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We put constraints on the peak absolutemagnitude,MB of type Ia supernova using the Pantheon sample for
type Ia supernova observations and the cosmic chronometers data for the Hubble parameter by a model
independent and nonparametric approach. Our analysis is based on the Gaussian process regression. We find
percent level bounds on the peak absolutemagnitude given asMB ¼ −19.384� 0.052. For completeness and
to check the consistency of the results, we also include the baryon acoustic oscillation data and the prior of the
comoving sound horizon from Planck 2018 cosmic microwave background observations. The inclusion of
these two data gives tighter constraints onMB at the subpercent level. We obtain constraints onMB from the
combination of Pantheon compilation of type Ia supernova observations and baryon acoustic oscillation
observationsgiven asMB ¼ −19.396� 0.016.When adding the cosmic chronometer observationswith these
observations, we findMB ¼ −19.395� 0.015. The mean values of peak absolute magnitude from all these
data are consistent with each other and the values are approximately equal to −19.4.
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I. INTRODUCTION

The late time cosmic acceleration was first discovered by
the type Ia supernovae observations [1–3]. These obser-
vations are based on the fact that the type Ia supernovae are
standard candles and the peak absolute magnitude,MB of a
type Ia supernova is uniform. The discovery of the late time
cosmic acceleration led to the concept of dark energy (for
details see [4,5]), where the dark energy is considered to be
an exotic matter component in the Universe that has an
effective large negative pressure.
The peak absolute magnitude, MB of type Ia supernova

plays an important role in the determination of the
expansion history of the Universe since the cosmic dis-
tances like the luminosity distance of an astronomical
object are related to the distance modulus of the type Ia
supernovae. This distance modulus depends both on the
observed magnitude, m, and the absolute magnitude, MB
[6–9]. That is why the observational constraints on the
cosmological parameters like the deceleration parameter,
the matter-energy density parameter, the dark energy
density parameter, etc. are estimated based on the value
of the absolute peak magnitude, MB [10,11]. Thus it is
important to know the exact value of MB.
In most of the recent type Ia supernova-based cosmo-

logical studies, the parameter MB is considered to be a
nuisance parameter and fitted with the other parameters of
the stretch color relation [12]. This is because the constraints

on the cosmological parameters from the type Ia supernova
observations are degenerate toMB and this degeneracy stems
from the degeneracy between MB and H0 (present value of
the Hubble parameter). This is the reason, alternatively, we
need to calibrate MB by combining type Ia supernova data
with other astrophysics and cosmological data [7]. We also
note that, in recent investigations, the determination of the
distance modulus from the type Ia supernova observations
is dependent on the distance bias corrections, mass step
corrections, etc [8]. Indeed, this steals the importance ofMB
a bit, but the value ofMB still finds use in the determination
of the Hubble constant, H0 whenever type Ia supernova
observations are considered [13,14].
In literature, we find the inconsistency in the values of

H0 from low redshift observations like SHOES [15] and the
high redshift observations like cosmic microwave back-
ground (CMB) [16]. This is the so-called Hubble tension
[17–19]. However, recently, some authors have argued that
the Hubble tension is not the fundamental tension, rather
MB tension is the more fundamental one when we compare
the low redshift observations with the high redshift obser-
vations (with the presence of the type Ia supernova
observations). For details see [20–22]. Thus, in this regard,
the determination of MB from different combinations of
data is also important.
We also find the relevance of the knowledge of MB in

some other cases. For example, for some nonstandard
cosmological studies like the measurement of Newtonian
gravitational constant and its time variation [23], the
determination of the speed of light and its time variation
[24], and the determination of the fine structure constant
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and also its time variation [24,25] from the combination of
supernova and other observations depend on the value of
the type Ia supernova peak absolute magnitude. So, in these
cases, the value of MB plays a key role. Note that these
studies are independent of the degeneracy betweenMB and
H0. This is because these studies are directly dependent on
the cosmological distance like luminosity distance. These
are not directly dependent on the Hubble parameter or the
relevant quantities. That is why H0 is not involved. So, in
these cases, theMB parameter is the main parameter and the
results depend on its value.
Thus it is found thatMB still plays a crucial role in some

measurements and a secondary role in some others, and is
still quite a relevant quantity. This motivates the present
work, which deals with the estimation of MB.
The determination of MB is based on the anchors like

stellar parallax [26–28], detached eclipsing binary stars [29],
and maser emission from supermassive black holes [30–32].
These methods are mainly astrophysical and restricted to
lower redshift observations only. For example, in SHOES
observations, the determination of MB is based on type Ia
supernova data for redshift, z < 0.15 with the anchors
mentioned above [15,33]. It is also important to include
the higher redshift type Ia supernova observations to deter-
mine the value ofMB. For this purpose, the Pantheon sample
for type Ia supernova observations is useful, where the data
have the redshift range up to nearly 2.2 [8].
In the literature, there are some attempts to compute MB

from the cosmological point of view [7,20,34–37]. These
studies are mainly based on the type Ia supernovae data like
Pantheon [8] with other combinations of datasets like CMB
observations [16,38], baryon acoustic oscillations (BAO)
observations [39] etc. Some of these methods like in Refs.
[7,20] are not completely independent of astrophysical
anchors like stellar parallax [26–28] and masers [30–32].
However, a few other methods like in Refs. [34–37] depend
completely on the cosmological data. These methods are
either cosmological model dependent or based on the para-
metrization ofMB. Thus it is worthwhile to consider a model
independent and nonparametric approach to estimate MB
from the cosmological data and this estimation should be
independent of any astrophysical data or any other data.
The motivation of this work is to compute the bounds on

MB with a complete model independent and parameter-free
approach from the cosmological data only. For this pur-
pose, we mainly consider the Pantheon sample for the
supernova type Ia observations [8] and the cosmic chro-
nometer data for the Hubble parameter [40,41], because
these data are independent of any fiducial cosmological
model. For the methodology, we consider the Gaussian
process regression (GPR) analysis [42–46].
In recent years,GPR is quite frequently used in cosmology

[47–73]. For example, in [47–51], the cosmographic param-
eters like Hubble parameter, deceleration parameter, jerk
parameter, etc. have been constrained from the cosmic

chronometers, type Ia supernova, and BAO data using
GPR. In [52–54], constraining cosmic curvature density
parameter has been discussed using the gravitational wave
(GW) observations frombinary neutron starmergerswith the
future generation of space-based Deci-hertz Interferometer
Gravitational-wave Observatory (DECIGO) and other cos-
mological observations. In [55–59], the dark energy equation
of state and other dark energy properties have been studied
from different cosmological observations. In [60], the
interaction of dark energy and dark matter has been con-
strained by different cosmological observations using GPR.
The CMB [16] and the BAO [39] data, on the other hand,

are dependent on a fiducial cosmological model. As the
primary motivation of the present work is a model-
independent estimation of MB, we do not include these
datasets to start with. However, we will see that as BAO and
CMB datasets have significantly smaller error margins
(standard deviation), their inclusion in the analysis helps
obtain tighter constraints onMB. It is important to note that
this difference in the error margins is the only effect of the
inclusion of the model dependent datasets, as we will see,
the mean value of MB is hardly affected by the addition of
the model-dependent data in the analysis.
This paper is organized as follows. In Sec. II, we mention

basic equations related to the cosmological background
dynamics. In Sec. III, we mention some details of the
observational data used in our analysis. In Sec. IV, we
present our model independent and nonparametric meth-
odology to obtain bounds on the MB parameter from these
observational data. In Sec. V, we present our results and
discuss the significance of these results. Finally, in Sec. VI,
we summarize the work.

II. BASICS

A. Basic cosmological relations

In our entire analysis, we consider that the Universe is
spatially homogeneous and isotropic. We further assume
that the Universe is spatially flat too. With these two
assumptions, the background geometry can be described by
the flat Friedmann-Lemaître-Robertson-Walker (FLRW)
metric given by dS2 ¼ −dt2 þ a2ðtÞdR2, where dS is the
line element of the space-time, dR is the three-dimensional
Euclidean line element, t is the cosmic time and a is the
cosmic scale factor. In this scenario, the luminosity dis-
tance, dL is related to the Hubble parameter, H with an
integration equation given as

dLðzÞ ¼ cð1þ zÞ
Z

z

0

dz̃
Hðz̃Þ ; ð1Þ

where z (also, z̃) is the cosmological redshift given as
1þ z ¼ a0

a , where a0 is the present value of a; c is the speed
of light in vacuum.
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The observed luminosity distance of a type Ia supernova,
located at a particular redshift, is related to the observed
apparent peak magnitude (m) of the supernovae with a
simple equation given as

mðzÞ −MB ¼ 5 log10

�
dLðzÞ
Mpc

�
þ 25; ð2Þ

where MB is the peak absolute magnitude of the same
supernova. The above equation is independent of any
cosmological model and valid for the only assumption
that the Universe is spatially homogeneous and isotropic.
Note that, the above equation has a more generalized

version with other parameters involved through the stretch
color relation (for details see [12]). In the Pantheon
compilation of type Ia supernova data, the other parameters
are marginalized with the zero centralized value [8]. Since
we are considering the Pantheon compilation data, we are
using the above equation only.

B. HðzÞ from mðzÞ
We use Eq. (2), to get luminosity distance fromm and the

solution is given as

dLðzÞ ¼ 10
1
5
½mðzÞ−25−MB� Mpc: ð3Þ

The above equation can be rewritten as a combination of
a redshift independent part and a redshift dependent part.
For the redshift independent part, we define a parameter, β
given as

β ¼ 10−
MB
5 Mpc: ð4Þ

For the redshift dependent part, we define a quantity, dN
given as

dNðzÞ ¼ 10
1
5
½mðzÞ−25�: ð5Þ

With the definitions of β and dN , the luminosity distance,
dL can be rewritten as

dLðzÞ ¼ βdNðzÞ: ð6Þ

In the above equation, we can see that dL is linear in dN
and dN is independent of theMB parameter because theMB
parameter is absorbed in the constant parameter, β.
Not only dL, we also need d0L ¼ ddL

dz to find H.
Throughout this paper, the prime denotes the derivative
with respect to the redshift, z. To compute d0L, we do the
differentiation of Eq. (6) with respect to z and we get

d0LðzÞ ¼ βd0NðzÞ; ð7Þ

where d0N is given as (by doing differentiation of Eq. (5)
with respect to z)

d0NðzÞ ¼ αm0ðzÞ101
5
½mðzÞ−25� ¼ αm0ðzÞdNðzÞ; ð8Þ

with

α ¼ logê 10
5

: ð9Þ

To get the Hubble parameter, we have to differentiate
Eq. (1). By doing this, we get

d0LðzÞ ¼ c

�
1þ z
HðzÞ þ

Z
z

0

dz̃
Hðz̃Þ

�

¼ cð1þ zÞ
HðzÞ þ dLðzÞ

1þ z
: ð10Þ

From this equation, we get the Hubble parameter
given as

HðzÞ ¼ cð1þ zÞ2
ð1þ zÞd0LðzÞ − dZðzÞ

ð11Þ

¼ cð1þ zÞ2
β½ð1þ zÞd0NðzÞ − dNðzÞ�

; ð12Þ

where in the second equality, we have used Eqs. (6) and (7).
Similar to the case for the luminosity distance, here also,

we can separate the parameter independent part (which is
redshift dependent) and the parameter dependent part
(which is redshift independent). For the parameter inde-
pendent part, we define a quantity, G given as

GðzÞ ¼ ð1þ zÞ2
ð1þ zÞd0NðzÞ − dNðzÞ

: ð13Þ

For the parameter dependent part, we define a parameter,
F given as

F ¼ c
β
¼ c 10

MB
5 Mpc−1; ð14Þ

where in the second equality we have used the definition of
β from Eq. (4). Using the above two definitions, the Hubble
parameter can be rewritten as

HðzÞ ¼ FGðzÞ: ð15Þ

We can see that H is linear in G.

C. Propagation of uncertainty

Using propagation of uncertainty through Eq. (5), we
compute the uncertainty in dN (denoted by ΔdN) given as

ΔdN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðdNÞ

p
; ð16Þ
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VarðdNÞ ¼
�
∂dN
∂m

�
2

VarðmÞ

¼ α2d2NVarðmÞ: ð17Þ

Throughout this paper, we denote the 1σ uncertainty (or
equivalently the standard deviation) of a quantity, Q as
ΔQ and the corresponding variance as VarðQÞ, where
VarðQÞ ¼ ðΔQÞ2. We also denote the covariance between
two quantities, Qi and Qj as Cov½Qi;Qj�. Note that if the
two quantities are the same, the covariance is the same as
the variance, i.e., Cov½Q;Q� ¼ VarðQÞ.
Similarly, using propagation of uncertainty through

Eq. (8), we compute the uncertainty in d0N given as

d0N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðd0NÞ

q
; ð18Þ

Varðd0NÞ ¼
�
∂d0N
∂m

�
2

VarðmÞ þ
�
∂d0N
∂m0

�
2

Varðm0Þ

þ 2
∂d0N
∂m

∂d0N
∂m0 Cov½m;m0�

¼ α4d2Nm
02VarðmÞ þ α2d2NVarðm0Þ

þ 2α3d2Nm
0Cov½m;m0�: ð19Þ

Similarly, using propagation of uncertainty through
Eqs. (5) and (8), we also compute the covariance between
dN and d0N given as

Cov½dN; d0N � ¼
∂dN
∂m

∂d0N
∂m

VarðmÞ þ ∂dN
∂m0

∂d0N
∂m0 Varðm0Þ

þ
�
∂dN
∂m

∂d0N
∂m0 þ

∂dN
∂m0

∂d0N
∂m

�
Cov½m;m0�

¼ α3d2Nm
0VarðmÞ þ α2d2NCov½m;m0�: ð20Þ

Next, using propagation of uncertainty through Eq. (13),
we compute the uncertainty in G given as

ΔG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðGÞ

p
; ð21Þ

VarðGÞ ¼
�
∂G
∂dN

�
2

VarðdNÞ þ
�
∂G
∂d0N

�
2

Varðd0NÞ

þ 2
∂G
∂dN

∂G
∂d0N

Cov½dN; d0N �

¼ G4

ð1þ zÞ4VarðdNÞ þ
G4

ð1þ zÞ2 Varðd
0
NÞ

− 2
G4

ð1þ zÞ3 Cov½dN; d
0
N �: ð22Þ

Next, using propagation of uncertainty through Eq. (15),
we compute the uncertainty in H given as

ΔH ¼
���� ∂H
∂G

����ΔG ¼ jFjΔG: ð23Þ

Similarly, using propagation of uncertainty through
Eq. (6), the uncertainty in dL can be computed from
ΔdN given as

ΔdL ¼
���� ∂dL
∂dN

����ΔdN ¼ jβjΔdN: ð24Þ

Note that, in this subsection, we have omitted the
argument, z in each quantity for the sake of simplicity
to write down the equations. So, we should keep in mind
that all the equations in this subsection are valid for each
redshift point.

III. OBSERVATIONAL DATA

As mentioned in the introduction, in our analysis, we
mainly consider two types of observational data. The first
one is the Pantheon compilation for the type Ia supernova
observations. This compilation consists of data for mðzÞ at
1048 redshift data points [8]. Also, these data are binned
over 40 redshift bins. We use these binned data in our
analysis and denote this as “SN” data. We are not explicitly
writing down all the mðzÞ values of these data in this paper,
because these data are publicly available. To get an idea of
the mean values of mðzÞ and the corresponding uncertain-
ties, see the black error bars in Fig. 1.
The second one is the cosmic chronometer data for the

Hubble parameter as a function of redshift [40,41]. We
denote this as “CC” data and any quantity with subscript
“C” corresponds to the values of that quantity at CC
redshift points. These data contain 31 redshift points, the
corresponding values of the Hubble parameter, and the
corresponding uncertainties. These are plotted in Fig. 2

FIG. 1. The Pantheon compilation data for the observed peak
magnitude, mðzÞ, and the associated uncertainties.
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with black colored bars. The CC data has a redshift range
from 0.07 to 1.965.
For the sake of completeness, we have also included the

BAO data in our analysis. BAO data is not completely
model independent because the results have been obtained
by considering a fiducial cosmological model. But, it is
useful since the error bars in BAO data are smaller
compared to the CC data.
The BAO observations consist of measurements for both

the line-of-sight direction and the transverse direction [39].
The line of sight direction data is closely related to theHubble
parameter through the quantity D̃HðzÞ ¼ DHðzÞ=rd, where
rd is the comoving sound horizon at the baryon-drag epoch
and DHðzÞ ¼ c=HðzÞ. The transverse direction data is
closely related to the luminosity distance (the comoving
angular diameter distance, DMðzÞ to be more precise)
through the quantity D̃MðzÞ ¼ DMðzÞ=rd, where DMðzÞ ¼
dLðzÞ=ð1þ zÞ.
So, we need the value of rd, to include BAO data in our

analysis. We consider the rd value obtained from the Planck
2018 result given by rd ¼ 147.09� 0.26 Mpc from Planck
2018: TT;TE;EEþ lowEþ lensing [16], where “T”
stands for temperature in CMB map and “E” stands for
E-modes from CMB polarization map [74,75]. The combi-
nation of any two quantities corresponds to the power
spectrum, for example, “TE” means the two-point corre-
lation between temperature anisotropy and E-mode polari-
zation anisotropy [16,74,75]. In this way, we include the
CMB data too and we have

rd ¼ 147.09 Mpc;

Δrd ¼ 0.26 Mpc: ð25Þ

From the above equation, we get HðzÞ and ΔHðzÞ
corresponding to the BAO data given as

HBðzBÞ ¼
c

rdD̃HðzBÞ
;

ΔHBðzBÞ
HBðzBÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ΔD̃HðzBÞ
D̃HðzBÞ

�
2

þ
�
Δrd
rd

�
2

s
; ð26Þ

respectively. These HBðzBÞ values and the corresponding
uncertainties are plotted in Fig. 2 with blue colored bars.
Throughout this paper, subscript “B” and superscript “B”

to a quantity corresponding to the quantity at the BAO
redshift points.
Similarly, we get dLðzÞ and ΔdLðzÞ corresponding to the

BAO observations given by

dBLðzBÞ ¼ ð1þ zÞrdD̃MðzBÞ;
ΔdBLðzBÞ
dBLðzBÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ΔD̃MðzBÞ
D̃MðzBÞ

�
2

þ
�
Δrd
rd

�
2

s
; ð27Þ

respectively. The obtained values of dBLðzBÞ and the
corresponding uncertainties are plotted in Fig. 3 with black
colored bars.
Throughout this paper, the BAO data is denoted by the

notation “BAO.” By the BAO notation, we also mean that
the value of rd from Planck 2018 data has been used.

IV. METHODOLOGY

If we know the observedm and dL corresponding to a type
Ia supernova, we can in principle find its peak absolute
magnitudeMB with the help of Eq. (2). For this purpose, we
have type Ia supernova observations like Pantheon compi-
lation [8] which provides us the data formðzÞ. If we consider
any theoretical model or any parametrization, we can get a
functional form of dLðzÞ either directly or via the functional
form of HðzÞ through Eq. (1). Once we have the functional
form of dLðzÞ, we can put constraints on the parameter MB

FIG. 2. The black colored bars correspond to the CC data for
the Hubble parameter and the corresponding uncertainties at CC
redshift points. The blue colored bars correspond to the HBðzBÞ
and ΔHBðzBÞ obtained from BAO data.

FIG. 3. The dBLðzBÞ and ΔdBLðzBÞ data that obtained from the
BAO data.
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(along with other parameters of that model or parametriza-
tion). For this case, in principle, it is possible that we can get
a constraint on the parameter MB from only the type Ia
supernova observations and this constraint should degenerate
to the constraints on other parameters, for example, the
Hubble constant, H0 [the Hubble parameter at present, i.e.,
H0 ¼ Hðz ¼ 0Þ]. For better constraints onMB, one can add
other datasets.
But, in this analysis, we are not considering any model or

any parametrization, rather we want constraints onMB in a
model independent way. Without considering any model or
any parametrization, we cannot compute MB with only the
type Ia supernova observations. We have to add at least one
another type of observation either related to the luminosity
distance (or any other quantity closely related to it like the
angular diameter distance) or related to the Hubble param-
eter. For the first case, cosmological observations like BAO
[39] are useful. For the second case, observations like the
cosmic chronometers [40,41] are useful. Or one can also
combine all of these three data.
In general, dLðzÞ data (here BAO data) and themðzÞ data

(here Pantheon compilation) are not at the same redshift
points. For this reason, we cannot use Eq. (2) to compute
MB from the combination of these two datasets in a
straightforward way. For similar reasons, we cannot use
the Hubble parameter data (here CC data) and themðzÞ data
together to put a constraint onMB in a straightforward way.
One possible way to overcome these problems is to use

the Gaussian process regression (GPR) technique [42–46].
This technique is useful to predict the values of any relevant
quantity at some target points and the corresponding
uncertainties from an observation that consists of data of
that quantity at some other points, in general. For example,
from z,m, andΔm data points (obtained from the SN data),
we can construct values of mðzÞ and the corresponding
uncertainties at CC redshift points.

A. Brief overview of basic GPR analysis

In GPR, we assume that the observed data, Y (for
example, in this case, it ism from SN data) is a multivariate
normal distribution, described by only a mean vector and a
covariance matrix. The data Y can be expressed by a vector
as Y ¼ ½y1; y2;…; yn�T , where y1; y2;…; yn are all the
observed values at given data points x1; x2;…; xn respec-
tively; n is the number of observed data points. The
superscript T represents the transpose of a vector or a
matrix. The data points can also be expressed by a vector X
given as X ¼ ½x1; x2;…; xn�T (for example, in this case, it is
the redshift points of the SN data).
Throughout the discussion, we follow the notation that

capital letters correspond to vectors or matrices and the
small letters correspond to a single value.
Another important assumption in GPR is that the

predicted values of the quantity at some target points also
follow a joint multivariate distribution with the data. If the

total number of target points is n�, then the joint distribu-
tion of data and predicted values has the dimension nþ n�.
Let us denote the predicted mean vector as F� ¼

½f�1; f�2;…; f�n� �T and a covariance matrix as Cov½F�; F��,
which has n� × n� number of elements. To find these values
using GPR, we need an important function, called the
kernel covariance function. In literature, there are some
forms of this kernel covariance function. Among those, the
squared exponential kernel covariance function is the most
used. One of the main reasons is that it is infinitely
differentiable. In this kernel covariance function, the
covariance element corresponding to two points xi and
xj is expressed as

kðxi; xjÞ ¼ σ2f exp

�
−
jxi − xjj2

2l2

�
; ð28Þ

where σ2f is the signal variance that determines the average
deviation of a function from its mean along the region of
target points and l is the length scale in which the function
changes significantly. These parameters are called hyper-
parameters. In Appendix A, we consider other kernel
covariance functions and discuss the dependence of the
results on these kernels in Appendix E.
We also need prior information for the predictions of

GPR through the mean function. In practice, many authors
use the zero mean function, but we use the corresponding
mean function from the flat ΛCDM model. In Appendix B,
we discuss the form of the mean function for the ΛCDM
model. We also consider other mean functions in
Appendix B and show how the results depend on these
mean functions in Appendix F.
Let us denote the values of the mean function at data

points and the target points by vectors MðXÞ (with n
number of elements) and MðX�Þ (with n� number of
elements) respectively, where X� ¼ ½x�1; x�2;…; x�n�T is the
vector that corresponds to the target points. The predicted
mean vector, F� and the covariance matrix, Cov½F�; F�� are
given as [44–46]

F� ¼MðX�Þ
þKðX�;XÞ½KðX;XÞ þC�−1ðY −MðXÞÞ;

Cov½F�;F�� ¼ KðX�;X�Þ
−KðX�;XÞ½KðX;XÞ þC�−1KðX;X�Þ; ð29Þ

respectively. C is the noise covariance matrix of the
observed data. Note that the matrix Cov½F�; F�� has the
elements corresponding to the covariances of all pairs of
the elements of F�.
The above equations depend on the values of the

hyperparameters of the kernel covariance function and
also the parameters of the mean function. We marginalize
over all these parameters using the EMCEE package [76]
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with the log marginal likelihood (denoted by logPðYjXÞ)
given as [44]

log PðYjXÞ¼−
1

2
ðY−MðXÞÞT ½KðX;XÞþC�−1ðY−MðXÞÞ

−
1

2
log jKðX;XÞþCj−n

2
logð2πÞ; ð30Þ

where jKðX;XÞ þ Cj is the determinant of the KðX;XÞ þ
Cmatrix. The details of the marginalization procedure have
been discussed in Appendix D.
In GPR, the derivatives of the quantity can also be

computed by assuming derivatives also follows a joint
multivariate normal distribution with the observed data.
The mean vector and the covariance matrix corresponding
to the first derivative are given as [44]

F0� ¼M0ðX�Þ
þ ½K0ðX;X�Þ�T ½KðX;XÞþC�−1ðY−MðXÞÞ;

Cov½F0�;F0�� ¼K00ðX�;X�Þ
− ½K0ðX;X�Þ�T ½KðX;XÞþC�−1K0ðX;X�Þ;

ð31Þ

where prime and double prime are first and second-order
derivatives of the corresponding function respectively with
respect to the argument x, for example, in our case the
redshift. Related to this, k0ðx; x�Þ and k00ðx�; x�Þ are given as

k0ðx; x�Þ ¼ ∂kðx; x�Þ
∂x�

; k00ðx�; x�Þ ¼ ∂
2kðx�; x�Þ
∂x�∂x�

; ð32Þ

respectively. In GPR, we can also get the covariances
between the quantity and its derivatives. For example, the
covariance matrix between the quantity and its first
derivative is given as [44]

Cov½F�; F0�� ¼ K0ðX�; X�Þ
− ½KðX;X�Þ�T ½KðX;XÞ þ C�−1K0ðX;X�Þ:

ð33Þ

We have Cov½F�; F0�� ¼ ½Cov½F0�; F���T ¼ Cov½F0�; F��,
since the covariance matrices are symmetric. More details
of the GPR analysis are discussed in Appendix C.

B. Obtaining constraints on MB from SN and CC data

We can use GPR to reconstruct H and ΔH at SN redshift
points from the CC data. With the reconstructed H we can
reconstruct m as a function of MB using Eqs. (1) and (2),
but the reconstruction of Δm is difficult because an
integration in Eq. (1) is not straightforward and there is
no standard procedure for ascertaining the propagation of
uncertainty through an integration. On the other hand, we

can reconstruct m and Δm at CC redshift points from SN
data using GPR.We can also reconstruct the derivative ofm
and the corresponding uncertainty using the GPR itself. So
we shall choose this method. The details of this method are
given below.

1. First step: Obtaining m and m0 and the
corresponding uncertainties at CC redshift

points from SN data using GPR

The SN observations have data of m. We denote this as
mðzSÞ and the corresponding uncertainty as ΔmðzSÞ. From
here onwards by zS and zC we mean the redshift points are
at SN and CC data points respectively. In the first step, we
use GPR to reconstruct mðzCÞ, ΔmðzCÞ, m0ðzCÞ, Δm0ðzCÞ
and Cov½mðzCÞ; m0ðzCÞ�.
In Fig. 4, we have shown the reconstructed mean and

uncertainty ofmðzÞ obtained by GPR from the observed SN
data. The black colored bars correspond to the SN data
from the Pantheon compilation. We have plotted the mean
values and the uncertainties of m at target CC redshift
points with the blue-colored bars.
In Fig. 5, we have plotted the reconstructedm0 ¼ dm=dz

and the associated uncertainties at CC redshift points
obtained using GPR.

2. Second step: Obtaining dN and d0N and the
corresponding uncertainties at CC redshift points

Here, we compute dN and d0N from the reconstructed m
and m0 (obtained from the previous step) at each CC
redshift point using Eqs. (5) and (8) respectively. Then, we
compute the corresponding uncertainties ΔdN and Δd0N at
each CC redshift point. These are computed fromΔm,Δm0,
and Cov½m;m0� (obtained from the previous step) by the
propagation of uncertainty using Eqs. (16) and (18)

FIG. 4. The black colored bars correspond to the Pantheon
compilation data for the observed peak magnitude,mðzSÞ, and the
associated errors. The reconstructed mðzÞ and the corresponding
uncertainty at the target CC redshift points by the blue colored
bars computed by the GPR analysis.
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respectively. We also compute Cov½dN; d0N � from Δm, Δm0,
and Cov½m;m0� (obtained from the previous step) by the
propagation of uncertainty using Eq. (20).
In Fig. 6, we have plotted the reconstructed dN and the

associated uncertainties at CC redshift points.
In Fig. 7, we have plotted the reconstructed d0N and the

associated uncertainties at CC redshift points.

3. Third step: Obtaining G and the corresponding
uncertainties at CC redshift points

Here, we get G from reconstructed dN and d0N (obtained
from the previous step) at each CC redshift point using
Eq. (13). Next, we compute the corresponding uncertainty,
ΔG from ΔdN , Δd0N , and Cov½dN; d0N � (obtained from the
previous step) at each CC redshift point by the propagation
of uncertainty using Eq. (21).
In Fig. 8, we have plotted the reconstructed values of

GðzÞ and the corresponding uncertainties at CC redshift
points using GPR with the blue colored bars.

4. Fourth step: Obtaining constraints
on MB by comparing CC data and the
reconstructed H from SN data by GPR

From the reconstructed G (obtained from the previous
step), we get the reconstructed Hubble parameter as a
function of MB parameter (through F parameter) using
Eq. (15) given as

HðzC;MBÞ ¼ FðMBÞGðzCÞ: ð34Þ

We also get the corresponding uncertainty, ΔH as a
function of MB from the propagation of uncertainty using
Eq. (23) given as

ΔHðzC;MBÞ ¼ jFðMBÞjΔGðzCÞ: ð35Þ

Now we compare the reconstructed Hubble parameter to
the observed CC data to get constraints on MB. For this
purpose, we define a chi-square given as

FIG. 5. The reconstructed first derivative of m and the corre-
sponding uncertainties at CC redshift points that obtained
using GPR.

FIG. 6. Reconstructed dN and the corresponding uncertainties
at CC redshift points.

FIG. 7. Reconstructed d0N and the corresponding uncertainties
at CC redshift points.

FIG. 8. The mean values and corresponding uncertainties of G
at target CC redshift points obtained by GPR are shown by the
blue colored bars.
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χ2SNþCCðMBÞ ¼
X
zC

½HðzC;MBÞ −HCðzCÞ�2
ΔH2ðzC;MBÞ þ ΔH2

CðzCÞ
; ð36Þ

where HCðzCÞ is the Hubble parameter from the CC data
and ΔHCðzCÞ is the corresponding uncertainty at each CC
redshift point. In the above equation, the total term in the
denominator corresponds to the total variance in the Hubble
parameter. Since the total variance is itself parameter
dependent, the better way to get constraints on the
parameter is a maximum likelihood analysis rather than
the chi-square minimization. The corresponding log-like-
lihood is given as

logLSNþCCðMBÞ

¼ −
χ2SNþCCðMBÞ

2

−
1

2

X
zC

log ð2π ½ΔH2ðzC;MBÞ þ ΔH2
CðzCÞ�Þ: ð37Þ

We maximize the likelihood by minimizing the negative
log-likelihood to get constraints onMB. In this way, we get
constraints on MB from the combination of SNþ CC data.

C. Obtaining constraints onMB from SN and BAO data

In this subsection, we discuss how to include BAO data
in our analysis using a similar methodology discussed so
far in the previous subsection. As mentioned previously, the
BAOobservations have two types of data: one is related to the
Hubble parameter and the other is related to the luminosity
distance. Since we haveHðzÞ data for BAO, we do the same
analysis asmentioned in the previous subsection (all the steps
from the first step to the fourth step).
First, we get mðzBÞ, ΔmðzBÞ, m0ðzBÞ, Δm0ðzBÞ, and

Cov½mðzBÞ; m0ðzBÞ� at each BAO redshift point from SN
data using GPR using Eqs. (29), (31), and (33).
Next, we get dNðzBÞ, ΔdNðzBÞ, d0NðzBÞ, Δd0NðzBÞ, and

Cov½dNðzBÞ; d0NðzBÞ� using Eqs. (5), (8), (16), (18), and (20).
Then we get GðzBÞ and ΔGðzBÞ at each BAO redshift

point using Eqs. (13) and (21).
From these GðzBÞ and ΔGðzBÞ, we get the Hubble

parameter and the corresponding uncertainty as a function
ofMB at each BAO redshift point given as (using Eqs. (15)
and (23) respectively)

HðzB;MBÞ ¼ FðMBÞGðzBÞ; ð38Þ

ΔHðzB;MBÞ ¼jFðMBÞjΔGðzBÞ; ð39Þ

respectively. Comparing above equations with Eq. (26), we
define a corresponding log-likelihood for BAO for HðzÞ
given as

log LSNþBAOðHonlyÞðMBÞ

¼ −
1

2

X
zB

½HðzB;MBÞ −HBðzBÞ�2
ΔH2ðzB;MBÞ þ ΔH2

BðzBÞ

−
1

2

X
zB

log ð2π½ΔH2ðzB;MBÞ þ ΔH2
BðzBÞ�Þ: ð40Þ

Next, from the reconstructed dNðzBÞ and ΔdNðzBÞ, we
get the luminosity distance and the corresponding uncer-
tainty at each BAO redshift using Eqs. (6) and (24) given as

dLðzB;MBÞ ¼ βðMBÞdNðzBÞ; ð41Þ

ΔdLðzB;MBÞ ¼ jβðMBÞjΔdNðzBÞ; ð42Þ

respectively. Comparing above equations with Eq. (27), we
can define a corresponding log-likelihood for BAO dLðzÞ
given as

log LSNþBAOðdL onlyÞðMBÞ

¼ −
1

2

X
zB

½dLðzB;MBÞ − dBLðzBÞ�2
ΔdLðzB;MBÞ2 þ ðΔdBLðzBÞÞ2

−
1

2

X
zB

log ð2π ½ΔdLðzB;MBÞ2 þ ðΔdBLðzBÞÞ2�Þ: ð43Þ

Now adding the above two log-likelihoods, we get the
total log-likelihood for SNþ BAO data given as

log LSNþBAOðMBÞ ¼ log LSNþBAOðHonlyÞðMBÞ
þ log LSNþBAOðdL onlyÞðMBÞ: ð44Þ

We minimize the negative of the above log-likelihood to
get the constraints on MB from SNþ BAO data.

D. Obtaining constraints on MB from SN,
CC and BAO data

The constraints on MB from all the data combined, i.e.,
from SNþ CCþ BAO can be obtained by doing the
maximum likelihood analysis for the total log-likelihood
given as

log LSNþCCþBAOðMBÞ ¼ log LSNþCCðMBÞ
þ log LSNþBAOðMBÞ: ð45Þ

In Fig. 9, we have shown a flowchart to see all the steps
and methods at a glance to obtain constraints on MB from
SNþ CC, SNþ BAO, and SNþ CCþ BAO combina-
tions of data.

MODEL INDEPENDENT BOUNDS ON TYPE Ia SUPERNOVA … PHYS. REV. D 107, 063513 (2023)

063513-9



FIG. 9. A flowchart to show all the steps of the methodology to obtain constraints on MB from SNþ CC, SNþ BAO, and
SNþ CCþ BAO combinations of data.
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V. RESULTS AND DISCUSSION

For SNþ CC data, we minimize the negative of log-
likelihood mentioned in Eq. (37) and get constraints onMB
given as

MB ¼ −19.384� 0.052 mag ðSNþ CCÞ: ð46Þ

Similarly for SNþ BAO data, we minimize the negative
log-likelihood mentioned in Eq. (44) to get constraints on
MB given as

MB ¼ −19.396� 0.016 mag ðSNþ BAOÞ: ð47Þ

Finally, we get constraints on MB from all these data
combined i.e. from SNþ CCþ BAO data by minimizing
the negative log-likelihood mentioned in Eq. (45) given as

MB ¼ −19.395� 0.015 mag ðSNþ CCþ BAOÞ: ð48Þ

In Fig. 10, we plot the probability of MB obtained from
MCMC analysis from log-likelihood accordingly as men-
tioned above. The solid-black, dotted-blue, and dashed-red
lines correspond to the SNþ CC, SNþ BAO, and SNþ
CCþ BAO respectively. The vertical green line corre-
sponds to the value MB ¼ −19.395 mag. The constraint
on MB is tighter when we consider SN and BAO data
combined compared to the one for SN and CC data
combined. This is because the errors on HðzÞ are signifi-
cantly smaller in BAO data compared to the CC data. Also
in BAO data, the constraints on MB are coming from the
dLðzÞ data too which further tightens it. Since, the con-
straint on MB is significantly tighter from the BAO data,
when we add CC data and BAO data together, the
constraints follow the result of BAO data only, i.e., there

is no significant improvement by adding the CC data. That
means for the computation of constraints on MB, if we
consider SN and BAO data together, we do not need to add
the CC data. But the result from the SN and CC data is
important to consider because these data are independent of
any fiducial cosmological model whereas the BAO data are
dependent on a fiducial model.
There were some efforts to compute MB from different

combinations of different cosmological observations
[7,28,36,37]. We mention some important previous results
below:
In [7], authors have used a model independent binning

technique to combine supernova type Ia observations with
the anisotropic BAO observations and find MB ¼
−19.401� 0.027 (for details see Eq. (25) and Fig. C2
in [7]).
In [37], authors have combined supernova type Ia

observations, BAO observations, and cosmic chronometer
observations to obtain MB. They have used ΛCDM and
Page [77] models in their analysis and obtained MB ¼
−19.374� 0.047 and MB ¼ −19.379þ0.051

−0.052 respectively
(for details see Table I and Fig. 2 in [37]).
In [36], the authors have considered a model independent

method to obtain MB by minimization of a loss function
[78]. They have combined supernova type Ia observations,
BAO observations, and cosmic chronometer observations
and obtained MB ¼ −19.362þ0.078

−0.067 (for details see Table I
and Fig. 2 in [36]).
In [28], the authors have calibrated type Ia supernova

observations with Planck CMB data using ΛCDM model
and obtainedMB ¼ −19.420� 0.014 (for details see Fig. 7
in [28]).
We can see the mean values of MB obtained from all

these results are consistent with our results.

VI. SUMMARY

The luminosity of the supernova type Ia is taken as a
standard candle in the estimation of cosmic distances in terms
of the integrals of the scale factor a and its derivatives. This is
crucial in the context of the present state of evolution,
particularly the inference regarding the accelerated state of
expansion of the universe. This work aims to check the
consistency of this assumption by a reconstruction of the
peak absolute magnitude,MB, of the type Ia supernova, by a
model independent approach from the observational data.
Also, the reconstruction is aimed to be independent of any
parametrization of cosmological quantities.
We first reconstruct the Hubble parameter at CC redshift

points as a function of MB with the help of the Gaussian
process regression (GPR). We also reconstruct the corre-
sponding uncertainties in the Hubble parameter, ΔH at
CC redshift points as another function of MB using GPR.
Note that, in these reconstructions, actual CC data is not
involved.

FIG. 10. Probability of MB, obtained from MCMC analysis
from log-likelihood accordingly. The solid-black, dotted-blue,
and dashed-red lines correspond to the probabilities obtained
from SNþ CC, SNþ BAO, and SNþ CCþ BAO combinations
of datasets respectively. The vertical green line corresponds to the
value MB ¼ −19.395 mag.
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Once we have reconstructedH andΔHðzÞ at CC redshift
points, we compare these values with the actual CC data to
obtain constraint on MB. We define a corresponding
likelihood with the help of Eq. (37). We obtain constraints
on MB by maximizing this likelihood and the result
is MB ¼ −19.384� 0.052 mag.
After this, we deviate from the principal motivation of a

model independent work and also include the baryon
acoustic oscillation (BAO) data in our analysis. The
inclusion of the BAO data makes our analysis model
dependent unlike in the case of SN and CC data.
Although the mean value of MB remains quite consistent
with the model-independent approach, this inclusion results
in tighter constraints on MB.
For the SNþ BAO data, we do a similar analysis as in

the case of the SNþ CC data and we obtain the constraint
onMB asMB ¼ −19.396� 0.016. Finally, we combine all
these three data and get a constraint on MB as MB as
MB ¼ −19.395� 0.015. Since SNþ BAO data give sig-
nificantly a tighter constraint compared to the SNþ CC
data, the result of SNþ CCþ BAO follows the result
of SNþ BAO.
We list all these results in Table I for these combinations

of data. All the results obtained from different combinations
of data mentioned in Eqs. (46)–(48) indicate the mean value
of MB to be approximately −19.4 (also see Fig. 10). These
results are similar to the results obtained from previous
studies like in [7,36,37] in the context of similar cosmologi-
cal data. Note that these results have discrepancies with the
results obtained from the astrophysical data like stellar
parallax and masers observations like in [20,22,28,79], in
which the results are close toMB ≈ −19.2. This discrepancy
is already discussed in the literature and it is sometimes
referred to as the MB tension (see [20] for details).
We conclude that the mean value of MB that is used in

the literature is quite consistent with that obtained by the
model independent reconstruction. But to obtain tighter
constraints, the model dependent tailored data does better.
To match that accuracy, we require more data points in the
SN and CC datasets.

APPENDIX A: KERNEL COVARIANCE
FUNCTIONS

We will repeat some texts and some equations in the
appendix for better flow.

In literature, different kernel covariance functions are
used in the GPR analysis. Among those, the squared
exponential kernel covariance function is the most used.
One of the main reasons is that it is infinitely differentiable.
In this kernel covariance function, the covariance between
two elements xi and xj is expressed as

kðxi; xjÞ ¼ σ2f exp

�
−
jxi − xjj2

2l2

�
; ðA1Þ

where σ2f is the signal variance that determines the average
deviation of a function from its mean along the region of
target points and l is the length scale in which the function
changes significantly. These parameters are called hyper-
parameters. We denote this kernel covariance function
as “SE.”
In the main text, we have considered only the squared

exponential kernel covariance function. Here, we include
some other kernel covariance functions to show how our
results depend on different kernel covariance functions.
One is the Matérn kernel covariance function with order
5=2, in which the covariance between two elements xi and
xj is given as

kðxi; xjÞ ¼ σ2f

�
1þ

ffiffiffi
5

p
d

l
þ 5d2

3l2

�
exp

�
−

ffiffiffi
5

p
d

l

�
; ðA2Þ

where d ¼ jxi − xjj; σf and l are two hyperparameters,
similar to the ones for the squared exponential kernel
covariance function. We denote this kernel covariance
function as “M5=2.”
Another kernel covariance function is the rational

quadratic in which the covariance between two elements
xi and xj is given as

kðxi; xjÞ ¼ σ2f

�
1þ jxi − xjj2

2rl2

�−r
; ðA3Þ

where σf, l, and r are three hyper-parameters. All these are
non-negative parameters. We denote this kernel covariance
function as “RQ.”
Another kernel covariance function is the periodic in

which the covariance between two elements xi and xj is
given as

kðxi; xjÞ ¼ σ2f exp

"
−
2 sin2

�
πjxi−xjj

r

	
l2

#
; ðA4Þ

where σf, l, and r are three non-negative hyper-parameters.

APPENDIX B: MEAN FUNCTIONS

In the flat FLRW metric, the Hubble parameter is
given as

TABLE I. Constraints on MB for different combinations of
data.

Data combinations Constraints on MB

SNþ CC −19.384� 0.052
SNþ BAO −19.396� 0.016
SNþ CCþ BAO −19.395� 0.015
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H2ðzÞ
H2

0

¼ Ωm0ð1þ zÞ3 þ ð1 −Ωm0ÞfDEðzÞ; ðB1Þ

where Ωm0 is the matter-energy density parameter and fDE
is given as

fDEðzÞ ¼ exp

�
3

Z
z

0

1þ wðz̃Þ
1þ z̃

dz̃

�
; ðB2Þ

where w is the equation of state of the dark energy. In the
main text, we have considered only the ΛCDM for the dark
energy model, where the equation of state of the dark
energy is −1. Here, we include other three classes of
dark energy parametrizations given as the wCDM para-
metrization, the Chevallier-Polarski-Linder (CPL) para-
metrization [80,81], and the Barboza-Alcaniz (BA)
parametrization [82]. In these parametrizations, the equa-
tion of state of the dark energy is given as

wðzÞ ðΛCDMÞ ¼ −1; ðB3Þ

wðzÞ ðwCDMÞ ¼ w0; ðB4Þ

wðzÞ ðCPLÞ ¼ w0 þ wa
z

1þ z
; ðB5Þ

wðzÞ ðBAÞ ¼ w0 þ wa
zð1þ zÞ
1þ z2

; ðB6Þ

where w0 and wa are the model parameters.
With the expression of the Hubble parameter in Eq. (B1),

we get the luminosity distance, dL through Eq. (1) and
consequently the apparent magnitude, m of the type Ia
supernova through Eq. (2). The apparent magnitude, m can
be rewritten as

mðzÞ ¼ hP þ 5 log10 ½dmain
L ðzÞ�; ðB7Þ

where dmain
L is given as

dmain
L ðzÞ ¼ ð1þ zÞ

Z
z

0

dz̃
Hðz̃Þ ; ðB8Þ

and hP is given as

hP ¼ 5 log10

�
c

H0Mpc

�
þ 25þMB: ðB9Þ

The reason to rewrite m is to show there is degeneracy in
H0 and MB in the expression of m in these parametriza-
tions. So, we have defined a combined parameter, hP in the
above equation.

APPENDIX C: GAUSSIAN PROCESS
REGRESSION ANALYSIS

1. Basic GPR predictions

Let us briefly discuss the Gaussian process regression
(GPR) analysis. In GPR, we assume that the observed data
of a particular function, f (for example, it is m from SN
data) is a multivariate normal distribution, described by
only a mean vector and a covariance matrix. The mean
values of the data are expressed by a vector Y given as
Y ¼ ½y1; y2;…; yn�T , where y1; y2;…; yn are all the
observed values at given data points x1; x2;…; xn respec-
tively (for example, it is the redshift points of the SN data);
n is the number of observed data points. The superscript T
represents the transpose of a vector or a matrix. The
data points are expressed by a vector X given as
X ¼ ½x1; x2;…; xn�T . So, given the observational data
points, the data is assumed to follow the multivariate
normal distribution (denoted by N ) given as

PðYjXÞ ∼N ðYjMðXÞ; KðX;XÞÞ; ðC1Þ

whereMðXÞ is the mean vector at observational data points
corresponding to a chosen mean function, μðxÞ given as

MðXÞ ¼ ½μðx1Þ; μðx2Þ;…; μðxnÞ�T; ðC2Þ

and KðX;XÞ is the covariance matrix at observational data
points corresponding to a chosen kernel covariance func-
tion, kðxi; xjÞ given as

KðX;XÞ ¼

2
6666666664

kðx1; x1Þ kðx1; x2Þ … kðx1; xnÞ
kðx2; x1Þ kðx2; x2Þ … kðx2; xnÞ

: : … :

: : … :

: : … :

kðxn; x1Þ kðxn; x2Þ … kðxn; xnÞ

3
7777777775
: ðC3Þ

If observational uncertainty is present, that can be added
to the covariance matrix in the distribution of Y.
GPR can predict the mean values of the quantity, f at

some target points (which are, in general, different from the
observational data points), and the values of the associated
uncertainty, Δf. For example, we need predicted mean
values of m and the values of associated uncertainty, Δm at
CC redshift points. Let us consider the target points
x�1; x

�
2;…; x�n� are described by a vector X� given as

X� ¼ ½x�1; x�2;…; x�n� �T , where n� being the total number
of target points. Let us consider the predicted mean vector
to be F� given as F�ðX�Þ ¼ ½f�1; f�2;…; f�n� �T and the
associated uncertainties by a matrix, U� given as
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U�ðX�; X�Þ ¼

2
6666666664

u�11 u�12 … u�1n�
u�21 u�22 … u�2n�
: : … :

: : … :

: : … :

u�n�1 u�n�2 … u�n�n�

3
7777777775
; ðC4Þ

where, u�ij ¼ Cov½f�i ; f�j � is the covariance between f�i and
f�j (∀ i; j ∈ ½1; 2;…; n��).
GPR predicts F� and U� by the assumption that the

predicted values also follow a joint multivariate normal
distribution with the observed data given as

�
Y

F�

�
∼N

��
MðXÞ
MðX�Þ

�
;

�
KðX;XÞ þ C KðX;X�Þ
KðX�; XÞ KðX�; X�Þ

��
; ðC5Þ

with the number of dimensions to be nþ n�. MðX�Þ is the
vector consisting of the values of the chosen mean function
at the target points given as

MðX�Þ ¼ ½μðx�1Þ; μðx�2Þ;…; μðx�n� Þ�T: ðC6Þ

C is the uncertainty matrix that corresponds to the
observational uncertainties given as

C ¼

2
6666666664

c11 c12 … c1n
c21 c22 … c2n
: : … :

: : … :

: : … :

cn1 cn2 … cnn

3
7777777775
; ðC7Þ

where cij ¼ Cov½yi; yj� (∀ i; j ∈ ½1; 2;…; n�). If the uncer-
tainties in the data do not have any correlation between two
different data points, the off-diagonal elements in C would
be zero. And if there is no uncertainty in the data, all the
elements in C would be zero.
Once we choose the mean function and the kernel

covariance function, the predicted mean vector, F�, and
the uncertainty matrix, U� are computed as [44–46]

F� ¼ MðX�Þ þ KðX�; XÞ½KðX;XÞ þ C�−1ðY −MðXÞÞ;
ðC8Þ

U� ¼ KðX�; X�Þ − KðX�; XÞ½KðX;XÞ þ C�−1KðX;X�Þ;
ðC9Þ

respectively. U� is the same as the Cov½F�; F�� in the main
text in Eq. (29). In the above equations, the KðX;X�Þ
matrix is given as

KðX;X�Þ ¼

2
6666666664

kðx1; x�1Þ kðx1; x�2Þ … kðx1; x�n� Þ
kðx2; x�1Þ kðx2; x�2Þ … kðx2; x�n� Þ

: : … :

: : … :

: : … :

kðxn; x�1Þ kðxn; x�2Þ … kðxn; x�n� Þ

3
7777777775
:

ðC10Þ

The KðX�; XÞ matrix is given as

KðX�; XÞ ¼ ½KðX;X�Þ�T: ðC11Þ

Note that the above equation is valid when the chosen
kernel covariance function is symmetric over its two
arguments i.e. kðxi; xjÞ ¼ kðxj; xiÞ. Similarly, KðX�; X�Þ
matrix is given as

KðX�; X�Þ ¼

2
6666666664

kðx�1; x�1Þ kðx�1; x�2Þ … kðx�1; x�n� Þ
kðx�2; x�1Þ kðx�2; x�2Þ … kðx�2; x�n� Þ

: : … :

: : … :

: : … :

kðx�n� ; x�1Þ kðx�n� ; x�2Þ … kðx�n� ; x�n� Þ

3
7777777775
:

ðC12Þ

2. Derivative predictions

In GPR, the derivatives of the function can also be
computed by assuming derivatives also follows a joint
multivariate normal distribution with the observed data. For
example, for the first derivative of the function, f, we
assume predicted first derivative values follow a joint
multivariate normal distribution with the predicted values
of the function and with the observed data jointly given as2
64

Y

F�

F0�

3
75 ∼N

0
B@
2
64

MðXÞ
MðX�Þ
M0ðX�Þ

3
75;

2
64
KðX;XÞ þ C KðX;X�Þ K0ðX;X�Þ
½KðX;X�Þ�T KðX�; X�Þ K0ðX�; X�Þ
½K0ðX;X�Þ�T K0ðX�; X�Þ K00ðX�; X�Þ

3
75
1
CA; ðC13Þ

where primed and double-primed entities are first and
second-order derivatives of the corresponding function

BIKASH R. DINDA and NARAYAN BANERJEE PHYS. REV. D 107, 063513 (2023)

063513-14



respectively with respect to any argument, for example, in
our case the redshift. In the above equation, the predicted
values of the first derivative of the function, f at target
points are denoted by a vector F0�ðX�Þ given as

F0�ðX�Þ ¼ ½f0�1 ; f0�2 ;…; f0�n� �T; ðC14Þ

and the values of the derivative of the chosen mean function
at target points are denoted by a vector, M0ðX�Þ given as

M0ðX�Þ ¼ ½μ0ðx�1Þ; μ0ðx�2Þ;…; μ0ðx�n� Þ�T; ðC15Þ

The predicted mean vector and the covariance matrix
corresponding to the first derivative are given as [44]

F0� ¼M0ðX�Þ þ ½K0ðX;X�Þ�T ½KðX;XÞ þC�−1ðY −MðXÞÞ;
ðC16Þ

V� ¼K00ðX�;X�Þ− ½K0ðX;X�Þ�T ½KðX;XÞþC�−1K0ðX;X�Þ;
ðC17Þ

where the covariance matrix, V� has the structure given as

V�ðX�; X�Þ ¼

2
6666666664

v�11 v�12 … v�1n�
v�21 v�22 … v�2n�
: : … :

: : … :

: : … :

v�n�1 v�n�2 … v�n�n�

3
7777777775
; ðC18Þ

The elements of the V� matrix represent the covariance of
the derivative of the function between two different target
points. For example, v�ij ¼ Cov½f0�i ; f0�j � corresponds to the
covariance of the derivative of f between x�i and x�j target
points. V� is the same as the Cov½F0�; F0�� in the main text
in Eq. (31). K0ðX;X�Þ matrix has the structure given as

K0ðX;X�Þ ¼

2
6666666664

k0ðx1; x�1Þ k0ðx1; x�2Þ … k0ðx1; x�n�Þ
k0ðx2; x�1Þ k0ðx2; x�2Þ … k0ðx2; x�n�Þ

: : … :

: : … :

: : … :

k0ðxn; x�1Þ k0ðxn; x�2Þ … k0ðxn; x�n� Þ

3
7777777775
;

ðC19Þ

K0ðX�; X�Þ matrix has the structure given as

K0ðX�;X�Þ ¼

2
6666666664

k0ðx�1; x�1Þ k0ðx�1; x�2Þ … k0ðx�1; x�n� Þ
k0ðx�2; x�1Þ k0ðx�2; x�2Þ … k0ðx�2; x�n� Þ

: : … :

: : … :

: : … :

k0ðx�n� ; x�1Þ k0ðx�n� ; x�2Þ … k0ðx�n� ; x�n� Þ

3
7777777775
;

ðC20Þ

and K00ðX�; X�Þ matrix has the structure given as

K00ðX�;X�Þ¼

2
6666666664

k00ðx�1;x�1Þ k00ðx�1;x�2Þ … k00ðx�1;x�n� Þ
k00ðx�2;x�1Þ k00ðx�2;x�2Þ … k00ðx�2;x�n� Þ

: : … :

: : … :

: : … :

k00ðx�n� ;x�1Þ k00ðx�n� ;x�2Þ … k00ðx�n� ;x�n�Þ

3
7777777775
:

ðC21Þ

In all the above equations, k0ðxi; x�jÞ, k0ðx�i ; x�jÞ, and
k00ðx�i ; x�jÞ are given as

k0ðxi; x�jÞ ¼
∂kðxi; x�jÞ

∂x�j
; ðC22Þ

k0ðx�i ; x�jÞ ¼
∂kðx�i ; x�jÞ

∂x�j
; ðC23Þ

k00ðx�i ; x�jÞ ¼
∂
2kðx�i ; x�jÞ
∂x�i ∂x

�
j

; ðC24Þ

respectively. In GPR, we can also get the covariances
between the function and its derivatives. The covariance
matrix between the function and its first derivative is given
as [44]

W� ¼ K0ðX�;X�Þ− ½KðX;X�Þ�T ½KðX;XÞ þC�−1K0ðX;X�Þ;
ðC25Þ

where W� matrix has the structure given as

W�ðX�; X�Þ ¼

2
6666666664

w�
11 w�

12 … w�
1n�

w�
21 w�

22 … w�
2n�

: : … :

: : … :

: : … :

w�
n�1 w�

n�2 … w�
n�n�

3
7777777775
; ðC26Þ
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with w�
ij is the covariance between the function at ith target

point and the first derivative of the function at jth target
point given as w�

ij ¼ Cov½f�i ; f0�j �. W� is the same as the
Cov½F�; F0�� in the main text in Eq. (33).

APPENDIX D: DETERMINATION OF KERNEL
COVARIANCE FUNCTION HYPERPARAMETER
AND MEAN FUNCTION PARAMETER VALUES

The GPR predictions through Eqs. (C8), (C9), (C16),
(C17), and (C25) depend on the values of the hyper-
parameters of the chosen kernel covariance function and
also the parameters of the chosen mean function. So, we
have to put the particular values of these parameters in the
above equations to get the predictions of GPR for the mean
values and covariances. We cannot put the arbitrary values
of these parameters. To find these parameter values, we use

the knowledge of the observed data which means the
parameter values should be chosen such that the values
of the chosen mean function at the observed data points
closely follow the mean values of the observed data and any

TABLE II. Priors on kernel covariance function hyperpara-
meters and mean function parameters.

Parameters Priors

σf 10−10 ≤ SP ¼ 1
1þσ2f

≤ 0.99999

l 10−10 ≤ lP ¼ 1
1þl ≤ 0.99999

r 10−10 ≤ rP ¼ 1
1þr ≤ 0.99999

Ωm0 0.001 ≤ Ωm0 ≤ 0.999
H0 and MB 20 ≤ hP ≤ 28
w0 −5 ≤ w0 ≤ 3
wa −20 ≤ wa ≤ 20

FIG. 11. Triangle plot to show the marginalized probability of each parameter and the confidence contours of each pair of parameters
for different kernel covariance functions with the ΛCDM mean function.
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differences should be minimum. In practice, this is done by
defining a corresponding log marginal likelihood [denoted
by logPðYjXÞ] given as [44]

log PðYjXÞ¼−
1

2
ðY−MðXÞÞT ½KðX;XÞþC�−1ðY−MðXÞÞ

−
1

2
log jKðX;XÞþCj−n

2
logð2πÞ; ðD1Þ

where jKðX;XÞ þ Cj is the determinant of the KðX;XÞ þ
C matrix. We minimize the negative log marginal like-
lihood and find the best-fit values of the parameters. These
best-fit values are used to determine the predictions of the
GPR. We do this minimization by the Bayesian Markov
chain Monte Carlo (MCMC) analysis using the EMCEE

package [76], corresponding to the log marginal likelihood,

mentioned in Eq. (D1). For this purpose, we chose the flat
priors on all the parameters according to a chosen kernel
covariance function and mean function. We list all the
priors in Table II.
The Bayesian MCMC analysis not only gives the best-fit

values of the parameters but also the uncertainties around
the mean values and the correlation among all the param-
eters. Let us see these best-fit values and correlations of the
parameters through the triangle plots in Figs. 11 and 12.
In Fig. 11, we have plotted the triangle plot to show the

marginalized probability of each parameter and the con-
fidence contours for each pair of the parameters. For a
particular color or a particular type of lines, the inner and
the outer lines correspond to the 1σ and 2σ confidence
contours respectively. In this figure, we have fixed the mean
function to be theΛCDM and chosen four different types of

FIG. 12. Triangle plot to show the marginalized probability of each parameter and the confidence contours of each pair of parameters
for different mean functions with the squared exponential (SE) kernel covariance function.
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kernel covariance functions. The dashed-dotted green,
dashed red, dotted blue, and solid black lines correspond
to the squared exponential (SE), Matérn with order 5=2
(M5=2), rational quadratic (RQ), and periodic kernel
covariance functions respectively. Corresponding to this,
in Table III, we list the best-fit values and the 1σ
marginalized confidence intervals of each parameter.
In Fig. 12, we have plotted the triangle plot to show the

marginalized probability of each parameter and the con-
fidence contours for each pair of the parameters. For a
particular color or a particular type of lines, the inner and the
outer lines correspond to the 1σ and 2σ confidence contours
respectively. In this figure, we have fixed the kernel covari-
ance function to be the squared exponential (SE) and have
chosen four different types of mean functions. The dashed-
dotted green, dashed red, dotted blue, and solid black lines
correspond to the ΛCDM, wCDM, CPL, and BA mean
functions respectively. Corresponding to this, in Table IV, we
list the best-fit values and the 1σ marginalized confidence
intervals of each parameter.
In some cases, the predicted variances from the GPR

analysis through Eqs. (C9) and (C17) are underestimating.
Because of this reason, it is the best practice to include the
uncertainties (obtained from the MCMC analysis) in the
hyperparameters of the kernel covariance functions and
the parameters of the mean functions instead of only

considering their best-fit values. So, we compute the
propagation of uncertainties in the mean values predictions
of GPR through Eqs. (C8) and (C16) from the uncertainties
of all the parameters, involved in these equations [46].
We do this propagation of uncertainties using the GetDist

package [83]. We add these propagated uncertainties with
the GPR predicted uncertainties in Eqs. (C9), (C17), and
(C25) to find the total covariances and correspondingly the
total variances.

APPENDIX E: DEPENDENCE OF GPR
PREDICTIONS ON KERNEL COVARIANCE

FUNCTIONS

Here we show how much the results change if we choose
different kernel covariance functions. For this purpose, we
list the mean values of MB and the corresponding uncer-
tainties in Table V obtained from SNþ CC, SNþ BAO,
and SNþ CCþ BAO combinations of data for different
kernel covariance functions with ΛCDM mean function.
We see the results are very similar. We have also shown the
percentage deviations. The notation, %MB corresponds to

%MB ¼
�

MB

MBðSE∶ΛCDMÞ − 1

�
× 100:

The notation, %ΔMB corresponds to

TABLE III. List of best-fit values and the 1σ marginalized
confidence intervals of each parameter for squared exponential
(SE), Matérn with order 5=2 (M5=2), rational quadratic (RQ), and
periodic kernel covariance functions with ΛCDM mean function.

SE M5=2 RQ Periodic

SP 0.62þ0.37
−0.16 0.64þ0.35

−0.14 0.68þ0.31
−0.14 0.67þ0.32

−0.19

lP 0.168þ0.054
−0.16 0.131þ0.031

−0.13 0.147þ0.047
−0.14 0.161þ0.053

−0.16

rP � � � � � � 0.49� 0.29 0.139þ0.040
−0.14

Ωm0 0.295� 0.095 0.296� 0.086 0.298þ0.054
−0.065 0.305þ0.038

−0.053

hP 23.76� 0.99 23.77� 0.96 23.76� 0.70 23.79� 0.72

TABLE V. Values of MB and ΔMB and their percentage
deviations for different kernel covariance functions from the
corresponding ones for the squared exponential (SE) kernel
covariance function. Here, the mean function is fixed to be the
ΛCDM.

SNþ CC

Kernel MB %MB %ΔMB

SE −19.384� 0.052 0.0 0.0
M5=2 −19.384� 0.053 0.0 1.9
RQ −19.385� 0.053 0.005 1.9
Periodic −19.392� 0.053 0.04 1.9

SNþ BAO

Kernel MB %MB %ΔMB

SE −19.396� 0.016 0.0 0.0
M5=2 −19.396� 0.016 0.0 0.0
RQ −19.396� 0.016 0.0 0.0
Periodic −19.396� 0.016 0.0 0.0

SNþ CCþ BAO

Kernel MB %MB %ΔMB

SE −19.395� 0.015 0.0 0.0
M5=2 −19.395� 0.015 0.0 0.0
RQ −19.395� 0.015 0.0 0.0
Periodic −19.395� 0.016 0.0 6.7

TABLE IV. List of best-fit values and the 1σ marginalized
confidence intervals of each parameter for ΛCDM, wCDM, CPL,
and BA mean functions with squared exponential (SE) kernel
covariance function.

ΛCDM wCDM CPL BA

SP 0.62þ0.37
−0.16 0.63þ0.37

−0.15 0.57þ0.36
−0.20 0.57þ0.36

−0.20

lP 0.168þ0.054
−0.16 0.200þ0.069

−0.19 0.29� 0.15 0.28þ0.16
−0.18

Ωm0 0.295� 0.095 0.33� 0.13 0.59þ0.29
−0.22 0.59þ0.31

−0.25

hP 23.76� 0.99 23.70� 0.91 23.74þ0.80
−0.67 23.8� 1.1

w0 � � � −1.08þ0.31
−0.24 −1.98þ1.4

−0.74 −1.89þ1.3
−0.64

wa � � � � � � −0.1� 8.1 −2.3þ6.9
−3.2
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%ΔMB ¼
�

ΔMB

ΔMBðSE∶ΛCDMÞ − 1

�
× 100:

From Table V, we can see that mean values of MB differ
at subpercentage levels for different kernel covariance
functions. The uncertainties in MB differ within 10% for
different kernel covariance functions.

APPENDIX F: DEPENDENCE OF GPR
PREDICTIONS ON MEAN FUNCTIONS

Here, we show how much the results change if we choose
different mean functions. For this purpose, we list the
percentage deviations in MB and ΔMB, as in the previous
subsection, in Table VI for SNþ CC, SNþ BAO, and
SNþ CCþ BAO combinations of data for four different
mean functions, mentioned in these tables. Here we have
fixed the kernel covariance function to be the squared
exponential (SE). We see that the deviations in the mean
values of MB are within 0.1% and the deviations in the
uncertainties are within 10%.

APPENDIX G: FULL PANTHEON
DATA VERSUS THE BINNED DATA

So far, we have used the binned version of the Pantheon
compilation for the type Ia supernova observations in our
entire analysis. The results would be similar if we consider
the full Pantheon sample. Because, in the construction of the
binned version of the data from the full Pantheon sample, the
errors are considered accordingly for the redshift points
binning. To show this fact, now, we have considered the full
Pantheon sample and followed the same analysis as in the
main text to find constraints on MB. We have listed these
values in Table VII for SNþ CC, SNþ BAO, SNþ CCþ
BAO combinations of data with the squared exponential
kernel covariance function and the ΛCDM mean function.
We have also shown the percentage deviations in the results
compared to the results obtained from the binned data. We
can see that the results are very similar.

[1] A. G. Riess et al. (Supernova Search Team), Astron. J. 116,
1009 (1998).

[2] S. Perlmutter et al. (Supernova Cosmology Project Col-
laboration), Astrophys. J. 517, 565 (1999).

[3] A. Wright, Nat. Phys. 7, 833 (2011).
[4] P. J. E. Peebles and B. Ratra, Rev.Mod. Phys. 75, 559 (2003).
[5] M. Kowalski et al. (Supernova Cosmology Project Col-

laboration), Astrophys. J. 686, 749 (2008).

[6] S. Linden, J. M. Virey, and A. Tilquin, Astron. Astrophys.
506, 1095 (2009).

[7] D. Camarena and V. Marra, Mon. Not. R. Astron. Soc. 495,
2630 (2020).

[8] D. M. Scolnic et al. (Pan-STARRS1 Collaboration), As-
trophys. J. 859, 101 (2018).

[9] A. K. Çamlıbel, I. Semiz, and M. A. Feyizoğlu, Classical
Quantum Gravity 37, 235001 (2020).

TABLE VI. Values of MB and ΔMB and their percentage
deviations for different mean functions from the corresponding
ones for the ΛCDM mean function. Here, the kernel covariance
function is the squared exponential (SE).

SNþ CC

Mean MB %MB %ΔMB

ΛCDM −19.384� 0.052 0.0 0.0
wCDM −19.390� 0.053 0.03 1.9
CPL −19.395� 0.054 0.06 3.8
BA −19.395� 0.055 0.06 5.8

SNþ BAO

Mean MB %MB %ΔMB

ΛCDM −19.396� 0.016 0.0 0.0
wCDM −19.400� 0.016 0.02 0.0
CPL −19.406� 0.017 0.05 6.3
BA −19.405� 0.016 0.05 0.0

SNþ CCþ BAO

Mean MB %MB %ΔMB

ΛCDM −19.395� 0.015 0.0 0.0
wCDM −19.398� 0.016 0.02 6.7
CPL −19.405� 0.016 0.05 6.7
BA −19.404� 0.016 0.05 6.7

TABLE VII. Values of MB and ΔMB and their percentage
deviations for full Pantheon data from the corresponding ones
for the binned data. Here, the kernel covariance function is
the squared exponential (SE) and the mean function is the
ΛCDM.

MB (full) %MB %ΔMB

SNþ CC −19.379� 0.052 −0.03 0.0
SNþ BAO −19.391� 0.016 −0.03 0.0
SNþ CCþ BAO −19.390� 0.015 −0.03 0.0

MODEL INDEPENDENT BOUNDS ON TYPE Ia SUPERNOVA … PHYS. REV. D 107, 063513 (2023)

063513-19

https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1038/nphys2131
https://doi.org/10.1103/RevModPhys.75.559
https://doi.org/10.1086/589937
https://doi.org/10.1051/0004-6361/200912811
https://doi.org/10.1051/0004-6361/200912811
https://doi.org/10.1093/mnras/staa770
https://doi.org/10.1093/mnras/staa770
https://doi.org/10.3847/1538-4357/aab9bb
https://doi.org/10.3847/1538-4357/aab9bb
https://doi.org/10.1088/1361-6382/abba48
https://doi.org/10.1088/1361-6382/abba48


[10] S. Cao and B. Ratra, Mon. Not. R. Astron. Soc. 513, 5686
(2022).

[11] E. O. Colgáin, M.M. Sheikh-Jabbari, R. Solomon, G.
Bargiacchi, S. Capozziello, M. G. Dainotti, and D.
Stojkovic, Phys. Rev. D 106, L041301 (2022).

[12] R. Tripp, Astron. Astrophys. 331, 815 (1998).
[13] D. Camarena and V. Marra, Phys. Rev. Res. 2, 013028

(2020).
[14] O. H. E. Philcox, G. S. Farren, B. D. Sherwin, E. J. Baxter,

and D. J. Brout, Phys. Rev. D 106, 063530 (2022).
[15] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri,

J. C. Zinn, and D. Scolnic, Astrophys. J. Lett. 908, L6 (2021).
[16] N. Aghanim et al. (Planck Collaboration), Astron. As-

trophys. 641, A6 (2020); 652, C4(E) (2021),
[17] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A.

Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, Classical
Quantum Gravity 38, 153001 (2021).

[18] S. Vagnozzi, Phys. Rev. D 102, 023518 (2020).
[19] C. Krishnan, R. Mohayaee, E. O. Colgáin, M. M. Sheikh-

Jabbari, and L. Yin, Classical Quantum Gravity 38, 184001
(2021).

[20] D. Camarena and V. Marra, Mon. Not. R. Astron. Soc. 504,
5164 (2021).

[21] G. Efstathiou, Mon. Not. R. Astron. Soc. 505, 3866 (2021).
[22] B. R. Dinda, Phys. Rev. D 105, 063524 (2022).
[23] W. Zhao, B. S. Wright, and B. Li, J. Cosmol. Astropart.

Phys. 10 (2018) 052.
[24] L. R. Colaço, S. J. Landau, J. E. Gonzalez, J. Spinelly, and

G. L. F. Santos, J. Cosmol. Astropart. Phys. 08 (2022) 062.
[25] L. R. Colaço, R. F. L. Holanda, and R. C. Nunes,

arXiv:2201.04073.
[26] F. van Leeuwen, M.W. Feast, P. A. Whitelock, and C. D.

Laney, Mon. Not. R. Astron. Soc. 379, 723 (2007).
[27] A. G. Riess, S. Casertano, W. Yuan, L. Macri, J. Anderson,

J. W. MacKenty, J. B. Bowers, K. I. Clubb, A. V.
Filippenko, D. O. Jones, and B. E. Tucker, Astrophys. J.
855, 136 (2018).

[28] K. L. Greene and F.-Y. Cyr-Racine, J. Cosmol. Astropart.
Phys. 06 (2022) 002.

[29] G. Pietrzyński et al., Nature (London) 495, 76 (2013).
[30] M. J. Reid, D. W. Pesce, and A. G. Riess, Astrophys. J. Lett.

886, L27 (2019).
[31] Y. M. Pihlstrom, W. A. Baan, J. Darling, and H. R.

Klockner, Astrophys. J. 618, 705 (2005).
[32] F. Gao, J. A. Braatz, M. J. Reid, K. Y. Lo, J. J. Condon, C.

Henkel, C. Y. Kuo, C. M. V. Impellizzeri, D. W. Pesce, and
W. Zhao, Astrophys. J. 817, 128 (2016).

[33] A. G. Riess et al., Astrophys. J. 826, 56 (2016).
[34] D. Sapone, S. Nesseris, and C. A. P. Bengaly, Phys. Dark

Universe 32, 100814 (2021).
[35] D. Kumar, A. Rana, D. Jain, S. Mahajan, A. Mukherjee, and

R. F. L. Holanda, J. Cosmol. Astropart. Phys. 01 (2022) 053.
[36] A. Gómez-Valent, Phys. Rev. D 105, 043528 (2022).
[37] R.-G. Cai, Z.-K. Guo, S.-J. Wang, W.-W. Yu, and Y. Zhou,

Phys. Rev. D 105, L021301 (2022).
[38] P. A. R. Ade et al. (Planck Collaboration), Astron. As-

trophys. 594, A13 (2016).
[39] S. Alam et al. (eBOSS Collaboration), Phys. Rev. D 103,

083533 (2021).
[40] R. Jimenez and A. Loeb, Astrophys. J. 573, 37 (2002).

[41] A. M. Pinho, S. Casas, and L. Amendola, J. Cosmol.
Astropart. Phys. 11 (2018) 027.

[42] C. Williams and C. Rasmussen, Advances in Neural
Processing Systems, edited by D. Touretzky, M. C.
Mozer, and M. Hasselmo (MIT Press, 1995), Vol. 8.

[43] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes
for Machine Learning (The MIT Press, Cambridge, MA,
2006), 2nd ed.

[44] M. Seikel, C. Clarkson, and M. Smith, J. Cosmol. Astropart.
Phys. 06 (2012) 036.

[45] A. Shafieloo, A. G. Kim, and E. V. Linder, Phys. Rev. D 85,
123530 (2012).

[46] S.-g. Hwang, B. L’Huillier, R. E. Keeley, M. J. Jee, and A.
Shafieloo, J. Cosmol. Astropart. Phys. 02 (2023) 014.

[47] A. M. Velasquez-Toribio and J. C. Fabris, Braz. J. Phys. 52,
115 (2022).

[48] P. Mukherjee and N. Banerjee, Phys. Dark Universe 36,
100998 (2022).

[49] M. Vazirnia and A. Mehrabi, Phys. Rev. D 104, 123530
(2021).

[50] P. Mukherjee and N. Banerjee, Eur. Phys. J. C 81, 36
(2021).

[51] B. S. Haridasu, V. V. Luković, M. Moresco, and N. Vittorio,
J. Cosmol. Astropart. Phys. 10 (2018) 015.

[52] X. Zheng, S. Cao, Y. Liu, M. Biesiada, T. Liu, S. Geng, Y.
Lian, and W. Guo, Eur. Phys. J. C 81, 14 (2021).

[53] Y. Liu, S. Cao, T. Liu, X. Li, S. Geng, Y. Lian, and W. Guo,
Astrophys. J. 901, 129 (2020).

[54] B. Wang, J.-Z. Qi, J.-F. Zhang, and X. Zhang, Astrophys. J.
898, 100 (2020).

[55] R. C. Bernardo, D. Grandón, J. Said Levi, and V. H.
Cárdenas, Phys. Dark Universe 36, 101017 (2022).

[56] A. Bonilla, S. Kumar, and R. C. Nunes, Eur. Phys. J. C 81,
127 (2021).

[57] M.-J. Zhang and H. Li, Eur. Phys. J. C 78, 460 (2018).
[58] D. Wang and X.-H. Meng, Phys. Rev. D 95, 023508 (2017).
[59] M. Seikel and C. Clarkson, arXiv:1311.6678.
[60] P. Mukherjee and N. Banerjee, Phys. Rev. D 103, 123530

(2021).
[61] J. Ruiz-Zapatero, D. Alonso, P. G. Ferreira, and C. Garcia-

Garcia, Phys. Rev. D 106, 083523 (2022).
[62] J. Ruiz-Zapatero, C. García-García, D. Alonso, P. G.

Ferreira, and R. D. P. Grumitt, Mon. Not. R. Astron. Soc.
512, 1967 (2022).

[63] A. Mehrabi and M. Vazirnia, Astrophys. J. 932, 121 (2022).
[64] Y. Zhang, S. Cao, X. Liu, T. Liu, Y. Liu, and C. Zheng,

Astrophys. J. 931, 119 (2022).
[65] X. Li, R. E. Keeley, A. Shafieloo, X. Zheng, S. Cao, M.

Biesiada, and Z.-H. Zhu, Mon. Not. R. Astron. Soc. 507,
919 (2021).

[66] C. Escamilla-Rivera, J. Levi Said, and J. Mifsud, J. Cosmol.
Astropart. Phys. 10 (2021) 016.

[67] R. C. Bernardo and J. Levi Said, J. Cosmol. Astropart. Phys.
08 (2021) 027.

[68] R. E. Keeley, A. Shafieloo, G.-B. Zhao, J. A. Vazquez, and
H. Koo, Astron. J. 161, 151 (2021).

[69] K. Liao, A. Shafieloo, R. E. Keeley, and E. V. Linder,
Astrophys. J. Lett. 886, L23 (2019).

[70] D. Wang and X.-H. Meng, Sci. China Phys. Mech. Astron.
60, 110411 (2017).

BIKASH R. DINDA and NARAYAN BANERJEE PHYS. REV. D 107, 063513 (2023)

063513-20

https://doi.org/10.1093/mnras/stac1184
https://doi.org/10.1093/mnras/stac1184
https://doi.org/10.1103/PhysRevD.106.L041301
https://doi.org/10.1103/PhysRevResearch.2.013028
https://doi.org/10.1103/PhysRevResearch.2.013028
https://doi.org/10.1103/PhysRevD.106.063530
https://doi.org/10.3847/2041-8213/abdbaf
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1103/PhysRevD.102.023518
https://doi.org/10.1088/1361-6382/ac1a81
https://doi.org/10.1088/1361-6382/ac1a81
https://doi.org/10.1093/mnras/stab1200
https://doi.org/10.1093/mnras/stab1200
https://doi.org/10.1093/mnras/stab1588
https://doi.org/10.1103/PhysRevD.105.063524
https://doi.org/10.1088/1475-7516/2018/10/052
https://doi.org/10.1088/1475-7516/2018/10/052
https://doi.org/10.1088/1475-7516/2022/08/062
https://arXiv.org/abs/2201.04073
https://doi.org/10.1111/j.1365-2966.2007.11972.x
https://doi.org/10.3847/1538-4357/aaadb7
https://doi.org/10.3847/1538-4357/aaadb7
https://doi.org/10.1088/1475-7516/2022/06/002
https://doi.org/10.1088/1475-7516/2022/06/002
https://doi.org/10.1038/nature11878
https://doi.org/10.3847/2041-8213/ab552d
https://doi.org/10.3847/2041-8213/ab552d
https://doi.org/10.1086/426098
https://doi.org/10.3847/0004-637X/817/2/128
https://doi.org/10.3847/0004-637X/826/1/56
https://doi.org/10.1016/j.dark.2021.100814
https://doi.org/10.1016/j.dark.2021.100814
https://doi.org/10.1088/1475-7516/2022/01/053
https://doi.org/10.1103/PhysRevD.105.043528
https://doi.org/10.1103/PhysRevD.105.L021301
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1086/340549
https://doi.org/10.1088/1475-7516/2018/11/027
https://doi.org/10.1088/1475-7516/2018/11/027
https://doi.org/10.1088/1475-7516/2012/06/036
https://doi.org/10.1088/1475-7516/2012/06/036
https://doi.org/10.1103/PhysRevD.85.123530
https://doi.org/10.1103/PhysRevD.85.123530
https://doi.org/10.1088/1475-7516/2023/02/014
https://doi.org/10.1007/s13538-022-01113-8
https://doi.org/10.1007/s13538-022-01113-8
https://doi.org/10.1016/j.dark.2022.100998
https://doi.org/10.1016/j.dark.2022.100998
https://doi.org/10.1103/PhysRevD.104.123530
https://doi.org/10.1103/PhysRevD.104.123530
https://doi.org/10.1140/epjc/s10052-021-08830-5
https://doi.org/10.1140/epjc/s10052-021-08830-5
https://doi.org/10.1088/1475-7516/2018/10/015
https://doi.org/10.1140/epjc/s10052-020-08796-w
https://doi.org/10.3847/1538-4357/abb0e4
https://doi.org/10.3847/1538-4357/ab9b22
https://doi.org/10.3847/1538-4357/ab9b22
https://doi.org/10.1016/j.dark.2022.101017
https://doi.org/10.1140/epjc/s10052-021-08925-z
https://doi.org/10.1140/epjc/s10052-021-08925-z
https://doi.org/10.1140/epjc/s10052-018-5953-3
https://doi.org/10.1103/PhysRevD.95.023508
https://arXiv.org/abs/1311.6678
https://doi.org/10.1103/PhysRevD.103.123530
https://doi.org/10.1103/PhysRevD.103.123530
https://doi.org/10.1103/PhysRevD.106.083523
https://doi.org/10.1093/mnras/stac431
https://doi.org/10.1093/mnras/stac431
https://doi.org/10.3847/1538-4357/ac6fda
https://doi.org/10.3847/1538-4357/ac641e
https://doi.org/10.1093/mnras/stab2154
https://doi.org/10.1093/mnras/stab2154
https://doi.org/10.1088/1475-7516/2021/10/016
https://doi.org/10.1088/1475-7516/2021/10/016
https://doi.org/10.1088/1475-7516/2021/08/027
https://doi.org/10.1088/1475-7516/2021/08/027
https://doi.org/10.3847/1538-3881/abdd2a
https://doi.org/10.3847/2041-8213/ab5308
https://doi.org/10.1007/s11433-017-9079-1
https://doi.org/10.1007/s11433-017-9079-1


[71] M.-J. Zhang and J.-Q. Xia, J. Cosmol. Astropart. Phys. 12
(2016) 005.

[72] R. Nair, S. Jhingan, and D. Jain, J. Cosmol. Astropart. Phys.
01 (2014) 005.

[73] E. Ó Colgáin and M.M. Sheikh-Jabbari, Eur. Phys. J. C 81,
892 (2021).

[74] A. Challinor, IAU Symp. 288, 42 (2013).
[75] M. Bucher, Int. J. Mod. Phys. D 24, 1530004 (2015).
[76] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J.

Goodman, Publ. Astron. Soc. Pac. 125, 306 (2013).

[77] Z. Huang, Astrophys. J. Lett. 892, L28 (2020).
[78] W. Lin and M. Ishak, Phys. Rev. D 96, 023532 (2017).
[79] D. Benisty, J. Mifsud, J. L. Said, and D. Staicova, Phys.

Dark Universe 39, 101160 (2023).
[80] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, 213

(2001).
[81] E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003).
[82] E. M. Barboza, Jr. and J. S. Alcaniz, Phys. Lett. B 666, 415

(2008).
[83] A. Lewis, arXiv:1910.13970.

MODEL INDEPENDENT BOUNDS ON TYPE Ia SUPERNOVA … PHYS. REV. D 107, 063513 (2023)

063513-21

https://doi.org/10.1088/1475-7516/2016/12/005
https://doi.org/10.1088/1475-7516/2016/12/005
https://doi.org/10.1088/1475-7516/2014/01/005
https://doi.org/10.1088/1475-7516/2014/01/005
https://doi.org/10.1140/epjc/s10052-021-09708-2
https://doi.org/10.1140/epjc/s10052-021-09708-2
https://doi.org/10.1017/S1743921312016663
https://doi.org/10.1142/S0218271815300049
https://doi.org/10.1086/670067
https://doi.org/10.3847/2041-8213/ab8011
https://doi.org/10.1103/PhysRevD.96.023532
https://doi.org/10.1016/j.dark.2022.101160
https://doi.org/10.1016/j.dark.2022.101160
https://doi.org/10.1142/S0218271801000822
https://doi.org/10.1142/S0218271801000822
https://doi.org/10.1103/PhysRevLett.90.091301
https://doi.org/10.1016/j.physletb.2008.08.012
https://doi.org/10.1016/j.physletb.2008.08.012
https://arXiv.org/abs/1910.13970

