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We numerically examine the exterior solution of spherically symmetric and static configuration in scalar-
tensor theories by using the nonminimally coupled scalar field with zero potential as our sample model. Our
main purpose in this work is to fit the resulting data of the numerical solutions in the interested region by
seeking for approximate analytical expressions which are weakly dependent of the parameters of a model,
such as the nonminimal coupling constant in the present case. To this end, we determine the main forms of
the mass and the metric functions in terms of the scalar field and their surface values. Then, we provide a
function for the scalar field that contains only the mass and the radius of the configuration together with the
surface and the asymptotic values of the scalar field. Therefore, we show that the exterior solution can be
expressed in a form which does not depend on the parameters of a chosen model up to an order of accuracy
around 10−5.

DOI: 10.1103/PhysRevD.107.063516

I. INTRODUCTION

The spherically symmetric and static solutions in general
relativity (GR) are encountered in many applications for
modeling the compact astrophysical objects such as black
holes and neutron stars [1]. As is well known, the exterior
solution for this type of configurations in vacuum is known
to be the Schwarzschild solution [2,3] which is charac-
terized by the quantity named as the Schwarzschild radius
that is indeed equal to 2GM=c2 [4,5]. Hence, the only
parameter which affects the exterior solution and is deter-
mined by the interior solution is the mass of the body.
However, unlike vacuum solutions, in the case of scalar-
tensor theories the mass function, which gives the afore-
mentioned mass value of the body at the radius of the star,
continues to change outside the configuration because of
the contribution coming from the scalar field that maintains
its radial evolution (e.g., Refs. [6–15]). Consequently, this
has an impact on the metric functions as well.
In spite of the fact that the numerical techniques are

usually adopted for the solution in scalar-tensor theories
due to the nonlinearity of the differential equations, there
are some analytical solutions as well. For instance, in the
context of the spontaneous scalarization it has been shown
that an analytical solution can be found in Just coordinates
which is not analytically invertible to the Schwarzschild
coordinates [16,17]. Other attempts were made in Ref. [18]
in the presence of a phantom scalar field and in Ref. [19] for

scalar-Gauss-Bonnet gravity with the perturbative approach.
The solution strategy of the numerical techniques for that
kind of setting is to iterate the variables forming the
numerical equations originated from the differential equa-
tions starting from the center of configuration. Radius of the
star is determined at a point corresponding to the vanishing
pressure controlled by the Tolman-Oppenheimer-Volkoff
(TOV) equation [20–22]. That point also describes the total
mass of the star specified as the value of the mass function at
the surface. Furthermore, one should check whether the
asymptotic values of the metric functions match with the
ones in Minkowski space-time. When solving the equations
with thismethod, it is necessary to supply an equation of state
(EOS), which relates the pressure and the energy density of
the fluid [23–25] in the form of tabulated data that is included
to the system through interpolation. On the other hand, there
are also some analytical expressions for EOS that approx-
imately relate the pressure and the density [26,27]. (Although
there is a well-known degeneracy between the theory of
gravity and theEOS,we do notmention that in this paper and
refer the reader to Refs. [28–32].)
In this work, we use the nonminimally coupled scalar

field as our sample model since this is one of the well-
motivated extensions of GR stemming from the quantiza-
tion of the scalar field in curved space-time [33–36]. We
investigate the case with zero potential whose underlying
reasons to use was shortly discussed in Ref. [14]. We
implement the same numerical strategy briefly described
above with the help of one particular EOS, namely SLy
[37], to determine the mass and the radius of the star as well
as the radial evolution of the variables. Then, by observing
and comparing the behavior of the mass and the metric
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functions together with the scalar field outside we try to
find analytical models that fit well with the data and, at the
same time, do not contain the model parameters explicitly
with validity in some particular range of their values that we
aim to analyze based on the previous results [14].
The plan of the paper is as follows: In Sec. II we give the

main equations that are solved numerically. Then, we
describe the method implemented throughout this work
in Sec. III including the numerical error and some neces-
sary definitions. We discuss the data fitting and represent
the final results in Sec. IV. We give the concluding remarks
in Sec. V.

II. MAIN EQUATIONS

We begin with the following action,

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
1

2κ
Rþ 1

2
ξϕ2R −

1

2
∇cϕ∇cϕ

− VðϕÞ þ Lm

�
; ð1Þ

where κ ¼ 8π and ξ is the coupling constant.1 Einstein’s
field equations are obtained as

Rμν −
1

2
Rgμν ¼ κeff ½TðmÞ

μν þ TðϕÞ
μν �; ð2Þ

where κeff , energy-momentum tensors for the fluid TðmÞ
μν and

for the scalar field TðϕÞ
μν are given in the following forms:

κeffðϕÞ ¼ κð1þ κξϕ2Þ−1; ð3Þ

TðmÞ
μν ¼ ðρþ PÞuμuν þ Pgμν; ð4Þ

TðϕÞ
μν ¼ ∇μϕ∇νϕ − gμν

�
1

2
∇cϕ∇cϕþ VðϕÞ

�

− ξðgμν□ −∇μ∇νÞϕ2: ð5Þ

On the other hand, variation of the above action with
respect to the scalar field yields the following expression:

□ϕþ ξϕR −
dVðϕÞ
dϕ

¼ 0: ð6Þ

We use the static and spherically symmetric metric in the
form of

ds2 ¼ −e2fðrÞdt2 þ e2gðrÞdr2 þ r2ðdθ2 þ sin2 θ dφ2Þ; ð7Þ

and it yields the following set of equations

g0 ¼
�
1

r
þ κeffξϕϕ

0
�
−1
�
1 − e2g

2r2
þ κeff

�
1

2
ðρþ VÞe2g

þ ξϕ

�
ϕ00 þ 2ϕ0

r

�
þ
�
ξþ 1

4

�
ϕ02

��
; ð8aÞ

f0 ¼
�
1

r
þ κeffξϕϕ

0
�
−1
�
−
1−e2g

2r2
þ κeff

�
1

2
ðP−VÞe2gþ1

4
ϕ02

−
2ξϕϕ0

r

��
; ð8bÞ

f00 ¼ −ðf0 − g0Þ
�
f0 þ 1

r

�
þ κeff

�
ðP − VÞe2g − 2ξϕ

×

�
ϕ00 þ ϕ0

�
f0 − g0 þ 1

r

��
−
�
2ξþ 1

2

�
ϕ02

�
; ð8cÞ

ϕ00 ¼ −
�
f0 − g0 þ 2

r

�
ϕ0 þ 2ξϕ

�
f00 þ ðf0 − g0Þ

�
f0 þ 2

r

�

þ 1 − e2g

r2

�
þ e2g

dV
dϕ

; ð8dÞ

where the first three equations are obtained from the tt, rr,
and θθ components of Eq. (2), respectively, and Eq. (6)
becomes the last one. Here prime denotes the derivative
with respect to coordinate distance r.
Expression for the pressure, i.e., the TOV equation, is

obtained from the energy-momentum conservation of the
fluid (∇μTðmÞ

μν ¼ 0) as

P0 ¼ −f0ðPþ ρÞ: ð9Þ

The mass function for a system without the scalar field is
defined asmðrÞ ¼ rð1 − e−2gÞ=2. However, the presence of
the scalar field causes this definition to change since it
contributes to the mass of the configuration by both
coupling with the density and by its own evolution. The
two possible definitions in such a case, namely the ADM
[38] and the Komar [39] masses, coincide for the static
configurations in scalar-tensor theories [40]. Therefore,
similar to the one given in Ref. [8] we define the mass
function in the following form,

MðrÞ≡ 4π

Z
r

0

r02Eðr0Þdr0; ð10Þ

where the function in the integrand is given as

EðrÞ ¼ κeff
κ

�
ρþ 1

2
ðϕ0e−gÞ2 þ VðϕÞ

þ 2ξ

�
ϕ

�
ϕ00 þ ϕ0

�
2

r
− g0

��
þ ðϕ0Þ2

�
e−2g

�
; ð11Þ

which is obtained from the tt component of the total
energy-momentum tensor. In the limit r → ∞ the mass1We use geometrical units (G ¼ c ¼ 1) throughout this study.
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function gives the ADMmass, i.e.Mðr → ∞Þ ¼ MADM. As
mentioned in the previous section the mass function con-
tinues its radial evolution due to the scalar field contribution
at distances r > R while its value at r ¼ R gives the mass of
the body. The radius of the star, on the other hand, is
determined at a point where the density of the fluid, or
correspondingly the pressure, vanishes, i.e. ρðr ¼ RÞ ¼ 0.
We will numerically solve the equation set (8) together

with Eq. (9) and evaluate the mass function through
Eq. (10). Since we will consider the zero potential case
as mentioned before, we set VðϕÞ ¼ 0 in the above
expressions and P ¼ ρ ¼ 0 in the exterior region as well.

We set Pð0Þ ¼ Pc, Mð0Þ ¼ 0, gð0Þ ¼ 0, fð0Þ ¼ fin,
ϕð0Þ ¼ ϕc as initial values for the integration. The initial
value of the scalar field, ϕc, should be chosen such that the
scalar field value at infinity does not violate the observa-
tional constraints such as the limitations on PPN parameters
[41–44] and the analysis of dipole radiation in pulsar-white
dwarf binary systems [45,46]. The effect of the nonminimal
coupling constant, ξ, on the choice of ϕc also has to be
taken into account [14]. On the other hand, the central
pressure used throughout the work and extracted from the
EOS dataset has been chosen as Pc ≈ 3 × 1015 g=cm3

corresponding to Pc ≈ 2.25 × 10−3 km−2 in geometrical

FIG. 1. Comparison of analytical and numerical solutions in GR for a specific configuration with M ≈ 2.01M⊙ and R ≈ 9.26 km.
The central pressure value is Pc ¼ 2.25 × 10−3 km−2.

FIG. 2. Radial evolution for ΔAðrÞ, ΔBðrÞ, ϕðrÞ, ϕ0ðrÞ, and MextðrÞ for a specific configuration with ξ ¼ −0.5 and ϕc ¼ 0.1.
The mass and the radius values are calculated as Ms ¼ 1.87 and R ¼ 8.74 by using SLy dataset for the EOS with the central pressure
value Pc ¼ 2.25 × 10−3 km−2. Horizontal lines indicate the minimum and the maximum values for each data.
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units that we use. Finally, the initial value of fðrÞ is
determined such that its asymptotic value goes to zero so
that the metric functions approach to their counterpart in
Minkowski space-time at infinity.

III. METHOD

In this section we will explain the method followed in
this paper. We will represent the error in numerical
calculations, make the definitions for the mass function
and the scalar field as well as the deviations in the metric
functions, and briefly discuss their behavior in the light of
one particular example.

A. Numerical error

Here we determine the numerical error in our code by
using the well-known analytical solution of spherically
symmetric and static configuration in order to show the
valid range of our approach in a numerical point of view.
Although we have used the metric functions given in
Eq. (7) due to their convenience in the numerical calcu-
lations, in order to present the results we prefer the
following form:

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ: ð12Þ

We compute the radial evolution of the metric functions
numerically thorough

B0

2B
¼ 1 − B

2r
;

A0

2A
¼ −

1 − B
2r

; ð13Þ

and compare the results with the analytical one, that is the
Schwarzchild solution,

AðrÞ ¼ 1 −
2M
r

and BðrÞ ¼
�
1 −

2M
r

�
−1

ð14Þ

to define the absolute error in our numerical calculations.
Here M is the mass of the configuration. For all compu-
tations we implement the same code which uses the
standard odeint package of SciPy [47] as the integrator
with both modified tolerances of 10−10. As seen in Fig. 1
the difference between two solutions is in the order of 10−7

which determines a certain restriction when fitting an
analytical model to numerical data.

FIG. 3. Comparison of the numerical data and the analytical model given in Eq. (19) forMextðrÞ.Ms, ϕc, and ξ indicate the mass value
at the surface, central value of the scalar field and the coupling constant, respectively. Radius of the star is the leftmost number in the
horizontal axes. The central pressure value is Pc ¼ 2.25 × 10−3 km−2. Residuals in the right panel show the difference between two
curves plotted in the left column as explained in the text. The result of R2 analysis is also given inside the plots for each case.
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B. Definitions

Here we define the mass function, the scalar field, and
the metric functions in order to obtain appropriate forms for
the data fitting.
We begin with the total mass function which can be

written as

MtotalðrÞ ¼
8<
:

MinðrÞ; r < R

Ms; r ¼ R

Ms þMextðrÞ; r > R

; ð15Þ

where the radius, R, is determined via the pressure condition
PðRÞ ¼ 0 as usual. The mass of the star is defined at its
surface as Ms ≡MtotalðRÞ. Then, the total mass function
outside the star is given as MtotalðrÞ ¼ Ms þMextðrÞ. Here,
Min is determined by the EOS and its coupling with the
scalar fieldwhileMext consists of the scalar field contribution
only. We also define the asymptotic value of the total mass
function as M∞ ≡Mtotalðr → ∞Þ. Regarding the scalar
field, we write ϕs ≡ ϕðRÞ, ϕ∞ ≡ ϕðr → ∞Þ, and ϕextðrÞ
in a similar manner.
On the other hand, we describe the Schwarzschild-like

solutions as

AschðrÞ ¼ 1 −
2Ms

r
and BschðrÞ ¼

�
1 −

2Ms

r

�
−1
: ð16Þ

It is noteworthy to point out that unlike M in GR, Ms
contains the contributions from the density of the star as
well as the scalar field as can be seen from Eq. (10).
We assume that the exterior solutions for the metric

functions are in the form of

AðrÞ ¼ 1 −
2Ms

r
− ΔAðrÞ and

BðrÞ ¼
�
1 −

2Ms

r
−

1

ΔBðrÞ
�

−1
; ð17Þ

where ΔAðrÞ and ΔBðrÞ represent deviations from the
Schwarzschild-like solutions and are calculated by

ΔAðrÞ ¼ AschðrÞ − AðrÞ and
1

ΔBðrÞ ¼
1

BschðrÞ
−

1

BðrÞ :

ð18Þ
Hence, we will try to find out the forms forMextðrÞ, ϕextðrÞ,
ΔA and ΔB by modeling the data coming from the
numerical solutions.

C. Radial evolution of the numerical solutions

In spite of the fact that the interior solutions are not
needed for our analysis, nevertheless, we solve the equa-
tions beginning from the center of the star to determine the
mass and the radius values properly as it is the usual

FIG. 4. Comparison of the numerical data and the analytical model given in Eq. (20) for ΔBðrÞ. [For details see the caption of Fig. 3.]
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method in the literature. To do that, we use the SLy [37]
dataset for the EOS throughout the paper although we
provide one particular set for MS1 EOS [48] as well in the
Fig. 8. The order of the differences between two curves are
the same with the configuration that has the same approxi-
mate mass value for SLy EOS although we have used the
different set of ξ and ϕc. The distinction in the radius values
should be taken into account for the slight differences in the
residuals. The only free parameters in our model are the
nonminimal coupling constant, ξ, and the central value for
the scalar field, ϕc, because choice of these two parameters
cause the mass (Ms) and the radius (R) values to change,
therefore, by applying this approach, we also cover inves-
tigation of different mass-radius (MR) configurations
which can be achieved by altering the central pressure
as well. But, this way is much more compatible with our
purpose that is to determine analytical models independent
of the free parameters of the model as much as possible.
We give a sample of the radial evolution for ΔAðrÞ,

ΔBðrÞ, ϕextðrÞ, ϕ0ðrÞ, and MextðrÞ in Fig. 2 for a specific
configuration with ξ ¼ −0.5 and ϕc ¼ 0.1. The first thing
to notice from there is that ϕextðrÞ and MextðrÞ show very
similar behavior. This observation suggests that the main
contribution to the mass function outside the star should
be proportional to the scalar field itself. The derivative of
the scalar field, on the other hand, quickly vanishes outside
indicating that the scalar field takes a constant value at

infinity, that is ϕ∞ as defined above. The deviations for
the metric functions, namely ΔA and ΔB, demonstrate that
the difference in the vicinity of the star is much bigger as
expected and tends to disappear at infinity since ϕ0ðr →
∞Þ → 0which reduces Eq. (8) to Eq. (13) far away from the
star. In light of these observations we will guess analytical
models to fit the data in the following section.
For the parameters we use combinations of values ξ ¼

−0.5;−1.5 and ϕc ¼ 0.1, 0.2 for the representative pur-
poses although we have mainly worked on intervals ξ ∈
½−1.5;−0.1� and ϕc ∈ ½0.1; 0.5� in our analysis taking into
account the range ξϕ2

c ∈ ð−0.01; 0Þ found in Ref. [14] and
considering a little beyond that limitation as well.

IV. NUMERICAL DATA FITTING

When fitting the numerical data, we guess an appropriate
function based on the radial evolution in Fig. 2 and then
check the accuracy through R-squared (R2) analysis. Since
this test alone does not guarantee the correctness of the
fit, we also provide the residuals to see the bias in our
analytical models.

A. The mass function

As mentioned before, the radial evolution given in Fig. 2
for the mass function and the scalar field in the exterior

FIG. 5. The same configuration represented in Fig. 4 with the analytical model given in Eq. (21) where α ¼ 0.01552.
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region suggests that these two functions should be directly
proportional to some extent. This relation can be sought
through the following form:

MextðrÞ ¼ μϕextðrÞ þ RMext
; ð19Þ

where μ is a constant andRMext
designates the residual that is

the difference between the numerical data and the analytical
model. In order to find the proportionality constant, μ, we
normalize the functions on both sides as a straightforward
attempt, in other words, we define μ≡ ðM∞ −MsÞ=
ðϕ∞ − ϕsÞ, where, as indicated before, the subscripts “∞”
and “s” stand for the values of the functions at infinity and at
the surface of the star, respectively. We represent the results
in Fig. 3 for different choices of the free parameters, thus,
creating various MR configurations. In the same figure we
also provide the residuals, i.e. RMext

, for each case. It seems
that the expression for the external mass function written in
Eq. (19) fits well to the data for different initial conditions to
the scalar field value and different nonminimal coupling
parameter, ξ. Deviation of the R-squared value from unity is
of the order, OðR2 − 1Þ ≃ 10−5 which shows the accuracy
of our analytical model in all cases. However, there is an
evident deviation in a form which seems to be related to
1=ΔB at first glance. Our analysis shows that this is not the
case entirely. One may reduce this difference in the vicinity

of the star by using 1=ΔB, but this becomes problematic for
the further points in the radial evolution.

B. The metric functions

Radial part (ΔB): An educated guess for an analytical
form of the correction to the radial part of the metric
function, 1=ΔBðrÞ, can be made in the form of the second
term of the Schwarzchild solution, i.e., mass to radial
coordinate ratio up to a scaling constant. However, this time
the mass function is not constant outside the configuration.
Hence, we should replace the constant mass with its
dynamical counterpart, MextðrÞ. Analyzing various con-
figurations to determine the scaling constant we have found
that 1=ΔBðrÞ can be written in terms of the external mass
function and the radial coordinate as follows:

1

ΔBðrÞ ¼
3MextðrÞ

r
þ R1=ΔB; ð20Þ

the results of which are shown in Fig. 4 along with the
residuals R1=ΔB on the right-hand side of the same figure. It
seems from thegraphs that thismodel shows very compatible
behavior with the numerical solution up to the residual order
of 10−5 which has no major changes against different
parameter values. Moreover, it is important to note that

FIG. 6. Comparison of the numerical data and the analytical model given in Eq. (22) for ΔAðrÞ. [For details see the caption of Fig. 3.]
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the above ansatz does not explicitly depend on neither the
nonminimal coupling parameter, ξ, nor the central value of
the scalar field, ϕc. As a result, our initial attempt of writing
the metric function deviation, 1=ΔBðrÞ, has 10−5 orders of
magnitude deviation from the data with a perfect R2 value.
Examination of the residuals indicates that its form is

showing similar behavior as negative of 1=ΔB itself.
Therefore, in order to improve our analytical model we
subtract a term that is proportional to the 1=ΔB from the
initial expression in Eq. (20) and we arrive at

1

ΔBðrÞ ¼
3

1þ α

MextðrÞ
r

þR1=ΔB; ð21Þ

for which the results can be seen in Fig. 5 where we set the
proportionality constant α to 0.01552 as a result of a series
of analysis with different configurations. The order of
magnitude of the residuals with the introduction of the
α constant is now OðR1=ΔBÞ ¼ 10−8 at the immediate
outside the star and becomes around OðR1=ΔBÞ ¼ 10−7

at most at far outside the star. These residual values are in
the same and even mostly beyond the order of our error
calculations in our code as represented in Fig. 1 and this
also explains the random oscillations in the plots.
Temporal part (ΔA): Regarding to the metric function

deviation of the temporal part, we need to emphasize that
the function AðrÞ has no effect on the dynamics of the

system, but it is the one who is affected by the others. This
can be clearly seen from the equation set (8) [fðrÞ
corresponds to AðrÞ] since it can be eliminated from the
equations completely in favor of the scalar field and the
other metric function. Nevertheless, we have found that
the following form fits well with the data

ΔAðrÞ ¼ ΔAs
R
r
þ β

MextðrÞ
r

þRΔA; ð22Þ

where β is a constant and ΔAs is the value of the metric
function ΔAðrÞ calculated at the surface of the star. Our
investigations have shown that the value of β actually
changes in a range 5 ≤ β ≤ 6 and the outcomes shown in
Fig. 6 along with the residuals, RΔA, are generated simply
by using the average value β ¼ 5.5 without introducing
large errors in the fit. Although it may seem a little strange
to use the surface value of the deviation, namely ΔAs, in the
analytical model, we need to remind that it is necessary to
find an initial value for AðrÞ as explained in Sec. II for the
numerical solution as well.

C. The scalar field

In order to find an analytic form for the corrections to the
metric functions we have used the exterior part of the mass
function, Mext, which has turned out to be proportional to

FIG. 7. Comparison of the numerical data and the analytical model given in Eq. (26) for ϕextðrÞ. [For details see the caption of Fig. 3.]
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the exterior part of the scalar field, ϕext. Therefore, to
complete the definition, we need to give an analytic
expression for the scalar field outside the star in terms
of the radial coordinate, r, and the other parameters such as
the mass, Ms, and the radius, R, of the star. To this end,
similar to what we have done in scaling for the mass
function, we look for the solutions in the form of

ϕextðrÞ ≈ ðϕ∞ − ϕsÞΦðrÞ; ð23Þ
where we define the following ansatz

ΦðrÞ≡ a1

�
1 −

R
r

�
þ a2

�
1 −

R2

r2

�
þ a3

�
1 −

R3

r3

�
þ � � �

ð24Þ
with constant coefficients a1; a2; a3;… and it satisfies the
scalar field value at the surface ϕextðr ¼ RÞ ¼ 0 since

Φðr ¼ RÞ ¼ 0. On the other hand, ΦðrÞ is required to be
equal to unity at infinity since we have ϕtotalðrÞ ¼ ϕs þ
ϕextðrÞ and ϕtotalðr → ∞Þ ¼ ϕ∞. Applying this condition
for the first three terms we have

a1 ¼ 1 − ða2 þ a3Þ: ð25Þ

Since the form of Φ have been specifically chosen in
accordance with the numerical data and, although it is not
necessary, we seek a solution that the main contribution
comes from the term with coefficient a1 we constrain it as
a1 > 0 which, then, together with the above relation
necessitates that a2 þ a3 < 1.
Our analysis shows that the values a2 ¼ 2Ms=R and

a3 ¼ 0 give very compatible results with the data as
shown in Fig. 7 for different configurations. It seems
that we do not need the cubic term at all since even

FIG. 8. Results generated through the analytical models given in Eqs. (19), (20), (22), (26) from top to bottom respectively. The
surface values Ms, ϕs, ΔAs are the outcomes of the interior solution obtained by using MS1 EOS.
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without that factor we have an accuracy at the order
around Oð10−5Þ for all cases with different choices of
the free parameters of the model, namely ξ and ϕc.
Then, using these values and rearranging the result
we get

ϕextðrÞ ¼ ðϕ∞ − ϕsÞ
�
1 −

R
r

��
1þ 2Ms

r

�
þRϕext

: ð26Þ

We need to mention that we have also worked on the
higher order corrections in Eq. (24), but the result did
not show any improvement compared to the one we
have presented here.

V. CONCLUSION

In this work we have examined the exterior solution of
spherically symmetric and static configuration in scalar-
tensor theories by fitting the data obtained from the
numerical solutions of the differential equations. Our main
goal was to determine analytical expressions for the
exterior solution of the scalar field, the mass and the
metric functions that are independent of the parameters of
a particular model. To this end, we have taken the non-
minimally coupled free scalar field as our model and
calculated the mass and the metric functions in terms of
the scalar field. Furthermore, in order to complete the
definitions, we have introduced an analytical expression for
the scalar field that only has a dependency on the mass and
the radius of the configuration as its parameters.
We have found the expressions in Eqs. (19), (20), (22)

and (26) that agree with the numerical data of the external
mass MextðrÞ, the deviation of the metric functions ΔBðrÞ,
ΔAðrÞ and the external scalar field ϕextðrÞ respectively at
aroundOð10−5Þ orders ofmagnitude accuracy. Furthermore,
we went one step further to improve our results on the
deviation ΔBðrÞ as in Eq. (21) that reduces the discrepancy
between the data and the model to Oð10−8Þ orders of
magnitude for which at points that are far outside the star
it goes up to Oð10−7Þ; yet this will not affect the validity of
the expression in the mainly interested region that is near
outside the star.

As can be seen in the analytical models mentioned
above, it seems that the nonminimal coupling constant, ξ,
has no explicit effect on the external mass function and the
deviation of the metric functions. Moreover, the expression
for the external scalar field also does not contain any free
parameters of the model. However, considering the accu-
racy we have obtained it is expected that its explicit
presence, possibly with additional parameters that are
dependent on the coupling parameter, will be necessary
to find a more accurate model than ours, an example of
which is presented for the deviation ΔB that shows
Oð10−8Þ orders of magnitude agreement with the data as
a consequence of introduction of an additional parameter α
in Eq. (21). Therefore, we have shown that the expressions
written by including higher order terms and/or introducing
additional free parameters, one can achieve higher orders of
accuracy. Nevertheless in any case, our set of expressions
fits the numerical data to an acceptable degree such that the
analytical form of the exterior region characteristics can be
clearly understood, while omitting the model parameter
dependency.
We have mentioned before that the central value of the

scalar field can be restricted via its asymptotic value by
using the observational constraints such as the PPN
parameters or even the asymptotic value can be taken as
zero in practice which certainly determines the central
value of the scalar field and leaves the nonminimal
coupling constant as the only free parameter of the model.
However, even in this case, our results show that for the
same central values of the scalar field the exterior solutions
are sensitive to ξ values only aroundOð10−5Þ in the vicinity
of the star and even less in the farther distances. This
indicates that it may not be possible to constrain the
parameters of this model, and possibly the corresponding
transformable models as well, at least up to Oð10−5Þ order
of accuracy.
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