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A violation of the null energy condition (NEC) during inflation in a single-field inflation model will
naturally enhance the amplitude of the parity-violation effect (defined by Δχ) of inflationary primordial
gravitational waves (GWs), provided the inflaton is nonminimally coupled to a gravitational Chern-Simons
term. After going through the NEC-violating phase, the Universe enters subsequent slow-roll inflation
with a higher energy scale (i.e., a greater Hubble parameter H), which results in an enhanced nearly
scale-invariant power spectrum (i.e., PT) of inflationary primordial GWs in the high-frequency band, while
PT remains consistent with observations in the frequency band of the cosmic microwave background.
Therefore, the violation of NEC during inflation will amplify the observability (i.e., PT · Δχ) of the parity-
violation effect on small scales. Intriguingly, our model has particular oscillatory features on Δχ that may
not be mimicked by others.
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I. INTRODUCTION

The inflation scenario [1–4] has achieved tremendous
success in simultaneously solving several puzzles of the
hot big bang cosmology. The nearly scale-invariant power
spectrum of the primordial scalar perturbations predicted
by inflation has been confirmed by observations of the
temperature anisotropy of cosmic microwave background
(CMB) [5,6], while the primordial gravitational waves
(GWs) predicted by inflation remains undetermined. For
a scale-invariant power spectrum of the primordial GWs,
the tensor-to-scalar ratio is bounded to be r0.002 < 0.035 at
95% confidence level [7] in the observational window of
CMB. In recent years, the detections of GWs from binary
black holes [8] and a binary neutron star inspiral [9] by the
LIGO and Virgo collaborations have opened a new window
for gravitational physics.
The inflationary primordial GWs background [10,11],

which spans a broad frequency band (about 10−18–1010 Hz),
may bring us a wealth of information about gravity and the
early Universe in light of the recent and future observations
in a wide multifrequency range, including those of the
Pulsar Timing Array (PTA) [12–15], SKA [16], LISA [17],
Taiji [18], TianQin [19], DECIGO [20], and BBO [21]. In
contrast to primordial scalar perturbations, primordial GWs
possess a distinct characteristic, namely, chirality, which
can be manifested in parity-violating theories of gravity in
the primordial universe; see, e.g., Refs. [22–56] for some
of the recent studies, and see also Refs. [57–66]. A
dynamical coupling of the inflaton or a spectator field to

a parity-violating term, such as the gravitational Chern-
Simons (gCS) term [67,68], which is well motivated [69], is
able to produce asymmetric right- and left-handed circularly
polarized isotropic GWs; see also Ref. [28] for the chirality
oscillation. Notably, a hint of parity-violating physics in the
CMB (i.e., the cosmic birefringence) was recently extracted
from the polarization data of Planck and WMAP [70–72],
which may require further verification. This signal of
birefringence (if confirmed by more evidence) must have
been generated by some mechanism beyond the slow-roll
inflation; see, e.g., Ref. [73].
In single-field inflationary models, the effect of parity

violation is proportional to _ϕ≡ dϕ=dt (where ϕ is the
inflaton), which is suppressed by the slow-roll condition
( _ϕ ≪ H), unless a delicate design of the coupling is
introduced. Furthermore, the stringent bound on the
tensor-to-scalar ratio in the observational window of
CMB makes the situation even worse. Consequently, the
parity violation of primordial GWs generated in single-field
models of slow-roll inflation can hardly be observed in
general situations. However, the approximate 60 e-folds
inflationary expanding history could be more complicated
than that described by the slow-roll inflation; see, e.g.,
Refs. [74–85]. As can be inferred, the scale invariance of
the GW power spectrum could be broken in such a broad
frequency band through many different ways [86–94].
Recently, the NANOGrav Collaboration reported evidence
for a stochastic common-spectrum process [12], which
might be interpreted as a stochastic GW background with
a spectrum tilt −1.5≲ nT ≲ 0.5. If this result could be
attributed to the primordial GWs, it would mean that we*yongcai_phy@outlook.com
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may need new physics beyond the slow-roll inflation;
see, e.g., Ref. [95].
One possibility is when there is a violation of the null

energy condition (NEC) during inflation, which might play
a significant role in the evolution history of the Universe;
see Ref. [96] for a review. Implementing a fully stable NEC
violation in cosmology is a challenging task [96–100];
see also Refs. [101–109]. It has be demonstrated with the
effective field theory method that a fully stable NEC
violation can be realized in “beyond Horndeski” theory
[110–114]; see also Refs. [115–131] for recent studies. The
violation of NEC is able to enhance the power spectrum of
primordial GWs in the higher frequency band [78,132],
where the scale invariance is recovered due to the recovery
of slow-roll condition in the subsequent inflationary phase,
which has a larger Hubble parameter H. Furthermore, the
slow-roll condition will be inevitably violated around the
NEC-violating phase, which is able to naturally enhance
the amplitude of the parity-violation effect of inflationary
primordial GWs in single-field inflationary models, as
we will show in the following. To our knowledge, the
enhanced parity-violating GWs produced by a NEC-
violating phase during inflation has not been investigated
so far.
In this paper, we illustrate the ability of a NEC violation

in generating enhanced parity-violating primordial GWs
during inflation with a (noncanonical) single-field model of
inflation, in which the inflaton is nonminimally coupled
to the gCS term. We show that the violation of NEC during
inflation will naturally amplify the observability of the
parity-violation effect, which might be detectable at scales
much smaller than the CMB scale in the future.

II. NEC VIOLATION AND PARITY VIOLATIONOF
INFLATIONARY GRAVITATIONAL WAVES

The gCS term is the leading-order parity-violating
correction to general relativity motivated by the anomaly
cancellation in particle physics and string theory; see,
e.g., Ref. [68] for a review. In this section, we consider
a nonminimal coupling of the inflaton to the gCS term,
while setting the background evolution to the same as that
introduced in Ref. [78].
Initially, the canonical scalar field ϕ (i.e., the inflaton)

slowly rolls down a nearly flat potential VðϕÞ, so the
Universe undergoes a period of slow-roll inflation, which is
NEC preserving. The primordial scalar perturbation and
GWs generated in this period should be consistent with
observations in the window of the CMB. As the field ϕ
becomes noncanonical and climbs up the potential rapidly
such that _H > 0, the NEC and the slow-roll condition
are violated. After exiting the NEC-violating phase, the
Universe gradually enters a subsequent slow-roll infla-
tionary phase (NEC preserving) with higher energy scale
(i.e., a greater Hubble parameter), during which the inflaton
ϕ becomes canonical again.

A. Setup

The action of our single-field model can be given as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

p

2
R −M2

p
g1ðϕÞ
2

X þ g2ðϕÞ
4

X2

−M4
pVðϕÞ þ

g3ðϕÞ
8

R ∧ Rþ LHD

�
; ð1Þ

where the inflaton ϕ is dimensionless,X ¼ ∇μϕ∇μϕ, gnðϕÞ
are dimensionless functions, the gCS term R ∧ R ¼
ϵαβγδRαβμνRγδ

μν, ϵαβγδ is the four-dimensional Levi-Civita
tensor with ϵ0123 ¼ −1= ffiffiffiffiffiffi−gp

, and LHD represents some
higher derivative terms which are assumed to have negli-
gible contributions to the background evolution and the
tensor perturbations at quadratic order; see, e.g., Ref. [113]
for Lδg00Rð3Þ. In this paper, we will focus on the primordial
tensor perturbations. The dangerous ghost or gradient
instabilities (see, e.g., Refs. [97,98,106,107]) of the scalar
perturbations around the NEC-violating phase are assumed
to be cured by LHD (see, e.g., Refs. [110–114], for
LHD ¼ Lδg00Rð3Þ ), for simplicity. A detailed study of the
scalar sector of this theory will be carried out separately.
With the flat Friedmann-Robertson-Walker metric, i.e.,

ds2 ¼ −dt2 þ a2ðtÞdx⃗2, the background equations can be
found as

3H2M2
p ¼ M2

p

2
g1 _ϕ

2 þ 3

4
g2 _ϕ

4 þM4
pV; ð2Þ

_HM2
p ¼ −

M2
p

2
g1 _ϕ

2 −
1

2
g2 _ϕ

4; ð3Þ

where ;ϕ ≡ d=dϕ. The background evolution is unaffected
by the gCS term or LHD. By choosing the functions g1ðϕÞ,
g2ðϕÞ, and VðϕÞ appropriately, we can realize the back-
ground evolution of intermittent NEC violation during
inflation; see Ref. [78].
In the unitary gauge, we will set the tensor perturbation

as hij ¼ a2ðeγÞij, where γii ¼ 0 ¼ ∂iγij. The quadratic
action of tensor perturbation can be given as

Sð2Þγ ¼ M2
p

8

Z
dτd3x

�
a2½γ0ij2 − ð∂kγijÞ2�

−
g03
M2

p
ϵijk½ð∂iγjlÞ0ðγlkÞ0 − ∂i∂lγjq∂

lγqk�
�
; ð4Þ

where 0 ¼ d=dτ and τ ¼ R
dt=a, ϵijk ¼ ϵ0ijk is the three-

dimensional Levi-Cevita symbol and the higher-derivative
terms proportional to g03 are the parity-violating corrections
contributed by the gCS term. During the slow-roll inflation,
the effect of parity violation could be suppressed by _ϕ since
g03 ¼ ag3;ϕ _ϕ, unless a delicate design of g3ðϕÞ is adopted.
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However, the parity violation during inflation could be
greatly enhanced by an intermediate NEC violation, during
which _ϕ can naturally and significantly violate the slow-roll
condition.
In the Fourier space, we have γijðτ;xÞ ¼P
s¼L;R

R
d3k
ð2πÞ3 γ

ðsÞ
k ðτÞpðsÞ

ij ðkÞeik·x, where pðsÞ
ij is the circular

polarization tensor which satisfies pðRÞ
ij pijðRÞ ¼

pðLÞ
ij pijðLÞ ¼ 0, pðRÞ

ij pijðLÞ ¼ 2 and iklϵnljpij
ðsÞ ¼

kλðsÞpn
i
ðsÞ. The parameters λðLÞ ¼ −1 and λðRÞ ¼ 1 corre-

spond to the left- and right-handed modes, respectively. For
convenience, we also define λðNÞ ¼ 0, which corresponds to
the situation where there is no violation of parity.
From Eq. (4), we can obtain the equation of motion

of γðsÞk as

uðsÞk
00 þ

"
ðcðsÞTkÞ2k2 −

zðsÞT
00

zðsÞT

#
uðsÞk ¼ 0; ð5Þ

where we have defined uðsÞk ≡ zðsÞT γðsÞk and zðsÞT ¼
a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−λðsÞ k

a2
g0
3

M2
p

r
, and the effective sound speed is cðsÞTk ¼ 1

for both the left- and the right-handed GW modes; see,
e.g., Ref. [36]. To avoid the appearance of the ghost modes,

we require that k
a2

g0
3

M2
p
< 1; see, e.g., Ref. [133].

The perturbation modes are deep inside their horizon

initially, i.e., k2 ≫ zðsÞT
00=zðsÞT , which indicates uðsÞk ≃

e−ikτ=
ffiffiffiffiffi
2k

p
for τ → −∞. The power spectrum of primordial

GWs is PðsÞ
T ¼ k3

2π2
jγðsÞk j2 for k ≪ aH, where s ¼ L, R,

and N.1 To evaluate the intensity of parity violation of

primordial GWs, it is convenient to define the chiral
parameter

Δχ ¼ PðLÞ
T − PðRÞ

T

PðLÞ
T þ PðRÞ

T

: ð6Þ

From an observational point of view, what we really care
about is the difference between the power spectra of the

left- and right-handed GW modes, i.e., PðLÞ
T − PðRÞ

T . With a

sufficient large PT ¼ PðLÞ
T þ PðRÞ

T , a Δχ as small as a few
percent in the GW background might be detectable for
future observations. Furthermore, the peculiar features on
Δχ may encode the characteristic of our model.

B. Model and numerical solution

We adopt the phenomenological model proposed in
Ref. [78], in which we set

g1ðϕÞ ¼
2

1þ e−q1ðϕ−ϕ0Þ þ
1

1þ eq2ðϕ−ϕ3Þ −
f1e2ϕ

1þ f1e2ϕ
; ð7Þ

g2ðϕÞ ¼
f2

1þ e−q2ðϕ−ϕ3Þ
1

1þ eq3ðϕ−ϕ0Þ ; g3ðϕÞ ¼ ϕ; ð8Þ

VðϕÞ ¼ 1

2
m2ϕ2

1

1þ eq2ðϕ−ϕ2Þ

þ λ

1þ e−q4ðϕ−ϕ1Þ

�
1 −

ðϕ − ϕ1Þ2
σ2

�
2

; ð9Þ

where m, λ, f1;2, and q1;2;3;4 are some positive constants.
We set ϕ3 < ϕ2 < 0 < ϕ1 < ϕ0 for convenience.
In the limit ϕ ≪ ϕ3, we have g1 ¼ 1, g2 ¼ 0, and

V ¼ V inf1 ≃m2ϕ2=2, which is responsible for the first
stage of slow-roll inflation. Apparently, the inflaton is
canonical when ϕ ≪ ϕ3. For ϕ ≫ ϕ0, we have g1 ¼ 1,

729800 730000 730200 730400 730600

10
–5

10
–4

0.001

0.010

0.100

730200 730250 730300 730350 730400

–0.03

–0.02

–0.01

0.00

0.01

FIG. 1. Evolution of the background. Approximately, j _ϕj and jϕ̈j reach their maximum values around the end of the NEC-violation
phase.

1Note that PðNÞ
T ¼ PT=2 in the situation where there is no

parity violation.
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g2 ¼ 0, and V ¼ V inf 2 ≃ λ½1 − ðϕ−ϕ1Þ2
σ2

�2 ≫ V inf1, which is
responsible for the subsequent slow-roll inflation with a
higher energy scale (or equivalently, a greater Hubble
parameter H). Again, the inflaton becomes canonical
in this stage. In these two NEC-preserving regimes (i.e.,
ϕ ≪ ϕ3 and ϕ ≫ ϕ0), the potential is nearly flat, so the

predicted primordial scalar perturbations are consistent
with the observations in the window of CMB.
We numerically solve Eqs. (2) and (3) using (7) to (9)

and show the evolutions of H, _ϕ and ϕ̈ around the NEC-
violating phase in Fig. 1. Apparently, the slow-roll con-
dition is strongly violated around the NEC-violating phase.
More details about the background evolution can be found

in Ref. [78]. The evolution of zðsÞT
00=zðsÞT is displayed in

Fig. 2. Actually, it is mainly the nontrivial evolutions of _ϕ

and ϕ̈ that cause zðsÞT
00=zðsÞT to deviate greatly from a00=a,

where a00=a corresponds to the situation in which parity
is preserved (i.e., λðsÞ ¼ 0). Therefore, the NEC violation
during inflation is able to naturally enhance the parity
violation, compared with the case where the slow-roll
condition is preserved, as can inferred.
We also numerically solve Eq. (5) and plot the evolutions

of perturbation modes jujðsÞk and jγjðsÞk for s ¼ L, R, and N in
Fig. 3, in which we set the comoving wave number
k ¼ 8.8 × 106 Mpc−1. Basically, the chirality asymmetry
of GWmodes becomes relatively apparent when j _ϕj and jϕ̈j
become sufficient large, as we can see from Figs. 1–3. The
left- and right-handed GW modes oscillate with each other
and eventually arrive at different values after exiting their
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FIG. 2. Comparison of the evolutions of zðsÞT
00=zðsÞT =a2 for s ¼ R

(λs ¼ 1), s ¼ L (λs ¼ −1) and s ¼ N (λs ¼ 0), where s ¼ N
corresponds to a00=a3. We have set k ¼ 8.8 × 105 Mpc−1.
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FIG. 3. Evolution of the GW mode with comoving wave number k ¼ 8.8 × 106 Mpc−1.
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horizon. As a result, the parity violation of primordial GWs
enhanced by NEC violation during inflation will be
encoded in the power spectra; see also Ref. [28] for the
chirality oscillation.
The power spectra and the chiral parameter Δχ are

displayed in Figs. 4 and 5, respectively. We can see that
the parity violation becomes evident in the range
105 Mpc−1 ≲ k≲ 108 Mpc−1. This range corresponds to
those GW modes exiting horizon around the end of the
NEC-violating phase, around which j _ϕj and jϕ̈j reach their
maximum values. It should be pointed out that the specific
relation between the comoving wave number k and the time
t depends on the choice of parameters in the numerical
calculation. For example, with a different normalization of
the scale factor, we can obtain a shift of the power spectra
as well as Δχ with respect to k.
Notably, we can see in Fig. 5 that there are some peculiar

oscillatory features on Δχ at small scales. These features
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FIG. 4. Comparisons of the power spectra of the left-handed (λðsÞ ¼ −1, s ¼ L), right-handed (λðsÞ ¼ 1, s ¼ R), and parity-preserving
(λðsÞ ¼ 0, s ¼ N) primordial GWs modes which exited their horizon around the NEC-violating phase (part a) and that around the
end of the NEC-violating phase (part b). The ratios of the power spectra of the chiral GW modes to that of the parity-preserving ones
(parts c and d). Here, the power spectra are nearly scale invariant on both large and small scales, which may be distinctive from that
produced by other mechanism.
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GW modes exiting horizon around the end of the NEC-
violating phase.
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together with the peculiar power spectra (as shown in
Fig. 4) make our model characteristic with respect to others
in the literature (e.g., Refs. [31,45,50,52,53]).

III. PARITY-VIOLATING GRAVITATIONAL
WAVE BACKGROUND AND OBSERVATIONS

The energy density spectrum of GWs is defined
as [134,135] (see also Ref. [86])

ΩGW ¼ 1

ρc

dρGW
d ln k

¼ k2

12a20H
2
0

PTT 2ðk; τ0Þ; ð10Þ

where the critical energy density of the Universe is
ρc¼3M2

pH2
0, H0¼67.8 km=s=Mpc, τ0¼1.41×104Mpc,

a0 ¼ 1, the reduced Hubble parameter h ¼ H0=ð100 km=
s=MpcÞ, ρGW is the energy density of GWs at present,
and the wave number relates to the frequency as k ¼ 2πf.
The transfer function can be given as

T ðk; τ0Þ ¼
3Ωmj1ðkτ0Þ

kτ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.0þ 1.36

k
keq

þ 2.50

�
k
keq

�
2

s
;

ð11Þ

where keq ¼ 0.073Ωmh2 Mpc−1 is the comoving wave
number of the perturbation mode that entered the horizon
at the equality of matter and radiation and Ωm is the density
fraction of matter today.
Currently, the bound on the tensor to scalar ratio put

by data of CMB [7] indicates that ΩGW < 10−15 at
f ∼ 10−16 Hz. The 12.5 yr data of NANOGrav [12] suggest
ΩGW ∼ 10−9 at f ∼ 10−8 Hz, provided the stochastic
common-spectrum process can be interpreted as a stochas-
tic GW background. The observations in the frequency

band of LIGO and Virgo [8,9] put the bound ΩGW < 10−7

at f ≃ 30 Hz.

We plot ΩðsÞ
GWh

2 ∼ PðsÞ
T with respect to the physical

frequency f for left-handed, right-handed, and parity-
preserving GW modes in Fig. 6. We use the 12.5 yr data
of NANOGrav and the future sensitivity curves of SKA,
LISA, Taiji, TianQin, DECIGO, and BBO to compare
the theoretical predictions with experimental projections.
In Fig. 6, the largest parity-violation effect appears in the
observational window of PTA. We also choose a different
normalization of the scale factor in our numerical calcu-
lation so that we can shift the largest parity-violation effect
to the band of space-based interferometers, as displayed
in Fig. 7.
Additionally, with a different choice of the parameter

space, we should obtain a larger effect of parity violation,
i.e., a larger maximum value of jΔχj. Here, for simplicity
and to show that the NEC violation during inflation can
naturally enhance the effect of parity violation in primordial
GWs, we have chosen the same model parameters in the
numerical calculation as in Ref. [78]. Furthermore, since
the GW power spectra PT (or ΩGWh2) are greatly enhanced
for more than seven orders by the NEC violation, the

absolute value of jPðLÞ
T − PðRÞ

T j (or ΩðLÞ
GWh

2 − ΩðRÞ
GWh

2) could
become quite substantial, even though the maximum value
of jΔχj is only a few percent. Therefore, the NEC violation
is able to amplify the observability of parity violation in the
GW background. It is also interesting to note that obser-
vations of an enhanced PT and the peculiar oscillatory
features on Δχ might distinguish our model from others in
the literature (e.g., Refs. [31,45,50,52,53]).
We did not extend the curve to higher frequencies in

Figs. 6 and 7 because there is a cutoff to avoid the
appearance of ghost modes [133] in gCS theory, as can

be seen from the expression of zðsÞT . It is also because we did
not deal with the exit of the second inflationary phase,

FIG. 6. The energy density spectrum of GWs ΩðsÞ
GWh

2 with respect to the physical frequency f, where h ¼ H0=ð100 km=s=MpcÞ;
s ¼ L and R correspond to the left- and right-handed GW modes, respectively; s ¼ N corresponds to the parity-preserving mode. The
largest parity-violation effect appears in the band of PTA.

YONG CAI PHYS. REV. D 107, 063512 (2023)

063512-6



which is an open question. Interestingly, there might be
multistage inflation with intermittent NEC violations and
short periods of decelerated expansion, as has been dis-
cussed in Ref. [78]. As a result, the GW spectra might
look like the Great Wall while satisfying constraints in the
band of CMB.

IV. CONCLUSION

Chirality might be an intrinsic characteristic of GWs. We
have shown that a violation of the NEC during inflation is
able to naturally enhance the parity-violating primordial
GWs such that the chirality asymmetry of GWs can be
observable at scales much smaller than the CMB scale. We
have illustrated this new mechanism with a single-field
inflationary model, in which the inflaton ϕ is nonminimally
coupled to a gravitational Chern-Simons term.
The enhancement of parity-violating GWs in our model

is twofold. First, because of the strong violation of the
slow-roll condition induced by the violation of NEC, Δχ is
naturally enhanced compared with that in the case where
the slow-roll condition is preserved, though Δχ cannot
approach jΔχj ∼ 1 in the current model. Second, the power
spectrum of parity-violating GWs (i.e., PT) can be
enhanced for more than seven orders in higher frequency
band by the NEC violation during inflation, which might
be detectable at small scales in the future, while the

power spectrum remains consistent with constrains in the
observational window of CMB. Therefore, the violation of
NEC will amplify the observability of the parity-violation
effect in the GW background, since PT · Δχ is the differ-
ence between the power spectrum of the left- and right-
handed GWs.
An enhanced nearly scale-invariant power spectrum of

the parity-violating inflationary primordial GWs in the
high-frequency band with peculiar oscillatory features on
Δχ could be distinguishable from that generated by other
mechanism (e.g., Refs. [31,45,50,52,53]). A wide range of
multifrequency observations aimed at searching for GW
signals will bring us rich information about the gravity and
the early Universe. A signal of parity-violating GW back-
ground found by future observations could be attributed to
that generated by our mechanism.
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FIG. 7. The energy density spectrum of GWs ΩðsÞ
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2 with respect to the physical frequency f, where h ¼ H0=ð100 km=s=MpcÞ;
s ¼ L and R correspond to the left- and right-handed GW modes, respectively; s ¼ N corresponds to the parity-preserving mode. The
largest parity-violation effect appears in the band of space-based interferometers.
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