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Anisotropic inflation is a model that succeeded in explaining statistical anisotropy. Warm inflation is a
model that succeeded in providing a mechanism of reheating during inflation. We study anisotropic warm
inflation focusing on the cosmic no-hair conjecture. In the anisotropic warm inflation, the condition for
making anisotropy survive is clarified. By assuming a constant value for the dissipation ratio, we find exact
solutions of power-law anisotropic warm inflation, and investigate the phase space structure of general
solutions. It turns out that whether the anisotropy during inflation survives or not depends on the
competition of the potential that drives anisotropic inflation against dissipation of an inflaton field.
Anisotropic warm inflation will be realized if the decaying process is not efficient.
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I. INTRODUCTION

Cosmological inflation driven by a single scalar field, the
inflaton, has succeeded in accounting for the current
cosmological observations, such as the cosmic microwave
background (CMB) radiation [1]. When the inflaton field
rolls down the inflaton potential very slowly compared to
the expansion of the Universe, inflation occurs. Especially
in the slow-roll limit, the inflaton potential energy is
regarded as a cosmological constant. In the presence of
the cosmological constant, there is a cosmic no-hair
theorem for homogeneous and anisotropic spacetimes [2].
The cosmic no-hair theorem states that if a cosmological
spacetime obeys the Einstein equation with the positive
cosmological constant, (1) the energy density of ordinary
matter vanishes, (2) anisotropy of the spacetime vanishes,
and (3) spatial curvature vanishes (except for the Bianchi
IX spacetimes with a very large curvature scale compared
to the Hubble scale). It had been believed that the above
statements hold even away from the slow-roll limit and for
inhomogeneous spacetimes, and it is called the cosmic no-
hair conjecture. If the cosmic no-hair conjecture is true, the
conjecture guarantees that the power spectra of primordial
fluctuations are statistically homogeneous, isotropic, and
scale free [3].
In the era of high-precision observation, however, we

need to take into account the deviation from the cosmo-
logical constant. Indeed, the interaction of the inflaton with

other matter fields destabilizes the inflation of a single
scalar field and qualitatively different inflation models
emerge. For instance, particle production during inflation
may lead to a counterexample to the statement (1), which is
known as warm inflation [4–6]. In the warm inflation, the
decay from the inflaton to the matter leads to dissipation.
This induces a thermal bath described by a radiation energy
density during inflation. This radiation energy density
never vanishes during inflation. Soon after the proposal
of the warm inflation, however, it has been pointed out that
quantum corrections at finite temperature tend to destroy
the warm inflation scenario [7]. Then, several models of
warm inflation were constructed to evade the problem by
introducing symmetries such as the supersymmetry [8–11].
Recently, a minimal warm inflation model is also proposed
in the context of axion inflation [12]. In the model, the shift
symmetry of the axion is utilized to prohibit the quantum
corrections. On the other hand, a counterexample to the
statement (2) is also found as a model of anisotropic
inflation by considering a dynamical cosmological constant
due to a gauge field coupled with the slow-rolling scalar
field [13]. In this model, statistical anisotropy can be
produced during inflation [14–16]. The mechanism of
destabilization of the isotropic universe in the model of
anisotropic inflation has been studied in detail [17,18]. The
anisotropic inflation has been investigated in various
models (see review articles [3,19]). As to the statement
(3), it would be difficult to construct a counterexample
without a fine tuning. Hence, we will not discuss this case
in this paper.
From the perspective of the cosmic no-hair conjecture, it

is interesting to consider the models which violate the
statement (1) and (2) at the same time. A primary question
is whether anisotropic warm inflation occurs or not. For
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instance, in the case of chaotic inflation, the solution of the
slow-roll inflation becomes an attractor solution in the
phase space of the dynamical system of the inflaton field.
However, we show that the additional matter fields of the

radiation energy density and gauge fields give rise to
thermal and nonthermal destabilization of the conventional
slow-roll inflation, respectively. Hence, it is interesting to
clarify the phase space structure of the dynamical system in
the presence of the radiation energy density and the gauge
fields. We show that a fixed point that corresponds to an
attractor solution of the anisotropic warm inflation exists.
Depending on model parameters, the property of the fixed
point changes. Indeed, in the presence of dissipation of the
inflaton field, warm inflation becomes attractor in the
absence of gauge fields, and the attractor changes to a
saddle point once the gauge field emerges for an appro-
priate coupling between the inflaton and the gauge fields.
Then the anisotropy appears after the warm inflation if the
inflation lasts forever. However, for a wide range of model
parameters, inflation ends before the anisotropic inflation
starts. If the dissipation is strong enough compared to the
effect of the gauge fields, the anisotropy disappears. Thus,
we find that whether the anisotropy during inflation
survives or not depends on the strength of the dissipation.
All calculations and estimates are based on the assumption
of considering a constant value for the dissipation ratio. In
fact, warm inflation models have instead a dissipation ratio
that is not constant but has dependencies on the temperature
and, in some cases, also on the inflaton amplitude.
However, in the slow-roll limit, the dissipation ratio is
almost constant during inflation. Hence, assumption that
dissipation ratio is constant is legitimate to clarify the
condition for the existence of a solution of anisotropic
warm inflation. To support the validity of the assumption,
we show that a qualitative feature does not change even for
a time dependent dissipation ratio in the Appendix.
The paper is organized as follows. In Sec. II, we review

warm inflation briefly. In particular, we clarify slow-roll
conditions in the context of warm inflation. In Sec. III, we
consider warm inflation in the presence of a gauge filed. We
examine the condition for making anisotropy survived in
the warm inflation. In Sec. IV, we consider exactly solvable
power-law inflation models in order to clarify the phase
space structure of the models. In Sec. V, we perform a
dynamical system approach. We analytically obtain some
fixed points in the dynamical system. We numerically study
dynamical flow and reveal the role of the dissipation in the
anisotropic inflation.

II. A REVIEW OF WARM INFLATION

Warm inflation has several attractive features. The
thermal friction can alleviate the required flatness of the
potential. It also provides a mechanism of reheating during
inflation. Moreover, since dissipation can modify the
growth of inflaton fluctuations, imprints on the CMB

fluctuations can be used to probe the interactions between
the inflaton and other particles. Here, we give a brief review
of the warm inflation.
We begin with Einstein Hilbert action coupled to an

inflaton field ϕ and a matter field ψmatter described by the
free Lagrangian Lfree. The interaction between the inflaton
and the matter fields is represented by Lint such as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R −

1

2
ð∂μϕÞð∂μϕÞ − VðϕÞ

þ LfreeðψmatterÞ þ Lintðϕ;ψmatterÞ
�
; ð2:1Þ

where g is the determinant of the metric gμν, Mpl is the
Planck constant M−2

pl ¼ 8πG.
Wewill take the metric to be homogeneous and isotropic,

that is,

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð2:2Þ

where aðtÞ is the scale factor. The dissipation of the inflaton
field due to the coupling to the matter field leads to particle
production. This induces a thermal bath sourcing effective
friction during inflation. [20]. The effect of the dissipation
comes in the Klein-Gordon equation in the form of
effective friction such as

ϕ̈þ 3Hð1þQÞ _ϕþ V 0ðϕÞ ¼ 0; ð2:3Þ

where H ≡ _a=a is the Hubble parameter and a dot denotes
derivative with respect to time t. The dissipation of the
inflaton field is characterized by ϒ ¼ 3HQ where Q is
dimensionless parameter andwe call it dissipation ratio in the
following. In general, the dissipation depends on the inflaton
field, temperature, and the mass of the inflaton fields. The
resulting thermal radiation bath is represented by radiation
energy density ρR. Then the Friedman equation becomes

H2 ¼ 1

3M2
pl

�
VðϕÞ þ 1

2
_ϕ2 þ ρR

�
: ð2:4Þ

The conservation of energy-momentum as a consequence
of the contracted Bianchi identity yields

_ρR þ 4HρR ¼ ϒ _ϕ2: ð2:5Þ

We see that radiation energy density is continuously
sourced from the dissipation of the inflaton field.
Let us consider slow-roll inflation. In the slow-roll

approximation, we impose the conditions jϕ̈j ≪ Hj _ϕj
and _ϕ2 ≪ VðϕÞ in Eqs. (2.3) and (2.4). In the presence
of the dissipation of inflaton field, we assume the con-
ditions ρR ≪ VðϕÞ and _ρR ≪ HρR in Eqs. (2.4) and (2.5)
hold. Then, Eqs. (2.3)–(2.5) are simplified to
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3Hð1þQÞ _ϕþ V 0ðϕÞ ¼ 0; ð2:6Þ

H2 ¼ VðϕÞ
3M2

pl

; ð2:7Þ

4HρR ¼ ϒ _ϕ2; ð2:8Þ

where a prime denotes a derivative with respect to ϕ. As
standard slow-roll inflation is a dynamical attractor, we
expect that the above slow-roll inflation with dissipation is
also a dynamical attractor. For a self-consistent approxima-
tion, we need to impose the following slow-roll conditions:

ϵV ≡ M2
pl

2ð1þQÞ
�
V 0ðϕÞ
VðϕÞ

�
2

≪ 1; ð2:9Þ

ηV ≡ M2
pl

1þQ
V 00ðϕÞ
VðϕÞ ≪ 1; ð2:10Þ

β≡ M2
pl

1þQ
Q0V 0ðϕÞ
QVðϕÞ ≪ 1; ð2:11Þ

where we assumed no temperature dependence on Q in the
slow-roll conditions for simplicity. In the following, we
also assume that Q has no ϕ-dependence in Eq. (2.11)
because Q0 has to be zero in the limit of β → 0.
In general, thermal backreaction on the inflaton potential

violates the above slow-roll conditions [7]. However, such
thermal backreaction can be avoided by introducing sym-
metries. For example, [8,9] use supersymmetry, [10,11]
propose warm little inflation by introducing a little Higgs
scenario with similar symmetries, and [12] makes use of
shift-symmetry of an axion in minimal warm inflation.
As seen in Eqs. (2.6)–(2.8), the system reduces to standard

slow-roll inflation in the absence of the dissipation (ϒ ¼ 0).
In the presence of the dissipation, even if the inflation started
without radiation energy density (ρR ¼ 0), Eq. (2.5) tells us
that ρR rapidly increases and reaches the attractor value
∼Q _ϕ2. Interestingly, in this case, the radiation energy density
survives during inflation and the amount survived is esti-
mated as ρR ∼ ϵVVðϕÞ forQ > 1where Eqs. (2.6)–(2.9) are
used. That is, this is a counterexample to the cosmic no-hair
conjecture that the energydensity of ordinarymatter vanishes
during inflation. In terms of temperature T, the Stefan-
Boltzmann law gives ρR ∼ T4. By using Eq. (2.7), we find
ρR∼ϵVVðϕÞ¼ϵVM2

plH
2. Thenwe haveT∼ϵ1=4V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpl=H

p
H.

Thus, for low energy inflation (H < Mpl), warm inflation
T > H is realized.
The number of e-folds is calculated as

N ∼
1

M2
pl

Z
ϕi

ϕf

dϕð1þQÞ V
V 0 ; ð2:12Þ

where ϕi and ϕf are the initial and the final value of the
inflaton field. This tells us that the existence of dissipation
enables inflation to occur even in the steep potential
(MplV 0 ≫ V).

III. ANISOTROPIC WARM INFLATION

As a counterexample to cosmic no-hair conjecture,
anisotropic inflation is realized by considering a dynamical
cosmological constant due to a gauge field coupled with
a slow-rolling scalar field [13]. In this section, we consider
warm inflation in the context of [13] and see if the
anisotropy can survive or not. Different models of aniso-
tropic inflation have been studied in the context of
warm inflation in the literature [21,22]. However, those
models are known to be unstable [23] or anisotropy
disappears [24].
On top of the terms LfreeðψmatterÞ and Lintðϕ;ψmatterÞ, we

introduce a gauge field Aμ to the action Eq. (2.1) in the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R −

1

2
ð∂μϕÞð∂μϕÞ − VðϕÞ

−
1

4
f2ðϕÞFμνFμν

�
; ð3:1Þ

where the field strength of the gauge field is defined by
Fμν ¼ ∂μAν − ∂νAμ and fðϕÞ is the gauge kinetic function
representing the coupling between the inflaton field and the
U(1) gauge field. The U(1) gauge field neither thermalizes
nor contributes to the dissipationϒ. Instead, the U(1) gauge
field plays the role of producing anisotropic expansion.
For an appropriate gauge kinetic function, it was shown that
the energy density of the gauge fields survives during
inflation against the cosmic no-hair conjecture in [13].
Thanks to the gauge invariance, we can choose the gauge
A0 ¼ 0. Without loss of generality, we can take the x-axis
in the direction of the gauge field Aμ ¼ ð0; AðtÞ; 0; 0Þ and
ϕ ¼ ϕðtÞ. For simplicity, we assume that the direction of
the gauge field does not change in time. In order to be
consistent with these setups, we consider anisotropic metric
in the form

ds2¼−dt2þe2αðtÞ½e−4σðtÞdx2þe2σðtÞðdy2þdz2Þ�; ð3:2Þ

where σ represents a deviation from isotropy. As shown
in [3,13], anisotropic inflation occurs if fðϕÞ and VðϕÞ
satisfy

M2
pl

2

f0

f
V 0

V
≥ 1: ð3:3Þ

Here the equality gives

063524-3

ANISOTROPIC WARM INFLATION PHYS. REV. D 107, 063524 (2023)



fðϕÞ ¼ exp

�
2

M2
pl

Z
V
V 0 dϕ

�
; ð3:4Þ

and the inequality is satisfied if parameter c > 1 is
introduced such as

fðϕÞ ¼ exp

�
2c
M2

pl

Z
V
V0 dϕ

�
: ð3:5Þ

Then Maxwell’s equations are

d
dt

�
f2ðϕÞeαþ4σ _A

�
¼ 0; ð3:6Þ

and the solution is obtained by

_A ¼ pAf−2ðϕÞe−α−4σ; ð3:7Þ

where pA is a constant of integration. Substituting Eq. (3.7)
into the Klein-Gordon equation, Einstein’s equations, and
the conservation of energy-momentum, we obtain the
following basic equations:

ϕ̈þ 3_αð1þQÞ _ϕþ V 0ðϕÞ − p2
Af

−3ðϕÞf0ðϕÞe−4α−4σ ¼ 0;

ð3:8Þ

_α2 ¼ _σ2 þ 1

3M2
pl

�
1

2
_ϕ2 þ VðϕÞ þ p2

A

2
f−2ðϕÞe−4α−4σ þ ρR

�
;

ð3:9Þ

σ̈ ¼ −3_α _σþ p2
A

3M2
pl

f−2ðϕÞe−4α−4σ; ð3:10Þ

α̈¼−3_α2þVðϕÞ
M2

pl

þ p2
A

6M2
pl

f−2ðϕÞe−4α−4σþ ρR
3M2

pl

; ð3:11Þ

_ρR þ 4_αρR ¼ 3_αQ _ϕ2: ð3:12Þ

By virtue of the Bianchi identity, one of the above
equations becomes redundant. Here the total energy density
consists of ρϕ, ρA, and ρR. The ρϕ and ρA are expressed as

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ; ð3:13Þ

ρA ¼ p2
A

2
f−2ðϕÞe−4α−4σ ¼ p2

A

2
e
−4 c

M2
pl

R
V
V0dϕ−4α−4σ

: ð3:14Þ

Now we consider slow-roll inflation. Besides the slow-roll
approximation performed in the isotropic inflation in
Sec. II, in the anisotropic inflation, we assume the inflaton
potential energy VðϕÞ is dominant in the total energy
density. The expansion rate of anisotropy _σ is supposed to

be small compared to the Hubble parameter _α. Then,
Eqs. (3.8)–(3.10), and (3.12) are simplified as

3_αð1þQÞ _ϕþV 0ðϕÞ−p2
Af

−3ðϕÞf0ðϕÞe−4α−4σ ¼ 0; ð3:15Þ

_α2 ¼ 1

3M2
pl

VðϕÞ; ð3:16Þ

3_α _σ ¼ p2
A

3M2
pl

f−2ðϕÞe−4α−4σ; ð3:17Þ

4_αρR ¼ 3_αQ _ϕ2: ð3:18Þ

As shown below, we find f−2ðϕÞ ∝ e4α in the r.h.s of
Eq. (3.17). Hence, the _σ does not decay even if α increases.
Combining Eqs. (3.15) with (3.16), we have

ð1þQÞdϕ
dα

þM2
pl
V 0

V
−p2

A
2c
V 0e

−4 c
M2
pl

R
V
V0dϕ−4α−4σ¼0; ð3:19Þ

where we used Eq. (3.5). The solution of the above
differential equation is

e
−4 c

M2
pl

R
V
V0dϕ−4α−4σ ¼M2

plðc− 1−QÞ
2c2p2

A

V 02

V

�
1þDe−4

c−1−Q
1þQ α

�
−1
;

ð3:20Þ

where D is a constant of integration. Note that Q is
constant. If the parameter c satisfies the inequality

c > 1þQ; ð3:21Þ

the term proportional toD decays as α → ∞ and the r.h.s of
Eq. (3.20) becomes a positive constant in the slow-roll limit
and expressed as

e
−4 c

M2
pl

R
V
V0dϕ−4α−4σ ¼ M2

plðc − 1 −QÞ
2c2p2

A

V 02

V
: ð3:22Þ

In this way, f−2ðϕÞ ¼ exp½− 4c
M2

pl

R
V
V 0 dϕ� ∝ e4α is shown.

By using Eqs. (3.16) and (3.17), the degree of anisotropy
is expressed by

Σ
H

≡ _σ

_α
¼ p2

A

3VðϕÞ e
−4 c

M2
pl

R
V
V0dϕ−4α−4σ ¼ 2

3

ρA
VðϕÞ : ð3:23Þ

Thus, for α → ∞, the degree of the anisotropy converges to

Σ
H

¼ 1

3

ðc − 1 −QÞð1þQÞ
c2

ϵV; ð3:24Þ
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where we used Eqs. (3.22) and (2.9). If there is no
dissipation Q ¼ 0, the anisotropy survives during inflation
for c > 1. However, in the presence of dissipation, the
condition for making anisotropy survive becomes tight
c > 1þQ.

IV. POWER-LAW ANISOTROPIC
WARM INFLATION

In this section, we introduce the exponential potential
and gauge kinetic function in order to figure out what
happens to the dynamics of anisotropic warm inflation
using the solvable models. We present some exact solutions
without making the slow-roll approximation for the system
of Eqs. (3.8)–(3.12) by considering exponential forms of
VðϕÞ and fðϕÞ. In this case, inflation never ends. Without
the dissipation, exact solutions of power-law inflation are
found in [25–30].
We consider the potential

VðϕÞ ¼ V0 exp

�
λ

ϕ

Mpl

�
; ð4:1Þ

and the gauge kinetic function

fðϕÞ ¼ f0 exp

�
κ

ϕ

Mpl

�
; ð4:2Þ

where V0, λ, f0, and κ are constants. The metric and the
gauge field are given in Eqs. (3.2) and (3.7), respectively.
The system of equations of motion can be written as

ϕ̈þ 3_αð1þQÞ _ϕþ λ

Mpl
V0e

λ ϕ
Mpl

−
κ

Mpl
p2
Af

−2
0 e

−2κ ϕ
Mple−4α−4σ ¼ 0; ð4:3Þ

_α2 ¼ _σ2 þ 1

3M2
pl

�
1

2
_ϕ2 þ V0e

λ ϕ
Mpl

þ p2
A

2
f−20 e

−2κ ϕ
Mple−4α−4σ þ ρR

�
; ð4:4Þ

σ̈ ¼ −3_α _σþ p2
A

3M2
pl

f−20 e
−2κ ϕ

Mple−4α−4σ; ð4:5Þ

α̈ ¼ −3_α2 þ 1

M2
pl

V0e
λ ϕ
Mpl þ p2

A

6M2
pl

f−20 e
−2κ ϕ

Mple−4α−4σ þ ρR
3M2

pl

;

ð4:6Þ

_ρR þ 4_αρR ¼ 3_αQ _ϕ2: ð4:7Þ

The Bianchi identity makes one of the above equations
redundant. By making an ansatz of the form

α ¼ ζ logMplt; σ ¼ η logMplt;

ϕ ¼ Mplω logMpltþ ϕ0; ρR ¼ BM2
pl

t2
; ð4:8Þ

where ζ, η, ω, and B are dimensionless parameters.
Substituting the above ansatz into Eq. (4.4), the following
scaling solutions are found to be necessary:

λω ¼ −2; ð4:9Þ

κωþ 2ηþ 2ζ ¼ 1; ð4:10Þ

and Eqs. (4.3)–(4.7) give

ω − 3ζð1þQÞωþ κv − λu ¼ 0; ð4:11Þ

−ζ2 þ η2 þ 1

6
ω2 þ 1

3
uþ 1

6
vþ B

3
¼ 0; ð4:12Þ

η − 3ζηþ 1

3
v ¼ 0; ð4:13Þ

ζ − 3ζ2 þ uþ 1

6
vþ B

3
¼ 0; ð4:14Þ

−2Bþ 4ζB ¼ 3ζQω2; ð4:15Þ

where we defined

u¼ V0

M4
pl

exp

�
λ
ϕ0

Mpl

�
; v¼ p2

A

M4
pl

f−20 exp

�
−2κ

ϕ0

Mpl

�
: ð4:16Þ

In the case of the solution of isotropic inflation, we
discard Eqs. (4.10) and (4.13) and set η ¼ 0 and v ¼ 0.
Then we find the solution of the form

ω ¼ −
2

λ
; ð4:17Þ

ζ ¼ λ2 þ 4ð1þQÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 þ 4þ 4QÞ2 − 16λ2

p
4λ2

; ð4:18Þ

B ¼ 3

8λ2

�
λ2 þ 4Q − 4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 þ 4þ 4QÞ2 − 16λ2

q �
;

ð4:19Þ

where we chose the plus sign in front of square root in
Eq. (4.18) so that inflation occurs (α > 0). This is the exact
solution for power-law warm inflation.
In the case of anisotropic inflation with dissipation, the

solution is obtained as follows. Equations (4.9) and (4.10)
give

ω ¼ −
2

λ
; η ¼ 1

2
− ζ þ κ

λ
: ð4:20Þ
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Plugging Eq. (4.20) into Eq. (4.13), we get

v ¼ 3ð3ζ − 1Þ
�
1

2
− ζ þ κ

λ

�
: ð4:21Þ

By using Eqs. (4.20) and (4.21), Eq. (4.11) is found to be

u ¼ −
2

λ2
þ 6

1þQ
λ2

ζ þ 3
κ

λ
ð3ζ − 1Þ

�
1

2
− ζ þ κ

λ

�
: ð4:22Þ

Equation (4.15) gives

B ¼ 6Q
λ2

ζ

2ζ − 1
: ð4:23Þ

Substituting Eqs. (4.20)–(4.23) into Eq. (4.14), we obtain
the equation for ζ as

ð3ζ − 1Þ
�
2

λ2
þ 4Q

λ2
ζ

2ζ − 1
− 3

�
1

2
þ κ

λ

�
ζ

þ
�
1

2
þ 3

κ

λ

��
1

2
þ κ

λ

��
¼ 0: ð4:24Þ

The relevant solution is

ζ ¼ 4Qþ 4þ 2λ2 þ 7λκ þ 6κ2 þ ffiffiffiffi
D

p

6λðλþ 2κÞ ; ð4:25Þ

where we defined

D ¼ 16Q2 þ 8Qð4þ 2λ2 þ 7λκ þ 6κ2Þ
þ ð4 − λ2 þ λκ þ 6κ2Þ2: ð4:26Þ

Note that the VðϕÞ becomes negative and the system
becomes unstable for the minus sign in front of the square
root in Eq. (4.25) so we chose plus sign. When Q ¼ 0, D
becomes

D ¼ ð4 − λ2 þ λκ þ 6κ2Þ2; ð4:27Þ

which reproduces the result of [25]. Substituting the
solution (4.25) into (4.20), we obtain

η ¼ −4Q − 4þ λ2 þ 5λκ þ 6κ2 −
ffiffiffiffi
D

p

6λðλþ 2κÞ : ð4:28Þ

The explicit form of u is complicated and contains no new
information. On the other hand, v is given by

v ¼ ð4þ 4Qþ 3λκ þ 6κ2 þ ffiffiffiffi
D

p Þð−4 − 4Qþ λ2 þ 5λκ þ 6κ2 −
ffiffiffiffi
D

p Þ
4λ2ðλþ 2κÞ2 : ð4:29Þ

The positivity of v gives the condition for the existence of a
solution of anisotropy

−4 − 4Qþ λ2 þ 5λκ þ 6κ2 −
ffiffiffiffi
D

p
> 0: ð4:30Þ

Note thatQ is constant. IfQ is large enough, this inequality
is violated, and the anisotropic inflation never occurs. The
degree of anisotropy is given by

Σ
H

¼ −4Q − 4þ λ2 þ 5λκ þ 6κ2 −
ffiffiffiffi
D

p

4Qþ 4þ 2λ2 þ 7λκ þ 6κ2 þ ffiffiffiffi
D

p > 0: ð4:31Þ

Thus, the exact solutions of isotropic and anisotropic
inflation in the context of warm inflation are obtained.

V. DYNAMICAL SYSTEM APPROACH

In the previous section, we obtained particular solutions
in the form (4.8). In order to see the features of general
solutions, we resort to the dynamical system analysis in this
section.1

To analyze the dynamical feature of the system, we
introduce the following dimensionless variables [25,29]:

X ¼ _σ

_α
; Y ¼ 1

Mpl

_ϕ

_α
;

Z ¼ pA
f−1ðϕÞ
Mpl _α

e−2α−2σ; W ¼ ρR
M2

pl _α
2
: ð5:1Þ

Note that the above variables become constant for the
particular solutions defined by Eq. (4.8). Then, the
Hamiltonian constraint equation (4.4) is written as

−
1

Mpl

V
_α2

¼ 3ðX2 − 1Þ þ 1

2
Y2 þ 1

2
Z2 þW; ð5:2Þ

which gives the condition for the positivity of the
potential VðϕÞ

3ðX2 − 1Þ þ 1

2
Y2 þ 1

2
Z2 þW < 0: ð5:3Þ

This inequality eliminates unphysical solutions that appears
below. In the following, we use the potential VðϕÞ and the

1The paper [31] utilized a dynamical system approach in the
context of a double scalar field of warm inflation.
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gauge kinetic function fðϕÞ in the form of Eqs. (4.1) and
(4.2). Then, the remaining Eqs. (4.3)–(4.7) are rewritten as

dX
dα

¼ 1

3
Z2ðX þ 1Þ þ X

�
3ðX2 − 1Þ þ 1

2
Y2 þ 2

3
W

�
; ð5:4Þ

dY
dα

¼ κZ2 þ λ

�
3ðX2 − 1Þ þ 1

2
Y2 þ 1

2
Z2 þW

�

þ Y

�
−3ð1þQÞ þ 3X2 þ 1

2
Y2 þ 1

3
Z2 þ 2

3
W

�
; ð5:5Þ

dZ
dα

¼ Z

�
−κY − 2ðX þ 1Þ þ 3X2 þ 1

2
Y2 þ 1

3
Z2 þ 2

3
W

�
;

ð5:6Þ

dW
dα

¼3QY2−4Wþ6WX2þWY2þ2

3
WZ2þ4

3
W2: ð5:7Þ

The above Eqs. (5.4)–(5.7) define an orbit in the four-
dimensional phase space ðXðαÞ; YðαÞ; ZðαÞ;WðαÞÞ once
the initial conditions are given. Since l.h.s of these
equations becomes zero for the particular solutions dis-
cussed in Eq. (4.8), they correspond to fixed points in this
system. The trajectories never intersect each other except at
the fixed points. Therefore, the linear analysis around
the fixed point determines the phase space structure.
Depending on the parameters, the number of the fixed
points and the properties of the fixed points change.
Let us consider the cases that the condition for positivity

of v (4.30) is violated. In these cases, there is no anisotropic
fixed point. Equation (5.7) tells us that, even if the initial
state is vacuumW ¼ 0,W grows with time becauseQ ≠ 0.
Eventually, the trajectory goes to the isotropic fixed point

X ¼ 0; ð5:8Þ

Y ¼ −
4ð1þQÞ þ λ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ 4Qþ λ2Þ2 − 16λ2

p
2λ

; ð5:9Þ

Z2 ¼ 0; ð5:10Þ

W ¼ −
12ð1þQÞ2 þ 3λ2ðQ − 1Þ − 3ð1þQÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ 4Qþ λ2Þ2 − 16λ2

p
2λ2

: ð5:11Þ

In the case of no dissipation Q ¼ 0, this corresponds to a
solution of isotropic power-law inflation Y ¼ −λ;W ¼ 0.
In the absence of gauge fields Z ¼ 0, even if X ≠ 0 initially,
the anisotropy disappears eventually and the solution of
isotropic warm inflation actually behaves as an attractor. To
show this, we plotted the trajectories in the phase space
ðX; Y;WÞ in the case of Z ¼ 0 in Fig. 1. However, in the
presence of gauge fields, and if the condition (4.30) is
satisfied, an anisotropic fixed point exists. In this case, the

isotropic fixed point becomes unstable. Then, the trajectory
goes to the fixed point

X ¼ −4Q − 4þ λ2 þ 5λκ þ 6κ2 −
ffiffiffiffi
D

p

4Qþ 4þ 2λ2 þ 7λκ þ 6κ2 þ ffiffiffiffi
D

p ; ð5:12Þ

Y ¼ −
12ðλþ 2κÞ

4Qþ 4þ 2λ2 þ 7λκ þ 6κ2 þ ffiffiffiffi
D

p ; ð5:13Þ

Z2 ¼ 9ð4þ 4Qþ 3λκ þ 6κ2 þ ffiffiffiffi
D

p Þð−4 − 4Qþ λ2 þ 5λκ þ 6κ2 −
ffiffiffiffi
D

p Þ
ð4Qþ 4þ 2λ2 þ 7λκ þ 6κ2 þ ffiffiffiffi

D
p Þ2 ; ð5:14Þ

FIG. 1. The 3D phase space plot in ðX; Y;WÞ-space in
the absence of the gauge field, i.e. Z ¼ 0. Trajectories with
different initial conditions are depicted for Q ¼ 0.3. The initial
conditions of blue, yellow, and green orbits are set as ðX;Y;WÞ¼
ð0.001;−0.1;0.001Þ;ð0;−0.1;0.02Þ;ð0.001;−0.05;0.01Þ, respec-
tively. The red point at ðX; Y;WÞ ¼ ð0;−0.077; 0.0013Þ shows
the isotropic fixed point of the warm inflation.
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W ¼ 108Qðλþ 2ρÞ2
ð4Qþ 4þ 2λ2 þ 7λκ þ 6κ2 þ ffiffiffiffi

D
p Þð4Qþ 4 − λ2 þ λκ þ 6κ2 þ ffiffiffiffi

D
p Þ : ð5:15Þ

This fixed point corresponds to anisotropic warm inflation
obtained in the previous section. For Q ¼ 0, we can
reproduce the results in [25].
We plotted typical trajectories in Fig. 2. Since the phase

space consists of four dimensions, we chose three of four

variables and plot three dimensional subspaces of ðX; Y; ZÞ
(Left panel) and ðX; Y;WÞ (Right panel) for Q ¼ 0.3,
κ ¼ 50, and λ ¼ 0.1. We see the solution of isotropic
warm inflation (Red dot) is a saddle point in these para-
metrizations. In fact, we found an unstable eigenstate by a

FIG. 2. 3D Phase space plots of attractors in the ðX; Y; ZÞ-spaces (Left panel) and ðX; Y;WÞ-spaces (Right panel). Trajectories
with different initial conditions are depicted for Q ¼ 0.3. The initial conditions of blue, yellow, and green orbits are set as
ðX;Y;Z;WÞ¼ð0.001;−0.1;0.001;0.001Þ;ð0;−0.1;0.01;0.02Þ;ð0.001;−0.05;0.01;0.01Þ, respectively. The blue point at ðX; Y; Z;WÞ ¼
ð0.00032;−0.04; 0.054; 0.00036Þ shows the fixed point corresponding to the anisotropic inflation, while the red point at ðX; Y; Z;WÞ ¼
ð0;−0.077; 0; 0.0013Þ shows the isotropic fixed point of the warm inflation.

FIG. 3. 3D Phase space plots of attractors in the ðX; Y; ZÞ-spaces (Left panel) and ðX; Y;WÞ-spaces (Right panel). Trajectories with
different initial conditions are depicted forQ ¼ 3. Initial conditions of each orbit indicated by the blue, yellow, and green dashed line are
set as ðX; Y; Z;WÞ ¼ ð0.001;−0.1; 0.001; 0.001Þ; ð0;−0.1; 0.01; 0.02Þ; ð0.001;−0.05; 0.01; 0.01Þ, respectively. The red point shows the
isotropic fixed point at ðX; Y; Z;WÞ ¼ ð0;−0.025; 0; 0.0014Þ corresponding to the limit of the warm inflation.
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linear analysis around the isotropic fixed point. A trajectory
first approaches the isotropic warm inflation but turns
out to settle down to the fixed point of anisotropic warm
inflation.
We considered power-law solutions where inflation

never ends. In the real Universe, inflation ends after a
finite time. Hence, depending on the strength of dissipation,
the anisotropic inflation will not appear by the end of
inflation. That is, the dissipation of inflaton field prevents
the anisotropy from growing during inflation.
As Q increases, the condition (4.30) gets hard to be

satisfied. We plotted the case of large Q ¼ 3 with κ ¼ 50,
and λ ¼ 0.1 in Fig. 3. In this case, since the anisotropic
fixed point (Blue dot) disappears, every orbit approaches
the isotropic fixed point (X ¼ 0) that describes warm
inflation. We also confirmed that the fixed point is the
attractor by using the linear analysis around the fixed point.
Thus, we found that the large dissipation tends to erase the
anisotropy.

VI. CONCLUSION

In the era of precision cosmology, it is important to
reconsider the cosmic no-hair conjecture [32–34]. The
cosmic no-hair conjecture supposes that cosmological
spacetime obeys the Einstein equation with an inflaton
field that behaves like a positive cosmological constant in
the slow-roll limit. Curiously, if the inflaton field couples
with other matter fields, the attractor of the conventional
slow-roll inflation can be destabilized by the dissipation of
the inflaton field or the matter fields coupled with the
inflaton field. In warm inflation, the inflaton field produces
the radiation energy density continuously during inflation,
and in anisotropic inflation, the inflaton field sustains the
gauge field. Thus it is expected that energy density of such
matter fields survives during inflation against the cosmic
no-hair conjecture. In this paper, we considered whether the
cosmic no-hair conjecture still hold even if we considered
the both effects of the dissipation of the inflaton field and
the presence of gauge field coupled with the inflaton field.
We first clarified the condition (3.21) for making

anisotropy survived by using slow-roll approximation
and found that the condition became tight in the presence
of dissipation compared with the condition without the
dissipation. Then, we investigated a solvable inflation
model by choosing the inflaton potential in Eq. (4.1)
and the gauge kinetic function in Eq. (4.2). We found
exact solutions which represent power-law warm inflation
and power-law anisotropic warm inflation in Sec. IV. We
also clarified the phase space structure of the power-law
inflation models in Sec. V. It turned out that whether the
anisotropy during inflation survives or not depends on

the magnitude of Q. Let us fix the coupling constant c in
the gauge kinetic function fðϕÞ. If the inequality c >
1þQ is satisfied, the anisotropic warm inflation is
realized. If the inequality c ≤ 1þQ is satisfied, no
anisotropic inflation occurs and isotropic warm inflation
becomes attractor.
In this paper, we assumed the dissipation ratio Q is

constant. In general, the dissipation depends on the Hubble
parameter, the inflaton field, temperature and the mass of
the inflaton field. However, in the slow-roll limit, the
dissipation ratio is almost constant during inflation.
Hence, assumption that dissipation ratio is constant is
legitimate to clarify the condition for the existence of a
solution of anisotropic warm inflation. To support the
validity of the assumption, we showed that the qualitative
feature does not change even for time dependent dissipation
ratio in the Appendix.
Since Q increases toward the end of inflation as the

Hubble parameter decreases, it would be more difficult to
realize anisotropy near the end of inflation. Hence, it would
be worth investigating more realistic models in detail.
In particular, phenomenological consequences of the
anisotropic warm inflation should be investigated in
future work.
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APPENDIX

In this paper, for simplicity, we assumed that Q is
constant. Here, we assess how the time-dependence of Q
would affect the analysis in Sec. III.
In general, Q ¼ ϒ=3H slowly varies during inflation.

We checked the case where ϒ is constant numerically for
chaotic inflation (n ¼ 2). As shown in Fig. 4, when Q is
constant, the energy density of radiation grows firstly
and, after a while, the anisotropy grows. As shown in
Fig. 5, when Q varies as the Hubble parameter decreases
toward the inflation end, the qualitative behavior is
still similar to that of Q ¼ constant although quantitative
differences exist.
The point is that anisotropy will be realized even when

Q varies, as long as the condition c > 1þQ is satisfied.

063524-9

ANISOTROPIC WARM INFLATION PHYS. REV. D 107, 063524 (2023)



[1] P. A. R. Ade et al., Planck 2013 results. XXII. Constraints
on inflation, Astron. Astrophys. 571, A22 (2014).

[2] Robert M. Wald, Asymptotic behavior of homogeneous
cosmological models in the presence of a positive cosmo-
logical constant, Phys. Rev. D 28, 2118 (1983).

[3] Jiro Soda, Statistical anisotropy from anisotropic inflation,
Classical Quantum Gravity 29, 083001 (2012).

[4] Arjun Berera, Warm Inflation, Phys. Rev. Lett. 75, 3218
(1995).

[5] Arjun Berera and Li-Zhi Fang, Thermally Induced Density
Perturbations in the Inflation Era, Phys. Rev. Lett. 74, 1912
(1995).

[6] Arjun Berera, Ian G. Moss, and Rudnei O. Ramos, Warm
inflation and its microphysical basis, Rep. Prog. Phys. 72,
026901 (2009).

[7] Junichi Yokoyama and Andrei D. Linde, Is warm inflation
possible?, Phys. Rev. D 60, 083509 (1999).

[8] Marcelo Gleiser, Arjun Berera, and Rudnei O. Ramos,
A First Principles Warm Inflation Model that Solves the
Cosmological Horizon and Flatness Problems, Phys. Rev.
Lett. 83, 264 (1999).

[9] Arjun Berera and Rudnei O. Ramos, Absence of isentropic
expansion in various inflation models, Phys. Lett. B 607, 1
(2005).

[10] Rudnei O. Ramos, Mar Bastero-Gil, Arjun Berera, and Joco
G. Rosa, Warm Little Inflaton, Phys. Rev. Lett. 117, 151301
(2016).

[11] Rudnei O. Ramos, Mar Bastero-Gil, Arjun Berera, and Joco
G. Rosa, Towards a reliable effective field theory of
inflation, Phys. Lett. B 813, 136055 (2021).

[12] Kim V. Berghaus, Peter W. Graham, and David E. Kaplan,
Minimal warm inflation, J. Cosmol. Astropart. Phys. 03
(2020) 034.

[13] Masa-aki Watanabe, Sugumi Kanno, and Jiro Soda,
Inflationary Universe with Anisotropic Hair, Phys. Rev.
Lett. 102, 191302 (2009).

[14] Timothy R. Dulaney and Moira I. Gresham, Primordial
power spectra from anisotropic inflation, Phys. Rev. D 81,
103532 (2010).

[15] A. E.Gumrukcuoglu, BurakHimmetoglu, andMarco Peloso,
Scalar-scalar, scalar–tensor, and tensor-tensor correlators
from anisotropic inflation, Phys. Rev. D 81, 063528 (2010).

FIG. 4. Assuming Q is constant, we calculated the velocity of the inflaton _ϕ, the degree of anisotropy _σ= _α, the energy density of
radiation ρR for chaotic inflation with VðϕÞ ¼ 1

2
m2ϕ2. The parameters are set as Q ¼ 0.000005 and c ¼ 3.

FIG. 5. Assuming ϒ is constant, we calculated Q, the velocity of the inflaton _ϕ, the degree of anisotropy _σ= _α, the energy density of
radiation ρR for chaotic inflation with VðϕÞ ¼ 1

2
m2ϕ2. The parameters are set as ϒ ¼ 0.000005Mpl and c ¼ 3.

063524-10

KANNO, MUKUNO, SODA, and UEDA PHYS. REV. D 107, 063524 (2023)

https://doi.org/10.1051/0004-6361/201321569
https://doi.org/10.1103/PhysRevD.28.2118
https://doi.org/10.1088/0264-9381/29/8/083001
https://doi.org/10.1103/PhysRevLett.75.3218
https://doi.org/10.1103/PhysRevLett.75.3218
https://doi.org/10.1103/PhysRevLett.74.1912
https://doi.org/10.1103/PhysRevLett.74.1912
https://doi.org/10.1088/0034-4885/72/2/026901
https://doi.org/10.1088/0034-4885/72/2/026901
https://doi.org/10.1103/PhysRevD.60.083509
https://doi.org/10.1103/PhysRevLett.83.264
https://doi.org/10.1103/PhysRevLett.83.264
https://doi.org/10.1016/j.physletb.2004.12.028
https://doi.org/10.1016/j.physletb.2004.12.028
https://doi.org/10.1103/PhysRevLett.117.151301
https://doi.org/10.1103/PhysRevLett.117.151301
https://doi.org/10.1016/j.physletb.2020.136055
https://doi.org/10.1088/1475-7516/2020/03/034
https://doi.org/10.1088/1475-7516/2020/03/034
https://doi.org/10.1103/PhysRevLett.102.191302
https://doi.org/10.1103/PhysRevLett.102.191302
https://doi.org/10.1103/PhysRevD.81.103532
https://doi.org/10.1103/PhysRevD.81.103532
https://doi.org/10.1103/PhysRevD.81.063528


[16] Masa-aki Watanabe, Sugumi Kanno, and Jiro Soda, The
nature of primordial fluctuations from anisotropic inflation,
Prog. Theor. Phys. 123, 1041 (2010).

[17] Chong-Bin Chen and Jiro Soda, Anisotropic hyperbolic
inflation, J. Cosmol. Astropart. Phys. 09 (2021) 026.

[18] Chong-Bin Chen and Jiro Soda, Geometric structure of
multi-form-field isotropic inflation and primordial fluctua-
tions, J. Cosmol. Astropart. Phys. 05 (2022) 029.

[19] A. Maleknejad, M. M. Sheikh-Jabbari, and J. Soda, Gauge
fields and inflation, Phys. Rep. 528, 161 (2013).

[20] Akio Hosoya and Masa-aki Sakagami, Time development of
Higgs field at finite temperature, Phys.Rev.D29, 2228 (1984).

[21] M. Sharif and Rabia Saleem, Warm anisotropic inflationary
universe model, Eur. Phys. J. C 74, 2738 (2014).

[22] M. Sharif and Rabia Saleem, Dynamics of warm inflation
with gauge fields in Bianchi type I universe model,
Astropart. Phys. 62, 100 (2015).

[23] Burak Himmetoglu, Carlo R. Contaldi, and Marco Peloso,
Instability of Anisotropic Cosmological Solutions Supported
by Vector Fields, Phys. Rev. Lett. 102, 111301 (2009).

[24] A. Maleknejad, M. M. Sheikh-Jabbari, and Jiro Soda,
Gauge-flation and cosmic no-hair conjecture, J. Cosmol.
Astropart. Phys. 01 (2012) 016.

[25] Sugumi Kanno, Jiro Soda, and Masa-aki Watanabe, Aniso-
tropic power-law inflation, J. Cosmol. Astropart. Phys. 12
(2010) 024.

[26] Tuan Q. Do, W. F. Kao, and Ing-Chen Lin, Anisotropic
power-law inflation for a two scalar fields model, Phys. Rev.
D 83, 123002 (2011).

[27] Kei Yamamoto, Masa-aki Watanabe, and Jiro Soda, Infla-
tion with multi-vector-hair: The fate of anisotropy, Classical
Quantum Gravity 29, 145008 (2012).

[28] Junko Ohashi, Jiro Soda, and Shinji Tsujikawa, Aniso-
tropic power-law k-inflation, Phys. Rev. D 88, 103517
(2013).

[29] Asuka Ito and Jiro Soda, Designing anisotropic inflation
with form fields, Phys. Rev. D 92, 123533 (2015).

[30] Tuan Q. Do and W. F. Kao, Bianchi type I anisotropic
power-law solutions for the Galileon models, Phys. Rev. D
96, 023529 (2017).

[31] Rocco D’Agostino and Orlando Luongo, Cosmological
viability of a double field unified model from warm
inflation, Phys. Lett. B 829, 137070 (2022).

[32] Jiro Soda, Anisotropic Power-law inflation: A counter
example to the cosmic no-hair conjecture, J. Phys. Conf.
Ser. 600, 012026 (2015).

[33] A. Maleknejad and M.M. Sheikh-Jabbari, Revisiting cos-
mic no-hair theorem for inflationary settings, Phys. Rev. D
85, 123508 (2012).

[34] Pengyuan Gao, K. Takahashi, A. Ito, and Jiro Soda, Cosmic
no-hair conjecture and inflation with an SU(3) gauge field,
Phys. Rev. D 104, 103526 (2021).

063524-11

ANISOTROPIC WARM INFLATION PHYS. REV. D 107, 063524 (2023)

https://doi.org/10.1143/PTP.123.1041
https://doi.org/10.1088/1475-7516/2021/09/026
https://doi.org/10.1088/1475-7516/2022/05/029
https://doi.org/10.1016/j.physrep.2013.03.003
https://doi.org/10.1103/PhysRevD.29.2228
https://doi.org/10.1140/epjc/s10052-014-2738-1
https://doi.org/10.1016/j.astropartphys.2014.06.011
https://doi.org/10.1103/PhysRevLett.102.111301
https://doi.org/10.1088/1475-7516/2012/01/016
https://doi.org/10.1088/1475-7516/2012/01/016
https://doi.org/10.1088/1475-7516/2010/12/024
https://doi.org/10.1088/1475-7516/2010/12/024
https://doi.org/10.1103/PhysRevD.83.123002
https://doi.org/10.1103/PhysRevD.83.123002
https://doi.org/10.1088/0264-9381/29/14/145008
https://doi.org/10.1088/0264-9381/29/14/145008
https://doi.org/10.1103/PhysRevD.88.103517
https://doi.org/10.1103/PhysRevD.88.103517
https://doi.org/10.1103/PhysRevD.92.123533
https://doi.org/10.1103/PhysRevD.96.023529
https://doi.org/10.1103/PhysRevD.96.023529
https://doi.org/10.1016/j.physletb.2022.137070
https://doi.org/10.1088/1742-6596/600/1/012026
https://doi.org/10.1088/1742-6596/600/1/012026
https://doi.org/10.1103/PhysRevD.85.123508
https://doi.org/10.1103/PhysRevD.85.123508
https://doi.org/10.1103/PhysRevD.104.103526



