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As constraints on ultralight axionlike particles (ALPs) tighten, models with multiple species of ultralight
ALP are of increasing interest. We perform simulations of two-ALP models with particles in the currently
supported range of plausible masses. The code we modified, UltraDark.jl, not only allows for multiple
species of ultralight ALP with different masses, but also different self-interactions and interfield
interactions. This allows us to perform the first three-dimensional simulations of two-field ALPs with
self-interactions and interfield interactions. Our simulations show that having multiple species and
interactions introduces different phenomenological effects as compared to a single field, noninteracting
scenarios. In particular, we explore the dynamics of solitons. Interacting multispecies ultralight dark matter
has different equilibrium density profiles as compared to single-species and/or noninteracting ultralight
ALPs. As seen in earlier work, attractive interactions tend to contract the density profile while repulsive
interactions spread out the density profile. We also explore collisions between solitons comprised of
distinct axion species. We observe a lack of interference patterns in such collisions, and that resulting
densities depend on the relative masses of the ALPs and their interactions.
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I. INTRODUCTION

There is strong evidence that approximately 85% of the
matter in the Universe is practically invisible, so far only
detected through its gravitational effects on luminous
matter [1–5]. The nature of this dark matter is a matter
of open investigation.
One such proposal is the QCD axion, a particle intro-

duced to resolve the strong CP problem through the Pecci-
Quinn mechanism [6,7]. These scalar particles have a mass
of 10−11–100 eV for the QCD to be dark matter. The QCD
axion can be generalized to a class of axionlike particles
(ALPs). Among these these is fuzzy dark matter (FDM), a
form of dark matter whose constituent particles have a mass
of ∼10−22 eV [8–10]. This means that its de Broglie
wavelength is very large and the small scale structure of
dark matter halos is different from that expected from more
massive particles.
Recent work has argued that a lack of observed gravi-

tational heating in ultrafaint dwarf galaxies constrains the
dark matter particle mass to m > 3 × 10−19 eV [11]. This
constraint relies on an assumption that Segue 1 and Segue 2
are representative of other galaxies, and that a single FDM
species comprises a majority of the dark matter. The

inclusion of multiple species of ultralight particle signifi-
cantly reduces the expected gravitational heating [12].
Ultralight axions (ULAs) are an extension of FDM

models that include interactions. Some have considered
the effects of self-interactions on such ultralight scalar
models [13–18]. Although constraints in the single-field
scenario predict the self-interaction strength be very small,
it should not be ignored since the phase-space density of
axions in these systems is extremely large [15,19].
Another common assumption is that a particular dark

matter model accounts for all—or at least a significant
fraction—of the dark matter in the Universe. Thus far, most
work on ALPs not only assumes that the ALP comprises a
significant portion of the dark matter, the ALP itself is
comprised of a single species. However, the assumption of
a single field should be considered a toy model. The generic
prediction from string theory is of an “axiverse” of
ALPs [20]. In such a scenario, there would be a multiple
ALPs with a hierarchy of masses; we use the term “species”
or “field” to refer to these different ALPs.
Recent work has begun to explore this part of theory

space. In [21], the authors examine stable time-independent
solitonic solutions of multifield models and argue that the
existence of axion fields with multiple masses is a plausible
explanation for observed dark matter substructure. The
properties of such nested solitons have been further studied
in [22], with the addition of self-interactions. In [23], the
authors studied closely related multifield boson stars,
solving numerically for equilibrium solutions. In the recent
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paper [12], the authors simulate multifield ULDM halos
and find that introducing more particle species smooths out
outer halo profile.
Not only could each of these fields have self-interactions,

there is the possibility of interfield interactions. Interactions
between the multiple fields opens up a range of novel
phenomenologies. In [24], the authors say that higher order
repulsive self-interaction terms may stabilize solitons from
collapsing into black holes when they have lower order
attractive self-interactions [25]. In single field models with
attractive self-interactions, there is a maximum mass a
soliton can have without collapsing into a black hole or
becoming an axinova [14,26]. Repulsive interfield inter-
actions may remove such instabilities in nested solitons
with attractive self-interactions. Interactions between axi-
ons in the early Universe can also lead to transfers of energy
between species [27,28]. Interactions between axions and
other scalar ultralight fields such as dilatons in the early can
also affect dark matter abundances [29].
There have been a number of recent papers on structure

formation and soliton condensation in single field FDM
models [30–33]. Structure formation in the axiverse is
likely distinct from what is described in recent papers on
structure formation and soliton condensation in single field
FDM models. These papers have examined the timescales
required for the condensation of stable configurations from
an incoherent FDM field. This process would be signifi-
cantly altered by the existence of multiple fields. In the
most extreme case, multiple fields with repulsive inter-
actions may even be partitioned early in structure forma-
tion, leading to different dark matter species in different
galaxies. This would have an effect on, for example,
rotation curves and strong gravitational lensing.
Multicomponent dark matter would have an appreciable

affect on gravitational lensing observables. Relative time
delays of strongly lensed systems are used to measure H0,
the expansion rate of the Universe [34–37]. Recent work
has explored the systematic uncertainties in these mea-
surements due to a mass-sheet degeneracy [38–41]. In
particular, a m ∼ 10−25 eV particle comprising ∼10% of
the dark matter could have a significant effect on the
inferred H0, highlighting the relevance of multispecies
models [40]. Recent work has explored the possibility of
higher-spin ultralight bosonic dark matter and has shown
that it can have similar phenomenology to ultralight ALPs
[42–44]. In fact, it has been shown that in the non-
relativistic, noninteracting limit, a single spin-s field is
indistinguishable from a set of 2sþ 1 scalar fields of
identical mass [42].
In this paper we present the first three-dimensional

simulations of two-field ALP models with self-interactions
and interfield interactions. We use these simulations to
study the stability of nested solitons and collisions between
two solitons made from different bosonic fields. We
consider two axionlike fields with masses in the currently

supported range [45]. We also use different combinations of
attractive and repulsive self-interactions and interfield
interactions. Although it is straightforward to extend these
simulations to more than two fields, this paper will focus
only on two-field simulations.
This paper is structured as follows: In Sec. II we present

the Lagrangian, associated equations of motion, and con-
served energy. In Sec. III we discuss the implementation in
code. In Sec. IV we discuss multiaxion solitons and show
their stability in said code. In Sec. V we present collisions
between solitons in one- and two-field simulations, and
show that there are qualitative differences between them.

II. EQUATIONS OF MOTION

We assume N scalar particles with Lagrangian density

LALP ¼
X
j

�
−
1

2
gμν∂μϕj∂νϕj −

1

2
m2

jϕ
2
j

�

−
X
j

X
k≥j

λjkϕ
2
jϕ

2
k; ð1Þ

where the indices j and k run over the N fields considered.
The first term describes N free fields with masses mj,
while the second term describes interactions between them.
The symmetric matrix λjk contains interaction constants;
the diagonal elements parametrize self-interactions and the
off-diagonal elements parametrize interfield interactions.
Positive terms correspond to repulsive interactions and
negative to attractive interactions.
The corresponding equations of motion for each field ϕj

are

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νϕj�−m2

jϕj− 4λjjϕ
3
j − 2

X
j≠k

λjkϕjϕ
2
k ¼ 0:

ð2Þ

In the Newtonian limit the equations of motion for the N
fields reduce to coupled Klein-Gordon equations with self-
interacting potentials,

0 ¼ ϕ̈i −∇2ϕj þm2
jϕj þ 4λjjϕ

3
j þ 2

X
j≠k

λjkϕjϕ
2
k: ð3Þ

In the nonrelativistic limit, each of the Klein-Gordon fields
ϕj can be rewritten in terms of a complex scalar field ψ j in
the form

ϕj ¼
1ffiffiffiffiffiffiffi
2m

p ðe−imjtψ j þ eþimjtψ�
jÞ ð4Þ

and Eq. (3) reduces to N coupled Gross-Pitaevskii-Poisson
(GPP) equations
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iℏ
∂ψ j

∂t
¼ −

ℏ2

2mja2
∇2ψ j þmjΦψ j

þ ℏ3

2m2
jc

λjjjψ jj2ψ j þ
ℏ3

4m2
jc

X
k

λjkjψkj2ψ j; ð5Þ

∇2Φ ¼ 1

a
4πG

X
j

mjjψ jj2 ð6Þ

where Φ is the gravitational potential. The first three terms
on the right-hand side of Eq. (5) are those of a single self-
interacting field; see [13–15] for prior analysis. The last
term describes interfield interactions. The fields are also
coupled by Eq. (6), the Poisson equation describing
gravitational interactions between the fields.
The matter density of each is equal to the modulus

squared of the corresponding field,

ρj ¼ jψ jj2: ð7Þ

When all the masses mi are identical and there are no
interactions, there is a degeneracy. In this case, Eqs. (5) and
(6) can alternatively be interpreted as the nonrelativistic
equations of motion for an integer spin-s field [42,43]. This
is the case when N ≤ 2sþ 1. The fields ψ i correspond to
the components in a polarization basis. In the noninteract-
ing case each polarization state is conserved separately, and
so N < 2sþ 1 fields can be used to model a subset of the
polarization states, assuming that the others have negligible
matter content. The case with N ¼ 2, m1 ¼ m2, and λ ¼ 0
can be interpreted as a single complex field.
The Lagrangian density giving rise to the equations of

motion (5), (6) is

LGPP ¼ −
�
1

2
j∇Φj2 þΦ

X
j

jψ jj2 þ
1

2

X
j

j∇ψ jj2

þ i
2

X
j

mjðψ j
_ψ�
j − _ψ jψ

�
jÞ þ

X
j

X
k

λjk
4
jψ jj2jψkj2

�
:

ð8Þ
Note that at the level of the effective Lagrangian, there is no
interference term between two different fields. Varying this
Lagrangian density with respect to ψ�, ψ , and Φ, gives
Eq. (5), the conjugate of Eq. (5), and Eq. (6), respectively.
From this we can derive the corresponding conserved
energy,

Etotal ¼
Z
R3

dx3
�X

j

�
∂L
∂ _ψ j

_ψ j þ
∂L

∂ _ψ�
j

_ψ�
j

�
∂L

∂ _Φ
_Φ − L

�
; ð9Þ

¼ Egrav þ EKQ þ
X
j

Eself-int;j þ
X
j

X
j>k

Eint;j;k;

ð10Þ

where the gravitational potential energy is defined in the
usual way,

Egrav ¼
1

2
Φ
X
j

jψ jj2: ð11Þ

The sum of the kinetic and “quantum”1 energy is

EKQ ¼ −
1

2

X
j

ψ�
jð∇2ψ jÞ: ð12Þ

The energy due to self-interactions in field j is

Eself-int;j ¼ λjjjψ jj4; ð13Þ

and the energy due to interactions between species j
and k is

Eint;j;k ¼ λjkjψkj2jψ jj2: ð14Þ

III. IMPLEMENTATION

We use a modified version of UltraDark.jl to simulate
the dynamics of multifield ALPs [47].2 UltraDark.jl is a
pseudospectral solver of the GPP equations, previously
used to simulate the dynamics of self-interacting fuzzy dark
matter [15] and vortices in scalar dark matter [48]. We have
extended it to simulate multiple fields and their self-
interactions.
It is convenient to rewrite Eqs. (5) and (6) in code units,

as in Refs. [13,15,49]. As defined elsewhere, these units
depend on the mass of the (single) field. We adapt them to
use with multiple fields by writing all masses with
reference to a mass m0; typically m0 ¼ Oðm1Þ where m1

is the first field’s particle mass. These units are

L ¼
�

8πℏ2

3m2
0H

2
0Ωm0

�1
4

≈ 121

�
10−23 eV

m0

�1
2

kpc; ð15Þ

T ¼
�

8π

3H2
0Ωm0

�1
2

≈ 75.5 Gyr; ð16Þ

and

M ¼ 1

G

�
8π

3H2
0Ωm0

�
−1
4

�
ℏ
m0

�3
2

;

≈ 7 × 107
�
10−23 eV

m0

�3
2

M⊙: ð17Þ

1Note that the “quantum” energy does not in fact have a
quantum origin [46].

2https://github.com/musoke/UltraDark.jl.
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Then equations of motion are

i
∂ψ j

∂t
¼ −

1

2

1

a2
m0

mj
∇2ψ j þ

mj

m0

Φψ j

þ
�
m0

mj

�
2

Λjjjψ jj2ψ j þ
1

2

�
m0

mj

�
2X

k

Λjkjψkj2ψ j

ð18Þ

∇2Φ ¼ 1

a
4π

X
j

mj

m0

jψ jj2; ð19Þ

where the interaction coefficients are written as

Λjk ¼
ℏ2

2m3
0GT c

λjk: ð20Þ

In the present work we are concerned with the particular
case of N ¼ 2 fields, but extending the code to N ≥ 3 fields
is straightforward. The memory requirements are roughly
linear in the number of fields. The computational com-
plexity of each time step is roughly OðN2Þ with interfield
interactions, OðNÞ without.
The primary constraint on extending to more fields is the

range of length scales that must be resolved. Each field ψ j

has characteristic length scales roughly proportional to
1=mj. Resolving these simultaneously can become chal-
lenging when there is a large spread of particle masses. The
resolution must be high enough to resolve details on the
smallest length scales and the box must be large enough to
accommodate the larger length scales. The combination of
a large simulation box with a fine resolution makes for very
high computational costs.

IV. MULTIFIELD SOLITONS

The GPP equations have stationary solutions called
solitons. These have been studied in great detail in both
boson stars and single field FDM [50–52]. They condense
out of incoherent initial conditions [30,31]. Simulations
indicate that solitons inhabit the centers of FDM
halos [32,53].
In this paper, we use the term “soliton” to refer to the

localized, spherically symmetric, static Bose-Einstein
condensates of ALPs, possibly comprised of multiple
species. In most ULA dark matter models, solitons com-
prise the centers of dark matter halos that are surrounded by
an incoherent outer region that is well described as a
Navarro-Frenk-White (NFW; [54]) profile [51,55]. Dark
matter solitons in ULA models have been studied in
detail [9,56,57].
We use solitons as initial conditions in our simulations.

To find these stable solitonic solutions with self-
interactions and interfield interactions, we follow a pro-
cedure similar to that used for noninteracting single species

solitons in [49,58]. Other procedures exist, see for example
Ref. [23]. We assume two scalar fields ψ1 and ψ2 and
impose spherical symmetry of ψ i and time independence
of jψ ij,

ψ1 → eiβ1tf1ðrÞ ð21Þ

ψ2 → eiβ2tf2ðrÞ ð22Þ

Φ → φðrÞ: ð23Þ

Combining these Ansätzewith Eqs. (5) and (6), we find that
the density profiles fjðrÞ and gravitational potential must
be solutions to the differential equations

f001ðrÞ ¼ −
2

r
f01ðrÞ þ 2

�
m1

m0

�
φ̃1ðrÞf1ðrÞ

þ 2

�
m0

m1

�
Λ11f31ðrÞ þ

�
m0

m1

�
Λ12f22ðrÞf1ðrÞ; ð24Þ

f002ðrÞ ¼ −
2

r
f02ðrÞ þ 2

�
m2

m0

�
φ̃2ðrÞf2ðrÞ

þ 2

�
m0

m2

�
Λ22f32ðrÞ þ

�
m0

m2

�
Λ12f21ðrÞf2ðrÞ; ð25Þ

φ̃00ðrÞ ¼ 4π

��
m1

m0

�
f21ðrÞ þ

�
m2

m0

�
f22ðrÞ

�
−
2

r
φ̃0ðrÞ; ð26Þ

where φ̃iðrÞ ¼ ðmi
m0
ÞðφðrÞ þ βiÞ are rescaled gravitational

potentials. Note that φ̃00ðrÞ ¼ ðm0

m1
Þφ̃00

1ðrÞ ¼ ðm0

m2
Þφ̃00

2ðrÞ and
φ̃0ðrÞ ¼ ðm0

m1
Þφ̃0

1ðrÞ ¼ ðm0

m2
Þφ̃0

2ðrÞ so the last equation can be
written in terms of derivatives of either φ̃1 or φ̃2.
Not all solutions to these equations are solitons. Most of

them have limr→∞ fðrÞ ¼ �∞; these solutions have infin-
ite mass. In order to find physical solutions, one must
choose sensible initial conditions fjð0Þ, f0jð0Þ, φðrÞ, φ0ð0Þ.
In every case we consider, f0jð0Þ ¼ φ0ð0Þ ¼ 0. This is
because we assume the soliton is in its ground state, with
a local maximum at r ¼ 0. The central densities fjð0Þ are
set by the desired soliton mass. To find suitable values for
φ1 and φ2, we search for those for which

lim
r→∞

fðrÞ ¼ 0 ð27Þ

and fðrÞ has no nodes. Our algorithm uses a modified
shooting method to find such solutions for 0.1≲m1=m2 ≲
10 and jΛijj ≲ 1.
In Fig. 1, we show profiles for solitons comprised of two

fields, when the particle mass of each field is the same but
they have differing self-interactions and interfield inter-
actions. Since we generated the initial profiles assuming the
central density is the same in each profile, the cores of the
solitons look similar. The differences in the profiles exist
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mostly in the outer regions of the solitons. As expected,
introducing attractive interactions with Λij < 0 causes the
equilibrium soliton to contract; repulsive interactions
with Λij > 0 cause it to expand. While these differences
appear subtle, if we were to assume an equilibrium profile
with no self-interactions, we would see significant oscil-
lations in supposedly static solutions (approximately 5%
of the peak density) when there are attractive or repulsive
self-interactions.
We used the resulting soliton solutions to evaluate the

correctness of our multifield modifications to UltraDark.jl.
We initialized profiles with a variety of particle mass ratios,
self-interactions, and interfield interactions and evolved
them forward to see if they were in fact equilibrium
solutions. For all the initial profiles, we assume that the
central densities are f1ð0Þ ¼ 1.0 and f2ð0Þ ¼ 0.2; this ratio
is chosen such that each field provides a significant but
distinct contribution.

Figures 2 and 3 shows representative tests that solitons
are equilibria. There are two cases shown: one with no
self-interactions (Λij ¼ 0) and one with attractive self-
interactions (Λ11 ¼ Λ22 ¼ −0.25) and repulsive interspe-
cies interactions (Λ12 ¼ 0.25). Both havem1 ¼ 2m2 ¼ m0.
Figure 2 shows how the central density of the overlapping
solitons changes over time. This figure shows that the
oscillations in the profile are small, meaning the profile we

FIG. 1. Soliton profiles with m1 ¼ m2 ¼ m0. The solid lines
represent the profile of the first solitonic field and the dashed line
represents the second. One can see slight variations in in the
initial profiles for different values of self-interactions and inter-
field interactions. The profiles are wider when there are repulsive
self-interactions and interfield interactions, and narrower when
the self-interactions and interfield interactions are attractive.

FIG. 2. Evolution of the maximum density of solitons over
35 Gyr. The blue curve has no self- or interspecies interactions.
The red curve has attractive self-interactions (Λ11 ¼ Λ22 ¼ −0.25)
and repulsive interspecies interactions. In each case, the particle
masses arem1 ¼ 2m2 ¼ m0. Thevariation in themaximumdensity
is about 0.5% over the duration of the simulation.

FIG. 3. The relative difference between the initial density
profile and the density profile after 35 Gyr in the same
simulations as Fig. 2. We only see percent-level deviations from
the initial profiles through the central parts of the system in both
the noninteracting and interacting cases. There are larger devia-
tions in the outer regions due to boundary effects. However, since
the density is much lower in the outer regions compared to the
central region, the stability of the soliton is not compromised.
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initialize is very close to equilibrium and the code preserves
it. Figure 3 shows the fractional change in the density
profiles after the soliton has evolved forward for 35 Gyr.
Note that the amplitude in Fig. 3 depends on the time when
you measure the density profile, but 35 Gyr is represen-
tative. This figure shows that there are only slight devia-
tions from the initial density profile even after a significant
amount of time has passed. The largest relative deviations
are in the low-density exterior of the soliton. This is largely
due to the periodic boundary conditions: the soliton feels
gravitational forces due to neighboring boxes.
In Fig. 4, we show how the energy components evolve

over time for a setup where m1 ¼ 2m2 ¼ m0, there are
attractive self-interactions with Λ11 ¼ Λ22 ¼ −0.25, and
repulsive interfield interactions with Λ12 ¼ Λ21 ¼ 0.25.
The energy components are each conserved over the
duration of 35 Gyr, further indicating that the soliton is
near equilibrium. We see the same stability in simulations
with different particle mass ratios, self-interactions, and
interfield interactions.

V. COLLISIONS BETWEEN SOLITONS

Collisions between solitons in single field FDM are well
studied [13,42,49,55,59,60]. Binary collisions have been
used to study the basic dynamics of FDM fields and
demonstrate effects such as self-interactions. Mergers of
larger numbers of solitons have been used as a proxy for
halo formation through hierarchical mergers [52,55,59].
We continue this tradition of using soliton dynamics to

elucidate properties of FDMİn an effort to simplify com-
parisons between plots in the following scenarios, we
look at the effects of each of multicomponent ALPs’
properties separately: multiple species, distinct particle
masses mi for each species, and interspecies interactions
Λ. In each scenario the initial conditions contain two
solitons, each composed of a single species and, unless
otherwise specified, phase difference φ ¼ 0. The scenarios
have some common parameters: the solitons start 4L apart,

with velocities v1 ¼ −v2 ¼ 2L=T . There are two general
classes of collisions: those in which the solitons are
gravitationally bound and unbound. In the unbound sce-
narios, the mass of each soliton is 5M. In the bound
scenarios, the mass of each soliton is 10M. These
parameters were chosen to capture a wide variety of
phenomena, rather than correspond to a specific physical
scenario, and are summarized in Table I. For clarity, each
set of snapshots is cropped to the interior of the box; see the
linked animations for uncropped versions.3

One of the most distinctive FDM effects is inter-
ference [62], which can manifest when solitons overlap
during collisions. In the collision of same-species solitons,
their wavelike nature shows up as a distinctive interference
pattern in the density when they overlap [59],

ψðx; tÞ ¼ A1ðjxþ x̂jÞeiðkx=2þωtþφ=2Þ

þ A2ðjx − x̂jÞeið−kx=2þωt−φ=2Þ: ð28Þ

Here,�x̂ are the starting positions of the solitons, ðA1Þ2 and
ðA2Þ2 are the density profiles of the solitons, φ is the
relative phase between the solitons, and k ¼ mvjj=ℏ is
the wave number associated with the relative velocity of the
solitons. This does not happen when the two solitons are
comprised of different FDM species; their densities are
added rather than their wave functions. This means that
collisions between solitons consisting of a single species
are necessarily different from collisions between solitons
comprised of different species. Jain et al. [42] showed that
the analogous collisions between solitons in distinct polar-
ized states are a potential signature of higher-spin ultralight
dark matter: unless the solitons are fine-tuned, the density
during collisions between solitons is dependent on whether
they are comprised of the same field and/or polarization.

FIG. 4. The energy components (left) and energy residuals (right) of a sample simulation. In these simulations, m1 ¼ 2m2 ¼ m0,
Λ11 ¼ Λ22 ¼ −0.25, and Λ12 ¼ Λ21 ¼ 0.25. The duration of the simulation is 35 Gyr. Here, Eint is the energy components of the self-
interactions and interfield interactions combined and EKQ is the sum of kinetic and “quantum” energies. There is no noticeable change in
the energy components over the course of the simulation.

3https://www.youtube.com/playlist?list=PLHrf0iQS5SY5-
pjTrIWMDfelGTEvd48l0, also archived at https://doi.org/
10.5281/zenodo.7675774 [61].
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Figure 5 demonstrates this difference in interference
effects collisions between unbound solitons with phase
difference φ ¼ 0. In one scenario, on the left, both solitons
are comprised of the ψ1 field. In the other scenario, one
soliton is comprised purely of the ψ1 field, and the other of
the ψ2 field with m1 ¼ m2. Both cases have no self-
interactions: λ ¼ 0. In each case, the solitons pass through
each other with some deformation, the form of which
depends on whether they are comprised of the same
species. There are clear interference fringes when the
solitons are comprised of the same species. This interfer-
ence does not happen if the solitons consist of distinct
species. Instead, the deformations of the solitons during the
collision are entirely due to gravitational interactions.
A relative phase of φ ¼ π between solitons can cause

them to bounce off one another during collisions, rather
than passing through one another or merging [13,49]. This
can be viewed as an extreme case of the interference
discussed above. As above, different species do not
interfere with each other, and so this does not occur in
collisions between solitons comprised of different species.
We demonstrate this difference between single- and multi-
species FDM in Fig. 6. Because the phases are exactly
opposite, the density vanishes in the x ¼ 0 plane separating
the solitons in the single species case. In contrast, the
density in the two species case is identical to when the
phases are equal.
Figure 7 contrasts the results of colliding bound solitons.

As above, one case has both solitons comprised of the ψ1

field. The other case has a soliton from each of the ψ1 and
ψ2 fields with m1 ¼ m2 and λ ¼ 0. The solitons merge to
form a core surrounded by an NFW-like skirt and some
mass is ejected. The details of the merger depend on factors
including their relative masses, velocities, and phases and
self-interactions in the field. As in the unbound scenario,
the single field solitons display distinct interference fringes

when they overlap. However, there is a difference: the dark
matter halos in the end state of the merger have different
density profiles. In Fig. 8, we show that the resulting
density profile is less peaked in the two-field scenario. This
is consistent with the findings that the density field of
multispecies FDM is smoother [12] and that collisions of
vector dark matter solitons result in less dense cores than
their scalar dark matter counterparts [43]. The evolution of
the energy components is also different: the single species
takes longer to dissipate kinetic energy.
Next we examine collisions between solitons whose

constituent particles have unequal mass. For simplicity of
illustration, we assume the masses are not extremely
different. Figure 9 shows a comparison between a collision
between solitons with m1 ¼ m2, and a collision with
m2 ¼ m1 × 0.9. Note that although the central density of
the ψ2 soliton is significantly lower than that of the ψ1

soliton, they contain equal total masses. The ψ2 soliton is
comprised of particles with a larger de Broglie wavelength,
and so has a larger characteristic radius. This introduces
larger radial distortions in the solitons, than when
m1 ¼ m2. This relatively small difference in particle mass
is also sufficient to introduce an offset in the soliton
position along the x axis, relative to the equal-mass case.
A larger difference in ALP masses will enhance these
differences in collision dynamics.
In Fig. 10 we compare collisions between solitons with

no interactions (Λij ¼ 0) and with strongly repulsive
interspecies interactions Λ12 ¼ 10. Repulsive interactions
suppress the density of the solitons immediately after the
collision, as compared to collisions with Λ12 ¼ 0. We are
not aware of a scenario where this happens in collisions of
single field ALPs. When the repulsive interspecies inter-
action is strong enough, there is another qualitative differ-
ence from collisions withΛ ¼ 0: instead of passing through
each other with perturbations, the solitons are split. In
Fig. 11 we compare collisions between solitons with no
interactions (Λij ¼ 0) and with strongly attractive inter-
species interactions Λ12 ¼ −1. The density peak at the
midpoint between the solitons is larger than when there are
no interspecies interactions. The maximum density during
the collision is also increased from 7.5 to 8.9M=L3. For
strong enough attractive self-interactions, an otherwise
unbound system becomes bound.

VI. DISCUSSION

We have taken initial steps to simulate the dynamics of
self- and interspecies interacting multispecies models of
FDM. These models are motivated by the “axiverse”
conjecture, in which there are numerous axionlike particles,
each with its own mass and self-interactions [20]. These are
also applicable to spin-s FDM models, in which each the
field can be decomposed into 2sþ 1 fields. We have
verified the integrity of our code by finding stable equi-
librium solutions when there are multiple fields with

TABLE I. Summary of parameters in numerical experiments
performed. When N ¼ 1, both solitons have the same field; when
N ¼ 2, then each initial soliton has a different field. The ratio of
particle masses is m1=m2. The initial solitons have masses Ms.
The interspecies interaction strength is given by Λ12 and the
phase difference by jφj. Also indicated are the figures in which a
given scenario is plotted.

N m1=m2 Ms Λ12 jφj Figure

1 1 5M 0 0 5
2 1 5M 0 0 5, 9, 10, 11
1 1 5M 0 π 6
2 1 5M 0 π 6
1 1 10M 0 0 7, 8
2 1 10M 0 0 7, 8
2 0.9 5M 0 0 9
2 1 5M 10 0 10
2 1 5M −1 0 11
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FIG. 5. Snapshots of a collision between a pair of unbound solitons with identical phases. Left: both solitons are in one field. Right: the
solitons are in distinct fields withm1 ¼ m2. Middle: density along the axis of the collision for the one species collision in solid blue and
two species collision in dashed orange. One can see that in the case with one species, the solitons interfere when they overlap. In the case
with solitons comprised of different species, they do not interfere as they pass through each other. This is a qualitative difference between
one- and two-species ALPs. See Ref. [63] for an animation.
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FIG. 6. Snapshots of a collision between a pair of unbound solitons a phase difference of π. Left: both solitons are in one field. Right:
the solitons are in distinct fields withm1 ¼ m2. Middle: density along the axis of the collision for the one (two) species collision in solid
blue (dashed orange). One can see that in the case with one species, interference means that the density at the x ¼ 0 plane between the
solitons is always a local minimum. In the case with solitons comprised of different fields, they do not interfere and there is instead a
maximum at the midpoint when they pass through each other. See Ref. [63] for an animation.
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FIG. 7. Snapshots of collisions between gravitationally bound solitons in one- and two-species scenarios. Left: density slices in single
field collision. Middle: density along line through axis of collision for one (solid blue) and two (dashed orange) fields. Right: density
slices in two field collision. The one-field scenario shows interference fringes and a more sharply peaked core in the end state. See
Ref. [63] for an animation.
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different masses and interaction strengths. We have made
an exploratory study of binary collisions with different
combinations of soliton phases, soliton masses, particle
masses, and interaction strengths.
It is important to note that the collision scenarios we have

discussed in this paper are highly idealized, and in the real
world, collisions are more complex. First, FDM solitons are
not expected to be in zero background density regions; after

initial condensation they would be surrounded by a nearly
homogeneous background density and later they may have
NFW-like tails. Second, we have little reason to believe that
multifield ALPs would form solitons or halos comprised
purely of a single field. The multifield nature could still
show up in collisions. For example, the phases of fields in a
halo do not have to be correlated. This could lead to one
species being ejected during a merger while others are not,

FIG. 8. Results of colliding two equal mass solitons from the same and different species, as in Fig. 7. Top left: spherically averaged
density profiles of the one-species (solid blue) and two-species (dashed orange) cases, time averaged over the end of the simulation. The
single species profile is more sharply peaked. Top right: maximum density as a function of time. Although both scenarios have
significant oscillations in the density, the two-species scenario has a smaller amplitude. Bottom: time series of the energy for the same
pair of simulations. The single-species merger has more kinetic energy after the collision.
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FIG. 9. Snapshots of collisions between pairs of unbound solitons. Left: the solitons have distinct constituent species with m1 ¼ m2.
Right: the solitons have distinct constituent species. The soliton initially on the left (right) is composed of particles with mass m1

(m2 ¼ 0.9 ×m1). The lighter particle has a longer characteristic wavelength, so an equal mass soliton is more extended. Middle: density
along the axis of the collision, corresponding to the left and right columns in solid blue and dashed orange, respectively. One can see
that, in the case with m1 ≠ m2, there is greater asymmetry in the end state of the collision. See Ref. [63] for an animation.
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FIG. 10. Snapshots of collisions between pairs of unbound solitons. Left: the solitons have different constituent fields, with m1 ¼ m2

and Λ ¼ 0. Right: the solitons are in distinct fields with m1 ¼ m2. There is a repulsive interspecies interaction with Λ12 ¼ 10. Middle:
density along the axis of the collision, corresponding to the left and right columns in solid blue and dashed orange, respectively. The
solitons with Λ12 ¼ 10 have strongly repulsive interfield interactions. Instead of passing through each other with small perturbations,
they are split into two components and their peak density is greatly suppressed after the collision. See Ref. [63] for an animation.
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FIG. 11. Snapshots of collisions between pairs of unbound solitons. Left: the solitons have different constituent fields, with m1 ¼ m2

and Λ ¼ 0. Right: the solitons are in distinct fields with m1 ¼ m2. There is a attractive interspecies interaction with Λ12 ¼ −1. Middle:
density along the axis of the collision, corresponding to the left and right columns in solid blue and dashed orange, respectively. The
solitons with Λ12 ¼ −1 have strongly attractive interfield interactions. The peak between the solitons in the end state is enhanced by
attractive interactions. See Ref. [63] for an animation.
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resulting in a halo with a deficiency or surplus of a single
species.
There are a variety of future directions to be explored. The

most obvious is the generalization of these simulations from
two to three and more FDM species. Simulations of three
FDM species would allow more direct comparisons with
spin-1 fields [42–44]. Other directions for immediate future
work would further explore the dynamics of two fields.
Structure formation and the initial condensation of

solitons is different when dark matter is comprised of
multiple species of ultralight particle. In Ref. [12], the
authors found that as multiple axion fields evolved without
self-interactions or interfield interactions, the fields showed
little correlation. It would be interesting to see how this
changes when there are nonzero interfield interactions.
Likewise, structure formation and soliton condensation in
the presence of multiple fields has the potential to be quite
different from a single field. Repulsive interfield inter-
actions raise the possibility that the fields separate during
the initial condensation process, leading to an inhomo-
geneous distribution of dark matter species. This effect
would leave an imprint in large scale structure, implying
constraints on repulsive interfield interactions.
There are numerous unexplored avenues for multifield

solitons. We will generalize our algorithm for generating
equilibrium profiles to allow for larger values of particle

mass ratios m1=m2, as well as to allow for greater self-
interaction and interfield interaction strengths. There are
also more complex soliton interactions and collisions to be
explored. In this work, we have not explored collisions
between solitons that are initially comprised of multiple
fields. We can also explore collisions with nonzero impact
parameters or collisions with more than two solitons. We
hope that future work on this topic will lead to insight on
the validity of the axiverse hypothesis.
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