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Several cosmological tensions have emerged in light of recent data, most notably in the inferences of the
parameters H0 and σ8. We explore the possibility of alleviating both these tensions simultaneously by
means of the Albrecht-Skordis “quintessence” potential. The field can reduce the size of the sound horizon
r�s while concurrently suppressing the power in matter density fluctuations before it comes to dominate the
energy density budget today. Interestingly, this rich set of dynamics is governed entirely by one free
parameter that is ofOð10Þ in Planck units. We find that the inferred value ofH0 can be increased, while that
of σ8 can be decreased, both by ≈1σ compared to the ΛCDM case. However, ultimately the model is
disfavored by Planck and BAO data alone, compared to the standard ΛCDM model, with a Δχ2 ≈þ6.
When including large scale structure and supernova data we find Δχ2 ≈þ1. We note that historically much
attention has been focused on preserving the three angular scales θD, θEQ, and θ�s to their ΛCDM values.
Our work presents an example of how, while doing so indeed maintains a relatively good fit to the cosmic
microwave background data for an increased number of ultrarelativistic species, it is a priori insufficient in
maintaining such a fit in more general model spaces.
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I. INTRODUCTION

Much attention in cosmology today is devoted to
tensions that exist between modern cosmological data
and the standard “Λ-Cold Dark Matter” (ΛCDM) cosmo-
logical model. Extensions to ΛCDM which modify the
matter content around the time of last scattering have been
explored in the hopes of addressing these tensions. The
Albrecht-Skordis (AS) model [1,2] is a quintessence model
in which the dark energy takes the form of an evolving
scalar field with a number of special properties. One of
these is that the scalar field contributes a significant fraction
of the total energy density of the Universe starting at
extremely early times, suggesting that it might offer relief
from the cosmological tensions.
This paper offers a systematic analysis of the AS model

in the context of modern cosmological data. We use the
term “ASCDM” to refer to the model containing the same
constituents as the ΛCDM model but where the cosmo-
logical constant Λ has been replaced with the AS quintes-
sence field for dark energy. We carefully study the features

of the ASCDM model which suggest a resolution to the
tensions, but ultimately show how these features are unable
to make enough of a difference. We find that the best fit
ASCDM model fits the data overall about as well
as ΛCDM.
Quintessence has been dismissed as a possible remedy to

the tensions in the literature often on the basis of simple
parameterizations [3] (e.g., the Chevallier-Polarski-Linder
parametrization [4,5] or the wCDM parametrization where
the dark energy equation of state is varied) or by employ-
ing “tracking” and/or “freezing” quintessence models as
in [6–8]. Such approaches may artificially disfavor the
potential of quintessence to alleviate the cosmological
tensions: a low-order Taylor expansion is simply unable
to capture the rich dynamics and early-vs-late behavioral
changes that a quintessence field, such as that of the AS
model, can exhibit [9,10]; models that track the dominant
energy component throughout cosmic history, and crucially
during matter domination, are also set up for failure in
bringing concordance between the various measurements,
as we explain in Sec. III and Appendix A; finally, models
where the field is “frozen” solely by means of Hubble
friction, approach the wϕ ≲ −1 slowly [6,11] and hence
appear to be unfavorable candidates for resolving discrep-
ancies in recent cosmological data (particularly the H0
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tension; discussed in Sec. II). This paper avoids the pitfalls
of these various approximation schemes by using the full
evolution of the AS quintessence according to its field
equations in our analysis.
In addition to presenting the results of the constraints on

model parameters given various datasets, we attempt to
understand these constraints by comparing the ASCDM
model with a much more well-studied model: the extension
of ΛCDM to allow for a variable number of light and dark
degrees of freedom, parametrized by the effective number
of neutrino species Neff [12]. We find that for similar total
mean energy density at z > zEQ, the best-fit ASCDM
model is highly disfavored relative to the best-fit ΛCDMþ
Neff model. We speculate that this is fundamentally due to
the changed shape of the ratio of the mean density of dark
matter to the density of smooth components (radiation plus
the AS field) as a function of scale factor, as this influences
gravitational potential decay, which in turn impacts the
amplitude of the acoustic standing wave oscillations as a
function of wavelength [13].
For context for this speculation, let us remind the reader

that studies of constraints on light relics [14,15] have
emphasized the importance of three angular scales: those of
the comoving horizon at matter-radiation equality, the
comoving sound horizon, and the comoving photon dif-
fusion scale, all projected from last scattering to today [16].
Keeping these angular scales fixed, in light relics models,
as one increases the density of light relics, keeps one in or
near regions of high cosmic microwave background (CMB)
likelihood. They are very useful scales to keep in mind for
understanding constraints on light relics, and for other
model spaces as well. Others have emphasized their more
general importance [17] and used these scales to evaluate
and understand results from early dark energy models [18].
The matter-radiation equality angular scale is important

exactly because of its impact on gravitational potential
decay and resulting impact on acoustic oscillation ampli-
tude as a function of wavelength. Our results illustrate what
may be a key point for model building: getting the angular
scale right is not sufficient; the whole shape of what Hu and
White refer to as the “radiation-driving envelope” [13] is
important. This shape depends on how conditions at
horizon crossing are changing as a function of scale factor,
and therefore wavelength and angular scale. The data are
sensitive not just to a single scale, but to details in the
decade to decade and a half of scale factor evolution prior to
matter-radiation equality.
The sensitivity of the CMB data to modes that are

crossing the horizon during these times was also previously
emphasized in [17], as was the fact that in general a
departure from ΛCDM would result in a change in the
shape of the radiation-driving envelope. We present here a
specific illustration of this general principle.
This paper is organized as follows: Section II presents an

overview of the tensions and past attempts at a resolution.

Section III reviews the AS model, addressing both the
background evolution and the evolution of perturbations.
Section IV presents the elements of our analysis including
datasets, parameters, priors, and software tools used. Our
results are presented in Sec. V. Section V also includes our
systematic comparison with the “ΛCDMþ Neff” model
which helps build intuition and explore the larger impli-
cations of our results. In Sec. VI we reflect on the
implications of what we have learned for other quintes-
sence models, and we present our conclusions in Sec. VII.
Appendix briefly presents results from the Brane Model (a
quintessence model similar to the AS model studied side by
side with it in [2]) and draws some lessons about the
unsuitability of pure tracking quintessence models.

II. COSMOLOGICAL TENSIONS
AND ATTEMPTS AT RESOLUTION

Here we give a brief overview of the two cosmological
“tensions” under discussion in cosmology today. The first,
and most prominent, of these is a tension in the measure-
ment of the expansion rate of the Universe today, H0,
between cosmological-model-dependent and cosmologi-
cal-model-independent (often referred to as “early” versus
“late” Universe) probes. This discrepancy is most signifi-
cant between the Cepheid calibrated supernovae method of
the SH0ES team, who find H0 ¼ 73.2� 1.04 km=s=Mpc
[19] and the ΛCDM model calibrated with CMB data from
the Planck satellite, which results in H0 ¼ 67.4�
0.5 km=s=Mpc (using temperature, polarization, and lens-
ing data) [20]. However, it would be mischaracterizing the
seriousness of the issue were we to limit attention to just
these experiments; indeed the discrepancy persists even if
the Planck data are substituted, or complemented, with
other CMB probes. For example, the inverse-distance
ladder approach for calibrating supernovae data, which
only depends on CMB data via a prior on the sound horizon
scale, results in a discrepancy of up to ≈3.9σ with SH0ES
[21–23]. One could also entirely neglect CMB data and
calibrate ΛCDM using a combination of big bang nucleo-
synthesis (BBN), baryonic acoustic oscillations (BAO), and
large scale structure (LSS) data, which results in a value of
H0 discrepant at ≈3.2–3.6σ with SH0ES [24–26]. On the
flip side, one could substitute or complement the SH0ES
data with other late-Universe probes, almost all of which
continue to reflect the tension with varying levels of
significance. We do note though that the supernova
community has not all converged on acceptance of a “high”
value of the Hubble constant. In particular, Freedman et al.
[27] find that the tip of the red giant branch technique
for calibrating supernovae leads to distances to nearby
galaxies that are significantly discrepant with the Cepheid-
determined distances. They find a lower mean value for H0

than the SH0ES result, one that is consistent with the
ΛCDM Planck value (though also consistent at ∼2σ
with SH0ES as well.) For an extensive review of the
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observational situation we refer the reader to [28], and for
an extensive review of the outcomes from various combi-
nations of data we refer the reader to [29], and to [30] for a
more succinct collection of results.
Due to the persistence of the tension across a plethora of

datasets, it is natural to seek theoretical solutions to the
problem. For an extensive compilation of the solutions see
[31] and for a quantitative comparison of them see [32].
We consider the potential of alleviating the tension by

means of an early-time modification to the expansion rate,
which has some parallels with the early dark energy (EDE),
increased ultrarelativistic species, andRatra-Peebles quintes-
sence proposals (and other similar approaches), in that they
all effectively increase the inference of H0 from Planck by
reducing the size of the sound horizon (discussed in detail in
Sec. III. A). There is also increasingly precise data available
from cosmic shear and galaxy clustering surveys which
independently constrain the weighted amplitude of the
variance in matter fluctuations, S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
. These

large-scale structure (LSS) surveys hint at a discrepancywith
the Planck calibrated ΛCDM model at a level of ≈2–4σ.
However, the statistical significance of this second

“tension” is more difficult to quantify for several reasons.
First, the analysis has sensitivity to the choice of the two-
point statistics, for example the “COSEBIs” approach of
[33] leads to S8 ¼ 0.759þ0.024

−0.026 , while the traditional two-
point correlation function (“2PCFs”) approach yields S8 ¼
0.764þ0.018

−0.017 (68% credible intervals). Second, there is a
residual degeneracy that remains with Ωm when fixing the
exponent in the expression for S8 so that changing the
exponent may change the Gaussian difference measure. For
example, Ref. [33] finds a deviation of 3.4σ, as opposed to
3σ, from the Planck constraint when the exponent is varied.
Third, and related to the second point, is that the margin-
alized posteriors for the summary parameter have devia-
tions from Gaussianity so that it is insufficient to
characterize the tension by using a Gaussian difference
measure. The statistically inclined reader is referred to
Sec. 3.2 of [34] (who find an ≈3σ Gaussian discrepancy
between Planck and KiDS-1000) and references therein for
a discussion of various statistical measures that may be
used to quantify the tension. Finally, it is nontrivial to
combine data from different experiments which have
overlapping regions of observation, although doing so
leads to consistently lower values of the S8 parameter than
those inferred from Planck [34]. Interestingly, combining
cosmic shear data with anisotropic galaxy clustering is able
to break the degeneracy in the σ8 −Ωm plane, which
indicates that the discrepancy is driven by a lower matter
fluctuation amplitude, σ8, as opposed to Ωm [34,35]. For a
recent review of the status of this discrepancy and a
compilation of results, we refer the reader to [35]. A recent
thorough review of the status of both the aforementioned
cosmological tensions, along with other statistical anoma-
lies, can be found in [36].

Despite the challenges associated with quantifying the
“S8 (or σ8) tension,” it is possible that therein lies an
important clue in the search for a concordant cosmological
model [37]. Certainly, a theory that resolves both these
tensions simultaneously seems appealing and, therefore, in
this work we make a point of trying to address the S8 and
H0 tensions together. This position is not always taken in
the literature: some models alleviate the discrepancy in H0

but make that in S8 more severe. For example, in the case of
EDE, the inference of H0 from Planck and BAO can be
brought into concordance with the SH0ESmeasurement but
at the cost of an aggravated σ8 discrepancy, so much so that
the preference for EDE disappears on inclusion of the LSS
data [38,39]. A similar narrative holds true for the case of
an increased number of neutrino species, parametrized by
ΔNeff , as pointed out in Sec. 7.5.2 of [20]. Similarly,
Ref. [40] studied a variety of extended-ΛCDM cosmolo-
gies, and found that the discrepancy persists in the
extensions studied there, including for wCDM models
where the discrepancy shifts from the marginalized S8
posterior to the S8 − w plane. In this article, we show that a
background contribution from a quintessence field generi-
cally suppresses σ8 and that the ASCDM model, in
particular, is able to increase the inference of H0 while
simultaneously decreasing the inference of σ8 from
Planck data.
As we explain in Sec. V, the perturbations to the scalar

field also play a crucial role in driving the parameter
inferences, and as such it is both theoretically and practi-
cally inconsistent to disregard the perturbations as is done
in [41] and as the authors themselves point out in [42] (the
implications of inconsistently accounting for the scalar
field perturbations was first noted in [43]). The specific
model we study here contributes significantly to the energy
density prior to recombination, but less so after and appears
to represent a best-case scenario for a single, minimally
coupled scalar field with fairly generic initial conditions in
alleviating the value of H0 inferred from Planck. We also
solve the equations of motion for the background and
perturbations directly (Sec. V). Still, we find that while
such a model can relax the tensions, it is ultimately
unsuccessful in bringing concordance between the various
datasets. We leave the reader with some open questions
regarding the origins of the tight constraints on quintes-
sence as well as further avenues that we wish to explore
with regards to these constraints.

III. ALBRECHT-SKORDIS MODEL

The Albrecht-Skordis (AS) model, first introduced in [1]
studied extensively in [2] and further motivated in [44,45]
is a particular quintessence model with a scalar field
evolving in a potential of the form

VðϕÞ ¼ V0ððϕ − BÞ2 þ AÞe−λϕ: ð1Þ
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This potential admits a local minimum due to the poly-
nomial prefactor. However, far from the minimum, the field
behavior is dominated by the exponential factor so that it
behaves similarly to an exponential potential, as introduced
in [11] and further studied in [46]. At late late times the
field may get “stuck” in the local minimum where it can
approximate the behavior of a cosmological constant.
In order to get the complete field behavior we solve the

Friedmann equation,

H2ðaÞ ¼
�
_a
a

�
2

¼ 1

3

X
i

ρiðaÞ ð2Þ

simultaneously with the Klein-Gordon equation for scalar
fields,

ϕ̈þ 3H _ϕþ ∂ϕV ¼ 0; ð3Þ

where we work in reduced Planck units with m−2
p ¼

8πG=c2 ¼ 1. The homogeneous pressure and energy den-
sity of the field are given by the usual relationship,

ρðϕÞ ¼ 1

2
_ϕ2 þ VðϕÞ;

pðϕÞ ¼ 1

2
_ϕ2 − VðϕÞ: ð4Þ

The behavior of the field throughout cosmic history is
summarized in Figs. 1 and 2. In Fig. 2 one can see that

during radiation domination, the field has the same equa-
tion of state as the dominant background component. In this
regime, the field is far from the minimum so that the
behavior of the potential is dominated by the exponential
factor in Eq. (1) and we find, to a good approximation, that
Ωearly

ϕ ≈ 4=λ2 (see Fig. 1). This is the same as the analytic
tracking solution found by [46] for the pure-exponential
potential, with the assumption that there is only a radiation
component in addition to the scalar field. However, during
matter domination, the field breaks away from this tracking
behavior and Ωϕ approaches zero. As we will see, this
departure from tracking during matter domination is key for
any hope of increasing H0 beyond the ΛCDM value.
Finally, the field lands in the local minimum of the potential
so that, as one can see from Eq. (4), wϕ ≈ −1 and the field
quickly begins to dominate the total energy density (close
to today).

A. Background evolution

In order to bring concordance between CMB and late-
universe data one must take care not to disturb the angular
scale of the sound horizon at recombination, θ�s since it is
tightly constrained by Planck data [17]1 dependence to

FIG. 1. The contribution to the energy density budget Ωϕ, and
the fractional change in the Hubble parameter, δHðaÞ=HðaÞ, for
the ASCDM model compared to ΛCDM using the Planck 2018
best-fit cosmological parameters and λ ¼ 5. The low value of λ
has been chosen only to exaggerate the behavior of the field. We
also show the fractional change to the Hubble parameter for an
increased Neff model corresponding to the same early contribu-
tion as in the AS case (Neff ¼ 4.32).

FIG. 2. After an initial transient, wϕðaÞ tracks the dominant
background component and breaks away from the tracker at the
onset of matter domination before joining the new attractor near
the minimum of the potential where it undergoes damped
oscillations.

1This is a bit of a simplification since the constraint on θ�s
fundamentally comes from Planck’s sensitivity to the spacing
between acoustic peaks and hence anything that impacts that
spacing could change the inferred θ�s . The temporal phase shift in
acoustic oscillations from free-streaming neutrinos [47] is one
such source of changes to peak spacing, but the impact is
relatively small. See [48] for more details on peak locations.
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this constraint, which fundamentally comes from the
dependence of the spacing between peaks on θ�s . Since

θ�s ¼
r�s
D�

M

where

r�s ¼
Z

∞

z�

dz
HðzÞ csðzÞ ð5Þ

is the comoving size of the sound horizon at recombination
and

D⋆
M ¼

Z
z�

0

dz
HðzÞ ð6Þ

is the comoving angular diameter distance to the last-
scattering surface, an increased H0 (at fixed ωm) would
decrease D�

M and must therefore be compensated by a
proportionate decrease in r�s .
To understand how the presence of the AS field can

increase the inference of H0, let us consider the case where
all cosmological parameters of interest, and most impor-
tantly θ�s and ωm, are kept fixed to their Planck calibrated
ΛCDM values but now with an added contribution from the
scalar field (parametrized by λ). Since the field has a non-
negligible contribution prior to recombination, the sound
horizon decreases by an amount δr�s=rs ≈ −4=ð3λ2Þ com-
pared to the ΛCDM value (this would be −2=λ2, but Ωϕ

begins to decrease at the onset of matter-radiation equality
which softens this response). We can then approximate that
δH0

H0
≈ 20

3λ2
so that, for a ≈7% increase in H0 one requires

λ ≈ 10. This response inH0, at fixed θ�s and ωm, is shown in
Fig. 1 for the case of λ ¼ 5 which, from the approximation
above, should yield δH0=H0 ≈ 0.27. In Fig. 1 we also show
the change in the expansion rate compared to ΛCDM for a
model with an increased number of massless neutrinos.
One can notice that, even though the background expansion
of the ASCDM model is very similar to that of the
ΛCDMþ Neff model prior to matter-radiation equality,
the response to H0 is more efficient in the AS case for the
same early contribution to HðzÞ vs the increased Neff case.
This efficiency is also important as there are independent
constraints on the early expansion rate from measurements
of light element abundances (see Sec. 7.6 in [20] and
references therein) and thus further motivates us to study
the implications of the ASCDM model for the H0 tension.
We note that the above exercise was done while keeping

ωm fixed. We will see in what follows that as the AS field
energy density is increased, the best-fit model has an
increased ωm which qualitatively alters these conclusions.

B. Perturbation evolution

We start by noting that the effective speed of sound for
quintessence is ceffs ¼ 1 (in the gauge co-moving with the

field) which prevents the component from clustering on
subhorizon scales [49]. In particular, even when wϕ ≈ 0, the
entropy perturbations prevent gravitational collapse [2].
Intuitively, this suggests that one should expect some power
suppression since there is now an additional contribution to
the expansion rate but a negligible contribution to gravi-
tational potentials.
Mathematically, notice that, late after horizon crossing,

the evolution of the matter contrast δc is given by

δ00c þ aHδ0c ¼ 4πa2
X
i

ρiδi ð7Þ

(note the over-prime denotes derivative with respect to
conformal time). In the standard cosmological model, one
can find an approximate solution to this equation by
considering a nonzero contribution to the source term from
only the matter overdensity, giving the well-known solution
δc ∝ η2. In the case of the ASCDM model, the scalar field
contributes to the second term on the left-hand side but does
not contribute appreciably to the source term on the right-
hand side compared to the contribution from matter. In
particular, since Ωϕ begins to decrease at the onset of
matter-radiation equality (see Fig. 1), there is a scale
dependent suppression of the density contrast.2 Modes
that enter before matter-radiation equality experience the
maximal suppression while modes that enter after asymp-
totically approach the ΛCDM solution. This can be seen
clearly in the matter power spectrum in Fig. 3. This effect is
responsible for power suppression and leads to a decreased

FIG. 3. For modes that enter before matter-radiation equality,
there is a nearly scale-independent suppression (high-k regime).
For modes that enter after, suppression is scale dependent since
Ωϕ begins to decrease at onset of matter domination.

2In fact, for a quintessence field that continues to track the
background matter component during matter domination, the

solution to Eq. (7) is given by δc ∝ η2þ
5
2
ð−1þ

ffiffiffiffiffiffiffiffiffiffiffi
1−24

25
Ωϕ

p
Þ as opposed

to the usual δΛCDMc ∝ η2 (See Sec. III in [46]).

QUINTESSENTIAL COSMOLOGICAL TENSIONS PHYS. REV. D 107, 063521 (2023)

063521-5



inference of the power spectrum normalization, σ8. Thus, if
ωm does not increase significantly, S8 ¼ σ8ðΩm=0.3Þ0.5 is
also suppressed. This effect of power suppression has been
noted previously in the literature as well [2,46,50,51].
However, the CMB angular power spectrum exhibits a

radiation driving envelope [52] which is sensitive to the
matter-radiation ratio. In particular, since radiation causes
theNewtonian potentialψ to decay, acoustic oscillations that
occur formodes entering the horizon beforematter-radiation
equality see a boost in amplitude since ψ is timed to decay
when photons in the fluid reach maximum compression.
Since the quintessence field effectively contributes to the
radiation budget during the radiation dominated epoch, there
is a shift in the driving envelope, the implications of which
we discuss more extensively in Sec. V. 1. The same physics
is also relevant for an increased early integrated Sachs-Wolfe
(ISW) effect which affects modes that cross the horizon
close to recombination when the photon visibility sharply
increases. The net result is that the increased value of ωm
expected from these effects counteracts, to some extent,
efforts to alleviate the H0 and S8 tensions.

IV. ELEMENTS OF OUR ANALYSIS

Here we discuss the technical details and tools used to
arrive at our results, which may be of particular interest to
those interested in reproducing our results or comparing
with models of a similar nature. We also extensively
document our data below since many of the experiments
have a series of data releases (DR), and comparing fits and
parameter estimates across models using different data sets
can lead to erroneous conclusions, as is extensively dis-
cussed in [32].

A. Data

(1) Baryonic acoustic oscillations: We use the BOSS
BAO DR12 “consensus” dataset [53]. The BAO-
only data, which is a subset of the consensus dataset,
relies on reconstructing the BAO signal which
assumes a cosmological model, namely ΛCDM.
However, as outlined in [54], moderate differences
in the distance scale between the fiducial and
underlying cosmology lead to negligible changes
in the monopole peak position. Thus, while we have
not explicitly implemented the reconstruction using
the ASCDM model, we think it is reasonable to use
the data nonetheless, as is done in the H0 tension
literature.

(2) Cosmic microwave background: We use the
Planck 2018 data [55,56], including lensing, low-
lTT (commander), EE (simall), and high-l
temperature and polarization power spectra. For
the high-l spectra, we make use of the plik-
lite code which differs from the full plik like-
lihood in the number of nuisance parameters.

(3) Supernovae (SNe): We use the Pantheon [57]
compilation of the redshift and magnitudes of 1048
Type-1a SNe in the range 0.01 < z < 2.3.

(4) Cepheid calibrated supernovae: We use the SH0ES
[58] value ofH0 ¼ 74.03� 1.42 km=s=Mpc, which
effectively acts as a prior onH0. Note that while this
work was in its final stages of completion, the
SH0ES team announced new results [19], where
they report H0 ¼ 73.04� 1.04, which further ex-
acerbates the tension with the Planck-calibrated
ΛCDM value of H0. While using this new result
would slightly alter the numerical values for our
parameter inferences, it would not induce any
qualitative or drastic quantitative change to the
analysis that we present for the ASCDM scenario.
Whenever we quantify a difference with “SH0ES”
we implicitly refer to the 2019 result [58] in
particular.

(5) Sunyaez-Zeldovich (SZ) cluster count: We use the
Planck SZ value of σ8ðΩm=0.27Þ0.3 ¼ 0.782�
0.010 [59] which is effectively a priori on S8.

(6) Large-scale structure: We use a joint constraint on
S8 as found by [60] using data from the Dark Energy
Survey (DES), KiDS, and VIKING-450 (along with
cosmological priors from DES-Y1 [61]). This joint
constraint is in mild tension, at an ≈3σ level, with
the Planckþ ΛCDM inference. Using only the S8
constraint, as opposed to the full “3 × 2 point”
analysis, was done for the purposes of computational
simplicity. This was motivated by [38], who found
that most of the constraining power from DES can be
summarized into a Gaussian prior on S8 for their
early dark energy scenario, although we have not
explicitly tested the validity of doing so for the
ASCDM model. In any case, the statistical power of
the constraint is small compared to the aforemen-
tioned datasets and, by itself, is not decisive in
setting parameter inferences.

B. Parameter space and priors

Considered in its full generality, the AS quintessence
field can exhibit a range of behaviors. However, for the
purposes of this article, we are most interested in studying
the ramifications of the model for recent cosmological
tensions. The reduced parameter space that we consider is
guided by the prior that dark energy dominates the energy
budget today with an equation of state parameter wϕ ≈ −1
(in our model this is realized via the existence of a false
vacuum). Additionally, we consider the region of parameter
space where the field has a tracking solution as this is
expected to most directly influence the size of the sound
horizon at recombination (and therefore the inference of
H0) and also does not require fine-tuning the initial
conditions of the field. Even with these constraints, we
find that we are able to explore a rich set of dynamics and
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hope that, should the model show promise in resolving the
discrepancies with the data, a more extensive search in the
model parameter space may be carried out.
In order to obtain statistical constraints on the parameter

space given the data, we vary the usual six cosmological
parameters and additionally vary the quintessence param-
eter λ [in Eq. (1)] so that the complete set of varied
parameters is fωb;ωcdm; θ�s ; ns; As; τreio; λg. One might
wonder whether one degree of freedom is able to capture
the complicated dynamics of the scalar field; this is indeed
the case since
(1) The quintessence parameter A primarily plays the

role of establishing a minimum. In particular, for a
given λ, a local minimum exists if and only if A <
1=λ2 and A ≠ 0 in order to have a false vacuum. We
fix A ¼ 0.0025. Note that the choice of A has a mild
impact on the curvature of theminimumand therefore
affects the amplitude of the late-time oscillations
when the scalar field is settling into theminimum.We
have checked, by fixing A to various values, that the
parameter inferences are not sensitive to (small)
changes in A. However, it is possible that the late-
time oscillations may ultimately serve as probes for
testing models of scalar field potentials with local
minima. Another reason for fixing A is for numerical
tractability: for very small values (A≲ 10−4), the
oscillations about theminimumbecomevery rapid so
that the integration of Eq. (3) becomes unreliable.

(2) For a given λ, the location of the minimum is
primarily governed by B. But since

ρ0ϕ ¼ 3H2
0ð1 −Ω0

mÞ ≈ VðϕminÞ; ð8Þ

ϕmin (and therefore B) is set uniquely in terms of the
other background parameters that are varied. Here a
subscript or superscript zero denotes the value of the
parameter today and ϕmin is the location of the
minimum of the potential in Eq. (1).

(3) V0 is passed as a shooting parameter to CLASS for
any fine-tuning required to satisfy Eq. (8). In reality,
the need for this parameter is purely computational
since if we vary H0 instead of θ�s , we can invert
Eq. (8) to set the minimum at exactly the requisite
value of ϕ. However, since H0 is itself a derived
parameter and is not known a priori for each step in
the Monte Carlo, one must use a fiducial value ofH0

in Eq. (8) and then use V0 as a tuning (or “shooting”)
parameter.

(4) For the tracking solution that we are interested in, the
scalar field equation ofmotion [Eq. (3)] admits a large
basin of attraction, such that the initial conditions of
the field,ϕini and _ϕini, do not need to be fine-tuned.We
set them deep in the radiation era such that ρϕðainiÞ ≲
ρradiationðainiÞ and that wϕðainiÞ ¼ 1=3.

Finally, λ is the only outstanding parameter in Eq. (1) which
we vary in the prior range 2 ≤ λ ≤ 1=

ffiffiffiffi
A

p
. The lower bound

comes from the consideration that a tracking/scaling
solution in the radiation era exists only for λ ≥ 2 [46].
The upper bound occurs for the reason outlined in item 1
above. Note that larger values of λ drive the minimum to
lower values of ϕwhich in turn increases the probability for
the scalar field to tunnel through the local minimum,
leading to “cataclysmic” Coleman–De Luccia bubbles as
discussed originally in [62] and specifically for a class of
quintessence potentials in [63]. While intriguing, we have
excluded this region of parameter space that would postu-
late a probable end to accelerated expansion soon after dark
energy becomes dominant.3 For this reason, we set
A ¼ 0.0025, so that λ ≤ 20. This also has the technical
advantage that it prevents the sampler from wandering into
the high likelihood region that is degenerate (asymptoti-
cally) with a cosmological constant. We also note that the
dynamical parameter of the theory (λ) is Oð10Þ (in Planck
units). Some have found this feature, combined with the
large basin of attraction for the initial conditions, philo-
sophically appealing (e.g., see Sec. II of [51]).

C. Software

We use the Cosmic Linear Anisotropy System Solver
(CLASS) [65] as our Einstein-Boltzmann solver to calcu-
late all quantities of cosmological interest. For sampling the
parameter space, we use MontePython [66,67]. For explor-
ing the ASCDM model, we use the MultiNest [68–70]
sampler as implemented in MontePython via PyMultiNest
[71]. Finally, we use GetDist [72] to generate all posterior
distribution plots.

V. RESULTS

In Fig. 4–5 we show constraints on the 6þ 1 parameter
space of our model for various combinations of the data.
Perhaps the first thing to notice is that these data do not
prefer the ASCDM model. The posterior probability
density peaks right at our prior cutoff at λ ¼ 20 for all
the data combinations we examine (in the limit of large λ
the quintessence field contribution becomes more and more
like that of a cosmological constant). For Planckþ BAO,
the quality of the best fit to the data is considerably
worsened with Δχ2 ≈þ6. When considering all datasets
(Sec. III. 1. 1), we find that the fit quality is comparable to
that of ΛCDM with Δχ2 ≈þ1. The fit to the various data
are summarized in Table I and the numerical values for the
best-fit parameters, along with the corresponding mean and
credible intervals, can be found in Table II.
Although not preferred, by opening up this extension to

finite λ, there is both a shift upward of approximately 1σ in

3Similarly, we also exclude the behaviors considered in [64],
which end the acceleration via classical processes.
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the posterior distribution of H0 and a similar downward
shift in the posterior distribution of σ8 compared to ΛCDM,
alleviating both tensions reviewed in Sec. II. We now turn
to the question of why we do not get bigger shifts than this,
as we had hoped we would, and why the constraints on λ
are as tight as they are; i.e., why do the data disfavor lower
values of λ?
To answer these questions we have found it useful to

compare to what happens in a much more thoroughly

studied ΛCDM extension, the one-parameter extension
with a variable effective number of neutrino species,
Neff ([14,47,73–75]). So we begin our answer to these
questions by reviewing this case of ΛCDMþ Neff .
In the ΛCDMþ Neff model it is possible to vary a subset

of the 7 parameters of the model so that there is a uniform
scaling of HðzÞ → αHðzÞ [74]. This scaling transformation
is of interest to us since both CMB temperature and
polarization anisotropies and BAO observables are

FIG. 4. Posteriors for the ASCDM and ΛCDMmodels. Lower triangle (solid) shows the results using only Planckþ BAO data, while
posteriors in the upper triangle (dashed) also include LSS (both the S8 prior from [60] and Planck SZ data) and Pantheon (SNe) data.
Here we show only the most relevant parameters for the cosmological tensions discussed in the text. The corresponding numerical values
for the mean, best-fit, and credible intervals for the parameters can be found in Table II while the χ2 values can be found in Table I.
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approximately invariant under it. The transformation
approximately preserves two very important angular scales:
the angular extent today of the sound horizon on the last
scattering surface, θs, and the angular extent of the
comoving size of the horizon at matter-radiation equality,
projected from the last-scattering surface, θEQ. The CMB
power spectra are very sensitive to these two scales because
the latter largely determines the separation between peaks

and the former determines the angular-scale-dependent
impact of “radiation driving” [16].
Radiation driving [52] is a dramatic effect, whereby

potential decay at horizon crossing greatly increases the
oscillation amplitude of the fluid for modes that enter deep
in the radiation-dominated era. The influence of non-
relativistic dark matter is to preserve the potential and thus
for modes that cross when the fraction of dark matter

FIG. 5. Posteriors for the ASCDM andΛCDMmodels when including all data (discussed in Sec. IV), including SH0ES. Here we show
only the most relevant parameters for the cosmological tensions discussed in the text. When using this more holistic set of data, we find
Δχ2 ≈þ1. The corresponding numerical values for the mean, best-fit, and credible intervals for the parameters can be found in Table II
while the χ2 values can be found in Table I.
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density is higher the amplitude increase is reduced. The
dependence of this amplitude boost on angular scale is
referred to as the radiation-driving “envelope.”
The symmetry under scaling ofHðzÞ is only approximate

due to a number of effects, photon diffusion perhaps being
chief among them. For a full explanation, see [74,75]. But
the ability to make adjustments that preserve θs and θEQ
lead to constraints on Neff being much looser than they
otherwise would be. This is an important point, as this
scaling transformation HðzÞ → αHðzÞ is not achievable
in the ASCDM model and this plays a role in our

understanding of the strong constraints we have found
on the model.
Before fully turning to the ASCDMmodel, let us look at

how HðzÞ changes in the ΛCDMþ Neff model with
increased Neff . In Fig. 6 (top panel) we plot the fractional
difference of HðzÞ from the best-fit ΛCDM model (given
Planckþ BAO data) for three cases, all with Neff fixed to
3.3. The first case has all the other parameters (τ, ns, As, ωb,
ωc, and θs) fixed to their best-fit ΛCDM values, the second
case is the same but with ωc and ωΛ increased in just the
amount needed to deliverHðzÞ → αHðzÞ, and the third case

TABLE I. χ2 fit corresponding to the best-fit values (stated in Table II) for the data we consider. The two bottom-most rows show the
Gaussian difference between the model and data distributions forH0 (using SH0ES) and S8 (using DES-KV). We show the amount of S8
tension just for comparison with the literature and remind the reader of the caveats mentioned in Sec. II.

ΛCDM AS ΛCDM AS ΛCDM AS

High-l TTTEEEa 584.23 588.75 594.00 597.69 596.43 600.35
Low-l EEa 396.42 396.85 395.71 395.71 395.63 395.88
Low-l TTa 23 23.33 22.02 22.22 21.66 21.97
Lensinga 8.78 8.99 13.15 14.10 13.88 14.75
BOSS DR12 6.57 7.44 6.48 5.99 7.14 6.66
Pantheon 1026.77 1026.71 1026.77 1026.74
Planck SZ 11.73 10.20 9.38 7.68
DES-KV450 2.82 2.71 2.11 1.85
SH0ES 12.31 11.03

Total χ2 1019.00 1025.36 2072.68 2075.33 2085.31 2086.91

H0 67.66� 0.41 67.97� 0.45 68.80� 0.37 69.01� 0.37 69.10� 0.36 69.33� 0.37
σ8 0.8102� 0.0061 0.8041� 0.0061 0.7933� 0.0049 0.7880� 0.0049 0.7933� 0.0049 0.7883� 0.0049

H0 prior (σ) 4.3 4.1 3.6 3.4 3.4 3.2
S8 prior (σ) 2.9 2.7 1.5 1.5 1.3 1.2

aPlanck 2018.

TABLE II. Parameter inferences for the three sets of data corresponding to the posteriors in Figs. 4–5. For each parameter we list the
mean �68% credible interval (best fit). Since the posterior for λ is highly non-Gaussian, we also state the 95% highest posterior density
interval.

Parameter Planckþ BAO þSNeþ LSS þSH0ES

ωb 2.247� 0.014ð2.244Þ 2.264� 0.013ð2.264Þ 2.271� 0.013ð2.270Þ
ωcdm 0.1212� 0.0010ð0.1211Þ 0.11891� 0.00089ð0.1186Þ 0.11832þ0.00083

−0.00093 ð0.1178Þ
100 � θs 1.04103� 0.00031ð1.04114Þ 1.04108þ0.00035

−0.00031 ð1.04120Þ 1.04114þ0.00035
−0.00030 ð1.04134Þ

lnð1010AsÞ 3.054þ0.014
−0.015 ð3.051Þ 3.032� 0.013ð3.032Þ 3.038� 0.013ð3.036Þ

ns 0.9665� 0.0037ð0.9661Þ 0.9705� 0.0036ð0.9708Þ 0.9724� 0.0036ð0.9729Þ
τreio 0.0586þ0.0069

−0.0077 ð0.0576Þ 0.0513� 0.0069ð0.0520Þ 0.0545� 0.0068ð0.0544Þ
λ 18.5þ1.4

−0.39ð19.8Þ 18.1þ1.8
−0.55ð19.8Þ 17.9þ1.9

−0.63ð19.8Þ
λ > 16.2 λ > 15.2 λ > 15.1

H0 67.97� 0.45ð67.83Þ 69.01� 0.37ð68.92Þ 69.33� 0.37ð69.31Þ
Ω0

ϕ 0.6875� 0.0060ð0.6866Þ 0.7013� 0.0046ð0.7013Þ 0.7052� 0.0045ð0.706Þ
σ8 0.8041� 0.0061ð0.805Þ 0.7880� 0.0049ð0.7897Þ 0.7883� 0.0049ð0.7894Þ
S8 0.819� 0.011ð0.820Þ 0.7862� 0.0076ð0.788Þ 0.7796� 0.0074ð0.779Þ
M −19.381� 0.010ð−19.382Þ −19.372� 0.010ð−19.372Þ
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is the best-fit (given Planckþ BAO and the constraint that
Neff ¼ 3.3). We choose this particular value ofNeff because
it is approximately the best-fit value that Neff is naturally
driven towards if one includes the SH0ES prior on H0

(along with Planck and BAO data) in the ΛCDMþ Neff
(with Neff allowed to vary), as shown in Fig. 7.
The blue curve (Neff ¼ 3.3, other parameters at best fit

ΛCDM values) illustrates the apparent promise of this
modification, in that H0 in that case is larger than for
ΛCDM. Naturally, this case gives an overall much poorer
fit than ΛCDM. We see that the best-fit δHðzÞ=HðzÞ curve
(orange) is indeed quite close to that of the scaling model
(green). The symmetry-breaking effects have led to a mild
departure from scaling for the best fit. Because the preference
is for an ωm increase that is a bit smaller than the scaling
value, to preserve θs, ωΛ has to increase beyond the scaling
value, boosting H0 above the scaling value. The symmetry
breaking effects (and the consistency of the data with
ΛCDM) also lead to a fit quality that is worse than the
ΛCDM case. We find Δχ2 ≈ 3. The increase in H0 is
considerably lower than the promise offered by the
blue curve.
Now let us look at the same scenario with the ASCDM

model in Fig. 6 (middle panel). To compare with Neff ¼ 3.3
we choose λ ¼ 10.5 because it gives a similar contribution to
the expansion rate deep in the radiation-dominated era. For
the ASCDMmodel there is noway to adjust its parameters to
achieveHðzÞ → αHðzÞ, so we do not show a scaling case in
this figure. We do show the other two cases studied for

FIG. 7. Posterior distributions for a subset of the ΛCDMþ Neff
model using publicly available chains from the Planck legacy
archive [76] which uses Planck, BAO, Riess18. Evidently,
allowing Neff to vary freely in the presence of a H0 prior from
Riess18 [77] leads to increasedH0, but at the cost of increased σ8.

FIG. 6. For the cases discussed in Sec. V, we show the change
in expansion rate, relative to the best-fit ΛCDM model, for the
ΛCDMþ Neff model with Neff ¼ 3.3 (top panel) and the
ASCDM model with λ ¼ 10.5 (middle panel). The bottom panel
shows the relative expansion rate between the best-fit AS and
ΛCDMþ Neff models.
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ΛCDMþ Neff : the onewithωm and θs fixed and the onewith
the parameters at their best-fit values (given Planckþ BAO
data and the constraint that λ ¼ 10.5).
The best-fit value of ωm has increased over the ΛCDM

best-fit value by a similar amount in both our AS case and
ΛCDMþ Neff cases: by about 3%. Such an increase is
presumably driven by a need to preserve, as well as
possible, the radiation-driving envelope. Like radiation,
the AS field is a smooth component that contributes to the
expansion rate and not to gravitational instability, thus
contributing to potential decay. However, unlike with
ΛCDMþ Neff , there is no single adjustment of ωm that
can preserve ρm=ρsmooth at all values of the scale factor, and
thus the shape of the radiation-driving envelope is neces-
sarily changed. Exacerbating this problem, the increase to
ωm pushes back the epoch of matter-radiation equality,
which makes the transition to smaller values of wϕ start at
higher redshift, thereby boosting ρϕ at z > zEQ and prior
to dark-energy domination. This increase to ρϕ raises
δHðzÞ=HðzÞ in the matter-dominated era, requiring the
late-time dark energy density to come down so much that
the boost to H0 almost entirely disappears. This increase in
HðzÞ from a smooth component in the matter-dominated
era is precisely what is responsible for the decrease in σ8, as
we discussed in Sec. III.
Even though the gain in H0 is similar to the Neff ¼ 3.3

best-fit case, the quality of the fit is significantly worse:
we find Δχ2 ≈ 30, driven almost entirely by the Planck
high-l data. We suspect the origins of this degradation are
in the change to the shape of the radiation-driving
envelope. This change flows from the changed shape of
HðzÞ, which is most clearly seen in the bottom panel of
Fig. 6 where we directly compare the AS best-fit HðzÞ
with the ΛCDMþ Neff best-fit HðzÞ. After a ≃ 2 × 10−5

there begins a rise inHAS=HNeff , peaking with a nearly 1%
excess just after recombination. Recall that modes that
cross the horizon (k=a ¼ H) at matter-radiation equality
project from the last-scattering surface into about
l ¼ 140. The corresponding l values for modes that
cross earlier scale nearly linearly with 1=a, and thus the
modes crossing when a ¼ 2 × 10−5 project into about
l ¼ 2000. Modes crossing during this rise thus project
into l ¼ 2000 and lower, where the Planck data are very
sensitive.
We see here an example of there being a whole function

to match related to the transition from radiation domination
to matter domination, rather than a single scale. The
sensitivity of power spectra to this transition has been
noted before; for example, in [17] the authors noted that
there are residuals to the best-fit ΛCDM model, leading to
slightly different ωm inferences depending on the l range
of data used, that could potentially be explained by
departures from ΛCDM in the decade or two prior to
recombination. Apparently what we are seeing from the
ASCDM model is differences with respect to ΛCDM

spectra, but not ones that look like the Planck residuals.
In fact, the preference for larger values of λ is so strong that
even on the inclusion of SH0ES data, the increase in H0 is
primarily driven by the same mechanism as in ΛCDM,
namely, via a suppression of ωcdm rather than an increased
contribution from the AS field (see Fig. 5). Note that we
include the results using the SH0ES data mainly for
illustrative purposes, and caution the reader from taking
this result at face-value since the inference of H0 without
the SH0ES prior is in moderate tension with the SH0ES
measurement of H0 (at ≈3.4σ).
Next, we turn to the importance of the damping scale,

characterized by the angular scale θD, in determining the
parameter inferences for the ASCDM model. Here too we
take inspiration from the ΛCDMþ Neff model where
allowing the primordial abundance of helium, YP, to vary
leads to considerable freedom in ΔNeff [20,74,78,79].
However, while this path seems appealing, the change to
the damping scale seems unlikely to be the limiting
factor in driving the posterior distribution of λ towards
the prior edge. We infer this by varying Yp (as opposed to
calculating it using standard BBN)4 in the ASCDM model
and find that the parameter inferences and χ2 fit remain
approximately unchanged, in contrast to the ΛCDMþ
Neff case.

A. Comparison with other models

From glancing at the posteriors in Fig. 7, one may
wonder if the ΛCDMþ Neff model (with Neff allowed to
vary) provides a solution to the H0 tension. After all, that
result differs from the SH0ES result by only ≈2.7σ.5

However, this is not a satisfactory solution for at least
two reasons. First, the increased inference of Neff (and
therefore of H0) occurs only due to the inclusion of the
SH0ES prior; if that is excluded, Ref. [20] find Neff ¼
2.99þ0.34

−0.33 and H0 ¼ 67.3� 1.1 kms−1 Mpc−1, discrepant
with SH0ES at ≈3.7σ. Second, and more importantly for
the comparison with the ASCDM model, the inference for
σ8 has increased so that the tension with LSS data is
worsened, as explained in [80] (Sec. 6. 4. 2).
This issue of an increased σ8 accompanying an increased

H0 is not unique to the ΛCDMþ Neff model and plagues
several early-time proposals to remedy theH0 tension [81].
For example, there is the indirect effect of an increased σ8
in the EDE model which, from the consideration of

4Since θD=θs ¼ rD=rs ∝ H0.5, fixing θs will in general change
θD. Instead, one can get an independent handle on θD by varying
Yp. For example, in order to fix the angular scale θD while
varying the expansion rate at recombination, one can set Yp using
the prescription in, e.g., [74,78].

5Although, it should be pointed out that the chains used to
produce the posteriors in Fig. 7 use an older version of the
SH0ES result from [77], as opposed to the one used in our
results [58].
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increasing H0 “efficiently,” does very well since the
proposed axionlike field quickly decays around the time
of recombination. However, for the case of EDE, [38,39]
point out that including the LSS data erases any preference
for the model over ΛCDM (note, however, that the effect of
LSS data is also obfuscated by prior volume effects as
pointed out in [82,83]).
Finally, typical tracking models of quintessence are also

unable to resolve the H0 tension, primarily because they
track the dominant background component throughout
radiation and matter dominated epochs. Thus, even though
they are able to decrease r�s , the requisite change in D�

M is
diluted throughout the post-recombination era as opposed
to at z ≈ 0. One such classical Ratra-Peebles quintessence
potential, VðϕÞ ∝ ϕ−λ is explored by [6] and their results
corroborate the analysis above. However, it is important to
note that in the case of the Ratra-Peebles model, λ > 0
leads to wϕ > −1 so that a Monte Carlo parameter
estimation that finds λ consistent with 0 might be probing
the preference for a dark energy equation of state equal to
(or less than) −1 today, instead of solely an aversion to
tracking quintessence. For this reason, we repeat our
analysis for the so-called “Brane” model of quintessence,
first introduced in [2], which tracks the background
component throughout the expansion history of the
Universe and also has wϕ ≈ −1 today nearly independently
of the value of λ. The results, elaborated on in Appendix A
are consistent with the analysis above, indicating that such
a solution is unable to increase H0 beyond the ΛCDM
value. In particular, since in the presence of a non-
negligible quintessence component during radiation domi-
nation the Planck data driveωcdm to a higher value (because
of the radiation-driving envelope), such a model leads to a
decreased inference of H0 compared to ΛCDM.
This same effect is, presumably, also responsible for the

decreased inference of H0 in the “assisted quintessence”
scenario studied by [8]. Though that is not a typical
tracking model but instead has multiple fields that thaw
from Hubble friction at different epochs, leading to con-
tributions to HðzÞ throughout the matter dominated epoch.
While the authors find the exacerbation of the tension “a
surprise,” perhaps it is not so surprising in light of the
analysis above that, if the scalar field perturbations are
consistently accounted for, H0 is suppressed.

VI. OTHER PROSPECTS FOR QUINTESSENCE

Even though the ASCDM model cannot resolve the H0

tension by itself, we use this as an opportunity to chart
future paths which we could not explore here but which
nonetheless are interesting avenues to consider in the
search for a concordant model of cosmology.
So far, we have focused on a proposal to increase H0 by

means of an “early-time solution,” namely, one that reduces
the size of the sound horizon at recombination. However,
some have considered using late-time changes to the

expansion rate as a possible remedy to the H0 tension6

(e.g., [86–88] none of which ameliorate the tension; and
[89,90]). While we do not believe that it is possible for
changes at late times to fully resolve the H0 tension (due to
constraints from BAO and Pantheon in particular), it
remains a possibility that they could reduce the tension
to some degree. This opens up the possibility of a combined
early and late time solution (e.g., [87,91]; see also [92] for
arguments in favor of a combined solution). We note here
that scalar field models offer the possibility of such a
combined solution, since they can be dynamically impor-
tant not only at early times (as in the case we study here),
but also at late times (e.g., due to dark-sector coupling
[90,93–95]).
Another interesting scenario to consider is the coupled

dark energy scenario studied by Gomez-Valent et al. [96].
They report an increased inference of H0, despite using the
Ratra-Peebles tracking quintessence potential which, at
the background level, is not a promising candidate (for
the same reasons pointed out in Sec. V. A and Appendix A)
for alleviating the tension with SH0ES. They also report an
increased inference of S8, which would likely lower the
preference for the model when LSS data are also taken into
account. It would be interesting to repeat their analysis
using the ASCDM model which can provide an additional
boost to H0 at the background level and also mitigate the
increase in S8. Similarly, Refs. [90,97] also report that the
H0 tension is alleviated in the (phenomenological) dark
sector interaction cosmology that they consider.
Yet another avenue is to instead consider a “k-essence”

field, which differs from the quintessence scenario via a
non-canonical kinetic term. Crucially, the difference in the
kinetic term allows the scalar field to have a variable sound
speed [98,99]. This may allow a k-essence model to
circumvent the constraint stemming from the radiation
driving effect if the sound speed remains small during
radiation domination. Conversely, it can also be seen as a
test of the extent to which the fixed c2s ¼ 1 constraint is
responsible for driving the posteriors in the quintessence
scenario.

VII. CONCLUSIONS

A solution that can satisfactorily relieve both the H0 and
σ8 tensions continues to elude cosmologists. In the search
for such a solution, we have found interesting ramifications
of adding a quintessence component to the Universe. While
other studies of quintessence in light of recent cosmological

6Here we use the phrase “H0 tension” loosely. Of course,
for models that change HðzÞ at low redshifts (z ≪ 1) one
must consider the discrepancy in the absolute magnitude (Mb)
calibration of SNe from the SH0ES distance-ladder versus
that derived from the distance-luminosity relationship of a
cosmological model, as has been pointed out by several
authors [84–86].
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data have reached conclusions similar to ours [3,6,8], our
work offers several unique features that lead to new
insights. Previous works typically consider models that
scale with the dominant component during both the
radiation and matter eras. We chose to focus on the
ASCDM model in particular because it tracks the back-
ground component only during the radiation dominated
epoch, allowing it to give a higher −δrs to δH0 ratio than
typical tracking models. In this sense, such a model
provides, a priori, the best-case early universe scenario
for a single field quintessence field in ameliorating the H0

tension. Furthermore, even though we varied just a single
parameter, we saw how the AS quintessence exhibits
behaviors that are not captured by simple phenomenologi-
cal parametrizations of dark energy. This illustrates the
importance of not relying completely on phenomenological
characterizations when analyzing the observable effects of
quintessence. The ASCDMmodel also compares favorably
to others when it comes to the σ8 tension, which is
exacerbated in ΛCDMþ Neff and most EDE models.
However, ultimately, the ASCDM proposal provides a

poorer fit than ΛCDM, particularly to the Planck high-l
temperature and polarization data at the level of Δχ2 ≈þ4,
although the total fit to a more extensive set of data that
includes LSS, SNe, and the SH0ES measurements provides
a fit comparable to ΛCDM at Δχ2 ≈þ1. In doing so, the
ASCDM proposal can lower σ8 by ≈1–2σ compared to
ΛCDM, bringing concordance with the LSS measurements,
while also increasing H0 by ≈1σ, which nonetheless
continues to be in tension with the SH0ES measurement
at 3.2 − 4σ (see Table I).
There has been some emphasis in the literature on the

importance of the three angular scales, θs, θEQ, and θd and
the need for alternative models to not have these scales
depart by too much from their ΛCDM best-fit values
[14–18,47,73]. We have seen here an illustration that
controlling these variables can be insufficient for main-
taining a good fit to the Planck high-l data. We have
speculated that this is due to the fact that the physics behind
the θEQ requirement has to do with the radiation-driving
envelope, which is in general a whole function not specified
by a single number, and that the shape of this envelope in
the ASCDM model does not lead to a good fit to the data,
no matter the value of θEQ. This is in contrast to the
ΛCDMþ Neff model space where it is easier to maintain
the shape of the radiation-driving envelope because the
ratio of matter to radiation can be preserved at all values of
redshift.
We remind the reader that we use a very limited LSS

dataset in the form of a Gaussian prior on the S8 summary
parameter. While we have not tested this ourselves, it may
well be the case that including a more extensive set of data
from various weak lensing, galaxy clustering, SZ cata-
logues, etc., may tip the total fit in favor of the AS, or some
other AS-like, potential. Indeed, there may already be hints

of a worsening tension in σ8, since the Hyper Suprime-Cam
(HSC) results probe a different degeneracy direction in the
(Ωm,S8) plane than previous LSS probes [100], and as these
constraints improve it may prove beneficial to revisit
this work.
The observable impacts of AS quintessence are effec-

tively controlled by one parameter, that is ofOð10Þ (Planck
units), and we regard that simplicity as a strength of the
model. Perhaps a bit hypocritically, but certainly following
strong traditions in theoretical physics, we remain curious
about the more complicated cases. Combining the early-
time effects discussed in Sec. III with the methods we
mention in Sec. VI for modifying the late-time dynamics
could potentially provide a more satisfactory solution to the
H0=σ8 tensions.

ACKNOWLEDGMENTS

A. Adil would like to thank Anton Chudaykin, Fei Ge,
Michael Meiers, and Constantinos Skordis for helpful
discussions, as well as Tyler Erjavec for access to computa-
tional resources. A. Adil and L. K. were partially supported
by a grant from the Theory Frontier program of the DOE
Office of Science.

APPENDIX: BRANE MODEL

Here we study a related quintessence potential, dubbed
the “Brane” model [2], given by,

V ¼
�

C
ðϕ − BÞ2 þ A

þD

�
e−λϕ: ðA1Þ

Our purpose is not to extensively study the details of the
parameter space of this model, though they are quite similar
to the AS case, but to demonstrate the point that the oft-
studied pure tracking quintessence potentials are a priori
unfit for addressing the H0 tension. To this end, we set
C ¼ D ¼ 0.01, and A ¼ 0.0025. In order get the best-fit
parameters, we set λ ¼ 10.5 and find the corresponding
value of B;ϕini, and ϕ0

ini using the same procedure as in
Sec. IV. 2.
As with the AS potential, for suitable choices of the free

parameters, the Brane model is dominated by the pure
exponential factor far from the minimum. However, unlike
the AS case, the Brane field tracks the dominant back-
ground component during both the radiation and the
matter-dominated regime, as shown in Fig. 8 (left-panel).
This is precisely why it fails to increase H0 above the
ΛCDM value: ωcdm must increase to compensate for
the change in the radiation driving envelope induced by
the quintessence component during radiation domination
(see Sec. V), as in the AS or Neff case, which inevitably
increases the expansion rate post-recombination. However,
unlike the AS and Neff cases, there is now an additional
significant contribution to the expansion rate of Oð3=λ2Þ
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from the matter-era tracking of the Brane potential. Thus,
even though the prerecombination contribution from the
Brane field is able to decrease the sound horizon scale by
approximately the same amount as the AS case, the
increased expansion rate in the 2 decades of scale factor
postrecombination overshoots the requisite change in D�

M
such that Hðz → 0Þ must in fact decrease (relative to
ΛCDM) in order to compensate for this overshooting, as
shown in Fig. 8 (right panel). Moreover, the contribution of
the Brane field during matter-domination causes an even
further departure from the HðzÞ → αHðzÞ scaling solution
(discussed in Sec. V) so that the fit to the Planck and BAO
data is abysmal at Δχ2 ≈ 100. Finally, notice that there is
even more power suppression in the Brane case since
modes are now suppressed throughout the matter domi-
nated regime, as opposed to the scale-dependent suppres-
sion in the ASCDM model (cf. Fig. 3). We summarize the
various parameters of interest for the best-fit case with fixed
λ ¼ 10.5 in Table III.
Worth noting is that the Brane field approached wϕ ≈ −1

today independently of the choice of λ (as long as the
potential admits a false vacuum; see point 1 in Sec. IV. B).
This is in contrast to the oft-used Ratra-Peebles type

potentials [6,11] where the field is frozen by Hubble
friction and wϕ depends on the dynamical parameter so
that the physical interpretation of parameter inference
results that disfavor such models may be ambiguous.
The Brane model can resolve this ambiguity: the fact that
Planck+BAO disfavor the Brane potential (relative to
ΛCDM) shows an aversion strictly to tracking fields that
contribute significantly during matter domination.

[1] A. Albrecht and C. Skordis, Phys. Rev. Lett. 84, 2076
(2000).

[2] C. Skordis and A. Albrecht, Phys. Rev. D 66, 043523
(2002).

[3] S. Peirone, M. Martinelli, M. Raveri, and A. Silvestri,
Phys. Rev. D 96, 063524 (2017).

[4] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, 213
(2001).

FIG. 8. The figure depicts the behavior of the Brane quintessence field, along with the AS potential for comparison, for the best-fit
parameters with fixed λ ¼ 10.5 (cf. Fig. 6). The left panel shows the contribution to the total energy density from the quintessence fields.
Notice that the Brane field approaches the scaling attractor during matter domination while the AS field breaks away from it. The right
panel shows the fractional change in the expansion rate with respect to the best-fitΛCDMmodel; the Brane field is unable to increaseH0

even for a sizable prerecombination contribution.

TABLE III. Best-fit parameters for λ ¼ 10.5 fixed for the AS
and Brane cases using Planck temperature and polarization,
and BOSS BAO (DR12) data. Clearly, though ωcdm and r�s
change by the same amount in both the quintessence models, the
matter dominated tracking solution in the Brane case leads to a
decreased inference of both H0 and S8 compared to the AS case.

Brane AS ΛCDM

λ 10.5 10.5
ωcdm 0.124 0.124 0.120
H0 ½km s−1 Mpc−1� 66.81 68.99 67.57
r�s ½Mpc� 141.3 141.9 144.9
σ8 0.709 0.782 0.805
S8 0.744 0.794 0.822

QUINTESSENTIAL COSMOLOGICAL TENSIONS PHYS. REV. D 107, 063521 (2023)

063521-15

https://doi.org/10.1103/PhysRevLett.84.2076
https://doi.org/10.1103/PhysRevLett.84.2076
https://doi.org/10.1103/PhysRevD.66.043523
https://doi.org/10.1103/PhysRevD.66.043523
https://doi.org/10.1103/PhysRevD.96.063524
https://doi.org/10.1142/S0218271801000822
https://doi.org/10.1142/S0218271801000822


[5] E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003).
[6] J. Ooba, B. Ratra, and N. Sugiyama, Astrophys. Space Sci.

364, 176 (2019).
[7] Eleonora Di Valentino, Ricardo Z. Ferreira, Luca Visinelli,

and Ulf Danielsson, Phys. Dark Universe 26, 100385
(2019).

[8] V. I. Sabla and R. R. Caldwell, Phys. Rev. D 103, 103506
(2021).

[9] S. Linden and J.-M. Virey, Phys. Rev. D 78, 023526
(2008).

[10] R. J. Scherrer, Phys. Rev. D 92, 043001 (2015).
[11] B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406

(1988).
[12] C. Dvorkin, J. Meyers, P. Adshead, M. Amin, C. A.

Argüelles, T. Brinckmann, E. Castorina, T. Cohen, N.
Craig, D. Curtin et al., arXiv:2203.07943.

[13] W. Hu and M. White, Astrophys. J. 479, 568 (1997).
[14] Z. Hou, R. Keisler, L. Knox, M. Millea, and C. Reichardt,

Phys. Rev. D 87, 083008 (2013).
[15] B. Follin, L. Knox, M. Millea, and Z. Pan, Phys. Rev. Lett.

115, 091301 (2015).
[16] W. Hu, M. Fukugita, M. Zaldarriaga, and M. Tegmark,

Astrophys. J. 549, 669 (2001).
[17] L. Knox and M. Millea, Phys. Rev. D 101, 043533 (2020).
[18] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski,

Phys. Rev. Lett. 122, 221301 (2019).
[19] A. G. Riess et al., Astrophys. J. Lett. 934, L7 (2022).
[20] N. Aghanim et al. (Planck Collaboration), Astron.

Astrophys. 641, A6 (2020); 652, C4(E) (2021), .
[21] E. Macaulay, R. C. Nichol, D. Bacon, D. Brout, T. M.

Davis, B. Zhang, B. Bassett, D. Scolnic, A. Möller, C. B.
D’Andrea et al., Mon. Not. R. Astron. Soc. 486, 2184
(2019).

[22] S. Alam, M. Aubert, S. Avila, C. Balland, J. E. Bautista,
M. A. Bershady, D. Bizyaev, M. R. Blanton, A. S. Bolton,
J. Bovy et al., Phys. Rev. D 103, 083533 (2021).

[23] G. E. Addison, D. J. Watts, C. L. Bennett, M. Halpern, G.
Hinshaw, and J. L. Weiland, Astrophys. J. 853, 119 (2018).

[24] T. M. C. Abbott, F. B. Abdalla, J. Annis, K. Bechtol, J.
Blazek, B. A. Benson, R. A. Bernstein, G. M. Bernstein, E.
Bertin, D. Brooks et al., Mon. Not. R. Astron. Soc. 480,
3879 (2018).

[25] A. Cuceu, J. Farr, P. Lemos, and A. Font-Ribera,
J. Cosmol. Astropart. Phys. 10 (2019) 044.

[26] N. Schöneberg, J. Lesgourgues, and D. C. Hooper,
J. Cosmol. Astropart. Phys. 10 (2019) 029.

[27] W. L. Freedman, B. F. Madore, D. Hatt, T. J. Hoyt, I. S.
Jang, R. L. Beaton, C. R. Burns, M. G. Lee, A. J. Monson,
J. R. Neeley et al., Astrophys. J. 882, 34 (2019).

[28] P. Shah, P. Lemos, and O. Lahav, Astron. Astrophys. Rev.
29, 9 (2021).

[29] L. Verde, T. Treu, and A. G. Riess, Nat. Astron. 3, 891
(2019).

[30] A. G. Riess, Nat. Rev. Phys. 2, 10 (2019).
[31] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A.

Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, Classical
Quantum Gravity 38, 153001 (2021).

[32] N. Schöneberg, G. Franco Abellán, A. Pérez Sánchez, S. J.
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