2 ¼ 0 and yl>3 ¼ 0. Furthermore, the configu-
ration space counterpart of the ΔF2 contribution results in

FIG. 2. Precyclic contributions to the 3PCF in Eq. (70) for models ΛCDM and F4 at redshift z ¼ 0.5. All functions are multiplied by
r21r

2
2=ð10 h−1 MpcÞ4. The X and Y functions alternate signs because this how they appear in the precyclic 3PCF due to the prefactor

ð−1Þl in Eq. (70).
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Δζlðr1; r2Þ≡ 2ð−1Þl
Z

k21dk1
2π2

k22dk2
2π2

ΔFl
2ðk1; k2Þ

× PLðk1ÞPLðk2Þjlðk1r1Þjlðk2r2Þ: ð74Þ

In Fig. 2 we show two-dimensional plots for the Xl and
Yl functions for multipoles l ¼ 0, 1, 2 and for ΛCDM and
the HS F4 model. The contributions from X functions,
which are related to linear and quadratic local and tidal
biases are dominant, hence our choice of neglect beyond
linear γ� is well-justified. Notice we do not show Yl
functions for ΛCDM, since the bias expansion with b1, b2,
and bs2 is complete up to the second order, which is not the
case in fðRÞ. In the last column of this same figure we show
the contributions Δζl given by Eq. (74), which are purely
MG effects. Notice that despite the scaling factors, the
discrepancy with GR can be as large as the 2% of the Xl

functions at the intermediate scales r1 ∼ r2 ∼ 50 h−1Mpc.
Moreover, for the precyclic ΛCDM 3PCF the description
ends at l ¼ 2. In contrast, for MG the terms due to
curvature bias introduce an l ¼ 3 contribution, while the
ΔF2 piece yields to infinite multipoles for Δζl. A few of
the latter are plotted in Fig. 3 where, fortunately but
somewhat expected, their overall amplitudes decay quickly
with the multipole l.
As a remark, the larger effects of MG in Eq. (70) come

from the linear power spectrum as well as from the Δζl
contributions. There are additional corrections coming
from a similar expression to Eq. (74) with ΔFl

2 replaced
by ½ΔxF2�l. However, these terms are even smaller than
the Yl functions—which are similar in size to the terms

Δζl—and given that they are further multiplied by γ�,
which is assumed to be small, we neglect them.
In DGP, as shown in the previous section, only the

monopole and quadrupole of ΔF2 survive and these are
scale independent. Hence, the two-dimensional integral of
Eq. (74) reduces to the product of two one-dimensional
integrals. For the monopole one obtains Δζl¼0 ∝ X0, for
the quadrupole Δζl¼2 ∝ X2, and zero otherwise. Hence we
can simplify the expression (70) by absorbing these
contributions into functions x0;2ðtÞ with the substitutions
x0 → x0 þ 2fðtÞ, x2 → x2 − 2fðtÞ, with f given by
Eq. (57), and setting Δζl ¼ 0, showing that the
Vainshtein screening in DGP yields a signal close to the
percent level in the 3PCF monopole and quadrupole, while
no effects into other multipoles. This situation is similar in
other theories with a Vainshtein mechanism. Indeed, the
structure of the nonlinear derivative terms in Eq. (22) is
shared by other models, such as the cubic Galileons [53] or
certain sectors of Hordenski (see for example [88]), and
therefore such theories will show up the same qualitative
behavior.

C. The 3PCF multipoles

The total 3PCF is obtained by cyclic summing the
precyclic 3PCF piece previously obtained, namely

ζðr1; r2; r̂1 · r̂2Þ ¼
X
L

½ζpc;Lðr1; r2ÞLLðx12Þ

þ ζpc;Lðr2; r3ÞLLðx23Þ
þ ζpc;Lðr3; r1ÞLLðx31Þ�; ð75Þ

FIG. 3. Pure MG contributionsΔζl to the precyclic 3PCF given by Eq. (74). We use the F4 model at redshift z ¼ 0.5. All functions are
weighted by r21r

2
2=ð10 Mpc=hÞ4.
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FIG. 4. Contributions to the 3PCF in Eq. (80) for F4 model at redshift z ¼ 0.5. We show the contributions due to biases b1, b2 ¼ b1γ,
bs ¼ b1γ0, and b∇2δ ¼ b1γ� from left to right and for multipoles l ¼ 0, 1, 2, 3, 4 from top to bottom. All functions are multiplied by
r21r

2
2=ð10 h−1 MpcÞ4 and smoothed by a function exp½−ð12 h−1 Mpc=ðr1 − r2ÞÞ2�.
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where r3, x23, and x31 can be written as functions of r1, r2,
and x12. The labels pc indicate that we refer to the precyclic
functions of the previous section. The Legendre multipoles
of the postcyclic 3PCF are

ζlðr1; r2Þ ¼
2lþ 1

2

Z
1

−1
dx12ζðr1; r2; x12ÞLlðx12Þ: ð76Þ

Moreover, in order to track the different contributions, we
define the following projections of precyclic multipoles L
onto multipole l

I ðl;LÞðr1; r2Þ≡ 2lþ 1

2

Z
1

−1
dx12

�
XLðr2; r3ÞLLðx23Þ

þ XLðr3; r1ÞLLðx31Þ
�
Llðx12Þ; ð77Þ

ΔI ðl;LÞðr1; r2Þ≡ 2lþ 1

2

Z
1

−1
dx12

�
ΔζLðr2; r3ÞLLðx23Þ

þ ΔζLðr3; r1ÞLLðx31Þ
�
Llðx12Þ; ð78Þ

Jðl;LÞðr1; r2Þ ¼
2lþ 1

2

Z
1

−1
dx12

�
YLðr2; r3ÞLLðx23Þ

þ YLðr3; r1ÞLLðx31Þ
�
Llðx12Þ: ð79Þ

From these I and J functions we obtain the postcyclic
3PCF

ζlðr1; r2Þ ¼ ζpc;lðr1; r2Þ þ b31
X2
L¼0

�
xL þ γδl0 þ

4

3
γ0δl2

�

× I ðl;LÞðr1; r2Þ þ b31
X∞
L¼0

ΔI ðl;LÞðr1; r2Þ

þ b31γ�
X3
L¼0

�
yL þ γδl0 þ

4

3
γ0δl2

�
Jðl;LÞðr1; r2Þ:

ð80Þ

This equation describes the complete tree-level 3PCF of
biased in the Szapudi basis.
In Fig. 4, we show the contributions for multipoles l ¼

0;…; 4 in the HS F4 model at redshift z ¼ 0.5. To cover
the range of the multipoles properly over the chosen
domain we multiply them by r21r

2
2ð10 h−1MpcÞ−4, where

the numerical factor is chose to deal with dimensionless
quantities. We show the contours to the different biasing
terms to the above equation with the exception of b1γ�γ
and b1γ�γ. To obtain the total postcyclic 3PCF for biased
tracers one must sum each column weighted by the
corresponding bias parameters using Eq. (80). For visu-
alization purposes, we have smoothed the contours with

an exponential function exp½−ð12 h−1 Mpc=ðr1 − r2ÞÞ2�.
This is because the dominant contribution comes from the
diagonal r1 ≃ r2, corresponding to isosceles triangles and
hence the closing side of the triangle (r3) can be arbitrarily
small and get out of the reach of PT, and as such, not well
modeled by our method. We notice that contrary to the
precyclic results, is not clear that the amplitudes of the
multipoles start to decrease beyond some l. Actually, they
seem to be similar for l ≥ 2. The reason for this is the
nonpolynomial relation between the cosine angles x12,
x23, and x31 of the different vertices of a triangle, and the
projection of precyclic multipoles onto the original chosen
basis formed by Legendre polynomials of x12, with the
adjacents sides r1 and r2, given by Eqs. (77), (78), and
(79) In the literature there is not a formal proof that this
happens even in the case of ΛCDM, and if convergence is
not attained that would mean that we cannot reconstruct
the whole 3PCF from its multipoles. However, this is not a
significant obstacle to use them, since their advantage rely
in that the computational complexity to get these statistics
from the data is reduced drastically and the estimators to
do so search directly for the multipoles and not for the
whole 3PCF [17,81].

FIG. 5. Difference between GR and F4 models (left panel) and
GR and F6 models (right panel) for the 3PCF of halos. The bias
parameters that feed our Eq. (80) are extracted from a halo catalog
of the ELEPHANT simulations with masses in the range
12.65 < log10 ðMh=h−1M⊙Þ < 13.
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D. Application to halo catalogs

The aim of this section is to present results obtained
indirectly from simulated data. To that extent, we use bias
parameters obtained in a previous work [36] from
halo catalogs of the Extended LEnsing PHysics using
ANalaytic ray-tracing ELEPHANT N-body simulations, that
were performed with a modified version of the RAMSES

code, the ECOSMOG module [26,89]. The cosmological
parameters are fixed to Ωm¼0.281, h¼0.697, ns ¼ 0.971,
Ωb ¼ 0.046, and σ8 ¼ 0.848, while three instances of the
HS n ¼ 1 fðRÞ model were simulated, corresponding to
three variations of jf̄R0

j ¼ f10−6; 10−5; 10−4g and as
standard referred as F6, F5, and F4. The simulations

span a cubic volume of Vbox ¼ ð1024 Mpc h−1Þ3, with
10243 dark matter particles. We consider halos within the
mass range 12.65 < log10 ðMh=h−1M⊙Þ < 13, identified
using the publicly available code ROCKSTAR [90]. These
halos are named as halo catalog 2 in [36], or z ¼ 0.5
halos2 in table 1 of that paper. The bias parameters are
given by

GR∶ fb1; b2g ¼ f1.655;−1g; ð81Þ

F6∶ fb1; b2g ¼ f1.616; 0.26g; ð82Þ

F5∶ fb1; b2g ¼ f1.441; 0.25g; ð83Þ

FIG. 6. 1 dimensional plots for the 3PCF at directions r2 ¼ 0.3r1, r2 ¼ 0.5r1, and r2 ¼ 0.7r1 (from left to right) and for multipoles
l ¼ 0, 1, 2 (from top to bottom). We show the models GR (dotted black), F6 (dashed green), and F4 (red) at redshift z ¼ 0.5.
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while tidal bias is fixed by coevolution [91],
bs2 ¼ − 2

7
ðb1 − 1Þ. Despite this expression is only valid

for EdS evolution, it has proven to be accurate up to the
sensitivity of the ELEPHANT simulations [36].
In Fig. 5 we show the differences between GR and F4

models (left column) and between GR and F6 (right
panels) for multipoles l ¼ 0, 1, 2, 3. We do not plot the
relative differences since the 3PCF crosses the zero
several times. However, to have a sense of the differences
in the signal for distinct gravity models, in Fig. 6 we plot
one-dimensional curves from arbitrary chosen directions
in the plane r1-r2. From left to right, these are r2 ¼ 0.3r1,
r2 ¼ 0.5r1, and r2 ¼ 0.7r1, and for multipoles l ¼ 0, 1, 2
from top to bottom. We notice that the differences are
indeed considerable and up to about 20% in some regions,
mainly due to that in MG the attractive extra fifth
force tend to relax the CDM-baryons system more rapidly
and the large-scale bias goes towards unity faster than
in GR.

Instead of fixing the model parameters using previous
studies with the synthetic halo catalogs that do not rely on
3pt statistics, as we have done to obtain Fig. 5, one may
think of estimating the 3PCF directly from the mocks and
use it to fix the theory parameters. However, the simulation
suite that we use only contains four realizations of each
gravitational model, which do not allow for enough
statistical significance to have a reliable comparison to
our modelling. However, this simulation suite may also be
used for a very rough estimate of the signal to noise that one
would expect in the forthcoming stage-IV galaxy surveys.
If one populates these halo catalogues with galaxies
through a HOD prescription (as it was done in [22]), the
resulting galaxy density is comparable to the Luminous
Red Galaxy (LRG) density expected in the DESI survey.
Therefore, by a simple scaling of one simulation volume to
the DESI footprint, one could get a rough estimate of the
3PCF multipole signal for a LRG DESI-like target sample,
in order to distinguish MG from GR. Figure 7 shows the
result of plotting the error-weighted differences in the 3PCF
signals, namely

S=N ¼ ζGRl − ζfðRÞl

σDESI
; ð84Þ

where σDESI is the re-scaled mock’s dispersion to the DESI
volume. The patterns found are very similar to the
modelling we have developed here with the parameters
chosen from previous analysis of the same mocks, as
appreciated for the first three multipoles when comparing
Figs. 5 and 7. The results exhibit a good agreement between
our modeling and the direct calculation of 3PCF from
synthetic data. Moreover, vast regions of ðr1; r2Þ plane
(under 180 h−1Mpc in both scales) lead to a signal to noise
larger than one. This is better appreciated in the 2d plots of
Fig. 7, where we map the ðr1; r2Þ bins into a one-dimen-
sional index. As it is clear from these plots, smaller scales,
which often correspond to a smaller triangle index, present
a larger signal-to-noise ratio. In contrast, as we move to
larger scales the signal tends to shrink, except for the
quadrupole, which shows another strong signal beyond the
BAO scale. This is particular to the quadrupole, because
higher multipoles decay again for larger scales. These
estimates are based on the LRG density of DESI which
peak at around z ∼ 0.5 where the simulations are defined;
hence one would naïvely expect a larger signal using
DESI’s ELGs or other vast surveys such as Euclid.
Accurate forecasts can be obtained using Fisher techniques,
where one would also need to take into account more
realistic catalogs as well as the effective redshifts of the
samples. Notice that larger redshifts would imply less time
for the nonlinear interactions to show stronger departures
between MG and GR. The level of precision in the
observations and a deeper understanding of the systematics

FIG. 7. Difference in the 3PCFs, estimated directly from the
halo catalogs with Eq. (84), between GR and F4 models (left
panel) and GR and F6 models (right panel), for the first three
multipoles. The difference in signals is divided by an estimate of
the rescaled error for the LRG DESI sample, assuming uncorre-
lated errors between GR and the MG models. Saturated regions
are such that the signal-to-noise is larger than one, which can be
better seen in Fig. 8. Bins are of 10 hMpc and the 3PCF signal
extraction was done using the ENCORE code [81,92].

ALEJANDRO AVILES and GUSTAVO NIZ PHYS. REV. D 107, 063525 (2023)

063525-16



involved with each instrument is also needed for more
accurate forecasts. We leave those studies for future work.

VI. CONCLUSIONS

In the study of the large-scale structure, higher-order
statistics will probe useful, not only to complement the
analysis of two-point statistics but also to unveil possible
signals which are inherently associated to n-point correla-
tions with n > 2, such as consistency conditions (e.g.,
[93–95]), parity (e.g., [96,97]), particular shapes of pri-
mordial non-Gaussianities (e.g., [98]), to mention some. In
the context of an initial Gaussian random field under the
evolution of gravity, the nonlinear gravitational interactions
imprint nontrivial structures at all levels in the tower of
n-point correlation functions of the matter distribution. In
particular, constraining this structure in the context of three-
point correlations should be achievable with the stage-IV
galaxy surveys, as already discussed in the context of the
DESI in [22]. With this motivation in mind, we develop a
theoretical framework for the three-point correlation func-
tion (3PCF) of tracers in modified gravity, exemplified by
two models with representative screening mechanisms; the
Hu-Sawicki fðRÞ [15] and the nDGP [16] models. The final
3PCF result is expressed in a Legendre/Szapudi basis [83],
whose coefficients, given by Eq. (80), help not only to
visualize deviations from GR (see for example [99]) but
also to directly calculate the signal using estimators that
scale as the two-point estimators with the number of data
points [17,81]. We use standard perturbation theory with
effective field theory ingredients and a consistent biasing
model to build up the tree-level MG bispectrum in the
multipole basis, which are then directly map to the
coefficients of the 3PCF in the same basis.
One would think that the Szapudi decomposition of

Eq. (34) is only meaningful if it rapidly converges to the full
3PCF. If that is the case, then a few multipoles will suffice,
since the 3PCF should be smooth when galaxy fields are
smeared over some reasonable scale. However, there is no
proof of this convergence in the literature, or even a lack of
studies on how much cosmological information the higher-
order multipoles contain. Actually, as it is apparent from
Fig. 4, the amplitude of the multipoles do not seem to decay
with l, with the warning that our analysis only includes up
to l ¼ 8. In the case of a slower convergence, one would
need higher multipoles to recover the whole 3PCF from
Eq. (34). However, it is important to point out that the 3PCF
multipoles represent a summary statistics by themselves,
which in turn can be used to constrain or rule out
compelling cosmological theories. Moreover, the multipole
expansion approach is somehow attractive because one can
efficiently extract the signal from the data using only pair-
counting algorithms, greatly reducing the prohibiting
computational times of higher-order estimators. As a final
thought on this expansion, focusing on the different bias
terms for each multipole (as in Fig. 4) allows for a deeper

understanding of the imprinted gravitational structure in the
3PCF, where particular attention can be taken to the nearby
region of the BAO scale for one or both of the triangle
sides, and also around the subdiagonals or superdiagonals.
In terms of the relative differences between General

Relativity and modify gravity, we appreciate a complex
structure away from the diagonal in the 3PCFmultipoles, as
also described in [22]. One may think of removing a
fiducial LCDM signal to make more visible any GR
deviation, in a similar spirit of the nonwiggle signal
removal in the power spectrum. This may be useful, since
we believe many of the other deviations from the canonical
ΛCDM model that one could imagine would mostly sit
along the diagonal or have more homogeneous signals. For
example, a preliminary study of effect on the 3PCF from
DESI’s fiber allocation using the simulated data of [100],
shows a very homogeneous difference in the monopole
with short scale modifications along the diagonal in all the
multipoles.
Natural extensions to this work are the inclusion of RSD,

calculate 1-loop corrections, or even a further exploration of
the consistency condition between the 3PCF and 2PCF in
these MG models. Finally, it is worth stressing that some of
the ideas presented here are shared by studies of the 3PCF
multipole expansion in the presence of massiveNeutrinos or
scale-dependent primordial non-Gaussianities.
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APPENDIX A: CURVATURE BISPECTRUM AND
3PCF MULTIPOLES

In this appendix we derive the precyclic bispectrum in
Eqs. (38)–(43) that are not shown in Eqs. (58). That is we
compute the multipoles of Bγ�

pc, B
γ�γ
pc , and Bγ�γ0

pc , and their
Fourier transform that leads to the Yl functions. As
discussed in the main text, the contributions coming from
terms γ�ΔF2 are small, and are neglected in this work. This
can be introduced straightforwardly if needed, requiring the
calculation of additional two-dimensional integrals. Hence,
in this appendix we approximate F2 ¼ F2;LS.
Bγ� : The γ� biasing component in the precyclic

bispectrum is
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Bpc;γ� ðk1; k2; xÞ ¼ ðk21 þ k22 þ k23ÞPLðk1ÞPLðk2Þ2F2ðk1;k2Þ

¼
�
4F2ðk1; k2; xÞðk21 þ k22Þ

þ 4xF2ðk1; k2; xÞk1k2
�
PLðk1ÞPLðk2Þ;

ðA1Þ

which upon integration against Eq. (36) gives the multi-
poles

Bγ�
pc;l¼0ðk1; k2Þ ¼

70þ 12ALS

21
ðk21 þ k22ÞPLðk1ÞPLðk2Þ;

ðA2Þ

Bγ�
pc;l¼1ðk1; k2Þ ¼

392þ 12ALS

35
k1k2PLðk1ÞPLðk2Þ

þ 4

�
k31
k2

þ k32
k1

�
PLðk1ÞPLðk2Þ; ðA3Þ

Bγ�
pc;l¼2ðk1; k2Þ ¼

56 − 12ALS

21
ðk21 þ k22ÞPLðk1ÞPLðk2Þ;

ðA4Þ

Bγ�
pc;l¼3ðk1; k2Þ ¼

28 − 12ALS

35
k1k2PLðk1ÞPLðk2Þ: ðA5Þ

Their Fourier transforms give

ζγ�pc;l¼0ðr1; r2Þ ¼
70þ 12ALS

21
Y0ðr1; r2Þ; ðA6Þ

ζγ�pc;l¼1ðr1; r2Þ ¼ −
392þ 12ALS

35
Y1ðr1; r2Þ; ðA7Þ

ζγ�pc;l¼2ðr1; r2Þ ¼
56 − 12ALS

21
Y2ðr1; r2Þ; ðA8Þ

ζγ�pc;l¼3ðr1; r2Þ ¼ −
28 − 12ALS

35
Y3ðr1; r2Þ: ðA9Þ

Bγ�γ: The γ�γ biasing component in the precyclic
bispectrum is Bγ�γ

pc;l ¼ ðk21 þ k22ÞPLðk1ÞPLðk2Þ, hence the
multipoles are

Bγ�γ
pc;lðk1; k2Þ ¼ ðk21 þ k22ÞPLðk1ÞPLðk2Þδl0 ðA10Þ

yielding a biasing γ�γ contribution to the 3PCF

ζlγ�γðr1; r2Þ ¼ Y0ðr1; r2Þδl0: ðA11Þ

Bγ�γ0 : The γ�γ
0 component in the precyclic bispectrum is

Bγ�γ0
pc;l ¼ 2

3
L2ðxÞðk21 þ k22ÞPLðk1ÞPLðk2Þ, hence the multi-

poles are

Bγ�γ0
pc;lðk1; k2Þ ¼

2

3
ðk21 þ k22ÞPLðk1ÞPLðk2Þδl2 ðA12Þ

yielding a biasing γ�γ contribution to the 3PCF

ζlγ�γðr1; r2Þ ¼
2

3
Y2ðr1; r2Þδl2 ðA13Þ

Bγ2�

Bpc;γ2� ðk1; k2; xÞ ¼ ðk21k22 þ k22k
2
3 þ k23k

2
1ÞPLðk1ÞPLðk2Þ2F2ðk1; k2; xÞ

¼
�
2ð3k21k22 þ k41 þ k42ÞF2ðk1; k2; xÞ þ 4ðk31k2 þ k1k32ÞxF2ðk1; k2; xÞ

�
PLðk1ÞPLðk2Þ ðA14Þ

FIG. 8. Signal to noise, defined in Eq. (84), for the difference
between F6 and GR on a LGR DESI-like sample, obtained from
scaling to the DESI volume the variance of the 3PCF signal from
the different realizations of halo catalogs. The triangle index runs
over the different ðr1; r2Þ bin combinatorics, with small (large)
scales towards small (large) values.
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Bl¼0
pc;γ2�

ðk1; k2Þ ¼
14þ 2ALS

7

�
k41 þ k42 þ

56þ 9ALS

21þ 3ALS k
2
1k

2
2

�
PLðk1ÞPLðk2Þ; ðA15Þ

Bl¼1
pc;γ2�

ðk1; k2Þ ¼
�
k51
k2

þ k52
k1

þ 252þ 12ALS

35
ðk31k2 þ k1k32Þ

�
PLðk1ÞPLðk2Þ; ðA16Þ

Bl¼2
pc;γ2�

ðk1; k2Þ ¼
14 − 2ALS

21

�
k41 þ k42 þ

49þ 3ALS

21þ 3ALS k
2
1k

2
2

�
PLðk1ÞPLðk2Þ; ðA17Þ

Bl¼3
pc;γ2�

ðk1; k2Þ ¼
28 − 12ALS

35
ðk31k2 þ k1k32ÞPLðk1ÞPLðk2Þ: ðA18Þ

Bγ3�

Bγ3� ðk1; k2; xÞ ¼ k21k
2
2k

2
3PLðk1ÞPLðk2Þ2F2ðk1; k2; xÞ ðA19Þ

¼
�
2F2ðk1; k2; xÞðk41k22 þ k21k

4
2Þ þ 4xF2ðk1; k2; xÞk31k32

�
PLðk1ÞPLðk2Þ ðA20Þ

Bl¼0
pc;γ3�

ðk1; k2Þ ¼
14þ 2ALS

7
ðk41k22 þ k21k

4
2ÞPLðk1ÞPLðk2Þ;

ðA21Þ

Bl¼1
pc;γ3�

ðk1; k2Þ ¼
�
k51k2 þ k1k25 þ

182þ 6ALS

35
k31k

3
2

�

× PLðk1ÞPLðk2Þ; ðA22Þ

Bl¼2
pc;γ3�

ðk1; k2Þ ¼
14 − 2ALS

7
ðk41k22 þ k21k

2
4ÞPLðk1ÞPLðk2Þ;

ðA23Þ

Bl¼3
pc;γ3�

ðk1; k2Þ ¼
28 − 12ALS

35
k31k

3
2PLðk1ÞPLðk2Þ: ðA24Þ

APPENDIX B: F2 KERNEL COMPUTATION

In this appendix we derive the second-order SPT kernels
using directly the fluid equations. Perhaps the easiest route
to get them is to obtain first the Lagrangian perturbation
theory kernels [34] and then perform a map to the Eulerian
frame, e.g. [36,40]. However, for being self-contained in
this work we show a direct derivation. To do so, we follow
closely Appendix A of [101] which performs the same
computation but for cosmologies in the presence of massive
neutrinos (see also [102]). The main difference here is that
we have to keep track of the screening terms. The
continuity and Euler equations are

∂tδðx; tÞ þ
1

a
∂ivi ¼ −

1

a
∂iðviδÞ; ðB1Þ

∂tviðx; tÞ þHvi þ 1

a
∂
iΦ ¼ −

1

a
vj∂jvi; ðB2Þ

where vi is the velocity field of the fluid and δ its
overdensity. These equations must be closed with the
Poisson Eq. (2) and Klein-Gordon Eq. (3). We define
the θ field as

θðx; tÞ ¼ ∂ivi

aHf0
; ðB3Þ

with the growth rate

fðk; tÞ ¼ d lnDþðk; tÞ
d ln aðtÞ ; f0 ≡ fðk → 0Þ; ðB4Þ

and the linear growth function solving the differential
equation

D̈þðk; tÞ þ 2H _Dþ ¼ AðkÞDþ; ðB5Þ

with AðkÞ given by Eq. (13). Notice this equation has two
solutions so one has to choose initial conditions that pick
out the fastest growing solution. In the case where at early
times one recovers GR, as for example in DGP and HS
theories, one uses EdS initial conditions.
We define the nonlinear part of the self-interaction term

of the Klein-Gordon Eq. (3) as δI ¼ I −M1φ,
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δI ¼ 1

2

Z
k12¼k

M2ðk1;k2Þφðk1Þφðk2Þ þ � � �

¼ 1

2

Z
k12¼k

Kð2Þ
δI ðk1;k2Þδð1Þðk1Þδð1Þðk2Þ þ � � � ; ðB6Þ

where in the second equality the kernels KðnÞ
δI serve us to

expand δI in terms of linear density fields instead of the
complete, nonlinear scalar field φ. With this, we can rewrite
Eq. (3) in Fourier space as

1

2
φðkÞ ¼ 4πGρ̄m

3ΠðkÞ δðkÞ − 1

6ΠðkÞ δIðkÞ; ðB7Þ

with

ΠðkÞ ¼ 1

6a2β2
ðk2 þm2a2Þ: ðB8Þ

Using the Poisson Eqs. (2) and (B7), the fluid equations in
Fourier space become9

1

H
∂δðkÞ
∂t

− f0θðkÞ ¼ f0

Z
k12¼k

αðk1;k2Þθðk1Þδðk2Þ; ðB10Þ

1

H
∂f0θðkÞ

∂t
þ
�
2þ

_H
H2

�
f0θðkÞ −

AðkÞ
H2

δðkÞ

þ k2=a2

6ΠðkÞH2
δIðkÞ ¼ f20

Z
k12¼k

βðk1;k2Þθðk1Þθðk2Þ;

ðB11Þ

with

αðk1;k2Þ ¼ 1þ k1 · k2

k21
; βðk1;k2Þ ¼

k212ðk1 · k2Þ
2k21k

2
2

:

ðB12Þ

To linear order we obtain

δð1Þðk; tÞ ¼ Dþðk; tÞδð1Þðk; t0Þ; θð1Þðk; tÞ ¼ δð1Þðk; tÞ
ðB13Þ

and

φð1Þðk; tÞ ¼ 2A0

3ΠðkÞ δ
ð1Þðk; tÞ; ðB14Þ

with A0ðtÞ ¼ Aðk → 0; tÞ ¼ 4πGρ̄m ¼ 3ΩmH2=2. Then,

S2ðk1;k2Þ≡ k2=a2

6ΠðkÞK
ð2Þ
δI ðk1;k2Þ

¼
�
2A0

3

�
2 M2ðk1;k2Þk2=a2
6ΠðkÞΠðk1ÞΠðk2Þ

: ðB15Þ

We introduce the SPT kernels through

δðnÞðk; tÞ ¼
Z

k1���n¼k

Fnðk1;…;kn; tÞδð1Þðk1; tÞ � � �δð1Þðkn; tÞ;

θðnÞðk; tÞ ¼
Z

k1���n¼k

Gnðk1;…;kn; tÞδð1Þðk1; tÞ � � �δð1Þðkn; tÞ:

ðB16Þ

Hence, at first order,

F1ðkÞ ¼ 1; and G1ðkÞ ¼
fðkÞ
f0

; ðB17Þ

To second order, the fluid equations are

H−1 ∂δ
ð2ÞðkÞ
∂t

− f0θð2ÞðkÞ ¼ f0

Z
k12¼k

αðk1;k2Þθð1Þðk1Þδð1Þðk2Þ

¼ 1

2

Z
k12¼k

½αðk1;k2Þfðk1Þ þ αðk2;k1Þfðk2Þ�δð1Þðk1Þδð1Þðk2Þ; ðB18Þ

9We use the shorthand notations

Z
k1���n¼k

¼
Z

d3k1
ð2πÞ3 � � �

d3kn
ð2πÞ3 ð2πÞ

3δDðk1���n − kÞ; k1���n ¼ k1 þ � � � þ kn: ðB9Þ
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H−1 ∂f0θ
ð2ÞðkÞ
∂t

þ f0

�
2þ

_H
H2

�
θð2ÞðkÞ − AðkÞ

H2
δð2ÞðkÞ þ 1

2

Z
k12¼k

S2ðk1;k2Þδð1Þðk1Þδð1Þðk2Þ

¼ f20

Z
k12¼k

βðk1;k2Þθð1Þðk1Þθð1Þðk2Þ;

¼
Z

k12¼k

βðk1;k2Þfðk1Þfðk2Þδð1Þðk1Þδð1Þðk2Þ; ðB19Þ

where we have used θð1ÞðkÞ ¼ ðfðkÞ=f0Þδð1ÞðkÞ, and inside the integral of the rhs of Eq. (B18) we have symmetrized over.
The second-order overdensity and velocity fields are

δð2ÞðkÞ ¼
Z

k12¼k

F2ðk1;k2ÞDþðk1; tÞDþðk2; tÞδð1Þðk1; t0Þδð1Þðk2; t0Þ;

θð2ÞðkÞ ¼
Z

k12¼k

G2ðk1;k2ÞDþðk1; tÞDþðk2; tÞδð1Þðk1; t0Þδð1Þðk2; t0Þ: ðB20Þ

Inserting these expressions into Eqs. (B18) and (B19),

1

HD1D2

d
dt

ðF2D1D2Þ − f0G2 ¼
1

2
ðα12f1 þ α21f2Þ; ðB21Þ

1

HD1D2

d
dt

ðf0G2D1D2Þ þ
�
2þ

_H
H2

�
f0G2 −

AðkÞ
H2

F2 ¼ −
S2
2
þ β12f1f2; ðB22Þ

with f1;2 ¼ fðk1;2Þ, D1;2 ¼ Dþðk1;2; tÞ, α12 ¼ αðk1;k2Þ, α21 ¼ αðk2;k1Þ and β12 ¼ βðk1;k2Þ. We rewrite the above
equations as

1

H
dF2

dt
þ F2ðf1 þ f2Þ − f0G2 ¼

1

2
ðα12f1 þ α21f2Þ; ðB23Þ

1

H
df0G2

dt
þ f0G2ðf1 þ f2Þ þ

�
2þ

_H
H2

�
f0G2 −

AðkÞ
H2

F2 ¼ −
S2
2
þ β12f1f2: ðB24Þ

Taking the time derivative of Eq. (B23) and using Eq. (B24) we obtain a second-order equation for F2,

1

H2
F̈2 þ

2

H
ð1þ f1 þ f2Þ _F2 þ

�
1

H
ð _f1 þ _f2Þ þ ðf1 þ f2Þ

�
f1 þ f2 þ 2þ

_H
H2

�
−
AðkÞ
H2

�
F2

¼ 1

2H
ðα12 _f1 þ α21 _f2Þ þ

1

2
ðα12f1 þ α21f2Þ

�
f1 þ f2 þ 2þ

_H
H2

�
þ β12f1f2 −

S2
2
; ðB25Þ

Now, the growth rate fðkÞ evolves as

_f ¼ AðkÞ
H

−H

�
2þ

_H
H2

�
f −Hf2: ðB26Þ

Substituting for _f1 and _f2 in Eq. (B25),

1

H2
F̈2 þ

2

H
ð1þ f1 þ f2Þ _F2 þ

�
2f1f2 þ

Aðk1Þ þ Aðk2Þ − AðkÞ
H2

�
F2

¼ 1

2
α12

Aðk1Þ
H2

þ 1

2
α21

Aðk2Þ
H2

þ 1

2
f1f2ðα12 þ α21Þ þ β12f1f2 −

S2
2
: ðB27Þ
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Now, let us define a second-order growth function as

Dð2Þðk1;k2; tÞ≡D12 ≡ 2D1D2F2 − χ12; ðB28Þ

and

χ12 ≡ α12 þ α21 − γ12; with γ12 ≡ 1 −
ðk1 · k2Þ2

k21k
2
2

:

ðB29Þ

We will now find a differential equation for D12. First, the
second-order F2 kernel is

F2 ¼
D12

2D1D2

þ 1

2
χ12: ðB30Þ

Now, taking time derivatives of the above equation,

1

H
_F2 ¼

1

2D1D2

�
1

H
_D12 −D12ðf1 þ f2Þ

�
; ðB31Þ

1

H2
F̈2 ¼

1

2D1D2

�
1

H2
D̈12 −

2

H
ðf1 þ f2Þ _D12 þD12

�
2ðf21 þ f22 þ f1f2 þ f1 þ f2Þ −

1

H2
ðAðk1Þ þ Aðk2ÞÞ

��
; ðB32Þ

where we used Eq. (B26) and D̈þ 2H _D ¼ AðkÞD. Substituting the above equations into Eq. (B27),

D̈12 þ 2H _D12 − AðkÞD12 ¼
�
AðkÞ þ ðAðkÞ − Aðk2ÞÞ

k1 · k2

k21
þ ðAðkÞ − Aðk1ÞÞ

k1 · k2

k22

− ðAðk1Þ þ Aðk2Þ − AðkÞÞ ðk1 · k2Þ2
k21k

2
2

− S2

�
D1D2: ðB33Þ

Hence, using Eq. (B30) we obtain

F2ðk1;k2Þ ¼
1

2
þ 3

14
Aþ

�
1

2
−

3

14
B
� ðk1 · k2Þ2

k21k
2
2

þ k1 · k2

2k1k2

�
k2
k1

þ k1
k2

�
; ðB34Þ

and from Eq. (B23),

G2ðk1;k2Þ¼
3Aðf1þf2Þþ3 _A=H

14f0
þ
�
f1þf2
2f0

−
3Bðf1þf2Þþ3 _B=H

14f0

�ðk1 ·k2Þ2
k21k

2
2

þk1 ·k2

2k1k2

�
f2
f0

k2
k1
þf1
f0

k1
k2

�
; ðB35Þ

with A and B given by

Aðk1;k2; tÞ ¼
7Dð2Þ

A ðk1;k2; tÞ
3Dþðk1; tÞDþðk2; tÞ

; Bðk1;k2; tÞ ¼
7Dð2Þ

B ðk1;k2; tÞ
3Dþðk1; tÞDþðk2; tÞ

; ðB36Þ

with second-order growth functions Dð2Þ
A and Dð2Þ

B the solutions to

Dð2Þ
A ¼ ðT̂ − AðkÞÞ−1

�
AðkÞ þ ðAðkÞ − Aðk1ÞÞ

k1 · k2

k22
þ ðAðkÞ − Aðk2ÞÞ

k1 · k2

k21
− S2ðk1;k2Þ

�
Dþðk1ÞDþðk2Þ; ðB37Þ

Dð2Þ
B ¼ ðT̂ − AðkÞÞ−1

�
Aðk1Þ þ Aðk2Þ − AðkÞ

�
Dþðk1ÞDþðk2Þ; ðB38Þ

with k ¼ jk1 þ k2j, which are Eqs. (19) and (20).
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