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Model-independent test for gravity using intensity mapping and galaxy clustering
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We propose a novel method to measure the E; statistic from clustering alone. The E statistic provides
an elegant way of testing the consistency of General Relativity by comparing the geometry of the Universe,
probed through gravitational lensing, with the motion of galaxies in that geometry. Current E; estimators
combine galaxy clustering with gravitational lensing, measured either from cosmic shear or from CMB
lensing. In this paper, we construct a novel estimator for Eg, using only clustering information obtained
from two tracers of the large-scale structure: intensity mapping and galaxy clustering. In this estimator, both
the velocity of galaxies and gravitational lensing are measured through their impact on clustering. We show
that with this estimator, we can suppress the contaminations that affect other E; estimators and
consequently test the validity of General Relativity robustly. We forecast that with the coming generation
of surveys like HIRAX and Euclid, we will measure E; with a precision of up to 7% (3.9% for the more

futuristic SKA2).
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I. INTRODUCTION

One of the main goals of the coming generation of large-
scale structure surveys is to test the consistency of General
Relativity (GR) at cosmological scales. Since the observa-
tion of the accelerated expansion of the Universe in 1998
[1,2], a large number of theories of gravity beyond General
Relativity have been constructed. Testing these theories one
by one by confronting them with observations is not
anymore a feasible option. This complexity in the land-
scape of models beyond GR has led the community to build
model-independent tests of gravity, i.e., tests that can be
applied to data without relying on particular modeling and
whose outcome will either confirm or rule out the validity
of GR (e.g., [3-10]).

One particularly useful test is the so-called E statistic,
first proposed by Zhang et al. [11]. The idea of this test is to
combine galaxy-lensing correlations with galaxy-velocity
correlations to test the relation between the sum of the metric
potentials, @ + W, and the galaxy peculiar velocity V;
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In GR, these two quantities are related via Einstein’s
equations so that E; takes a specific scale-independent
value. In modified theories of gravity, however, the relation
between ® and ¥ is generically modified, as is the growth
rate of structures f, which governs the evolution of peculiar
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velocities [12]; E is consequently modified and becomes
potentially scale dependent. Measurements of E; provide,
therefore, a direct test of the validity of GR. This test has the
advantage of being independent of galaxy bias b, since the
galaxy density appears both in the numerator and denom-
inator of Eq. (1), and also of the initial conditions, which
cancel out in the ratio [4].

Different methods have been used to measure E; in
practice. First, since peculiar velocities are not straightfor-
ward to measure, the galaxy-velocity correlation in the
denominator has been replaced by the product of the
galaxy-galaxy correlations and the parameter f = f/b,
which can be measured directly from redshift-space dis-
tortions (RSD) [13]. Concerning the numerator, two
observables have been used: 1) the correlations between
galaxy clustering and cosmic shear, and 2) the correlations
between galaxy clustering and CMB lensing.

The first measurement of E; was carried out by Reyes
et al. [14] using the first method applied to luminous red
galaxies from the Sloan Digital Sky Survey (SDSS) [15].
They measured E; = 0.39 £ 0.06, confirming the ACDM
predictions, on the scale of tens of Mpc. Later, Amon et al.
[16] measured E, again with the first method, by combin-
ing deep imaging data from the Kilo-Degree Survey [17]
with the overlapping spectroscopic 2-degree Field Lensing
Survey [18], the Baryon Oscillation Spectroscopic Survey
[19] and the Galaxy Mass Assembly Survey [20] and found
some tension of their results with the GR predictions.
Pullen et al. [21] used the second method, cross-correlating
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the Planck CMB lensing map with the SDSS III CMASS
galaxy samples and found an almost 2.66 deviation from
the GR prediction. Other works on the E; measurements
found similar tensions [22-24].

Measuring E; more precisely with the coming generation
of surveys will reveal whether these tensions persist, possibly
indicating a breakdown of GR at cosmological scales. In this
context, minimizing the impact of systematic effects on
measurements of E is crucial. Recently, it has been shown
that one important contamination, which is negligible
for current surveys, will contaminate Eg; at high redshift,
invalidating its use to test the consistency of GR with the next
generation of surveys [25]. This contamination is the con-
tribution of lensing magnification to galaxy clustering. Since
lensing magnification correlates strongly with cosmic shear
(method 1) and with CMB lensing (method 2), it inevitably
leads to an extra contribution in the numerator of Eq. (1). At

= 1.5 this contamination reaches 25-40%, leading to an
E; which is neither scale independent nor bias independent.
In [26] a method has been proposed to remove this
contamination by measuring additional correlations, namely
shear-shear correlations and shear-CMB lensing correla-
tions, and subtracting them from E.

In this paper, we propose an alternative way of meas-
uring Eg without contamination, using only clustering
information. We use two different tracers of the large-scale
structure (LSS); galaxy clustering and 21 cm intensity
mapping (IM). Intensity mapping is a novel technique to
map the LSS by measuring the intensity fluctuations of
some emission line (typically the 21 cm line emitted by
neutral hydrogen) with radio surveys. These fluctuations,
which follow the dark matter distribution, can be used as a
new tracer of the LSS. Although the presence of large
foregrounds make IM autocorrelation measurements very
challenging, this problem is mitigated in cross-correlation
measurements of IM with galaxy clustering, which have
already been successfully performed [27-35].

In [36], we built a new observable, called GIMCO,
which combines IM with galaxy clustering to obtain a
direct measurement of the galaxy-lensing correlation. Here
we propose to use GIMCO in the numerator of E. Instead
of measuring the galaxy-lensing correlation from cosmic
shear or CMB lensing, we measure it directly from
clustering. As we will see, this method has the strong
advantage of being unaffected by the lensing contamination
described above, which affects both galaxy-shear correla-
tions and galaxy-CMB lensing correlations. Moreover,
since it relies only on clustering information, it is unaf-
fected by potential inconsistencies between low redshift
and high redshift data sets (as is the case for galaxy-CMB
lensing correlations) or systematics affecting the measure-
ment of cosmic shear. It provides, therefore, a robust way of
testing the consistency of GR.

The rest of the paper is organized as follows: In Sec. II
we introduce our new method to measure E; using

intensity mapping. In Sec. III we study the contaminations
to Eg, and we determine the optimal redshift binning to
reduce these contaminations to a negligible level. In Sec. IV
we forecast the precision with which E; will be measured
with the coming generation of galaxy and IM surveys and
the constraints expected on modifications of gravity. We
conclude in Sec. V.

II. E; FROM INTENSITY MAPPING

We build E; using two different biased tracers of the
matter clustering: the fluctuations in galaxy number counts,
A,, and the fluctuations in the 21 cm brightness temper-
ature, Ay;. The fully relativistic expressions at linear order
for these two quantities have been derived in [37-40]. Here
we consider only the terms that dominate in the angular
power spectrum of thick redshift bins. For the galaxy
number counts, we have

Ay(n,z) = by(2)d(m, 2) + (5s(z) = 2)x(n,2), (2)

where n denotes the direction of observation, z is the
redshift, b, is the linear galaxy bias, ¢ is the matter density
contrast, and s is the magnification bias. The first term in
Eq. (2) is the density contribution, and the second term is
the lensing magnification, proportional to the lensing
convergence K,

_1/){(2)
=3/,

where Vé denotes the angular Laplacian.l

Contrary to galaxy number counts, the fluctuations in the
brightness temperature are not affected by lensing magni-
fication at linear order in perturbation theory due to
conservation of surface brightness [40], and we have

a") "L g 0wy, (3

<(m.2) x(2)x

Ag(n, z) = by (2)d(n, z), (4)

where by is the bias of neutral hydrogen. In Egs. (2) and
(4) we have neglected redshift-space distortions since they
are subdominant for thick redshift bins. In our forecasts, we
will choose the binning such that this contribution is always
negligible and does not contaminate E; (see Sec. III).

We expand the galaxy number counts and brightness
temperature in spherical harmonics

Ay(n.2) = af, ()Y ru(m), (5)
‘m

AHI n, Z Za Yfm (6)
‘m

'Note that we use the following metric convention
ds* = a(n)*[=(1 4+ 2¥)dy* + (1 — 2®)s;;dx'dx/], where 7 de-
notes conformal time, so that y = 5, — 5 for the conformal time
today 7.
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and consider their angular power spectra
CiY¥(2.2) = (af, (D) apy, (). (7)

for X, Y = g, HI. We can then build E; from these spectra
in the following way: the numerator of E; is given by the
galaxy-lensing correlation. Since galaxy number counts are
affected by lensing magnification whereas intensity map-
ping is not, the following estimator, proposed for the first
time in [36], is directly proportional to the galaxy-lensing
correlation

HI HI
EX(zp.25) = Cp (27, 2) — €3 (24, 23)

= (5s(zp) = Z)bHI(Zf)C?K(va %)
- (5S(Zf) - 2)191{1(2;;)0}5(2]" %)

+ [be(26)byi(zs) = by(2p)bri(25)|CP (25, 2).-

(8)

The term we are interested in is the one in the second line,
C%(zs.zp), which represents the lensing magnification of
background galaxies generated by a foreground density at
zs. The other lensing term in the third line, C°(z;, z,), is
always negligible since it is due to correlations of fore-
ground lensing magnification with background density.
Finally, the density term in the last line is suppressed by
two effects: first by the bias difference, which would
exactly vanish if the biases were redshift independent,
and second by the fact that density correlations, C%(z¢, z5),
quickly decrease with redshift separation. In Sec. III C we
will choose the redshift bins such that this density con-
tamination is negligible. This estimator, called GIMCO
[36], provides therefore a robust way of isolating lensing
magnification, and we will use it in the numerator of Eg;

EX(zf.25) = (55(zp) = 2)bui(z)C¥ (24, 26).  (9)

In the denominator of E; we need the galaxy-velocity
correlation. In [41], this correlation was replaced by the
product of f,(z7) = f(zs)/be(zs) and the galaxy-galaxy
correlations. In our case, instead of the galaxy-galaxy
correlations, we use the galaxy-intensity mapping correla-
tions, such that the HI bias in Eq. (9) cancels. We therefore
have

o C;Hg(Zf,Zb) - CL%HI(Zf,Zb)
= T
Be(zp)C7 " (25, 2¢)

Eo— E;(zf.25)
Pe(z)CEM (24, 24)
_ (55(zp) =2)CP (2, 2)

f(2)CP(zy, 2¢)

(10)

We see from Eq. (10) that we only need two types
of correlators to measure E; the cross-correlation between
galaxy clustering and intensity mapping and the

autocorrelation of galaxy clustering, from which f, is
measured. This is particularly interesting to test deviations
from GR; Eq. (10) tests the relation between density, velocity
and lensing potential measured from the same correlators.
Therefore, the outcome of this test is not subject to potential
inconsistencies between different data sets, as can be the case
for standard versions of E that rely on galaxy clustering and
shear or on galaxy clustering and CMB lensing.

As discussed above, the numerator in Eq. (10) is not
affected by the lensing contamination computed in [25]; the
density-magnification contribution is the signal in our
estimator, whereas the magnification-magnification con-
tamination is absent since intensity mapping is insensitive
to lensing magnification. The denominator in Eq. (10)
contains density-magnification contamination and an RSD
contamination. In Sec. III we will show that we can choose
the redshift binning such that these two contaminations
remain negligible.

Note that an E; estimator using intensity mapping has
already been proposed in [42]. However, this estimator
differs from ours; in [42] the lensing signal is not measured
from clustering as we do here, but from CMB Ilensing cross-
correlated with intensity mapping. This estimator, like ours,
is unaffected by magnification contamination. It relies,
however on the autocorrelation of intensity mapping to
measure fBy; as well as CH™MI. The autocorrelations of
intensity mapping will be very challenging to measure due
to the difficulty of subtracting the foregrounds accurately.
Our estimator relies instead only on cross-correlations of
intensity mapping with galaxy clustering, which are unaf-
fected by intensity mapping foregrounds and have already
been measured [27-35].

III. SIGNAL-TO-NOISE AND CONTAMINATION

We now study the detectability of E; with the coming
generation of intensity mapping and galaxy surveys. For
intensity mapping, we consider the 21 cm intensity map-
ping survey HIRAX, which will measure the neutral
hydrogen distribution in the redshift range of z = 0.775
to 2.55 covering 15,000 square degrees of the southern sky
[43,44]. For the galaxy survey, we study two examples, one
modeled on SKA phase 2, covering 30,000 square degrees,
based on the specifications in [45,46], and a 15,000 square-
degree Euclid-like survey [47], based on [48,49]. We
perform separate forecasts for the spectroscopic and photo-
metric samples for the Euclid-like scenario. The spectro-
scopic sample has the advantage of providing an accurate
measurement of f3,, through RSD, whereas the photometric
sample will measure f#, with relatively large error bars. On
the other hand, the photometric sample has a significantly
lower shot noise due to the much larger number of galaxies
detected and extends to higher redshifts. It is, therefore,
interesting to study how the measurement of E differs in
these two samples. The overlapping redshift range between
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HIRAX and the galaxy surveys are z € [0.9,1.8] for
Euclid-like spectroscopic, z € [0.78,2.16] for Euclid-like
photometric and z € [0.78, 2.0] for SKA2-like. We assume
that Euclid-like has a 2/3 aerial overlap with HIRAX,
leading to fg, = 0.242, whereas the SKA2-like survey
fully overlaps with HIRAX leading to fg, = 0.363.

For HIRAX correlated with the Euclid-like spectro-
scopic and the SKA2-like surveys, we consider top-hat
redshift bins since the accuracy in the redshift determi-
nation is excellent. For the Euclid-like photometric surveys,
on the other hand, we use the bins given in [49] (see Fig. 3),
which we approximate with Gaussian window functions
according to Table 4 in [50]. Since we are using the code
CLASS [51,52] to compute the angular power spectra, and it
does not allow us to choose two different windows at two
different redshifts, we also use Gaussian windows for
HIRAX in our forecasts in this case.

The signal depends on the galaxy magnification bias, s.
For Euclid-like photometric, we use the magnification bias
measured from the flagship simulation, see Table 1 of [49].
For SKA2, we use the expression from [53], and for Euclid-
like spectroscopic, we use the model developed in [54]. The
signal is by construction independent of galaxy bias,
however, the variance of E; depends on the galaxy bias.
Explicit expressions for the biases used to model the
different surveys can be found in Appendix B.

A. Limber approximation

E; depends on the foreground and background redshifts,
2 and z;,. However, in Limber approximation, the back-
ground dependence goes away, and Eg directly probes
deviations from GR at redshift z,. We first relate the metric
potentials (that enter in the convergence) to the matter
density contrast, §, using the Poisson equation. Since we
want to test the validity of GR, we allow for deviations,
encoded in the parameter X, see e.g., [3,55-57]

k(@ +¥) = -3H3Q, (1 + 2)Z(2)8(k,z).  (11)

Here Q,, denotes the matter density parameter today, and H,
represents the present-time value of the Hubble parameter. In
ACDM, X = 1 on the scales and redshifts of interest for us.
Deviations from ACDM can be encoded into a modification
to the Poisson equation, and a difference between the two
metric potentials, which combine into a X generically
different from 1 [3,55-57]. Plugging this into the conver-
gence (3), and using Limber approximation [58] we obtain
the density-magnification correlation, see e.g., [49]

26+ 1) 3HQ, /z;"“*

+1/22 2 Joo

£+1/2 z} /5" )Z(z’)—)((z)
Z

x(2) pin deiny(& x(@x(Z)

C¥(zp.2) =

dzny(2)Z(z)

x (1 + Z)P55[

where 1,(z) is the normalized galaxy distribution, ny;(z) is
the normalized intensity distribution and the integrals run
over the size of the redshift bins. Note that the #-dependent
coefficient in front of the integral can be set to one at large ¢,
where Limber approximation is valid. Moreover, we assume
that X is independent of k, which is a common assumption in
large-scale structure analyses (e.g., [59]), and is motivated by
the fact that various theories of modified gravity obey this
assumption in the quasistatic approximation, e.g., [60-62].

The density-density correlation can also be simplified
using Limber approximation, leading to

™ H £+1/2

(13)

Inserting Eqgs. (12) and (13) in E; (10) and assuming that
the functions X(z), ¥(z), H(z), and n,(z) vary slowly with
redshift inside each redshift bin, we obtain

Eg(?.z5,2) = F@ﬂ%)%if)f)v (14)
where
2
Iy = (5() =2) gt (1 4.2)
o a” o x(@) = x(2)
X /z'“i“ dZnHI(Z) /thnm dZ I’lg(Z) P Z))((Z/)
X </:“im dZVlg(Z)l’lH](Z)> B (15)
‘ 2
~ (55(z) - 2) 213;1(2) (1+2)

L elz) 1 / 3 dzﬂ((z) —x(zy)

ng(zs) x(zp) Jomin x(2)

The second expression corresponds to top-hat bins, while
the first one allows for more general redshift bins.

The coefficient I' depends on the background cosmology,
the galaxy distribution and the magnification bias. A
common assumption in large-scale structure analyses is to
fix the background to ACDM (since the CMB has extremely
well constrained it) and to test for deviations from General
Relativity at the level of the perturbations. This is, for
example, the strategy adopted in RSD analyses to measure
f, inamodel-independent way, see e.g., [63]. Here we follow
the same procedure. The galaxy distribution and the mag-
nification bias are quantities that can directly be measured for
a given population of galaxies and a given survey.
Consequently, I' is a parameter we can predict. Note that
we do not include Q,, in I" as it cannot be measured in a
model-independent way when allowing for general dark

(16)
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Zf :0.8, Zy = 1.2, AZf = 0.22, AZ}, =02
1.03

—— E¢ (no Limber)/Eg (Limber)
—— Eg (Limber)/(Q,5/f)
E¢ (no Limber)/(Q,%/f)

1.024

ratio

0.98

200 400 , 600 800 1000

FIG. 1. Accuracy of the approximations used in our estimator:
in blue, we show the ratio of E; computed without and with
Limber approximation; in green the ratio with and without
redshift evolution, and in orange the ratio without and with both
approximations.

energy or modified-gravity scenarios [4,64]. We then define a
rescaled E; variable, by dividing it with I'(z;. z;)

E; (Zf7 Zp)
T(z7.25)Be(27)CE " (2. 27)
_Q,X(zp)
 flzp)

We have tested the validity of the approximations used
to obtain Eq. (17). In Fig. 1 we compare £ using the full-
sky angular power spectra, with the result using Limber
approximation, and with the second line of Eq. (17), which
further neglects redshift evolution within each bin. Limber
approximation induces a subpercent error on E; for ¢
above 100 (and less than 0.1% for £ > 400). Neglecting
redshift evolution induces a ~1% percent error at all £’s.
This is well below the statistical uncertainties on EG, as
we will see in Sec. IV. The model-independent and
¢-independent function I'(zs,z),) defined in Eq. (16) is

Eg(t.25,2,) =

(17)

therefore perfectly adapted and allows us to define £ in a
model-independent way, in contrast to the function C(¢)
used in [21], which depends on the density power spectrum
and is thus model dependent.2

B. Signal-to-noise ratio

We now compute the signal-to-noise ratio (SNR) of Eg
for the three combinations of surveys. Since the signal is
independent of the background redshift, as discussed
above, we sum over all pairs at fixed z¢;

*Note that to properly test the validity of Eq. (17), it is
necessary to use the same distribution functions, n, and ny;, in
Egs. (12), (13), and (16). In our case, we use top-hat window
functions approximated by a smooth function in CLASS, with a
sharpness that can be adjusted.

S 2 fmax Zmax N
(N) (Zf) = Z Z EG(f, Zf,Zb)

£.0'=Cmin vaZ’b:me
X COV_1 [EG(K, Zf, Zb), EG(l’ﬂ/v Zf’ ZZ)]
X Eg(t'.24.2)). (18)

The sum runs over all multipoles used in the analysis and
all background redshift bins. In Sec. III C we will select
those such that the contamination from RSD, lensing and
density are negligible.

The full expression for the covariance of E; is given in
Appendix A. It depends on the covariance of c on the
variance of f#, and the covariance between the two. The

. HI . .
covariance of Ci is given by

cov[C8M (21, 25). €81 (23, 24)]
B 1
fsky(2f+ 1)
x [CE (21, 23) CIM (23, 24) + €5 (21, 24) O (22, 23))-

(19)

All terms are affected by cosmic variance. In addition, the
galaxy-galaxy correlation is affected by shot noise when
21 = 13

gg sn _ 5z1.13 )
Cf (ZI’Z3) (Z])’ ( O)
where N(z;) denotes the mean number of galaxies per
redshift bin and steradian. The HI— HI correlation is
affected by shot noise and interferometer noise; however,
it has been shown in [65,66] that the former is always
subdominant with respect to the latter. In [36], we derived
an expression for interferometer noise for HIRAX, based
on an analytical expression derived in [67], adapted to the
outcome of numerical simulations for HIRAX [65,66].

Finally, the cross-correlation between the galaxy and
intensity mapping is not affected by shot noise or inter-
ferometer noise.

As shown in Appendix A, the covariance of £ is also
affected by the variance of f,. This quantity is measured
from the multipoles of the correlation function (or the
power spectrum), which are directly sensitive to RSD.
Spectroscopic surveys are designed to measure f3, very
precisely and are expected to reach a precision of 1% [69].

*Note that, as shown in [68], there is a residual shot noise
contribution in the cross-correlation due to the galaxies which
contribute to both the number counts and the intensity mapping
signal. This contribution is however negligible in the covariance,
since it adds to the covariance from HI-HI, which is dominated by
interferometer noise, that is always significantly larger than shot
noise [65,66].
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FIG. 2. Relative contamination to C%Hl(zf, zs) due to lensing magnification and RSD. The left panel shows relative contaminations at
z¢ = 1.1 and the right panel at z; = 1.6. For each panel there are two sets of curves: Az; = 0.1 (dashed) and Az; = 0.3 (solid). For the
narrower choice of Azy, the RSD contribution dominates, so that the green and red dashed curves nearly coincide.

Photometric surveys can also measure f, but with much
less precision, of the order of 10% [70]. We use these two
values for the spectroscopic and photometric forecasts.
Note that, as shown in Appendix A, the variance of f,
generates nondiagonal contributions, with £ # ¢, to the
covariance of Eg. This is because Py is a parameter
measured from the full correlation function in each redshift
bin. Its error is, therefore, fully correlated for different
values of the angular multipoles £ and ¢’. Neglecting these
correlations, as has been done in [71], would underestimate
the f, contribution to the variance by a factor of
roughly 27 + 1.

Finally, the covariance of E; depends on the covariance

between C§;HI and f3,. Even though this covariance is not

. . HI
precisely zero (since f, and C 27 can be measured from the

same volume), it is highly suppressed and can be neglected;
as has been shown in [72], CiHI is mainly insensitive to small
radial modes, due to the size of the redshift bins, which
washes out small-scale information, whereas ﬁg 1s measured
from small radial modes. This leads to a negligible covari-
ance between these two types of measurements.

C. Contaminations

From Eq. (18) we see that the SNR depends on the range
of multipoles used in the analysis and the redshift bins. We
determine those to reduce the contaminations to Eg. As
discussed previously, the numerator in £ is not affected by
the lensing contamination that affects standard £ estima-
tors [25]. However, when z; is close to z,, the numerator is
affected by density-density contamination, given by the last
line in Eq. (8). In order to reduce this contamination to
acceptable levels, once the redshift bins have been fixed,
we will compute the contamination for each pair and
remove those for which it is too high.

The denominator in Eg is affected by contamination
from lensing magnification and by contamination
from RSD. The first one has been discussed in [25],
whereas the second one is usually ignored. We aim
to choose the widths of the redshift bins to minimize
these two contaminations without compromising the
SNR. The contribution from RSD and lensing magnifi-
cation to the galaxy-HI spectrum at equal redshift can be
expressed as

ACE(z7.27) = byu(z)(55(z7) = 2)C¥ (27, 2¢)
+ [by(zs) + ba(z)]CRSP (24, )

+ CRSPRSD(7,.2¢). (21)
The term in the first line is the lensing magnification
contamination, and the two terms in the second line are
the contaminations from RSD. In Fig. 2 we show the
relative contamination from lensing magnification and
RSD for z; = 1.1 and z; = 1.6 and for two values of the
width: Azy = 0.1 and Azy = 0.3. We choose here the
Euclid-like spectroscopic survey specifications. We see
that for thin bins (dashed curves), the contamination due
to lensing is less than 0.1% for both redshifts, z, = 1.1
and z; = 1.6, while RSD contributes more than 1% on a
wide range of scales. For thick bins (solid curves), the
situation is different. Here RSD is still the dominant
contamination on large scales, but on small scales
(¢ 2300 for z; = 1.1 and #2 550 for z; =1.6) the
lensing magnification contamination dominates. We see
that this contamination does not increase with redshift.
This is because, in Limber approximation, only the intra-
bin lensing contributes. This contribution decreases
with redshift roughly at the same rate as the density-
density contribution. However, the bias increases faster
with redshift than the magnification bias factor 5s — 2
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Left panel: SNR contamination from RSD and lensing magnification for a Euclid-like spectroscopic survey as a function of

Cmin and Azy, for z; = 1.1, z;, = 1.6, and Az, = 0.22. Right panel: Total SNR as a function of z for different values of Az;. Note that in
each case, the size of the last redshift bin is adapted to cover the whole available redshift range.

(see Fig. 6 in Appendix B), leading, overall, to a slight
decrease with redshift of the relative lensing contamina-
tion. Overall the wider redshift bin choice is clearly better
in terms of total contamination, which remains below 3%
for # 2 100 for z; = 1.1 and ¢ 2 200 for z; = 1.6.
Based on Fig. 2 we see that for each foreground redshift
Z¢, we can choose a width Az; that would minimize the
total contamination. Here we have compared the contami-
nation with the density contribution b,by;C%. In practice,
however, what will determine if our estimator is biased or
not is the size of the contamination with respect to the
variance; as a rule of thumb, if the contamination leads to a
contribution in E; which is of the same order as its
variance, we expect a bias of the order of 1o on the
best-fit parameters extracted from E;. We define, therefore,
the following SNR associated with the contaminations
Z Z Agg(f, Zf, Zb)

AS)\?
( N ) (&) =
fvf/:fmin zva;,:Zmin

X COV_1 [Ec(lxﬂ, Zf’ Zb), Ec(f/, Zf, ZZ)]AEG(KI, Zf, Z;})
(22)

fmax Zmax

Here AE is the difference between the contaminated
signal, and the uncontaminated one,

AEG(f, fs Z;,) = (23)
{ E;(zs,2p)
Ba(z7) (bg(zf)bin (27)C2 (25, 25) + ACE (25, 27))
_ E¢ (24, 2) 1
Baz g oy b2 CP oy zf>} Moz Y

where ACffLHI contains the contamination from RSD and
lensing, defined in Eq. (21).

Our strategy to choose optimal redshift bins is based on
two factors: minimizing the contamination (22) and maxi-
mizing the total signal to noise (18). There are four
variables that we need to optimize: £y, €max, AZy, and
Az,. We choose 7y, = 1000, since above this value, the
nonlinear modeling of lensing magnification and density
fluctuations is uncertain. In Fig. 3 (left panel) we plot the
SNR contamination as a function of #p;, and Az, for
the redshift pair (z; = 1.1, z, = 1.6), and for fixed Az), =
0.22. We show the results for the case of the Euclid-like
spectroscopic survey. We see that at fixed &;,, the
contamination decreases as we increase the bin size.
This is because the RSD contamination decreases for thick
bins. The lensing contamination, on the other hand,
increases with the size of the bin, but it never overcomes
the contamination from RSD once we sum over multipoles.
Moreover, the contamination decreases quickly when
increasing ¢,,;,. This is again due to RSD, which peaks
at low £ as can be seen from Fig. 2.

To optimally choose Az and £, we need to put Fig. 3 in
balance with the SNR for Eg. Clearly, decreasing ,;, will
increase the SNR. A good compromise is to choose
€min = 100. This is also motivated by the fact that IM
surveys like HIRAX may not have good enough calibration
to precisely measure lower multipoles [67]. Concerning the
size of the bins; the SNR at each z; increases with the size of

the bins, but if we want to test the evolution of E; with
redshift, we want to have a reasonable number of foreground
bins. In Fig. 3 (right panel), we plot the SNR summed over all
background bins as a function of foreground redshift z; and
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TABLE I. Optimal redshift bin configurations for Euclid-like
spectroscopic, photometric, and SKA2-like surveys.
Euclid spectro Euclid photo SKA2
z Az z Az z Az
1.02 0.24 0.84 0.2 1.02 0.24
1.26 0.24 1.00 0.2 1.26 0.24
1.50 0.24 1.14 0.2 1.50 0.24
1.71 0.18 1.30 0.2 1.74 0.24
1.44 0.2 1.93 0.14
1.62 0.2
1.78 0.5
1.91 0.5
TABLEII. SNR contamination from density for the Euclid-like
spectroscopic survey.
zf 7, = 1.26 7, = 1.50 7z, = 1.71
1.02 0.09 3x 10716 7% 1071
1.26 0.006 4% 10710
1.50 0.04
TABLE III. SNR contamination from density for the SKA2-
like survey.
2y 7, = 1.26 7, = 1.50 7, = 1.74 7z, = 191
1.02 1.40 10716 10716 1016
1.26 0.94 10716 10716
1.50 0.60 1077
1.74 1.54

for different sizes of the bins. We see that Az; = 0.24 is
optimal; it allows us to measure EG for three foreground
redshifts (versus two for Az = 0.3) and has a total SNR of
18.4, larger than for all other cases. The thinner choice,
Azy = 0.14, is interesting since it allows us to measure Eg
in a higher number of redshift bins. However, the overall
SNR (summed over redshift) is 8 percent lower than
for Azy =0.24. We therefore choose 7, =100 and
Azf = 0.24, which lead to a small SNR contamination of

0.17. Note that if we reduce £,;, to 60, the SNR increases
only very slightly from 18.4 to 18.9, whereas the contami-
nation increases from 0.17 to 0.28. We conclude therefore
that Z;, = 100is a better choice. This procedure needs to be
performed for each value of the foreground redshift z,. We
find similar results at all redshifts, with a maximum SNR
contamination of 0.21 for the pair z; = 1.02, and z;, = 1.71,
which is still perfectly acceptable.

We then repeat the same procedure for the Euclid-like
photometric and the SKA2-like surveys. In Table I, we list
the optimal binning for each case.

Once the binning has been fixed, we compute the SNR
contamination from density in the numerator of £ [due to
the last line in Eq. (8)], for each pair (z;, z;). The results for
the Euclid-like spectroscopic survey are shown in Table II.
This SNR contamination is at most 9% (for neighboring
pairs). We can therefore keep all pairs in our forecast. For
SKAZ2, the density contamination for adjacent pairs is more
significant, as seen in Table III. This is because the variance
of E is smaller for SKA2 due to the broader sky coverage
and lower shot noise. Consequently, the contamination
from density relative to the variance is larger for SKA?2 than
for Euclid spectroscopic. To avoid bias in our estimator, we
remove adjacent pairs for SKA2.

For Euclid-like photometric, the situation is different since
we are using Gaussian window functions. In this case, there is
still a significant overlap of nonconsecutive bins, especially
at high redshift, leading to non-negligible density contami-
nation, as seen from Table IV. Based on these results, we
remove all pairs with contamination larger than 0.25. With
this, we ensure that the bias from such contamination is
below 0.250, which is acceptable. We see that with this
criteria, we have only three foreground bins for Euclid-like
photometric. Note that in reality, we expect the contamina-
tion to be smaller; here, we have used a Gaussian window for
HIRAX as well, due to the limitation of CLASS to have two
different window functions. In practice, however, HIRAX
can select bins with sharp edges for which the bins overlap,
and consequently, the density contamination will be reduced.

Overall, our choice of binning is such that the total
contamination from RSD, lensing and density is at most
0.3 for Euclid-like spectroscopic (for z; = 1.02), 0.6¢
for SKA2-like (for z; = 1.02), and 0.4¢ for Euclid-like

TABLE IV. SNR contamination from density for the Euclid-like photometric survey.

lf Z;,ZI.O Zh:1.14 Zb:1~30 Zb:1~44 Zh:1.62 Zb:1.78 Zh:1.91
0.84 40.8 3.7 0.25 0.004 10-° 1073 1073
1.00 22.6 1.8 0.15 1073 0.1 0.03
1.14 27.1 4.3 0.08 0.24 0.14
1.30 12.8 1.4 2.7 1.3
1.44 5.7 10.3 5.8
1.62 66.8 51.8
1.78 28.7
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photometric (for z; = 1.14). This means that our estimator
is robust and will lead to a measurement of Q. 2/ f that is
not significantly biased (half a sigma at most). Note that
one possibility to reduce the bias further would be to
model the contamination using a reference cosmology, and
to add it to the model. This ‘reference contamination’ can
then be kept fixed. This is not correct (since the contami-
nation depends on cosmology), but since it is already
subdominant, the bias generated by keeping it fixed would
be very small.

IV. MODIFIED GRAVITY FORECASTS

From Eq. (17), we see that constraints on £¢(z 1) directly
translate into constraints on the combination of parameters
Q.. X(z¢)/f(zf). For each z;, the Fisher element for this
combination reads

Cmax Zmax dEG (f’ Zf , Zb)

7= d(@nz/f)

fvf/:fmin vaz;,zzmin
dEG(f/7 Zf, Z;y)

-1 E f, "y 7E f/’ i ;
x cov™ ! [Eg( 2y 7). Eg( 2f z,)] d(Q,Z/f)

fmax Zmax

f7f/:fmin Zh’z;,:Zmin
(25)

In Fig. 4 we show the relative error on Q,,%/f for the
three combinations of surveys, using the optimal redshift
bins defined in Table I. The constraints expected from a
Euclid-like spectroscopic survey are very good at low
redshift, around 7%. The precision decreases as the fore-
ground redshift increases, reaching 32% at z; = 1.50. The
fact that the constraints are significantly better at low
redshift is due to two reasons; firstly, when z; is small, we
can correlate it with a larger number of background redshift

@® Euclid Spectroscopic
0.5 (] Euclid Photometric
A SKA2
< 04
W
£
g
=03
=
W
g
) 0.2
0.1
0.8 1.0 1.2 1.4 1.6

Zf

FIG. 4. Relative uncertainty on Q. >/f as function of fore-
ground redshift for Euclid-like spectroscopic, Euclid-like photo-
metric and SKA2-like. In the Fisher analysis we use &y;, = 100,
max = 1000, and the redshift bins given in Table I.

GR prediction: Qn/fiz) 4 Reyes et al 2010
SKA2 Pullen et al 2016
Euclid Spectroscopic ¢ Zzhangetal 2020
Euclid Photometric

V¥ Alam etal 2017
® Blake et al 2016
©® Amonetal 2018

[ X 2 4

02 04 06 08 10 12 1.4 16 18 20
Zf

FIG. 5. EG and its error bars, as function of foreground redshift,
zp. We compare our results from Fisher forecasts with measure-
ments from [14,16,21-23,74]. The dashed orange line is the
GR prediction, Eg(z) = Qn/f(z) calculated with our fiducial
cosmology.

bins, which increases the precision of the measurement.
Secondly, at low redshift, the number density for a Euclid-
like spectroscopic survey is significantly larger than at high
redshift, leading to a strong suppression of shot noise.
On the other hand, a Euclid-like photometric survey has
a precision of ~11% for all foreground redshifts. The
primary source of error for photometric surveys is the
error on S, (of 10%) since this parameter cannot be well
constrained from a photometric survey. This consequently
limits the precision with which E; can be measured. To
model this uncertainty correctly, it is crucial to include the
P, covariance fully correlated in £ as in (A2). As shown in
Appendix A, this nondiagonal contribution follows from
the fact that f, is measured by combining all available
scales (from the multipoles of the power spectrum) and
not independently for each value of 7. Neglecting these
nondiagonal terms in the covariance leads to an uncer-
tainty on Eg that is smaller than the uncertainty on By

alone, like for example in [71], where EG is predicted to be
measured with a precision of 1% with LSST, even though
LSST can measure 3, with a precision of 10% only, which
is not possible. Similarly, in [73], EG is forecasted to be
measured with a precision of 1% with LSST and photo-
metric Euclid, using CMB lensing, assuming that f, can
be measured with a 10% uncertainty. Again, this is not
possible: E; cannot be measured better than P 1s. As
before, the error in these forecasts comes from the fact that
the error on 3, is wrongly assumed to be uncorrelated in #
[see their Eq. (17)].

The constraints predicted for SKA2 are tighter by a
factor of 2 with respect to the constraints from Euclid-like
spectroscopic, reaching 3.9% at low redshift. This is
mainly due to the higher number density of SKA2, the
broader sky coverage, and the larger redshift range.

063514-9



ABIDI, BONVIN, JALILVAND, and KUNZ

PHYS. REV. D 107, 063514 (2023)

TABLE V. Previous measurements of E;.

Authors z Eg(z) Agreement
Reyes et al. [14]  0.37  0.392£0.065  Agrees with GR
Blake et al. [18]  0.32 0.48 £0.10 Agrees with GR
0.57 0.30 £0.07 1.40 deviation
Amon et al. [16]  0.27 0.43 +0.13 Agrees with GR

0.31 0.27 £0.08
0.55 0.26 +0.07

Alam et al. [22] 0.57 0.42 £ 0.056
Pullen et al. [41]  0.57 0.24 + 0.060

2.36 deviation
20 deviation

Agrees with GR

2.60 deviation

However, the constraints are quite poor in the last redshift
bin, of 54% only. This is due to the large shot noise at
high redshift, which significantly degrades the con-
straints, and to the fact that only one pair can be used
for this case.

In Fig. 5, we compare our forecasted constraints with
current measurements of £ from [14,16,21,23]. The
orange dashed line represents the GR prediction, £5(z) =
Q../f(z), computed with our fiducial choice of cosmol-
ogy.4 The best measurement for £ is the one from [22] at
zy = 0.57 which has a precision of 13%. We see from

Fig. 5 that our method to measure £ from clustering of
galaxies and intensity mapping has the potential to sig-
nificantly tighten these constraints over a wide range of
redshifts, allowing us to test the validity of GR robustly on
cosmological scales.

V. CONCLUSION

Testing the consistency of GR at cosmological scales is
one of the main goals of modern cosmology. Since a large
number of theories have been constructed where gravity is
modified or where a dark energy component has been
added, confronting each theory individually with observa-
tions is no longer feasible. It is, therefore, necessary to build
model-independent tests. In this paper, we focused on one
of these tests: the E; statistic, which compares the
evolution of the sum of the potentials with that of the
velocity.

The E statistic has been successfully measured with
various data sets, showing mild tensions with the GR
predictions in some cases. It is therefore of great interest to
see if future surveys will confirm or not these tensions.
However, the currently used estimators of Eg suffer
from two problems; first, they are affected by lensing

*Note that the measurements depend on the choice of back-
ground cosmology through I' and can therefore not directly be
compared with our prediction to assess if there is a tension or not.
In Table V we provide for this reason a summary of the tension
(or agreement) quoted from the respective studies.

magnification, a contamination that will become important
for future surveys and may invalidate their use. Second,
they mix different observables (clustering and shear, or
clustering and CMB lensing), making them sensitive to
tensions between these different data sets, due for example
to different systematics.

In this paper, we have proposed an alternative esti-
mator for E;, which relies only on clustering measure-
ments from two different tracers: galaxies and intensity
mapping. We have shown that this estimator is very
robust; it only uses cross-correlations that are less
affected by systematics, and by choosing the binning
in which E; is measured appropriately, the contamina-
tions are below 0.36 for a Euclid-like spectroscopic
survey, below 0.60 for a SKA2-like survey, and below
0.40 for a Euclid-like photometric survey. Moreover, our
estimator depends on a choice of fiducial cosmology
only through background parameters, namely through
H(z) and distances. Contrary to some estimators used in
the literature, it does not depend on the evolution of
perturbations, like in [21].

Using Fisher forecasts, we have found that E;, and
consequently deviations from GR, can be measured over a
wide range of redshifts and with a precision of up to 7%
with a Euclid-like spectroscopic survey and 3.9% with a
SKA2-like survey. We have also explicitly shown that a
Euclid-like photometric survey cannot reach such a good
precision on Eg. The reason is that for a photometric
survey, f3, is measured at best with a precision of 10%,

which intrinsically limits the precision on Eg. This point
was not properly accounted for in some previous forecasts,
which claim a 1% precision on E; using photometric
surveys like Euclid or LSST [71,73]. The error in these
forecasts comes from the covariance matrix, which does not
properly include correlations in ¢’s generated by the fact
that ﬁg is measured from a combination of all scales, and
not independently for each values of 7.

Our study shows therefore that the combination of
intensity mapping and galaxy clustering provides an
excellent strategy to measure E; robustly and precisely.
This will dramatically improve current constraints and
extend them to higher redshifts, allowing us to test
deviations from GR very accurately.
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APPENDIX A: COVARIANCE OF Eg

We compute the covariance of Eg(Z, 25, 2,) for a fixed
value of z; since we measure it independently in each
foreground redshift bin. However, since we combine
different background redshift bins in the measurements,
we need to account for the covariance of E; between
different background redshifts z;, and zj,. Moreover, since
P, which enters into Eg, is measured by combining all
scales (and not independently for each value of 7),

|

it will induce correlations between E; at different values
of 7.

In general, for X = f(A, B) and X' = f(A’, B'), where f
is a generic function, the covariance of X and X’ can be
expressed as

oX ox’
Cov(X,X') = —Cov(a, ) —. (A1)
/,%:g da P

Using this formula, the covariance of E; becomes

Cov[EX(z7.25). E}(27.2,)] | Var[C8"(z;.2))] _ Cov[E(zy.2p). C¥ (24, 24)]

COV[EG(K, z5, ), EG(f/, Zz, ZQ,)] = {

E}(zs, 2 EX (zf.2)

« HI
_ COV[ELﬂ (Zfa Z;))’ C% (Zf’ Zf)}

T » HI
(€8 (zp.2p)) EX(z24.25)C5 (25, 2f)

HI
EX(z7,2,)C5 " (25, 2f)

+ E(;(f, Zr, Zb)EG(bﬂ/, Zr, ZQ,)

where 5?. . represents the Dirac delta function. Here, we
have neglected the covariance between f, and both C‘;HI
and E7, as discussed in the main text.

The covariance of GIMCO, which enters in the second
line of Eq. (A2) is given by

Cov[ES (zf.2p). E (27, 2,)]

— Cov[CM (2, 2/), C¥(2), 2p)]
— Cov[C¥" (2}, 2¢), C& (24, 2})]
= Cov[CE™ (25, 25). €81 (2} 2)]
+ Cov[C¥M (27, 25). €8 (24, 2] (A3)

where the covariance of C?HI is given in Eq. (19).
Similarly, the covariance of E} with CgHI, which enters
in the fourth and fifth lines of Eq. (A2) can be written as

Cov[EX (24, 2;), C2M (25, 24)]
= COV[C?HI(ZZ,, Zf), CL%HI(Zf, Zf)]

— Cov[C¥™ (25, 2,). C&M (25, 2). (Ad)
APPENDIX B: GALAXY AND INTENSITY
MAPPING SURVEYS

This paper uses three example surveys for galaxy
clustering: FEuclid-like spectroscopic, Euclid-like photo-
metric, and SKA2-like, and one intensity mapping survey,
HIRAX.

The bias of the intensity mapping from HIRAX is given
by [36]

}E(;(f, 2y, 2p)Eg (7, 2f 12)5?.5”

Var[ﬁg]
Be

: (A2)

|
bui(z) = 0.677(1 +3.8 x 107"z +6.7 x 1072z2).  (BI)
For the Euclid-like photometric survey, we use the bias
and magnification bias that have been measured from the
flagship simulation in each of the redshift bins we are
using, see Table 1 of [49].
For the SKA2-like survey, we use the bias, and magni-
fication bias modeled in [45]:

by(z) = 0.5887 exp(0.8132), (B2)

5(z) = 50+ 512 + 5,2 + 532°, (B3)
with sq = —0.1068, s; = 1.359, s, = —0.620008, and
s3 = 0.1885.

Finally, for the Euclid-like spectroscopic survey we use
the bias given in [48] (Table 3). Since we are not using the
same bins as there, we interpolate this bias with the
following function

by(z) = —1.094 + 1.813v'1 + z. (B4)
The magnification bias for Euclid-like spectroscopic has
never been modeled nor measured in simulations. We use,
therefore, for simplicity, the expression given in [54]
(which is another model for SKA2)

s(z) = 0.9329 — 1.562 exp(—2.437z). (B5)

Galaxy and magnification biases
Fig. 6.

are plotted in
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FIG. 6. Left panel: Galaxy bias b,(z) for Euclid-like spectroscopic, Euclid-like photometeric and SKA2-like surveys. We also show
intensity mapping bias for HIRAX. Right panel: magnification bias for Euclid-like spectroscopic, Euclid-like photometeric and

SKA2-like.

APPENDIX C: WINDOW FUNCTIONS

We use the top-hat window function for spectroscopic surveys and a Gaussian window for the photometric survey. The
reason is that in spectroscopic surveys, we can measure precisely the redshift, while in photometric surveys, we have larger
errors on the redshift. For the top-hat, we choose a smooth version of the top-hat filter,

Wrn(z) =

! {1 + tanh <7Z_"+HAZ/ 2)}

% {1 + tanh (— w>] otherwise,

if z<u
(C1)

where p is the mean of the redshift bin, Az is the width of the bin, and « is the speed of the transition which we choose to be
a = Az/10. The expression for the Gaussian window function is given by

1

We(2) = —==

Az 21

o[- 21|
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