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We study the nonequilibrium dynamics of axionlike particles (ALP) coupled to Standard Model degrees
of freedom in thermal equilibrium. The quantum master equation (QME) for the ALP reduced density
matrix is derived to leading order in the coupling of the ALP to the thermal bath, but to all orders of the bath
couplings to degrees of freedom within or beyond the Standard Model other than the ALP. The QME
describes the damped oscillation dynamics of an initial misaligned ALP condensate, thermalization with
the bath, decoherence, and entropy production within a unifying framework. The ALP energy density EðtÞ
features two components: a “cold” component from the misaligned condensate and a “hot” component
from thermalization with the bath, with EðtÞ ¼ Ece−γðTÞt þ Ehð1 − e−γðTÞtÞ thus providing a “mixed dark
matter” scenario. Relaxation of the ALP condensate, thermalization, decoherence, and entropy production
occur on similar timescales. An explicit example with ALP-photon coupling, valid post recombination
yields a relaxation rate γðTÞ with a substantial enhancement from thermal emission and absorption.
A misaligned condensate is decaying at least since recombination and on the same timescale thermalizing
with the cosmic microwave background (CMB). Possible consequences for birefringence of the CMB and
ALP contribution to the effective number of ultrarelativistic species and galaxy formation are discussed.
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I. INTRODUCTION

The axion, introduced in quantum chromodynamics
(QCD) as a solution of the strong CP problem [1–3]
may be produced nonthermally in the early Universe, for
example by a misalignment mechanism and is recognized
as a potentially viable cold dark matter candidate [4–6].
Extensions beyond the standard model can accommodate
pseudoscalar particles with properties similar to the QCD
axion, namely axionlike particles (ALP) which can also be
suitable dark matter candidates [7–11], in particular as
candidates for ultra light dark matter [12,13]. Constraints
on the mass and couplings of ultralight ALP [9–11,14] are
being established by various experiments [15–17]. There
are two important features that characterize ALP, (i) a
misalignment mechanism results in damped coherent
oscillations of the expectation value of the ALP field which
gives rise to the contribution to the energy density as a cold
dark matter component [4–6,9–11,18], (ii) its pseudoscalar
nature leads to an interaction between the ALP and photons
or gluons via pseudoscalar composite operators of gauge
fields, such as E⃗ · B⃗ in the case of the ALP-photon
interaction and Gμν;bG̃μν;b in the case of gluons, which
allows an ALP to decay into two photons or gluons. The

effect of this decay process in the evolution of ALP
condensates has been studied in Refs. [19–22] including
stimulated decay in a photon background. The damping of
an ALP condensate via a “friction” term in its equation of
motion has been studied in Refs. [23–25], and thermal-
ization of ALP has been studied in Refs. [26,27], these
references focused on either damping via friction or
thermalization as unrelated independent processes. A
recent study [28] has recognized the common origin of
these two seemingly different processes by obtaining the
nonequilibrium effective action that determines the time
evolution of the reduced ALP density matrix. This study
showed that damping of a misaligned ALP condensate and
thermalization are two complementary aspects and are
linked by the fluctuation dissipation relation, a fundamental
and ubiquitous property of a bath in thermal equilibrium.
This reference also established that both processes con-
tribute to the ALP energy density, an important aspect if the
ALP are suitable dark matter candidates.
Decay and thermalization of an ALP condensate post

recombination may have a profound impact on birefrin-
gence of the cosmic microwave background (CMB) if its
origin is the electromagnetic coupling of a pseudoscalar
ALP [29–32].
In Ref. [28], the nonequilibrium dynamics of ALP was

studied to leading order in the coupling of the ALP to other
degrees of freedom treated as a bath in thermal equilibrium
by implementing the in-in Schwinger-Keldysh formulation
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of nonequilibrium quantum field theory to obtain the
effective action. The equations of motion for the ALP
obtained from the effective action are retarded and akin to a
Langevin equation with a friction term determined by the
retarded self-energy and a noise term related to the self
energy via the fluctuation-dissipation relation. This relation
is a consequence of the bath degrees of freedom being in
thermal equilibrium. An important result of the Langevin
nature of the effective equations of motion is a direct
relationship between the damping of an ALP coherent
condensate and thermalization of its fluctuations. This
result was found to be general to leading order in the
ALP coupling to the bath degrees of freedom but to all
orders in the couplings of these “environmental” fields to
any other field within or beyond the standard model other
than the ALP and is a corollary of the fluctuation
dissipation relation. An analysis of the coupling of ALP
to the CMB post recombination in this article also revealed
a substantial enhancement of the damping and thermal-
ization rates if the ALP is an ultralight dark matter
candidate as well as unexpected possible phase transitions
and exotic new phases.

A. Motivation and objectives

The results in Ref. [28] and their possible cosmological
consequences, motivate us to seek a complementary
formulation of the nonequilibrium dynamics of ALP
coupled to “environmental” degrees of freedom in equi-
librium that does not rely on the in-in Schwinger-Keldysh
approach to the effective action, thereby offering an
alternative and independent assessment of the nonequili-
brium dynamics of ALP coupled to a thermal environment.
In this article we adapt methods of quantum optics and

quantum information to study the nonequilibrium dynam-
ics of ALP fields implementing a quantum master equation
approach ubiquitous in the treatment of quantum open
systems [33–37]. The quantum master equation describes
the time evolution of the ALP reduced density matrix, it has
been implemented in particle physics [38–44] and cosmol-
ogy [45–50] and has proven to be a powerful and reliable
method to study nonequilibrium dynamics.
The main objectives of this article are: (i) to scrutinize the

results obtained in Ref. [28] with an alternative and inde-
pendent method, (ii) to inquire on complementary aspects of
the time evolution of the reduced densitymatrix, in particular
the evolution of coherences, which yield supplementary
information on thermalization and decoherence, and (iii) to
compare the timescales of decoherence to those of damping
of the misaligned condensate and thermalization.
In this study we are not concerned with bounds on

couplings and or masses of the putative ALP but focus on
fundamental aspects of the nonequilibrium evolution
of its density matrix including misaligned initial states.
Furthermore, while our ultimate objective is to study the
nonequilibrium dynamics in an expanding cosmology,

we initiate this program as a prelude by focusing on
Minkowski space time.

B. Brief summary of results

We consider an ALP field in interaction with Standard
Model degrees of freedom which are considered to be in
thermal equilibrium. In Sec. II, we obtain the QME for the
reduced density matrix of the ALP up to second order in the
coupling of the ALP to these degrees of freedom, but to all
orders in the coupling of the bath degrees of freedom to fields
within or beyond the StandardModel different from theALP
underwell defined approximations. The resultingQME is of
the Lindblad form [33–37], it is obtained up to second order
in the ALP coupling to Standard Model degrees of freedom
and to all orders in the couplings of these degrees of freedom
to any other field within or beyond the Standard Model
except for the ALP, and includes misaligned initial con-
ditions for the ALP field. The QME describes the damping
of the misaligned condensate, thermalization with the bath
and decoherence with a concomitant entropy production.
The ALP energy density describes a “mixed” dark matter
scenario with a cold component Ec from the misaligned
coherent condensate, and a “hot” component Eh from
thermalization with the bath, with the total energy density
interpolating between the cold and hot components as
EðtÞ ≃ Ece−γðTÞt þ Ehð1 − e−γðTÞtÞ, where the relaxation rate
γðTÞ also describes the decoherence rate. We study in detail
ALP coupling to the CMB post recombination, if the ALP is
an ultralight dark matter candidate there is a substantial
enhancement of the relaxation rate, its longwavelength limit
is given by γðTÞ ¼ g2m2

aT=16π. The results suggest that if
γðTÞ < 1=H0 the misaligned condensate has been decaying
at least since recombination and thermalizing with the CMB
on a similar timescale. Therefore, if cosmic birefringence is a
consequence of the CMB coupling to a pseudoscalar ALP,
the rotation angle since the surface of last scattering should
feature a thermal spectrum of fluctuations.

II. THE QUANTUM MASTER EQUATION

We study the time evolution of the reduced density
matrix of an axionlike field aðxÞ coupled to generic fields
χðxÞ to which we refer as “environmental” fields via a
pseudoscalar operator OχðxÞ, with the Lagrangian density

L½a; χ� ¼ 1

2
∂μaðxÞ∂μaðxÞ −

1

2
m2

aa2ðxÞ − gaðxÞOχðxÞ þ Lχ

ð2:1Þ

where Lχ is the Lagrangian density describing the
“environmental” fields χ, these fields could be the electro-
magnetic field, fermion or gluon fields and themselves be
coupled to other degrees of freedom within or beyond the
Standard Model.
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The Lagrangian density (2.1) describes several relevant
couplings of ALP, with possible operators Oχðx⃗Þ being
Oχðx⃗Þ¼E⃗ðxÞ ·B⃗ðxÞ;Gμν;bðxÞG̃μν;bðxÞ;Ψ̄ðxÞγ5ΨðxÞ���where
E⃗, B⃗ are the electromagnetic fields, Gμν;b; G̃μν;b are the
gluon field strength tensor and its dual respectively, and
ΨðxÞ a fermionic field. These degrees of freedom are
assumed to be in thermal equilibrium. We will first treat
these fields generically denoting them as χ fields, and after
obtaining the general form of the quantum master equation
up to Oðg2Þ, we will focus on the relevant case with
Oχðx⃗Þ ¼ E⃗ðxÞ · B⃗ðxÞ since the interaction of ALP fields
with the CMB could have potentially observable conse-
quences, such as birefringence [29–32], a rotation of the
polarization plane which, in contrast to Faraday rotation, is
independent of the frequency with tantalizing detection
possibilities [30–32].
The interaction of ALP with photons and gluons via

couplings of the form gaðxÞE⃗ðxÞ · B⃗ðxÞ; gsaðxÞGμν;bðxÞ×
G̃μν;bðxÞ are not renormalizable because the respective
couplings g; gs feature dimensions 1=ðenergyÞ, an aspect
that has important consequences [28] discussed below, that
at the fundamental level, indicate that the Lagrangian
density (2.1) describes an effective field theory valid below
some cutoff scale.
Upon evolving the total initial density matrix in time, the

degrees of freedom χ with the generic operator Oχ are
traced over to obtain a reduced density matrix for aðxÞ
which obeys a quantum master equation. We obtain this
equation in the general case valid to order g2 in the ALP
coupling to the bath, and to all orders in the couplings of the
bath degrees of freedom to any other degree of freedom
within or beyond the standard model except for the ALP
under a set of approximations that are spelled out in detail.
Whereas our ultimate objective is to pursue this approach in
an expanding cosmology, here we begin this program by
first carrying it out in Minkowski space time.
The quantummaster equation in a Lindblad form [35–38]

has recently received attention in applications to high energy
physics [39–44] and cosmology [45–49]. This formulation
beginswith the time evolution of an initial densitymatrix that
describes the total system of fields a, χ, which is given by

ρ̂ðtÞ ¼ e−iHtρ̂ð0ÞeiHt; ð2:2Þ

with H the total Hamiltonian

H ¼ H0a þHχ þHI ≡H0 þHI; ð2:3Þ

whereH0a is the free field Hamiltonian for the ALP,Hχ is the
Hamiltonian of the χ degrees of freedom including their
couplings todegrees of freedomwithinor beyond theStandard
Model except the ALP, and HI¼g

R
d3xaðxÞOχðxÞ is the

coupling between the ALP and the bath degrees of freedom
obtained from the Lagrangian density (2.1).

We consider an initial factorized density matrix

ρð0Þ ¼ ρað0Þ ⊗ ρχð0Þ; ð2:4Þ

where the χ fields are in thermal equilibrium at temperature
T ¼ 1=β, namely

ρχð0Þ ¼
e−βHχ

Tre−βHχ
; ð2:5Þ

and for the ALP field we chose an initial density matrix
describing a “misaligned” initial condition with a non-
vanishing expectation value of the ALP field. This is
implemented in terms of coherent states of free fields as
follows. Quantizing the free ALP field at the initial time
t ¼ 0 in a finite volume V as

aðx⃗; t ¼ 0Þ ¼ 1ffiffiffiffi
V

p
X
k⃗

1ffiffiffiffiffiffiffiffi
2ωk

p ½bk⃗eik⃗·x⃗ þ b†
k⃗
e−ik⃗·x⃗�;

½bk⃗; b†k⃗0 � ¼ δk⃗;k⃗0 ; ð2:6Þ

and the vacuum state defined as

bk⃗j0i ¼ 0: ð2:7Þ

A coherent state is given by

jΔi ¼ Πk⃗e
−1
2
jΔk⃗j2e−Δk⃗b

†
k⃗ j0i; ð2:8Þ

it is an eigenstate of the annihilation operator,

bk⃗jΔi ¼ Δk⃗jΔi; ð2:9Þ

and describes a Poisson distribution of quanta of the free
ALP field. The expectation values of the ALP field and its
canonical momentum in this coherent state are

hΔjaðx⃗; 0ÞjΔi ¼ āðx⃗; 0Þ

¼ 1ffiffiffiffi
V

p
X
k⃗

1ffiffiffiffiffiffiffiffi
2ωk

p ½Δk⃗ þ Δ�
−k⃗
�eik⃗·x⃗; ð2:10Þ

hΔjπðx⃗; 0ÞjΔi ¼ π̄ðx⃗; 0Þ

¼ −iffiffiffiffi
V

p
X
k⃗

ffiffiffiffiffiffi
ωk

2

r
½Δk⃗ − Δ�

−k⃗
�eik⃗·x⃗; ð2:11Þ

Hence we choose the initial density matrix for the ALP
field to describe this “misaligned” initial state, namely

ρað0Þ ¼ jΔihΔj; ð2:12Þ

yielding
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Trbk⃗ρað0Þ ¼ Δk⃗; Trb†
k⃗
bk⃗ρað0Þ ¼ Nqð0Þ ¼ jΔq⃗j2;

Trbk⃗b−k⃗ρað0Þ ¼ Δk⃗Δ−k⃗; etc: ð2:13Þ

We refer to the off-diagonal ALP density matrix ele-
ments in the occupation number basis (eigenstates of b†

k⃗
bk⃗),

for example Trbk⃗b−k⃗ρað0Þ ¼ Δk⃗Δ−k⃗ as coherences [33,34].
A hallmark of a thermal density matrix is that these
coherences vanish and the density matrix is diagonal in
the occupation number basis. This observation will become
important as a diagnosis of thermalization and its link to
decoherence studied below.
Translational invariance entails that

Δk⃗ ¼
ffiffiffiffi
V

p
Δ̃δk⃗;0⃗; ð2:14Þ

therefore

Nqð0Þ ¼ VjΔ̃j2δq⃗;0⃗; ð2:15Þ

and

1

2ma
½π̄2 þm2

aā2� ¼ jΔ̃j2: ð2:16Þ

In the quantum master equation approach [33,34] the
time evolution of the density matrix is considered in the
interaction picture. With the full density matrix ρ̂ðtÞ given
by Eq. (2.2) the density matrix in the interaction picture is
given by

ρ̂IðtÞ ¼ eiH0tρ̂ðtÞe−iH0t; ð2:17Þ

whose time evolution obeys

_̂ρIðtÞ ¼ −i½HIðtÞ; ρ̂IðtÞ�; ð2:18Þ

where HIðtÞ is the interaction Hamiltonian in the inter-
action picture, HIðtÞ ¼ eiH0tHIe−iH0t. The formal solution
of Eq. (2.18) is given by

ρ̂IðtÞ ¼ ρ̂Ið0Þ − i
Z

t

0

dt0½HIðt0Þ; ρ̂Iðt0Þ�: ð2:19Þ

This solution is inserted back into (2.18) leading to the
iterative equation

_̂ρIðtÞ ¼ −i½HIðtÞ; ρ̂Ið0Þ�

−
Z

t

0

½HIðtÞ; ½HIðt0Þ; ρ̂Iðt0Þ��dt0: ð2:20Þ

This QME cannot be solved exactly, and several approx-
imations are usually invoked, based on the following
assumptions [33–36]:

(i) Factorization: the total density matrix factorizes into
a direct product of the density matrix for the a field,
ρ̂IaðtÞ and that of the bath of χ fields, ρ̂χ , namely,

ρ̂IðtÞ ¼ ρ̂IaðtÞ ⊗ ρ̂χð0Þ; ð2:21Þ

where

ρ̂χð0Þ ¼
e−βHχ

Tre−βHχ
; ð2:22Þ

this assumption which implies that the bath degrees
of freedom remain in thermal equilibrium, relies on
that the bath is a reservoir with a large number of
degrees of freedom and is not modified by its
coupling to the system, hence the density matrix of
the bath does not depend on time. This assumption
also relies on weak coupling: if the initial density
matrix is factorized, correlations between the system
and the reservoir will build as a consequence of the
interaction, therefore such correlations will be small
for very weak coupling and may only contribute in
higher orders. Factorization and its possible caveats
are discussed further in Sec. IV.

The reduced density matrix for the ALP field a is
obtained by taking the trace of the full density matrix
over the bath degrees of freedom, which by
assumption remains in thermal equilibrium, therefore

ρ̂IaðtÞ ¼ Trχ ρ̂IðtÞ: ð2:23Þ

Upon taking the trace over the χ degrees of
freedom the first term on the right-hand side of
Eq. (2.20) vanishes under the assumption that the
thermal density matrix of the environmental fields is
even under parity, hence TrOχρ̂χð0Þ ¼ 0, andwe find
the evolution equation for the reduced density matrix
for the ALP field a in the interaction picture,

_̂ρIaðtÞ ¼ −g2
Z

t

0

dt0
Z

d3x
Z

d3x0faIðxÞaIðx0Þ

× ρ̂Iaðt0ÞG>ðx − x0Þ
þ ρ̂Iaðt0ÞaIðx0ÞaIðxÞG<ðx − x0Þ
− aIðxÞρ̂Iaðt0ÞaIðx0ÞG<ðx − x0Þ
− aIðx0Þρ̂Iaðt0ÞaIðxÞG>ðx − x0Þg ð2:24Þ

where we use the shorthand convention x≡ ðx⃗; tÞ;
x0 ≡ ðx⃗0; t0Þ, and introduced the bath correlation
functions

G>ðx − x0Þ ¼ Trχ ρ̂χð0ÞOχðxÞOχðx0Þ ð2:25Þ

G<ðx − x0Þ ¼ Trχ ρ̂χð0ÞOχðx0ÞOχðxÞ: ð2:26Þ
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The ALP field in the interaction picture aIðx⃗; tÞ
features free field time evolution, namely

aIðx⃗;tÞ¼
1ffiffiffiffi
V

p
X
k⃗

1ffiffiffiffiffiffiffiffi
2ωk

p ½bk⃗e−iωkteik⃗·x⃗þb†
k⃗
eiωkte−ik⃗·x⃗�;

ð2:27Þ

where the operators bk⃗; b
†
k⃗
do not depend on time,

and ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

a

p
.

(ii) Markov approximation the second approximation
entails replacing ρIaðt0Þ → ρIaðtÞ in the time inte-
gral. This is usually referred to as a Markov
approximation and is justified in weak coupling,
as can be seen by considering the first term in (2.24)
as an example. It can be written as

− g2aðx⃗; tÞ
Z

t

0

dKðt0Þ
dt0

ρ̂Iaðt0Þdt0;

Kðt0Þ≡
Z

t0

0

aðx⃗0; t00ÞG>ðx⃗ − x⃗0; t − t00Þdt00 ð2:28Þ

which upon integration by parts yields

−g2aðx⃗; tÞKðtÞρ̂IaðtÞþg2aðx⃗; tÞ
Z

t

0

Kðt0Þdρ̂Iaðt
0Þ

dt0
dt0

ð2:29Þ

in the second term dρ̂IΦðt0Þ=dt0 ∝ g2 so this term
yields a contribution that is formally of order g4 and
can be neglected to second order. The same analysis
is applied to all the other terms in (2.24) with the
conclusion that in weak coupling and to leading
order ðg2Þ the Markovian approximation ρ̂Iaðt0Þ →
ρ̂IaðtÞ is justified.
Therefore in the Markov approximation the quan-

tum master equation becomes

_̂ρIaðtÞ ¼ −g2
Z

t

0

dt0
Z

d3x
Z

d3x0faIðxÞaIðx0Þ

× ρ̂IaðtÞG>ðx − x0Þ
þ ρ̂IaðtÞaIðx0ÞaIðxÞG<ðx − x0Þ
− aIðxÞρ̂IaðtÞaIðx0ÞG<ðx − x0Þ
− aIðx0Þρ̂IaðtÞaIðxÞG>ðx − x0Þg: ð2:30Þ

The correlation functions G>ðx − x0Þ; G<ðx − x0Þ
are obtained in Appendix A in terms of nonpertur-
bative Lehmann representations to all orders in the
coupling of the environmental fields χ to any other
field in thermal equilibrium except for the ALP.
They are given by

G>ðx − x0Þ ¼
Z

d3q
ð2πÞ3

Z
dq0
2π

ϱ>ðq0; q⃗Þ

× e−iq0ðt−t0Þeiq⃗·ðx⃗−x⃗0Þ ð2:31Þ

G<ðx − x0Þ ¼
Z

d3q
ð2πÞ3

Z
dq0
2π

ϱ<ðq0; q⃗Þ

× e−iq0ðt−t0Þeiq⃗·ðx⃗−x⃗0Þ; ð2:32Þ

where the spectral densities obey the relation

ϱ>ð−q0; q⃗Þ ¼ ϱ<ðq0; q⃗Þ; ð2:33Þ

and fulfill theKubo-Martin-Schwinger condition [51]

ϱ<ðq0; q⃗Þ ¼ e−βq0ϱ>ðq0; q⃗Þ; ð2:34Þ

which is a consequence of the fields χ being in
thermal equilibrium. Introducing the spectral density

ϱðq0; q⃗Þ ¼ ϱ>ðq0; q⃗Þ − ϱ<ðq0; q⃗Þ; ð2:35Þ

the Kubo-Martin-Schwinger condition (2.34) leads
to the following relations

ϱ>ðq0; q⃗Þ ¼ ½1þ nðq0Þ�ϱðq0; q⃗Þ ð2:36Þ

ϱ<ðq0; q⃗Þ ¼ nðq0Þϱðq0; q⃗Þ ð2:37Þ

where nðq0Þ ¼ ½eβq0 − 1�−1 is the Bose-Einstein
distribution function at temperature T ¼ 1=β. The
above relations are proven in Appendix A, they are
general, nonperturbative and rely only on that the
reservoir is in thermal equilibrium.

(iii) Rotating wave approximation: in writing the prod-
ucts aIðx⃗; tÞaIðx⃗0; t0Þ of interaction picture field
operators (2.27) in (2.24) there are two types of
terms with very different time evolution. Terms of
the form

b†q⃗bq⃗e
iωqðt−t0Þ; ð2:38Þ

are “slow,” and terms of the form

b†q⃗b
†
−q⃗e

2iωqteiωqðt−t0Þ;

bq⃗b−q⃗e−2iωqte−iωqðt−t0Þ; ð2:39Þ

are fast, the extra rapidly varying phases e�2iωqt lead
to rapid dephasing on timescales ≃1=ωq and do not
yield resonant (nearly energy conserving) contribu-
tions. Neglecting these terms is tantamount to
neglecting nonresonant terms that average out
over the longer timescales of relaxation ≫ 1=ωq.
These terms only give perturbatively small transient
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contributions and are discussed in Sec. IV. Keeping
only the slow terms which dominate the long time
dynamics for t ≫ 1=ωq and neglecting the fast
oscillatory terms defines the “rotating wave approxi-
mation” ubiquitous in quantum optics [33,34].

We will adopt these approximations and comment in
Sec. IV on the corrections associated with keeping the fast
terms as well as caveats in the factorization approximation
and limitations of the QME.
Implementing the Markov approximation ρ̂Iaðt0Þ →

ρ̂IaðtÞ, and the rotating wave approximation (keeping only
terms of the form b†b; bb†) using the spectral representa-
tion of the correlators (2.31), (2.32) and carrying out the
spatial and temporal integrals we obtain the Lindblad
form [33–38] of the quantum master equation,

_̂ρIaðtÞ ¼
X
q⃗

�
−iΔqðtÞ½b†q⃗bq⃗; ρ̂IaðtÞ�

−
Γ>
q ðtÞ
2

½b†q⃗bq⃗ρ̂IaðtÞþ ρ̂IaðtÞb†q⃗bq⃗− 2bq⃗ρ̂IaðtÞb†q⃗�

−
Γ<
q ðtÞ
2

½bq⃗b†q⃗ρ̂IaðtÞþ ρ̂IaðtÞbq⃗b†q⃗− 2b†q⃗ρ̂IaðtÞbq⃗�
�
;

ð2:40Þ

where

ΔqðtÞ¼
g2

2ωq

Z
dq0
2π

ϱðq0;qÞ
½1− cos½ðωq−q0Þt��

ðωq−q0Þ
; ð2:41Þ

Γ>
q ðtÞ ¼

g2

ωq

Z
dq0
2π

ϱðq0; qÞ½1þ nðq0Þ�
sin½ðωq − q0Þt�

ðωq − q0Þ
;

ð2:42Þ

Γ<
q ðtÞ ¼

g2

ωq

Z
dq0
2π

ϱðq0; qÞnðq0Þ
sin½ðωq − q0Þt�

ðωq − q0Þ
; ð2:43Þ

and we introduce

ΓqðtÞ ¼ Γ>
q ðtÞ − Γ<

q ðtÞ

¼ g2

ωq

Z
dq0
2π

ϱðq0; qÞ
sin½ðωq − q0Þt�

ðωq − q0Þ
: ð2:44Þ

The second and third lines in (2.40) are called the
dissipator [33], these are non-Hamiltonian, purely dissi-
pative terms, however it follows from the QME (2.40) that
the trace of the reduced density matrix is conserved. It is
argued in Refs. [35–38] that the Eq. (2.40) is the most
general linear evolution equation that preserves unit trace
and Hermiticity of the density matrix.
Expectation values of ALP operators in the interaction

picture are obtained by taking the trace of such operators
with the reduced density matrix, for example

haIðx⃗; tÞi¼TraIðx⃗; tÞρ̂IaðtÞ

¼
X
q⃗

1ffiffiffiffiffiffiffiffiffiffiffiffi
2Vωq

p ½hbq⃗iðtÞe−iωqtþhb†−q⃗iðtÞeiωqt�eiq⃗·x⃗;

ð2:45Þ

where

hbq⃗iðtÞ ¼ Trðbq⃗ρ̂IaðtÞÞ;
hb†−q⃗iðtÞ ¼ Trðb†−q⃗ρ̂IaðtÞÞ: ð2:46Þ

For any interaction picture operator A associated with
the ALP field

d
dt

hAi ¼ Traf _Aρ̂IaðtÞ þA _̂ρIaðtÞg; ð2:47Þ

where the average hð� � �Þi ¼ Trað� � �Þρ̂IaðtÞ. Because bq⃗; b†q⃗
are time independent in the interaction picture, the time
derivative of their expectation value is given solely by the
second term on the right-hand side of Eq. (2.47), hence the
expectation value of the number operator

NqðtÞ ¼ Traρ̂IaðtÞb†q⃗bq⃗ ð2:48Þ

obeys the quantum kinetic equation

dNqðtÞ
dt

¼Trafb†q⃗bq⃗ _̂ρIaðtÞg¼−ΓqðtÞNqðtÞþΓ<
q ðtÞ: ð2:49Þ

Similarly, we also find the evolution equation for the
averages

d
dt

hbk⃗iðtÞ ¼
�
−iΔkðtÞ −

ΓkðtÞ
2

�
hbk⃗iðtÞ

d
dt

hb†
k⃗
iðtÞ ¼

�
iΔkðtÞ −

ΓkðtÞ
2

�
hb†

k⃗
iðtÞ; ð2:50Þ

and for the off-diagonal coherences,

d
dt

hbk⃗b−k⃗iðtÞ ¼ ½−2iΔkðtÞ − ΓkðtÞ�hbk⃗b−k⃗iðtÞ
d
dt

hb†
k⃗
b†
−k⃗
iðtÞ ¼ ½2iΔkðtÞ − ΓkðtÞ�hb†k⃗b

†
−k⃗
iðtÞ: ð2:51Þ

From the evolution equations (2.50), (2.51) it is clear that
ΔkðtÞ is a time dependent renormalization of the frequency
ωk. To obtain the solutions of the above equations in the
long time limit we need the following integrals

Z
t

0

Δqðt0Þdt0 ¼ t
g2

2ωq

Z
∞

−∞

ρðq0;qÞ
ðωq−q0Þ

�
1−

sinðωq−q0Þt
ðωq−q0Þt

�
dq0
ð2πÞ

!
t→∞

tδωq ð2:52Þ
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where

δωq ¼
g2

2ωq

Z
∞

−∞
P
�
ρðq0; qÞ
ðωq − q0Þ

�
dq0
2π

; ð2:53Þ

is a renormalization of the frequency ωq and P stands for
the principal part, and

Z
t

0

Γqðt0Þdt0 ¼
g2

ωq

Z
∞

−∞

dq0
2π

ρðq0; qÞ
ðq0 −ωqÞ2

½1− cos½ðq0 −ωqÞt��

!
t→∞

γqtþ
g2

ωq

Z
∞

−∞

dq0
2π

P
ρðq0; qÞ

ðωq − q0Þ2
; ð2:54Þ

where

γq ¼ Γqð∞Þ ¼ g2

2ωq
ρðωq; qÞ; ð2:55Þ

is the decay rate in agreement with Fermi’s golden rule. In
the long time limit, the solution of Eqs. (2.50), (2.51) are

hbk⃗iðtÞ ¼ Ze−iδωqte−
γq
2
thbk⃗ið0Þ;

hb†
k⃗
iðtÞ ¼ Zeiδωqte−

γq
2
thb†

k⃗
ið0Þ; ð2:56Þ

hbk⃗b−k⃗iðtÞ ¼ Z2e−2iδωqte−γqthbk⃗b−k⃗ið0Þ;
hb†

k⃗
b†
−k⃗
iðtÞ ¼ Z2e2iδωqte−γqthb†

k⃗
b†
−k⃗
ið0Þ; ð2:57Þ

where to leading order in the coupling,

Z ¼ 1 −
g2

2ωq

Z
∞

−∞

dq0
2π

P
ρðq0; qÞ

ðωq − q0Þ2
ð2:58Þ

is the wave function renormalization.
If the initial averages hbk⃗ið0Þ ¼ 0; hbk⃗b−k⃗ið0Þ ¼ 0 such

values remain as fixed points of the evolution equations.
However for a “misaligned” initial condition (2.12), (2.9)
yielding the initial averages (2.13), it follows that in the
long time limit the solutions of Eqs. (2.50), (2.51) are,
respectively

hbq⃗iðtÞ ¼ Ze−iδωqte−
γq
2
tΔq⃗; ð2:59Þ

hbq⃗b−q⃗iðtÞ ¼ Z2e−2iδωqte−γqtΔq⃗Δ−q⃗; ð2:60Þ

along with their Hermitian conjugates.
Absorbing δωq into the renormalization of the frequency

and with the initial expectation values given by (2.10),
(2.11), (2.14) we find that the expectation value of the ALP
field is given by

haiðtÞ ¼ e−
γ0
2
t

�
āð0Þ cosðmaRtÞ þ

π̄ð0Þ
maR

sinðmaRtÞ þOðg2Þ
�
;

ð2:61Þ

where maR is now the renormalized ALP mass and we
have neglected (nonsecular) terms of order g2 associated
with the wave function and mass renormalizations.
Equations (2.59), (2.60), (2.61) indicate that the expect-
ation values and off-diagonal coherences decay in time,
leading to a reduced density matrix diagonal in the number
representation, this is the hallmark of decoherence. These
results imply that the damping of the ALP condensate is
directly linked to decoherence.
Neglecting perturbatively small nonsecular terms of

Oðg2Þ in the long time limit yields in this limit

hb†q⃗bq⃗iðtÞ≡ NqðtÞ ¼ Nqð0Þe−γqt þ nðωqÞð1 − e−γqtÞ;

Nqð0Þ ¼ jΔq⃗j2; nðωqÞ ¼
1

eβωq − 1
ð2:62Þ

which describes thermalization, and an exponential
approach to the thermal fixed point of the quantum kinetic
equation.
Taken together, the results given by (2.59)–(2.62) sum-

marize some of the main results from the QME: damping of
the ALP condensate, decoherence and thermalization are
all related, the decoherence rate is the same as the thermal-
ization rate as well as the damping rate of the misaligned
component to the energy density. For t ≫ 1=γq the density
matrix becomes diagonal in the occupation number basis
and the misaligned condensate has relaxed to zero. The
ALP has reached thermal equilibration with the bath.
From Eqs. (2.62), (2.15), and (2.16) we obtain the time

evolution of the ALP energy density neglecting a time
independent zero point contribution, it is given by

EðtÞ ¼ 1

V

X
q⃗

NqðtÞωq

¼ 1

2
½π̄2 þm2

aā2�e−γ0t

þ
Z

d3q
ð2πÞ3 ωqnðωqÞð1 − e−γqtÞ: ð2:63Þ

The first term in (2.63) describes the decay of the
condensate from the misaligned initial state, whereas the
second term describes the thermalization of the ALP
degrees of freedom.
This analysis highlights that the contribution from a

misaligned condensate to the energy density, thermalization
with the bath and decoherence as described by the decay of
the off-diagonal components in the ALP occupation num-
ber pointer basis, all occur on similar timescales, which is
completely determined by the relaxation rate γq.
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The results (2.61), (2.63) are in complete agreement with
those of Ref. [28] which were obtained with a very different
approach based on the nonequilibrium Schwinger-Keldysh
effective action. Furthermore, the general expression for
the frequency renormalization (2.53) and wave function
renormalization (2.58) are also in agreement with the
general results found in Ref. [28] in the strict perturbative
regime, although they cannot reproduce nonperturbative
aspects which are revealed by the effective action and are
discussed in section IV.

A. Decoherence and entropy production

The evolution equations (2.59), (2.60) describe the decay
of the coherences, in other words, the emergence of
decoherence, whereby the density matrix becomes diago-
nal in the pointer basis of the eigenstates of the occupation
number operator b†qbq for t ≫ 1=γq. Furthermore, the
timescale of decoherence is similar to the relaxation rate
of the misaligned component of the energy density and that
of thermalization. Decoherence and the evolution towards a
diagonal reduced density matrix in the occupation number
basis, in turn imply entropy production. At long time when
the off diagonal terms are negligible, and the reduced
density matrix becomes diagonal in the occupation number
basis, with thermal populations, the total entropy becomes

Sð∞Þ¼
X
q

fð1þnðωqÞÞ lnð1þnðωqÞÞ−nðωqÞ lnnðωqÞg:

ð2:64Þ

Since the initial ALP density matrix (2.12) describes a pure
state, hence vanishing entropy, Sð∞Þ > 0 implies entropy
production for the ALP as a consequence of environment-
induced decoherence [52]. This is an important bonus of
the QME which unambiguously describes decoherence via
the decay of the coherences (2.59), (2.60), over the usual
Boltzmann equation approach to thermalization, wherein
entropy production is inferred via Boltzmann’s H-theorem
from the time evolution of a classical HðtÞ function which
inputs solely the occupation number evolution but which
does not have any information on off-diagonal coherence.

III. ALP-PHOTON INTERACTIONS

The results obtained in the previous section are general
up to Oðg2Þ and to all orders in the couplings of the bath
field χ to any other field except for the ALP. Whereas our
study addresses the nonequilibrium dynamics of ALP
fields, the results also apply to any field with an interaction
of the form (2.1) and initial conditions that allow for the
evolution of a coherent condensate [18]. However, although
the results are generic, the relaxation rate γq, frequency and
wave function renormalizations depend on the spectral
properties of the bath correlations.

In this section we focus on ALP interaction with photons
via the coupling

LI ¼ −gaðxÞE⃗ðxÞ · B⃗ðxÞ: ð3:1Þ

We consider the thermal bath of CMB blackbody
radiation of free massless photons, neglecting electromag-
netic interactions with charged leptons and quarks. This
restricts the validity of our treatment to temperatures well
below the masses of these other degrees of freedom and
under conditions when the electron density in particular is
vanishingly small, therefore there is no (gauge invariant)
thermal mass or plasma frequency for the photons. These
conditions are certainly fulfilled in cosmology after recom-
bination at temperatures T ≃ eV when the free electron
density vanishes rapidly and the distribution functions of
quarks and charged leptons are thermally suppressed at
these temperatures.
The spectral density ρðq0; q⃗Þ has been obtained in

Ref. [28] and summarized in Appendix B for consistency
of presentation, it is given by

ρðq0; q⃗Þ ¼
ðQ2Þ2
32π

��
1þ 2

βq
ln

�
1 − e−βω

I
þ

1 − e−βω
I
−

��
ΘðQ2Þ

þ 2

βq
ln
�
1 − e−βω

II
þ

1 − e−βω
II
−

�
Θð−Q2Þ

�
signðq0Þ; ð3:2Þ

where

Q2 ¼ q20−q2; ωðIÞ
� ¼ jq0j�q

2
; ωðIIÞ

� ¼ q�jq0j
2

: ð3:3Þ

and β ¼ 1=T with T the temperature of the radiation bath.
From Eq. (2.55) we obtain the relaxation rate

γqðTÞ ¼ γqð0Þ
�
1þ 2

βq
ln

�
1 − e−βω

I
þ

1 − e−βω
I
−

��
q0¼ωq

;

γqð0Þ ¼
g2m4

a

64πωq
: ð3:4Þ

The zero temperature contribution γqð0Þ is recognized as
the ALP decay rate into two photons [9], whereas the finite
temperature contribution is a consequence of stimulated
emission and absorption processes in the radiation bath. In
the long-wavelength limit we find

γqðTÞ ¼
g2m3

a

64π

�
1þ 2n

�
ma

2

��
; ð3:5Þ

which in the high temperature limit T ≫ ma yields

γqðTÞ ¼
g2m3

a

16π

�
T
ma

�
: ð3:6Þ
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For example, if T corresponds to the temperature of the
cosmic microwave background today T ≃ 10−4 eV the
finite temperature correction yields a very large enhance-
ment over the zero temperature rate if the ALP is an
ultralight candidate with ma ≲ 10−22 eV. A substantial
relaxation rate of the ALP post recombination may yield
important cosmological consequences, for example in
birefringence if it is caused by the coupling of CMB
photons to a pseudoscalar ALP [29–32] (see discus-
sion below).
From the results of Appendix B, the frequency renorm-

alization given by Eq. (2.53) is found to be

δωq ¼ δωð0Þ
q þ δωðTÞ

q ; ð3:7Þ

where δωð0Þ
q is obtained from the T ¼ 0 contribution to the

spectral density (3.2) and by introducing an ultraviolet
cutoff Λ, it is given by

δωð0Þ
q ¼ −

g2

128π2ωq

�
1

2
Λ4 þ 2m2

aΛ2 þ ðm2
aÞ2 ln

�
Λ2e3=2

m2
a

��
:

ð3:8Þ

In Appendix C the finite temperature contribution in the
high temperature limit T ≫ ωq is found to be

δωðTÞ
q ¼−

g2π2T4

30ωq

�
1þ 15m2

a

24π2T2
þOðm4

a=T4Þþ �� �
�
: ð3:9Þ

The frequency renormalization (3.7) is identified as a
temperature dependent mass renormalization by writing
the renormalized frequency Ωq ¼ ωq þ δωq up toOðg2Þ as

Ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

RðTÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
q þ Δm2ðTÞ

q
¼ ωq þ

Δm2ðTÞ
2ωq

þ � � �≡ ωq þ δωq; ð3:10Þ

from which we find the finite temperature renormalized
mass up to Oðg2Þ

m2
RðTÞ ¼m2

Rð0Þ
�
1−

T4

T4
c

�
;

m2
Rð0Þ ¼m2

a −
g2

64π2

�
1

2
Λ4 þ 2m2

aΛ2 þ ðm2
aÞ2 ln

�
Λ2e3=2

m2
a

��
;

ð3:11Þ

where

Tc ≃ 1.11

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mRð0Þ

g

s
; ð3:12Þ

and we kept the leading order in the high temperature limit
T=ma ≫ 1 in the finite temperature correction. The result
(3.11) agrees with Ref. [28] which obtained a similar finite
temperature mass from the nonequilibrium effective action,
and indicates that m2

RðTÞ becomes negative for T > Tc
suggesting a long wavelength instability and the possibility
of an inverted phase transition as discussed in Ref. [28].
However, within the context of the quantum master
equation there is a caveat on this interpretation because
the result for the frequency renormalization has been
obtained in strict perturbation theory and the renormalized
frequency ωq þ δωq does not yield any instability. This
caveat is discussed in more detail in Sec. IV.

IV. DISCUSSION AND CAVEATS

A. Counterrotating terms

In the derivation of the quantum master equation (2.40)
we neglected terms of the form

bq⃗b−q⃗e−2iωqteiωqðt−t0Þ; b†q⃗b
†
−q⃗e

2iωqte−iωqðt−t0Þ: ð4:1Þ

The time integral over t0 can be carried out following the
steps leading to Eq. (2.40) yielding contributions of the
form bq⃗b−q⃗e−2iωqtρ≶ðq0; qÞρ̂IaðtÞ etc. The contribution of
these terms to the equations of motion for linear or bilinear
forms of b; b† are straightforward to obtain, they do not
yield terms that grow secularly in time because the rapid
dephasing of the oscillatory terms average out in the time
integrals. These are nonresonant terms and yield perturba-
tively small subleading contributions of the form
δωq=ωq ≪ 1; γq=ωq ≪ 1 in weak coupling, as compared
to those obtained from Eq. (2.40) which captures the
secular growth in time because of the resonances and
describes the leading behavior in the long time dynamics.

B. Factorization

Factorization of the full density matrix (2.21) is one of
the main assumptions in the derivation of the Lindblad form
of the quantum master equation [33,34]. This assumption
neglects correlations between ALP field and the thermal
bath as discussed above, it may be justified for weak
coupling: assuming an initial factorization, correlations will
build up upon time evolution but will remain perturbatively
small, hence they may be neglected to leading order in the
coupling g. The assumption that the total density matrix
remains factorized with the bath in thermal equilibrium
which remains unaffected by the coupling to the ALP at all
times is consistent with the interpretation of the bath as a
reservoir. However, as the ALP population builds up as a
consequence of thermalization, it is plausible that correla-
tions between the ALP and the bath become stronger as the
ALP population reaches a thermal state, leading up to a
possible breakdown of the factorization assumption. Such a
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scenario merits deeper scrutiny which is beyond the scope
of this study.

C. Nonequilibrium effective action
vs quantum master equation

In Ref. [28] the time evolution of an initial density matrix
was studied by implementing the in-in Schwinger-Keldysh
formulation of nonequilibrium field theory. In this formu-
lation the time evolution is described by the in-in effective
action that leads to a Langevin equation of motion for the
ALP field in terms of the retarded self-energy Σ and a noise
term both related by the fluctuation dissipation relation.
The solution of the Langevin equation of motion inputs the
full propagator including the self-energy correction, and the
(complex) poles in the propagator at

ω2
PðqÞ ¼ ω2ðqÞ þ ΣðωPðqÞ; qÞ; ð4:2Þ

determine the frequency and lifetime of ALP oscillations.
The finite temperature effective mass is obtained from the
real part of the solution of the Eq. (4.2) for q ¼ 0, namely
m2ðTÞ ¼ Re½ω2

Pðq ¼ 0Þ�.
In the case of ALP-photon interaction with the coupling

(3.1), after absorbing the zero temperature, ultraviolet diver-
gent contributions into a definition of the zero temperature
renormalizedmassmaR, the solutionof thepole equation (4.2)
at q ¼ 0 yields precisely the result (3.11) to leading order in
the high temperature expansion T ≫ maR. The finite temper-
ature mass, as properly defined by the position of the pole in
the propagator at zeromomentum, indicates the possibility of
an instability and an inverted phase transition for T > Tc as
advocated in Ref. [28], a conclusion that does not rely on an
expansion near the bare frequency.
In contrast, the quantummaster equation approach yields

a perturbative correction to the bare frequency in the form
ωq þ δωq with a real δωq which obviously does not entail
any instability. The main reason for this discrepancy
between the effective action and the quantum master
equation can be traced to the fact that in the latter approach
the time integrals in (2.30), convolve the spectral repre-
sentations (2.31), (2.32) with the time dependence (2.38)
featuring the external ALP frequency ωq. Therefore, the
rates (2.41)–(2.43) in the Lindblad QME (2.40), are
effectively evaluated at the frequencies ωq yielding strictly
perturbative corrections for the frequency and wave func-
tion renormalizations. At heart, this is a consequence of the
perturbative nature of the QME in interaction picture.
Another important difference with the nonequilibrium

effective action, is that as found in Ref. [28], the zero
temperature contribution to the real part of the self energy is

Σð0Þ
R ðω; qÞ ¼ −

g2

64π2

�
1

2
Λ4 þ 2Q2Λ2 þ ðQ2Þ2 ln

�
Λ2e3=2

jQ2j
��

;

Q2 ¼ ω2 − q2; ð4:3Þ

where the logarithmic divergence multiplying ðQ2Þ2
implies that the renormalized effective action requires a
new higher derivative term ∝ ð∂μ∂μÞ2a2ðxÞ to absorb the
logarithmic divergence from the self-energy. This is a
consequence of the nonrenormalizable interaction (3.1)
since the coupling g has dimensions of ðenergyÞ−1.
In contrast, the QME yields the frequency renormaliza-

tion δωð0Þ
q (3.8), which is proportional to the real part of the

self-energy (4.3) evaluated on the (bare) mass shell, namely
for Q2 ¼ m2

a. Again this is a consequence of the time
integrals leading to the QME in Lindblad form, and can be
traced to the interaction picture representation of the
density matrix.
Therefore, the QME confirms the damping of the

misaligned ALP condensate, thermalization, and that the
ALP energy density features a mixture of a “cold”
component from the damped misaligned condensate and
a “hot” component from thermalization, and that damping
of the cold and thermalization of the hot components and
decoherence occur on similar timescales.
An instability and possible phase transition cannot be

captured by the QME which relies on a perturbative
expansion in interaction picture field theory, assuming a
well-defined mass shell and stable oscillations of the
various degrees of freedom. An instability will lead to a
breakdown of most approximations: certainly the Markov
and rotating wave approximations, since the former relies
on a wide separation of timescales and the second on well
defined mass shells associated with the oscillation frequen-
cies. Therefore, an instability associated with a possible
phase transition and novel phases for T > Tc is well
beyond the realm of validity of the QME and should not
be expected to be described reliably by it.
While the QME cannot directly confirm the possibility of

an inverted phase transition and the emergence of exotic
phases both described by the Schwinger-Keldysh effective
action and truly nonperturbative aspects, it does allow to
understand the sources of these discrepancies in strict
perturbation theory.
An important advantage of the QME is that it allows to

obtain the time evolution of coherences and populations in
a more direct manner thereby establishing that thermal-
ization and decoherence with the concomitant entropy
production occur on similar timescales.

D. On the similarity of timescales

An important result is that the timescales of damping of
the condensate (2.61), decoherence (2.60), and thermal-
ization (2.62) are all very similar and simply related. This
similarity originates in the form of the Lindblad QME,
Eq. (2.40), which solely inputs bilinears of the form b†qbq
(one annihilation and one creation operator), and this form
of the QME unequivocally leads to the quantum kinetic
equations (2.49)–(2.51) whose solutions display the time-
scales of damping, decoherence, and thermalization in
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terms of the same function ΓkðtÞ. In turn, the particular
form of the Lindblad QME is a consequence of the linear
coupling of the axion to the composite operators Oχ as
described by the Lagrangian density (2.1). Although we
have not studied nonlinear axion couplings, it is quite
possible that in the case of nonlinear couplings the time-
scales could be quite different. Investigating this possibility
would merit further study beyond the scope of our
objectives.

E. Possible cosmological consequences

Although we have studied the nonequilibrium dynamics
of ALP’s in Minkowski space time, the results allow us to
provide a preliminary extrapolation to cosmology.
A pseudoscalar ALP coupled to photons as in Eq. (3.1)

leads to cosmic birefringence, namely a frequency inde-
pendent rotation (in contrast to Faraday rotation) in the
polarization angle Ψ between the surface of last scattering
and today [29–32]. For a homogeneous misaligned con-
densate slowly varying in time haiðtÞ such a change is
given by [29]

ΔΨ ¼ g
2
ðhaiðtLSSÞ − haiðt0ÞÞ: ð4:4Þ

The amplitude of the misaligned condensate decays as a
consequence of the ALP interaction with the CMB pho-
tons, therefore the condensate is decaying during the
cosmological expansion since recombination, and as
described above the ALP fluctuations are thermalizing
with the radiation bath on similar timescales. This hitherto
unappreciated fact has important consequences.
If the lifetime 1=γðTÞ ≪ 1=H0 the amplitude of the

condensate haiðt0Þ ≃ 0, however, the ALP thermalizes on
the same timescale as the condensate decays, therefore, if
the misaligned condensate has completely decayed
between the surface of last scattering and today, we
conjecture that the fluctuations of Ψ would feature a
thermal power spectrum as a consequence of thermalization
of axion fluctuations with the CMB.
This conjecture is motivated precisely by the similarity

of the condensate damping and thermalization timescales
revealed by the Lindblad QME. The arguments in Ref. [29]
leading up to the result (4.4) hinge on the change in the
photon frequency for the different polarizations as a
consequence of the coupling to the axion condensate,
namely the expectation value of the axion field.
However, as the solution from the Lindblad QME shows,
the fluctuations of the axion thermalize on the same
timescale as damping of the condensate, therefore we
expect that the polarization angle will feature thermal
fluctuations, since it is modified by the axion field.
Rather than focusing solely on the change in frequency
for the different polarization as a consequence of the
dynamical axion condensate, the dynamics of the

polarization post recombination should be described by
the Stokes parameters which involve combinations of the
transverse components of the electric field squared. At the
quantum level the electric field is associated with a
quantum operator, whose Heisenberg equation of motion
involves the full axion field [29–32] both its expectation
value as well as the fluctuating component. Therefore we
conjecture that the square of the electric field operator will
depend on the square of the axion field which includes
the fluctuations of the axion field. As described by the
Lindblad QME the fluctuations thermalize with the CMB
on the same timescale as the mean-field (expectation value)
decays. Hence, this reasoning leads us to expect that
fluctuations in the Stokes parameters, which describe the
polarization field, should feature a thermal spectrum. At
this stage, this remains as a plausible conjecture which
merits deeper scrutiny on its own, which, however, is well
beyond the original scope of this article.
If the ALP lifetime is much shorter and the misaligned

condensate decays prior to the last scattering surface, then it
has reached full thermalization with the CMB and if it is an
ultralight darkmatter candidate it contributes to the effective
number of ultrarelativistic degrees of freedom. If the lifetime
is of the order of 1=H0 then the ALP contributes as “mixed”
dark matter, with a cold component with weight e−γðTÞ=H0

and a hot (thermal) component with weight ð1 − e−γðTÞ=H0Þ.
This latter possibility opens a window to an interesting
scenario, where the cold dark matter component would
dominate at earlier time during galaxy formation and the hot
component would dominate later, with a larger velocity
dispersion, hence a larger free streaming length, featuring a
crossover between cold and hot components on timescales
that depend on the coupling and ALP mass. This scenario
brings interesting and hitherto unexplored consequences for
galaxy formation that merit further study.

V. CONCLUSIONS AND FURTHER QUESTIONS

We studied the nonequilibrium dynamics of ALP’s
motivated by the possibility that these particles belonging
to a sector beyond the Standard Model may be suitable dark
matter candidates. A hallmark of ALP’s is their coupling to
pseudoscalar composite operators associated with Standard
Model degrees of freedom, and in particular their coupling
to electromagnetism may lead to cosmic birefringence,
namely the rotation of the plane of polarization of the CMB
with tantalizing possibilities of detection. In this article we
consider generic couplings of the ALP field [aðxÞ] of the
form gaðxÞOχðxÞ where OχðxÞ are pseudoscalar composite
operators of Standard Model degrees of freedom (χ)
assumed to be a bath in thermal equilibrium, and derive
a quantum master equation that describes the time evolu-
tion of the ALP reduced density matrix upon tracing the χ
degrees of freedom. The QME is obtained up to Oðg2Þ but
to all orders in the coupling of the χ (Standard Model)
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degrees of freedom to any other degree of freedom within
or beyond the Standard Model except for the ALP. The
initial ALP density matrix allows for a misaligned con-
densate. The QME describes the damping of the misaligned
condensate, thermalization with the bath and decoherence,
namely the damping of the off-diagonal reduced density
matrix elements in the occupation number basis within a
unified framework.
The ALP time dependent energy density EðtÞ features two

components: a cold (c) component from the misaligned
condensate and a hot (h) component from thermalization
with the bath, with EðtÞ ≃ Ece−γðTÞt þ Ehð1 − e−γðTÞtÞwhere
the relaxation rate γðTÞ also describes the decoherence rate.
Therefore, the damping of the misaligned condensate energy
density, the approach to thermalization with the bath and
decoherence all occur on the same timescales. We focus on
the particular example of the ALP coupling to electromag-
netism whereOχðxÞ ¼ E⃗ðxÞ · B⃗ðxÞwhere the radiation field
describes the CMB post recombination. The long wave-
length relaxation rate is enhanced by emission and absorp-
tion in the photon bath and at high temperature T ≫ ma and

in the long wavelength limit is given by γðTÞ ¼ g2

16πm
2
aT

featuring a substantial enhancement over the zero temper-
ature rate. These results are in agreement with those of
Ref. [28] but obtained with an independent method.
The time dependence of the energy density suggests that if

the ALP is a dark matter candidate and interacts with
Standard Model degrees of freedom in (local) thermal
equilibrium, it provides a “mixed” dark matter scenario
where the “warmth” depends on time: at earlier times it
describes a cold darkmatter component and at late times a hot
component, with potentially profound implications on gal-
axy formation. If theALP is an ultralight candidate, and if the
misaligned condensate has completely decayed prior to the
last scattering surface the thermal component contributes to
the effective number or ultrarelativistic degrees of freedom. If
its lifetime is smaller than the Hubble time, γðTÞ ≪ 1=H0,
the misaligned condensate is decaying at least since after
recombination and thermalizing with the CMB on similar
timescales. Therefore, if cosmic birefringence is a conse-
quence of the coupling of photons to a pseudoscalar ALP, the
rotation angle since the last scattering surface should include
thermal features in its fluctuation spectrum.
These extrapolations to the cosmological setting must be

taken as indicative based on the results in Minkowski space
time. The next step of the program is to include cosmo-
logical expansion and assess if and how it modifies the
conclusions above, we expect to report on this aspect in
forthcoming studies.
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APPENDIX A: ENVIRONMENTAL
CORRELATION FUNCTIONS: LEHMANN
AND SPECTRAL REPRESENTATIONS

The dynamics and dissipative processes depend on
the correlation functions G≶ of the environment in
Eqs. (2.24)–(2.26).
Because the bath is in thermal equilibrium, its initial

density matrix is ρχð0Þ ¼ e−βHχ=Tre−βHχ which is space-
time translationally invariant, and the Heisenberg picture
operators associated with the bath are given by Oχðx⃗; tÞ ¼
eiHχ tOχðx⃗; 0Þe−iHχ t we can write

G>ðx⃗ − x⃗0; t − t0Þ ¼ hOχðx⃗; tÞOχðx⃗0; t0Þiχ
¼

Z
d4k
ð2πÞ4 ρ

>ðk⃗; k0Þe−ik0ðt−t0Þeik⃗·ðx⃗−x⃗0Þ

ðA1Þ

G<ðx⃗ − x⃗0; t − t0Þ ¼ hOχðx⃗0; t0ÞOχðx⃗; tÞiχ
¼

Z
d4k
ð2πÞ4 ρ

<ðk⃗; k0Þe−ik0ðt−t0Þeik⃗·ðx⃗−x⃗0Þ:

ðA2Þ

These representations are obtained by writing Oχðx⃗; tÞ ¼
eiHχ te−iP⃗·x⃗Oχð0⃗; 0Þe−iHχ teiP⃗·x⃗ and introducing a complete
set of simultaneous eigenstates of Hχ and the total

momentum operator P⃗, ðHχ ; P⃗Þjni ¼ ðEn; P⃗nÞjni, from
which we obtain the following Lehmann representations,

ρ>ðk0; k⃗Þ ¼
ð2πÞ4
Tre−βHχ

X
m;n

e−βEn jhnjOχð0⃗; 0Þjmij2

× δðk0 − ðEm − EnÞÞδðk⃗ − ðPm − PnÞÞ ðA3Þ

ρ<ðk0; k⃗Þ ¼
ð2πÞ4
Tre−βHχ

X
m;n

e−βEn jhmjOχð0⃗; 0Þjnij2

× δðk0 − ðEn − EmÞÞδðk⃗ − ðPn − PmÞÞ: ðA4Þ

Upon relabeling m ↔ n in the sum in the definition (A4)
and recalling that Oχ is a Hermitian operator, we find the
Kubo-Martin-Schwinger relation [51]

ρ<ðk0; kÞ ¼ ρ>ð−k0; kÞ ¼ e−βk0ρ>ðk0; kÞ: ðA5Þ

The spectral density is defined as

ρðk0; kÞ ¼ ρ>ðk0; kÞ − ρ<ðk0; kÞ ¼ ρ>ðk0; kÞ½1 − e−βk0 �
ðA6Þ

therefore
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ρ>ðk0; kÞ ¼ ρðk0; kÞ½1þ nðk0Þ�;
ρ<ðk0; kÞ ¼ ρðk0; kÞnðk0Þ; ðA7Þ

where

nðk0Þ ¼
1

eβk0 − 1
: ðA8Þ

Furthermore, from the first equality in (A5) it follows that

ρð−k0; kÞ ¼ −ρðk0; kÞ; ðA9Þ
ρðk0; kÞ > 0 for k0 > 0: ðA10Þ

We emphasize that these are exact relations, the
“environmental” fields χ may be coupled to other fields,
for example, in the case of the ALP interaction with the
electromagnetic fields, the gauge field also interacts with
electrons, charged leptons, and quarks. The Lehmann
representations (A3), (A4) are nonperturbative and unam-
biguously yield the relations (A5)–(A10) which are gen-
eral, nonperturbative statements relying on thermal
equilibrium and space-time translational invariance and
do not depend on these couplings.

APPENDIX B: SPECTRAL DENSITY FOR E⃗ · B⃗
CORRELATION FUNCTIONS

We begin with the quantization of the gauge field within
a volume V eventually taken to infinity,

A⃗ðxÞ ¼ 1ffiffiffiffi
V

p
X

k⃗;λ¼1;2

ϵ̂k⃗;λffiffiffiffiffi
2k

p ½dk⃗;λe−ik·x þ d†
k⃗;λ
eik·x�; ðB1Þ

where ϵ̂k⃗;λ are the transverse polarizaton vectors chosen to
be real. From Eqs. (A1) and (A2) we need the correlation
functions

G>ðx − yÞ ¼ hE⃗ðxÞ · B⃗ðxÞE⃗ðyÞ · B⃗ðyÞi; ðB2Þ

G<ðx−yÞ¼ hE⃗ðyÞ · B⃗ðyÞE⃗ðxÞ · B⃗ðxÞi¼G>ðy−xÞ; ðB3Þ

where we now refer to hð� � �Þi as averages in the thermal
density matrix of free field photons.
In the thermal ensemble the expectation value hE⃗ðxÞ ·

B⃗ðxÞi ¼ 0 by parity invariance. Using Wick’s theorem, the
ðE⃗ · B⃗Þ correlation function becomes

hE⃗ðxÞ · B⃗ðxÞE⃗ðyÞ · B⃗ðyÞi ¼
X
i;j

fhEiðxÞEjðyÞihBiðxÞBjðyÞi

þ hEiðxÞBjðyÞihBiðxÞEjðyÞig:
ðB4Þ

A straightforward calculation yields

hEiðxÞEjðyÞi ¼ hBiðxÞBjðyÞi

¼ 1

2V

X
k⃗

kðδij − ˆk⃗
i ˆk⃗

jÞ

× ½ð1þ nðkÞÞe−ik·ðx−yÞ þ nðkÞeik·ðx−yÞ�;
ðB5Þ

similarly

hEiðxÞBjðyÞi ¼ −hBiðxÞEjðyÞi

¼ −
1

2V

X
k⃗

kðϵ̂i
k⃗;1
ϵ̂j
k⃗;2

− ϵ̂i
k⃗;2
ϵ̂j
k⃗;1
Þ

× ½ð1þ nðkÞÞe−ik·ðx−yÞ þ nðkÞeik·ðx−yÞ�;
ðB6Þ

where nðkÞ ¼ 1=ðeβk − 1Þ. Combining the two terms in
(B4) we find

G>ðx−yÞ¼ 1

4V2

X
k⃗

X
p⃗

kpð1− ˆ⃗k · ˆ⃗pÞ2

×f½ð1þnðkÞÞe−ik·ðx−yÞ þnðkÞeik·ðx−yÞ�
× ½ð1þnðpÞÞe−ip·ðx−yÞ þnðpÞeip·ðx−yÞ�g: ðB7Þ

Expanding the product, we perform the following change
of variables in the various terms:
(1) in the term nðkÞnðpÞ: k⃗ → −k⃗; p⃗ → −p⃗;
(2) in the term with ð1þ nðkÞÞnðpÞ: p⃗ → −p⃗;
(3) in the term with nðkÞð1þ nðpÞÞ: k⃗ → −k⃗.
Taking the infinite volume limit with ð1=VÞPq⃗ →R
d3q=ð2πÞ3 we obtain

G>ðx − yÞ ¼
Z

dq0
2π

Z
d3q
ð2πÞ3 ρ

>ðq0; qÞe−iq0ðt−t0Þeiq⃗·ðx⃗−y⃗Þ;

ðB8Þ
where

ρ>ðq0; qÞ ¼
π

2

Z
d3k
ð2πÞ3 kjq⃗ − k⃗j

��
1 −

k⃗
k
·
q⃗ − k⃗

jq⃗ − k⃗j

�
2

½ð1þ nðkÞÞð1þ nðjq⃗ − k⃗jÞÞδðq0 − k − jq⃗ − k⃗jÞ

þ nðkÞnðjq⃗ − k⃗jÞδðq0 þ kþ jq⃗ − k⃗jÞ� þ
�
1þ k⃗

k
·
q⃗ − k⃗

jq⃗ − k⃗j

�
2

½ð1þ nðkÞÞnðjq⃗ − k⃗jÞδðq0 − kþ jq⃗ − k⃗jÞ

þ nðkÞð1þ nðjq⃗ − k⃗jÞÞδðq0 þ k − jq⃗ − k⃗jÞ�
�
: ðB9Þ
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Writing

G<ðx − yÞ ¼
Z

dq0
2π

Z
d3q
ð2πÞ3 ρ

<ðq0; qÞe−iq0ðt−t0Þeiq⃗·ðx⃗−y⃗Þ;

ðB10Þ
and using the relation (B3) we find that ρ<ðq0; q⃗Þ ¼
ρ>ð−q0;−q⃗Þ, however the sign change in q⃗ can be compen-
sated by k⃗ → −k⃗ inside the k-integral with the final result

ρ<ðq0; q⃗Þ ¼ ρ>ð−q0; q⃗Þ; ðB11Þ
furthermore, using the identity ð1þ nðwÞÞ ¼ eβwnðwÞ and
using the various delta functions in the definition of ρ> we
find

ρ<ðq0; q⃗Þ ¼ e−βq0ρ>ðq0; q⃗Þ; ðB12Þ

which is the Kubo-Martin-Schwinger relation [51], thereby
confirming the general results (A5). The spectral density is
given by [see Eq. (A6)] ρðq0; qÞ ¼ ρ>ðq0; qÞ − ρ<ðq0; qÞ
with

ρðq0;qÞ¼
π

2

Z
d3k
ð2πÞ3

1

kw
fðkwþk2− k⃗ · q⃗Þ2½1þnðkÞþnðwÞ�

×ðδðq0−k−wÞ−δðq0þkþwÞÞ
þðkw−k2þ k⃗ · q⃗Þ2ðnðwÞ−nðkÞÞ
×ðδðq0−kþwÞ−δðq0þk−wÞÞg;
w¼jq⃗− k⃗j: ðB13Þ

The spectral density is calculated by implementing the
following steps:

Z
d3k
8π3

¼
Z

∞

0

k2
dk
4π2

dðcosðθÞÞ;

w ¼ jq⃗ − k⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ k2 − 2kq cosðθÞ

q
;

dðcosðθÞÞ
w

¼ −
dw
kq

: ðB14Þ

Carrying out the integrations, which are facilitated by the
delta function constraints we find

ρðq0; q⃗Þ ¼
ðQ2Þ2
32π

��
1þ 2

βq
ln

�
1 − e−βω

I
þ

1 − e−βω
I
−

��
ΘðQ2Þ

þ 2

βq
ln

�
1 − e−βω

II
þ

1 − e−βω
II
−

�
Θð−Q2Þ

�
signðq0Þ; ðB15Þ

where

Q2¼q20−q2; ωðIÞ
� ¼ jq0j�q

2
; ωðIIÞ

� ¼q�jq0j
2

: ðB16Þ

APPENDIX C: FINITE TEMPERATURE
CONTRIBUTION TO δωq

δωðTÞ
q ¼ g2T

64π2qωq
P
Z

∞

−∞

ðq20 − q2Þ2
ωq − q0

ln

�
1 − e−βωþ

1 − e−βω−

�
dq0

≡ g2T
64π2qωq

IðqÞ; ω� ¼
				 q� q0

2

				: ðC1Þ

Since the argument of the logarithm is odd under
q0 → −q0, it follows that I can be written as

IðqÞ ¼ P
Z

∞

0

2q0ðq20 − q2Þ2
q20 − ω2

q
ln

�
1 − e−

β
2
jq0−qj

1 − e−
β
2
ðq0þqÞ

�
dq0: ðC2Þ

Using the results

Z
∞

0

xn ln½1 − e−ðxþyÞ�dx ¼ −Γðnþ 1ÞLi2þnðe−yÞ ðC3Þ

Z
∞

0

xn ln½1 − e−jx−yj�dx

¼ ð−1ÞnΓðnþ 1ÞLinþ2ðe−yÞ

− 2
X½n2�
i¼0

�
n

2i

�
Γð1þ 2iÞζð2þ 2iÞyn−2i; ðC4Þ

where Li is the polylogarithm, along with the identities

P
Z

∞

0

dx
xþ z

�
−
1

n
e−nðxþyÞ

�
¼ 1

n
e−nðy−zÞEið−nzÞ ðC5Þ

P
Z

k

0

dx
xþ z

�
−
1

n
e−nðk−yÞ

�

¼ −
1

n
e−nðyþzÞ½−EiðnzÞ þ Eiðnðyþ zÞÞ� ðC6Þ

P
Z

∞

k

dx
xþ z

�
−
1

n
e−nðx−yÞ

�
¼ 1

n
enðkþzÞEið−nðyþ zÞÞ;

ðC7Þ

and the representation of the exponential integral function

EiðxÞ ¼ γ þ lnðjxjÞ þ
X∞
n¼1

xn

nn!
; ðC8Þ

where γ is Euler’s constant, we find in the high temperature
limit T ≫ ωq

δωðTÞ
q ¼−

g2π2T4

30ωq

�
1þ 15m2

a

24π2T2
þOðm4

a=T4Þþ �� �
�
: ðC9Þ
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