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In the procedure of constraining the cosmological parameters with the observational Hubble data (OHD),
the combination of masked autoregressive flow (MAF) and denoising autoencoder (DAE_ can perform with
good result. The above combination extracts the features from OHD with DAE, and estimates the posterior
distribution of H0, Ωm, ΩΛ with MAF. We ask whether we can find a better tool to compress large data in
order to gain better results while constraining the cosmological parameters. Information maximizing neural
networks (IMNN), a kind of simulation-based machine learning technique, was proposed at an earlier time. In
a series of numerical examples, the results show that IMNN can find optimal, nonlinear summaries robustly.
In this work, wemainly compare the dimensionality reduction capabilities of IMNN and DAE.We use IMNN
and DAE to compress the data into different dimensions and set different learning rates for MAF to calculate
the posterior. Meanwhile, the training data and mock OHD are generated with a simple Gaussian likelihood,
the spatially flat ΛCDM model and the real OHD data. To avoid the complex calculation in comparing the
posterior directly, we set different criteria to compare IMNN and DAE.

DOI: 10.1103/PhysRevD.107.063517

I. INTRODUCTION

Constraining cosmological parameters is a basic task in
cosmology. To evaluate the parameters, the common
method is to calculate an intractable likelihood directly
to perform Bayesian inference with the existing observa-
tional datasets, e.g., observational Hubble parameter data
(OHD, [1]), type Ia supernovae (SNe Ia, [2]), cosmic
microwave background [2], and large-scale structures
[3,4]. Approximate Bayesian computation (ABC) has also
shown good performance in many astronomical tasks, such

as galaxy evolution [5] and SN Ia cosmology [6].
Nevertheless, according to [7], conventional ABC algo-
rithms may suffer from noisy computations.
In the past few decades, the artificial neural networks

(ANN) developed rapidly and were gradually used to
constrain the cosmological parameters [8–11]. Recently, a
likelihood-free inference procedure using a denoising
autoencoder (DAE) and masked autoregressive flow
(MAF) was proposed by us [12]. In our previous work,
the combination of MAF and DAE was compared to
MCMC, which is the Markov Chain Monte Carlo method,
and behaved well in calculating the posterior distribution
[PðθjHobsÞ] ofΩΛ, Ωm, andH0. We proved that MAF could
give similar results as MCMC, which means that at least
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MAF could be the substitute while we estimate the cosmo-
logical parameters. MAF was proposed by [13], in their
several experiments, MAF gave accurate estimations of
distributions and did well in likelihood-free inference
[14]. DAE [15] is an ANN that can encode data by extracting
the data features. With the DAE, we can obtain low-
dimensional representative features of the input data without
an artificial choice of statistics.
The higher-dimensional data from simulation or com-

putational resources is inevitable in likelihood-free infer-
ence. For this reason, we need to find a good tool to reduce
the dimensionality of data. At an earlier time, [16] proposed
a kind of ANN named “information maximizing neural
networks” (IMNNs), which can transform data into sum-
maries by maximizing the Fisher information at fiducial
values. In the examples proposed by [16,17], IMNN
performed well in finding the informative data summaries,
which means maybe we can test whether IMNN can be a
substitute for DAE.
In this work, we attempt to compare the dimensionality

reduction capabilities of IMNNandDAE.Like the procedure
of constraining cosmological parameters applied by [12], we
use DAE and IMNN to reduce the higher-dimensional OHD
data and then use MAF to estimate the distributions of
cosmological parameters with the low-dimensional features.
Besides, we also estimate the distribution, which will be
treated as the standard distribution, with MAF and the
original-dimensional OHD data. In the rest of this article,
we use MAF-IMNN to represent the combination of MAF
and IMNN, and MAF-DAE to represent the combination of
MAF and DAE. In Sec. II, we review the procedure of
cosmological constraints using MAF-DAE. In Sec. III, we
discuss the theory of IMNN. In Sec. IV, we will show the
results of constraint withOHD in different ways, and explore
the possibility of evaluating parameterswithMAF-IMNN. In
Sec. V, we compare the DAE and IMNN with different
criteria. Finally, in Sec. VI, we conclude and discuss.

II. MAF-DAE FOR PARAMETER CONSTRAINT

MAF, the combination of normalizing flow and masked
autoencoder for distribution estimation (MADE [18], one
kind of autoregressive model), was proposed by [13].
MADE and normalizing flows are two kinds of neural
density estimators, which can estimate the density distri-
bution of the parameters.
With the MADE, the conditional distribution PðxjyÞ can

be written in the form:

PðxjyÞ ¼
Y
d

Pðxdjx1∶d−1; yÞ; ð1Þ

where x1∶d−1 ¼ ðx1; x2;…; xd−1Þ, which means x has d
dimensions. And then Eq. (1) will be parametrized into
Gaussian distribution, the mean and the log standard
deviation will be calculated by the neural network. In

other words, we can obtain the parameters of all of these
conditional distributions. The concise structure of the
MADE is shown in Fig. 1.
According to the normalizing flows [19], the density

PðxÞ can be obtained from a base density πuðuÞ with an
invertible differentiable transformation f:

PðxÞ ¼ πuðf−1ðxÞÞ
���� det

�
∂f−1

∂x

�����; ð2Þ

where u ¼ f−1ðxÞ and u ∼ πuðuÞ {usually πuðuÞ is a
standard Gaussian distribution [u ∼N ð0; IÞ]}. With the
normalizing flows and autoregressive models, each of
the conditionals Pðxdjx1∶d−1; yÞ can be parametrized as
Gaussian distribution. In this case, the dth conditional is

Pðxdjx1∶d−1Þ ¼ N ðxdjμd; ðexp αdÞ2Þ; ð3Þ

πðudÞ ¼ N ðud; 0; 1Þ; ð4Þ

and

xd ¼ fdðud; αd; μdÞ ¼ expðαdÞud þ μd: ð5Þ

The unconstrained scalar functions μi ¼ fμiðx1∶i−1Þ and
αi ¼ fαiðx1∶i−1Þ compute the mean and log standard,
respectively.

FIG. 1. The concise structure of the MADE. The blue lines
mean full connection. The black lines and the red lines mean a set
of connections is removed ensuring that MADE satisfies the
autoregressive property. In autoregressive property, a unit can
only connect to one more advanced unit. To explain the MAF, we
only draw 5His (the OHD) correlating to 3 θis (ΩΛ, Ωm, andH0)
in this figure, but in this work we actually applied 31 His.
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When doing the cosmological inference, we can re-
present x as the θ in the Hubble parameters such asΩΛ,Ωm,
H0, and represent y asHobs. In this case θi can be written in
the form:

θi ¼ ui expðαiÞ þ μi; ð6Þ

PðθÞ ¼ πuðf−1ðθÞÞ
���� det

�
∂f−1ðθÞ

∂θ

�����; ð7Þ

where μi ¼ fμiðθ1∶i−1Þ; αi ¼ fαiðθ1∶i−1Þ, and ui ∼N ð0; 1Þ,
so with the MADE we can get the θ ¼ fðu;HÞ where
u ∼N ð0; IÞ. A single MADE may not fit the distribution
well, which means that the corresponding random numbers
u ¼ f−1ðθ;HÞ transformed from the training data θ were
not standard Gaussian (Also θ ¼ fðu;HÞ). To improve the
performance of MADE, we can stack several MADEs as a
normalizing flow. According to [13], masked autoregres-
sive flow (MAF) is the implementation of stacking MADEs
into a flow. The loss function of MAF is defined by the
negative log probability:

L ¼ −
X
n

lnPðθnjHnÞ: ð8Þ

where n means the nth data in the training data.
The training set of the MAF should be the fθn;Hng,

where the θ means ΩΛ, Ωm, and H0, and H means different
dimensional mock OHD. In this work, we trained MAF to
find the correlation between θ and H (5-dimensional H,
10-dimensional H, 15-dimensional H, 20-dimensional H,
31-dimensional H). After training, MAF can be used to
estimate the PðθjHobsÞ with Hobs, which is in its
own 31-dimension or being compressed into 20-dimension,
15-dimension, 10-dimension, and 5-dimension. The input
of a trained MAF is a set of Hobs, while the output is
100000 (we can also set another number such as 10000,
50000.) sets of ΩΛ;Ωm and H0, which can be used to
calculated the PðθjHobsÞ directly. Certainly, we can also
input Hfid and calculate the PðθjHfidÞ.

A. Denoising autoencoders (DAE)

DAE is a special kind of autoencoder. A basic autoen-
coder is in a special neural network architecture, which is
composed of an encoder and a decoder, can learn efficient,
lower-dimensional codings of the input data. The autoen-
coder is trained with unsupervised learning to obtain
lower-dimensional features of the input data by encoder.
In the output part of the autoencoder (decoder), the lower-
dimensional features can be reconstructed to original-
dimensional data. Therefore, the input layer has the same
number of neurons as the output layer. The training of the
autoencoder is to minimize the error between the input
and the output. The concise structure of the autoencoder is
shown in Fig. 2.

DAE is trained with noise-free reconstruction criterion
and noisy inputs, so that it can not only extract the robust
features from the input data but also significantly reduce the
noise. In this work, the DAE was trained with noise-free
fiducial values Hfid as labels and noisy simulated data H as
the inputs in order to reduce the noise level of the Hobs and
preserve more information. After training, DAE can com-
press Hobs to low-dimensional y [y ¼ feðHÞ]. Usually, an
autoencoder is trained by minimizing the reconstruction
error, i.e., the mean squared error (MSE) between recon-
structed dataH0 and the labelHfid. However, to make sure y
may contain more information about θ and avoid giving too
big variance of PðyjθÞ, our previous work [12] proposed a
complete batch loss function to require the mean of the
conditional PðyjθÞ relies linearly on θ. The loss function
consists of reconstruction MSE and encoding variance:

LAE ¼ meanfðX0 − XfidÞ ∘ ðX0 − XfidÞg
þ varfY −ΘΘþYg; ð9Þ

where

Xfid ¼

0
BBBBBB@

HT
fid;1

HT
fid;2

:

:

:

1
CCCCCCA
; Xfid ¼

0
BBBBBBBBB@

H0T
1

H0T
2

..

.

..

.

..

.

1
CCCCCCCCCA

ð10Þ

and

FIG. 2. The concise structure of the autoencoder and the
procedure of compressing data. An autoencoder consists of an
encoder and a decoder. With the encoder, the input H can be
compressed into lower-dimensional y, so the information in H
can be represented by y. With the decoder, y can be reconstructed
to original-dimensional H0. Usually, we train the autoencoder by
minimizing the error between H and H0.

TEST OF ARTIFICIAL NEURAL NETWORKS IN LIKELIHOOD- … PHYS. REV. D 107, 063517 (2023)

063517-3



Y ¼

0
BBBBBBBBB@

yT1
yT2

..

.

..

.

..

.

1
CCCCCCCCCA
; Θ ¼

0
BBBBBBBBB@

1θT1
1θT2

..

.

..

.

..

.

1
CCCCCCCCCA
: ð11Þ

The Θþ in Eq. (9) is the pseudoinverse (Moore-Penrose
inverse) of Θ. In this way, the loss function can be easily
evaluated on the training set. In this work, we stick with this
training method.

B. The simulated data

The real OHD is composed of zi; HðziÞ and σi, where zi
is the redshift, and HðziÞ is the corresponding Hubble
parameter and σi is the corresponding uncertainty. The 31
OHD data we use in this work are evaluated with the
cosmic chronometer method, which are given in [20–
23,23,24], [25,26], and are shown in Fig. 3. Based on
the real data, we can generate training data and constrain
parameters with ANNs.
According to the flat ΛCDM model, the Hubble param-

eter is expressed by redshift z with the simple formula:

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

q
; ð12Þ

where the H0 is the Hubble constant, or the nonflat ΛCDM
model:

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ þΩkð1þ zÞ2

q
: ð13Þ

The parameters H0;Ωm;ΩΛ in Eqs. (12) and (13)
are randomly sampled from the range [0, 100], [0, 1],
and [0, 1]. As illustrated in [12], when hard boundaries are
added to the prior, the new posterior is almost the same as

the original one, provided that the boundaries encloses the
likely region of the posterior. Therefore, there is no special
requirement for the sampling interval. With the random
sampled parameters, as well as the z ¼ zi from the 31 OHD
data, the HfidðziÞ can be easily obtained by Eqs. (12) and
(13). Finally, by sampling the ΔHi in N ð0; σ2i Þ [12,27,28],
we can obtain the with the formula:

Hmoc;i ¼ HfidðziÞ þ ΔHi: ð14Þ

The training data, which consists of the simulated Hsim;i

and the corresponding θ ¼ (H0;Ωm;ΩΛ), should be large
enough to train the ANNs, so we also set 8000 training data
like [12]. We show one set of the training data in Fig. 4.
Furthermore, in order to make a comprehensive compari-
son, we also simulate a new kind of mock OHD and
training data by narrowing the range of the corresponding
uncertainty in the Gaussian sample. One set of the mock
OHD is shown in Fig. 5.

FIG. 3. The 31 real OHD datapoints and spatially flat ΛCDM
model.

FIG. 4. 31 mock datapoints are made with spatially flat ΛCDM
model and the Gaussian sample. The mock OHD is based on the
real OHD.

FIG. 5. The new mock OHD is also based on the real OHD.
Because of the small range of the corresponding uncertainty in
the Gaussian sample, the new mock 31 data points basically fit
the flat ΛCDM model.
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C. The procedure of constraining parameters

The procedure of constraining ΩΛ, Ωm, H0 with MAF-
DAE is summarized as below: (1) Generating 8000 training
data fθ;Hg and training a DAE with the training data;
(2) Generating another set of training data and encoding the
Hsim with the trained DAE to get lower-dimensional Hsim;
(3) Training a MAF with the lower-dimensional Hsim and
corresponding parameters θ; (4) Encoding the real 31 OHD
with the DAE and inputting the lower-dimensional OHD to
the MAF to estimate the posterior distribution PðθjHobsÞ.

III. MAF-IMNN FOR PARAMETER CONSTRAINT

According to the method evaluating the parameters with
MAF-DAE mentioned above, we apply a similar procedure
to constrain the cosmological parameters with MAF-IMNN
in this paper. The procedure is summarized as below:
(1) Generating training data fθ;Hgwith the samemodel and
training a IMNN; (2) Generating 8000 training data and
encoding the Hsim with the trained IMNN to get lower-
dimensional Hsim; (3) Training a MAF with the lower-
dimensional Hsim and corresponding parameters θ;
(4) Encoding the real 31 OHD with the IMNN and inputting
the lower-dimensional OHD to the MAF to estimate the
posterior distributionPðθjHobsÞ. As the substitution ofDAE,
IMNN can find the most informative nonlinear data summa-
ries by setting fiducial parameters and calculating the Fisher
informationmatrix on the simulated data. Although IMNN is
simulation-based, the examples proposed by [16] showed the
training of the network seems fairly insensitive to the choice
of fiducial parameter. In the rest of this section, we introduce
the theory of IMNN briefly.

A. Fisher information and compression

The Fisher information [29–31] can measure how much
information that an observable variable d contains about
parameter θ. For this reason, the larger the Fisher informa-
tion is, the more informative the data is. It can be obtained
by calculating the variance of the partial derivative of the
natural logarithm of the likelihood LðdjθÞ with respect to
the fiducial parameter value, θfid:

FαβðθÞ ¼ −
�
∂ lnLðdjθÞ

∂θα

∂ lnLðdjθÞ
∂θβ

�����
θ¼θfid

; ð15Þ

where α; β ∈ ½1; nθ� (where α ≠ β). In our work, we used
ΛCDMmodel, therefore α and β represent ΩΛ, Ωm andH0.
If we use another model where theta has a higher
dimension, the formula is still kept valid. If the likelihood
is twice continuously differentiable, the expression of the
Fisher information can be [30–32]:

FαβðθÞ ¼ −
�
∂
2 lnLðdjθÞ
∂θα∂θβ

�����
θ¼θfid

; ð16Þ

where the LðdjθÞ is the likelihood function of the data d
with the with nd data points, and a set of nθ parameters θ.
We can constrain θ in a smaller range if the LðdjθÞ is sharp
at a particular value. According to the Cramér-Rao bound
[33,34], under certain conditions, we can calculate the
maximum Fisher information to find the minimum variance
of θ:

hðθα − hθαiÞðθβ − hθβiÞi ≥ ðF−1Þαβ: ð17Þ

In particular, if the model of likelihood of the data d is
Gaussian approximation, we can use massively optimized
parameter estimation and data (MOPED) compression
algorithm [35] to map the data to compressed summaries.
While using the MOPED, the logarithm of the likelihood
should be written as

−2 lnLðdjθÞ ¼ ðd − μðθÞÞTC−1ðd − μðθÞÞ þ ln j2πCj;
ð18Þ

where μðθÞ is the mean of the parameters θ and C is the
covariance of the data d. Compared with MOPED, IMNN
can map the data to compressed summaries without the
limitation of the likelihood. f is the function that transforms
nd data d to ns summary x, which means that f∶d → x.
With the function f, the logarithm of the likelihood can be
written as

−2 lnLðxjθÞ ¼ ðx − μfðθÞÞTC−1
f ðx − μfðθÞÞ; ð19Þ

where

μfðθÞ ¼
1

ns

Xns
i¼1

xsi ; ð20Þ

is the mean value of ns summaries fxsi ji ∈ ½1; ns�g, andC−1
f

is the inverse of the covariance matrix:

ðCfÞαβ ¼
1

ns − 1

Xns
i¼1

ðxs
i − μfÞαðxs

i − μfÞβ: ð21Þ

While training, each summary xs
i is obtained from

f∶ ds
i → xs

i , where ds
i is from the simulation ds

i ¼
dsðθ; iÞ at the fiducial values θ. With Eqs. (16) and (19),
the Fisher information matrix can be expressed in the form:

Fαβ ¼ Tr½μTf;aC−1
f μf;β�: ð22Þ

The μf;a can be calculated by

μf;α ¼
∂

∂θα

1

ns

Xns
i¼1

xsfidi ¼ 1

ns

Xns
i¼1

�
∂x
∂θα

�
s fid

i
: ð23Þ
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Note that the fiducial parameters are only used in the
simulations, so we need to do some additional numerical
differentiation to calculate ð ∂x

∂θα
Þsfid
i

with these three copies

of the simulation, ds fid
i ¼ dsðθfid; iÞ, ds fid−

i ¼ dsðθfid −
Δθ−; iÞ and ds fidþ

i ¼ dsðθfid þ Δθþ; iÞ, where the Δθ� is
the small deviation from the fiducial parameter values.
With the above conditions, the ð ∂x

∂θα
Þs fid
i

is therefore given by

�
∂x
∂θα

�
s fid

i
≈
xs fidþi − xs fid−i

Δθþα − Δθ−α
: ð24Þ

Also we can calculate the ð ∂x
∂θα
Þs fid
i

with the formula

μf;α ¼
1

ns

Xns
i¼1

Xnd
k¼1

∂xs fidik

∂dk

∂ds fidik

∂θα
; ð25Þ

where i represents the random initialization of the simu-
lation, and k represents the data point in the simulation.
Here, both the values of μf;a and C−1

f are calculated with
fixed, fiducial parameter values, θfid. In IMNN, the function
f is a neural network, which will be described in the next
subsection.

B. Implementing f with artificial neural networks

A basic neuron unit is in the form:

alj ¼ ϕ

�X
j

wl
jia

l−1
i þ blj

�
: ð26Þ

The loss function in IMNN is defined using the Fisher
information matrix jFj:

Λ ¼ −
1

2
jFj2 ð27Þ

or

∂Λ
∂aL

¼ −jFj þ jCfj: ð28Þ

With the loss function, the weights and biases will be
updated by gradient descent [36] in the updating procedure:

wl
ji → wl

ji − η
∂Λ
∂wl

ji
ð29Þ

and

bli → bli − η
∂Λ
∂bli

; ð30Þ

where η is the learning rate, which controls the size of the
steps in the procedure of updating the weights and biases
[37]. The i means the ith element of the output vector of a
collections of neurons in the (l − 1)th layer, while the j
means the jth neuron in the lth layer. The mean μf,
covariance Cf, which can be calculated with the
Eqs. (20) and (21), are part of the loss function and
therefore are functions of the weights and biases. The
concise structure of the IMNN is shown in Fig. 6.

IV. CONSTRAINTS WITH REAL OHD

In this work, we use 3 types of methods (shown in Fig. 13)
for ΛCDMs with and without curvature to constrain the
cosmological parameters, which are: (1) using MAF and
Hobs to estimate the posterior distributionPðθjHobsÞ directly.
(2) using theMAF-DAE to estimate the posterior distribution
PðθjHobsÞ with Hobs. (3) using MAF-IMNN to estimate the
posterior distribution PðθjHobsÞ with Hobs. We used the
results from MAF as reference.
With Hobs and the nonflat ΛCDM model, the

posterior distribution estimated by MAF gives H0 ¼
68.34þ1.06

−1.05 km s−1Mpc−1, Ωm¼0.30þ0.14
−0.14 , ΩΛ ¼ 0.65þ0.17

−0.17 ,
the posterior distribution estimated by MAF-IMNN
givesH0¼ 71.13þ7.77

−7.87 kms−1Mpc−1,Ωm¼ 0.31þ0.19
−0.19 ,ΩΛ ¼

0.65þ0.17
−0.17 , the posterior distribution estimated byMAF-DAE

FIG. 6. The concise structure of the IMNN. The ANN can
compress the input data d to the x. The loss function is calculated
with Cf; μf;α and Fαβ with xþfid. Normally x would be consid-
ered as the network output, but we can also choose the Fisher
information matrix as the network output, which means that x
will be the intermediate output of the neural network before
calculating the loss function. In our work, obviously we wanted
to obtain x.
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gives H0 ¼ 66.17þ2.45
−2.44 km s−1Mpc−1, Ωm ¼ 0.35þ0.17

−0.18 ,
ΩΛ ¼ 0.55þ0.29

−0.29 .
Meanwhile, with Hobs and the flat ΛCDM model,

the posterior distribution estimated by MAF gives

H0 ¼ 68.44þ0.76
−0.75 km s−1Mpc−1, Ωm¼ 0.31þ0.03

−0.03 , ΩΛ ¼
0.69þ0.03

−0.03 , the posterior distribution estimated by MAF-
IMNN gives H0¼67.85þ10.83

−10.82kms−1Mpc−1, Ωm¼0.50þ0.22
−0.22 ,

FIG. 7. The posterior distribution estimated by MAF, the real
31 OHD and nonflat ΛCDM model.

FIG. 8. The posterior distribution estimated by MAF-IMNN,
the real OHD and nonflat ΛCDM model. The OHD is com-
pressed into 10 dimensions.

FIG. 9. The posterior distribution estimated by MAF-DAE, the
real OHD and nonflat ΛCDM model. The OHD is compressed
into 10 dimensions.

FIG. 10. The posterior distribution estimated by MAF, the real
31 OHD and flat ΛCDM model.
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ΩΛ ¼ 0.50þ0.22
−0.22 , the posterior distribution estimated by

MAF-DAE gives H0¼ 66.27þ2.01
−2.00 kms−1Mpc−1, Ωm ¼

0.38þ0.08
−0.09 , ΩΛ ¼ 0.62þ0.09

−0.08 . We showed the table and

figures of these posterior distributions in Figs. 7–12 and
Table I.

V. THE COMPARISON OF IMNN AND DAE

`To avoid computationally expensive calculation in com-
paring posterior directly, we apply some criteria, which can
be calculated by posterior distributions. We try to train both
DAE and IMNN to compress the 31 dimensional Hobs into
different dimensions and estimate the posterior PðθjHobsÞ in
different learning rates, so that we can compare the results
under different learning rates and dimensionality reduction
processes. In addition, we take the posterior P1ðθjHobsÞ
obtained fromonlyMAFas the standard posterior in an effort
to investigate the impact of the addition of DAE and IMNN
on the standard posterior. In the following subsection, we
introduce the criteria we apply in this work and do the
comparison of DAE and IMNN.

A. Comparison criteria

In this paper, we apply two criteria, KL divergence and
figure of merit(FoM).
Kullback-Leibler divergence (KL divergence). Kullback-

Leibler divergence is a statistical distance which can
measure how one probability distribution is different from
a second one. That is, Kullback-Leibler divergence can be
used to calculate how much information is lost when we
approximate one distribution with another. Generally, while
processing probability and statistics, we can replace the
observed data or complex distribution with a simpler
approximate distribution. Suppose that there are two
probability density distributions red p1ðθÞ and p2ðθÞ,
where p2ðθÞ is the simulation of the p1ðθÞ. Then we
can use the KL divergence to calculate the information loss
of approximating p1ðθÞ using p2ðθÞ. In this case, The KL
divergence from p1ðθÞ to p2ðθÞ is defined as

DKL ¼ ðp1ðθÞjjp2ðθÞÞ ¼ Ep1ðθÞðlogp1ðθÞ − logp2ðθÞÞ:
ð31Þ

In this paper, we sampleM samples fθig from the posterior,
so the KL divergence is estimated with:

FIG. 11. The posterior distribution estimated by MAF-IMNN,
the real OHD and flat ΛCDM model. The OHD is compressed
into 10 dimensions.

FIG. 12. The posterior distribution estimated by MAF-DAE,
the real OHD and flat ΛCDM model. The OHD is compressed
into 10 dimensions.

TABLE I. The posterior distribution.

H0 Ωm Ωλ

Nonflat ΛCDM
MAF 68.34þ1.06

−1.05 0.30þ0.14
−0.14 0.65þ0.17

−0.17
MAF-IMNN 71.13þ7.77

−7.87 0.31þ0.19
−0.19 0.65þ0.17

−0.17
MAF-DAE 66.17þ2.45

−2.44 0.35þ0.17
−0.18 0.55þ0.29

−0.29

flat ΛCDM
MAF 68.44þ0.76

−0.75 0.31þ0.03
−0.03 0.69þ0.03

−0.03
MAF-IMNN 67.85þ10.83

−10.82 0.50þ0.22
−0.22 0.50þ0.22

−0.22
MAF-DAE 66.27þ2.01

−2.00 0.38þ0.08
−0.09 0.62þ0.09

−0.08
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DKLðp1jjp2Þ ¼
1

M

XM
i¼1

ðlnP1ðθijHobsÞ − lnP2ðθijHobsÞÞ;

ð32Þ

where P2ðθjHobsÞ is the posterior calculated from MAF-
DAE or MAF-IMNN and P1ðθjHobsÞ is the posterior
calculated with only MAF. From Eq. (32), it is obvious
that the smaller the KL divergence, the closer the

P1ðθjHmocÞ and P2ðθjHmocÞ. When DKLðp1jjp2Þ ¼ 0, it
means that the two posterior are almost identical.
Figure of merit (FoM). When constraining the param-

eters, we want to get an accurate range of the parameters
and tighten the constraints. The FoM used in this work is
similar to the one adopted by [38,39] in their work. The
FoM is defined as:

PðθjHobsÞ ¼ const: ¼ expð−ΔX2=2ÞPmax; ð33Þ

FIG. 13. The procedure in this work. We first produce training data. The upper part is MAF-DAE. The training data is compressed into
low-dimensional y by IMNN, then y and the corresponding θ are transmitted to the MAF. The middle part is MAF, which is trained with
original-dimensional training data. The lower part is MAF-IMNN. In this method, the training data is compressed into low-dimensional
y by DAE. Then y and the corresponding θ are transmitted to the MAF. After training, when evaluating cosmological parameters, MAFs
can give posterior PðθjHobsÞ and PðθjyobsÞ [or PðθjHmocÞ and PðθjymocÞ].
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where Pmax is the maximum probability density of the
posterior, and expð−ΔX 2=2Þ is a constant which ensures
that expð−ΔX2=2ÞPmax is equal to the probability density
at the boundary of the 95.44% confidence region of the
Gaussian distribution. According to [12], expð−ΔX2=2Þ
here takes the same value of 8.02. The FoM represents the
reciprocal volume of the confidence region of the posterior,
so the larger the FoM, the tighter the constraint of the
parameters are.

B. Experiments and results

1. Comparison using KL divergence

We show the different FoM in Figs. 14–16. The results
show signs that DAE could make a better performance than
IMNN. Besides, MAF-IMNN and MAF-DAE have better
results in the nonflat ΛCDM, as is showed in Fig. 15, the
KL divergence increases with the dimension reduction.

FIG. 14. KL divergence calculated by MAF-IMNN or
MAF-DAE in the flat ΛCDM model.

FIG. 15. KL divergence calculated by MAF-IMNN or
MAF-DAE in the nonflat ΛCDM model.

FIG. 16. KL divergence calculated by MAF-IMNN or
MAF-DAE with low uncertainty.

FIG. 17. FoM calculated by MAF-IMNN and MAF-DAE in the
flat ΛCDM model. The black line is the FoM of the posterior
calculated by only MAF with the uncompressed mock OHD in
different learning rates.

FIG. 18. FoM calculated by MAF-IMNN and MAF-DAE in the
nonflat ΛCDM model. The black line is the FoM of the posterior
calculated by only MAF with the uncompressed mock OHD in
different learning rates.
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2. Comparison using FoM

We show the different FoM in Figs. 17–19. We can see
that the FoM calculated from the posterior fromMAF-DAE
is generally larger, meaning that the data processed by DAE
can give a tighter posterior. While using the small error
training data, MAF-IMNN gives a bit smaller distributions.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we validate the feasibility of MAF-IMNN,
and compare IMNN and DAE in the procedure of con-
straining the cosmological parameters. Since we have
already demonstrated that the confidence regions estimated
with MAF are very close to those of MCMC [12], and the
purpose of this work is to compare IMNN and DAE, we
therefore used the results of MAF as the standard and did
not calculate the KL divergence and FoM of the MCMC
results.
We also used different model to simulate the training

data to do a comprehensive comparison between DAE and
IMNN. With the small error training data, The performance

of those two methods is very similar. With the normal
training data, the overall performance of DAE is better than
that of IMNN. Nevertheless, there is always an apparent
influence from IMNN or DAE, no matter which kind of
training data was used. We can also estimate another
cosmological model as long as we generate the training
data according to the cosmological model.
Admittedly, our work is not perfect in some aspects. First,

the simulation model in this paper is not complex enough to
simulate the generation process and uncertainty, though we
used Gaussian sample in this work and Gaussian process in
our previous work [12] to generate training set. Because the
main task in this work is to compareDAE and IMNN,we did
not focus on the simulationmodel, but our next ongoingwork
is to build a better model to simulate OHD with deep
learning. Second, there are other types of autoencoders,
such as the denoising variational autoencoder (the combi-
nation of variational autoencoder [40] and denoising autoen-
coder). We chose DAE in this work and our previous work
[12] because it can not only learn the robust features but also
significantly reduce the noise level. However, it is hard to tell
if DAE is the best choice without experiments, so one of our
future works is to use the method in this work to compare
DAE with other autoencoders.
In the future, we will probably be able to do a better

constraint if we can extend our dataset. However, we do not
recommend mixing datasets, because it means mixing
different errors which are calculated by different methods,
we will not necessarily obtain an accurate estimation.
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